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Abstract— We study the joint source-channel coding (JSCC)

error exponent for discrete memoryless source-channel sians ~ _S€S™"| £, [XE€A” W;,”‘Lg( yeyr| o, [5€8™
with side information which is correlated to the transmitted

source. Two cases are considered: (1) the side informatiors i }

available only at the decoder; (2) the side information is azilable | e ctn /

at both the encoder and decoder. We employ the method of types

to establish a lower bound for the JSCC error exponent for
each case. As a consequence, a JSCC theorem on the reliable
transmissibility of the source over the channel is obtainedlt is
noted that the same JSCC theorem applies for both cases. For
binary sources and symmetric channels, we derive a sufficién

condition for which the side information at the decoder can : PR :
strictly improve the JSCC error exponent. Numerical results In this work we extend Csiszar's JSCC problem by consid-

show that side information can enlarge the region for reliatie €ing the availability of side information on the transwett
transmissibility and increase the JSCC error exponent for awide ~ Source at the decoder or at both the decoder and the encoder.
class of source-channel parameters. Our system is depicted in Fig. 1. The source message pair
| INTRODUCTION (s_, I).of Ieng'gh. tn is drawn in an ino!e!oend.ent. an_d identically
L, . distributed (i.i.d.) manner from a joint distributiofQs;, :
In [2], Csiszar est_abllshesalovye_r bound and an upper bqu§q< £}. We need to transmit the source messagever
for the lossless (fixed-length) joint source-channel ng'rlhe DMC Wy,y via JSCC block codes of length and

(JSCC) error exponent for systems consisting of a discquﬁnsmission raté. The source messadgeviewed as a noisy
memoryless source (DMS) and a discrete memoryless Cha‘nS'l%ervation ofs, contains the source side information and

(DMC). Given a DMS{(Jss : S}, @ DMC {Wyx : & — V}, helps the decoder reconstrigtNow consider the following
and a transmission rate (¢ > 0 is a constant measured iny, ;" .ases:

source symbol/channel use), he proved that the JSCC error

Fig. 1. The JSCC system with source side information.

exponentE; (Qs, Wy x, t) satisfies 1) Switch A is open, i.e., the side information is only
_ available at the decoder;
L;(@Qs, Wyx,t) < E5(Qs, Wy x, 1) < By (Qs, Wy|x, 1), 2) Switch A is closed, i.e., the side information is available
where at both the encoder and the decoder.
E;(Qs, Wy |x,t) We establish an (achievable) lower bound for the JSCC error
A

. exponent for each case. The sufficient and necessary aamditi
Hzlolsn[tD(PS”QS) + B (tHps (5), Wyl () for which the source@s can be reliably transmitted over the
is called Csiszar’'s random-coding lower boundHg, and channeIWy‘X, i.e., the JSCC theorem, is also formulated for
_ each case. It is seen that the same JSCC theorem applies for
Er(Qs, Wy x,1) both cases. A sufficient condition for which the source side
£ min[tD(Ps||Qs) + Esp(tHpy (S), Wy x)] (2) information at the decoder can strictly enlarge the JSC@rerr
. I.DS i ) exponent for a system consisting of a binary source and a
is called Csiszars sphere-packing upper boundEtp. In  symmetric channel is derived. Numerical results show tidiet s
(1) and (2), D(Ps|Qs) is the Kullback-leibler divergence, jnformation (at the decoder) not only enlarges the regiathef
andE,. (R, Wy|x) and E, (R, Wy|x) are the random-coding soyrce-channel parameters for which reliable transnilisgib
lower bound and the sphere-packing upper bound, respgCyossible, but it can also provide a noticeable increase in
tively, for the channel error exponent(R, Wy|x), i-€.. the JSCC error exponent for a large class of source-channel
E.(R,Wy|x) < E(R,Wy|x) < Eg(R,Wy|x). The com-  narameters.
putation of the bounds fak'; and the sufficient and necessary
condition for whichE ; = E; have been studied in [5].

1we refer to a single source by using its distribution. Hére denotes the
*This work was supported in part by NSERC of Canada. marginal distribution ofQ sz, on S.



Il. PROBLEM FORMULATION is given by

PSIED ,W ,t
For any finite set (or alphabe#fl, the size ofY is denoted en Qs Wyix, 1)

by |X|. For any finite setst and), the set of all probability = > s > Wé’&(ylfn(s, ).
distributions onX is denoted byP(.X'), and the set of all con- (shestnxLtn yion (¥, #s

ditional distributionsVy|x : X — ) is denoted byP ()| X). Given Qsr, Wy x andt > 0, the JSCC error exponent
For finite setsX, ), Z with joint distribution Pxyz € E§IED(QSL7WY|X7t) is defined as supremum of the
P(X x )Y x Z), we usePx, Pxy, Py x, €etc, to denote the set of all numbers® for which there exists a sequence of
corresponding marginal and conditional probabilitiesuiced JSC codesf,, ¢») with blocklengthn and transmission
from Pxyz. For any distributionPyy 7 € P(X X Y X Z), ratet such that

Hp,,,(-) and Ip,,,(-;-) denote the entropy and mutual o 1 SIED

information underPyy 7, respectively.D(Px || Qx) denotes B < liminf ——logy P77 (@sz, Wyix,1). - (4)

the Kullback-Leibler divergence between distributiofig < In this paper we shall lower bound the JSCC error exponent
P(X) andQx € P(X). D(Vy|x || Wy x|Px) denotes the ¢, ooch case.

Kullback-Leibler divergence between conditional digttibns
Vyix € P(Y|X) and Wy x € P(Y|X) conditional on . M AIN RESULTS

distribution Px € P(X). Given distributionsPx € P(X) GivenWy x € P(Y|X) and anyR > 0, define the random-
and Wy x € P(Y|X), let P)((") and Wé"‘;( be their n- coding exponent foiVy |y by

dimensional product distributions, respectively. All ésighms A

and exponentials in this paper are in base 2; furthermoke, al Er (R, Wy x) = Pxnel%)((x)ET(R’ Wyix: Px)
alphabets are finite.

where
We consider a communication system consisting of two N .
correlated DMS's{Qsy, : S x L} with finite alphabetS x £ Er (R Wyx,Px) = v Iél})lgym [D(Vyix || Wy x|Px)
and joint distribution@sz, and a DMC{Wy | x : X — YV} v N
with finite input alphabet, finite output alphabe®’, and + [Ipxvy 5 (X3Y) = R| } ;

:Laenzg'srr;gobs\%l:t)t/hilsgﬁgﬁ::gy Y‘X\'/v\i/tvr?sr;g:dir:% rtrrr?::\]t?grlllt where |z|t = max{0,z}. For the joint distribution of the
3 Y|X ourcesQsz, we can look at the conditional distribution

@1, available at (1) the decoder only, and (2) both the encod?
! - gus € P(L|S) as a dummy channel betweéhs and Q.
and the decoder. We next define the probability of error al dr any Py € P(S) and anyR < Hp,(S), we define an

the JSCC error exponent for each case. exponent for the dummy chann@ly,s by

1) A joint source-channel (JSC) code of block length a
n and transmission raté > 0 for the system with er(R,Qrjs; Ps) = Er(Hps (S) = R, Qs Ps)

side information at the decoder is a pair of mappings, =, Ig}%qs) [D(Pris||Qris|Ps)

(fn,¢n), Where f,, : S — X" is the encoder, and bis .

Py 2 Y x L — S is the decoder. The probability + R = Hpgp, s (SID)[T].

of error is given by Note thatE, (R, Wy ;) is a strictly decreasing function of

R and vanishes at the channel capacityiaf x, C(Wy | x) =

PSle(QSLa WY\Xa t) maxp, IPXWY\X (X, Y) ACCOfdingly, GT(R, QL\Sa PS) is a
A (tn) (n) strictly increasing function of® and is zero if and only if
- Z QSL (37 l) Z WY\X(ylfn(s))' R < HPSQL\S(S|L)' Let

(sheStn x Lim Yin(y,1)#s

Esi(Ps,Qris,Wy|x) = max
Given Qsr, Wy x andt > 0, the JSCC error exponent OSR<tHpg (S)

E?ID(QSL Wy x,t) is defined as supremum of the set . R
. ’ ) : ; E.(R, W, Jter | —, , P . 6
of all numbersFE for which there exists a sequence of i ( vix),te t Quis: s ©®)

JSC codesf,, ¢,) with blocklengthn and transmission  Theorem 1: Given Qs;, Wy |x andt > 0, when the side
ratet such that information @, is available only at the decoder, the JSCC
error exponent satisfies
EFP(QsL, Wy |x,t) > ES"P(Qsr, Wy|x,t)
= i tD(P, E:(Ps, W , (6
Psrélgés) [tD(Ps|Qs) + Ef(Ps, Wy |x)], (6)

E < 1inrgi£f—% logy P2IP(Qsi, Wy x,t).  (3)
2) A JSC code of block length and transmission rate
t > 0 for the system with side information at both thgynere
encoder and the decoder is a pair of mappifdgs, v ),
where f,, : S" x L™ — X" is the encoder, ang, : Ex(Ps, Wy|x)
V" x LI — St is the decoder. The probability of error = max { E,(tHps(S), Wy |v), Es1(Ps, Qris, Wyv) } -



The proof of Theorem 1 follows from a two-stage encoding Theorem 3. (JSCC Theorem) Give@sy, Wy | x andt > 0,
two-stage decoding scheme which combines the approacivben the side informatiod), is available either (1) at only
of Csiszar [2] and Oohama and Han [4] and is based on tthee decoder, or (2) at both the encoder and the decoder, we
method of types. In particular, at the decoding side, we eynplhave the following conditions.
a generalized maximum mutual information decoder followed 1) The sourceQg can be transmitted over the channel

by & minimum conditional entropy decoder. _ Wy x with an arbitrarily small probability of error
Given Wy | x and an arbitrary finite alphabét, we intro- if tHq,, (S|L) < C(Wy|x), where C(Wy x) is the

duce an auxiliary RW € U such thatU, X, andY form a channel capacity ofVy x.

Markov chain in this orded/ — X — Y, i.e., the conditional 2y Conversely, if the souro@g can be transmitted over the

probability P(Y = y|U = u, X = z) = Wy|x(yl|z) for any channelWy x with an arbitrarily small probability of

u €U,z € X andy € Y. For the sake of convenience, we error, thentHo, (S|L) < C(Wy x).
denote the conditional probability @f = y|U = u, X = z) B

induced fromWy | x by Wy yx, and call it the augmented IV. DISCUSSION
channel of Wy x. o ) )
For arbitrary and finite alphabat, distributionPy € P(U), | By de_flmtlon, we know that the error exponent Wlth _S|de
and everyR > 0, define information must be larger than the one without side infor-
mation, and the error exponent with side information at both
El(R,Py,Wy|x) =  max  El(R,Wyux,Pv,Pxju) the encoder and decoder must be larger than the one with side
Priy €P(X ) @) information only at the decoder. In other words, any lower
where bound of E; must be a lower bound aE$’? and E5/EP,
and similarly, the lower bound of?5/P is automatically a
BN R, Wy ux, P, Pxv) lower bound ofE$7#P . Furthermore, we can relate the derived
= min [D(Vyjux || Wy ox|Pox) lower bounds as follows.
Vyjux €P(VIUXX) Theorem 4:
+
 ryviox (X5 Y IU) = B ] 8) B (Qst Wost) < ES™P(Qsns Wt
where Py x = Py Py y. < ES"P(Qsp, Wy x,t). (10)

Theorem 2: Given Qsr, Wy x andt > 0, when the side  \ye next observe that the side information does not only

information @, is available at both the encoder and thgnarge the achievable region for transmission (see Theore
decoder, and for arbitrary and finite alphakdeand distribution 3 o4 recall thatiy

e @s: (S|L) < Hg,(5)), but also improves
Py € P(U), the JSCC error exponent satisfies the reliability of transmission. Obviously, if the soura@s .

EF'EP(Qsr, Wy x,t) > min  [tD(Ps.|QsL) and the channeWy | x satisfytHq,, (S|L) < C(Wy|x) <
Psp€P(SXL) tHg,(S), then we have
+ El (tHp,, (S|L), Pr, Wy x)] .
The proof of the above lower bound is also based on the EF™P(QsL, Wy x,t) > E5™(Qsc, Wy|x,1)
method of types, employing a pre-encoding function at both > 0= FE;(Qsr, Wy|x,1).
the encoder and the decoder on the side information message . .
|, and a generalized maximum conditional mutual information Recalling that we also have an upper bound Eyr given
decoder. by (2), thus, we can study the benefitsi6§’” over E; by
Of course, we can maximize the above lower bound Ipmparing the lower bound’” with the upper bound?.
taking the supremum over all finite alphabétsand taking  For a DMSQs, denote Gallager’s source function by

the maximum over all possible distributiod®;, € P(U), i.e., 1
Ei(p,Qs) £ (1+p)logy »_Qs(s)™.  (11)

E§IED(QSL, Wy x,t) > E?IED(QSMWYlX’t) seS
. .
X sB{p max PSLGInPl(I}SXE) [tD(Ps|@sr) For a DMC Wy x, denote Gallager's channel function by
+E! (tHps, (S|L), Py, Wy x)] - 9) Eo(p,Wy|x) 2 max_ FE,(p, Px,Wy|x) (12)

. e PxeP(X)
By examining the positivity of the lower bound3’” or *

ES™#P we obtain a sufficient condition for which the sourcavhere

Qs can be reliably transmitted over the channel. We also can 1+4p
prove a necessary condition by using Fano's inequality [1§ (,, Px,Wy|x) 2 _1ng <Z Py (I)W#)’}(MI)) 7
and thus complete the JSCC theorem. It turns out that the vey \oex

availability of the side information at the encoder does not (13)
make any difference on the transmissibility of the soufge p > 0. We remark that for symmetric channels (in the
over the channelVy x if the side information),, is already Gallager sense [3, p. 94]), the maximum in (12) is achieved
known by the decoder. by a uniform input distribution. We associate with the seurc



distribution Q¢ a family of tilted distributionsQ(S”) defined the side informatior); at the decoderE§ID > FEj holds

by for a large class of source-channel conditions. Finallyeno
= that we do not yet know whether the error expongijt P
g)(s) N s (f) 7 seS, p>0. (14) can be strictly larger than the expondﬁf“’. To answer this
S s QL () question, we may need to establish an upper bound& .
i €8S ) . . This may be considered in future research.
Using the results of [5], we obtain a sufficient condition
for which E5'P > E; for binary sources and symmetric 05
channels.

Lemma 1: LetQgs = {¢,1—q} (¢ < 0.5) be a binary DMS,
and Wy |x be symmetric such thati,, (S) < C(Wy x). If
p"<1and

E.(p*, Wy |x) —tE(p",Qs)
< tE,(1,Q77,Qus) +tDQY[Qs),

then E5IP > E;, where p* achieves the maximum of

Eo(p7 WY|X) - tES(pa QS)
Remark 1: The conditionp* < 1_is to ensure thatF; 0l
is determined by the bounds; = E; [5]. The condition

C

. i . N 0.05F (ESP>E >0)
in Lemma 1 can be easily verified singg can be solved A
analytica”y [5, Eq (40)] % \\Qos ol 015 o0z 025 03 035 04 o045 05
. . . . ID.
To illustrate our results, a numerical example is next given D &"e0 €

Let the transmitted sourc®gs be a binary DMS with dis-
tribution Qs = {¢,1 — ¢} (¢ < 0.5), and let the channel Fig- 2. Side information (SI) at the decoder can enlarge thece-channel
b bi ' . h ’ | (BSC ith arameters for reliable transmissibility for the binary Bif)-BSCg) system,
Wy | x 0e a binary symmetric ¢ anne (B )wn crossové’r: 0.75.
probability e € (0,0.5). The sourcel), is a noisy version of
QS described byL = S® N mod 2 (L =N = {051}) ~ S;‘)here—pac‘kinguppe‘rboundwi‘lhouls\
with noise distributionPy(N = 1) = 0.05, i.e., the side o Fonomting oo hourd witeat S
information is transmitted through a dummy BSg;,|s with 0s 1
crossover probability.05. Set the transmission rate= 0.75. ]
Fig. 2 shows the regions of the binary source and the BSC .4
parameters, i.e.(e,q) pairs, for which the source can be
reliably transmitted over the channel aRg’? can be strictly
larger thanE ; by Lemma 1. Regioi (including the boundary
with B) is the region wheréHq, (S|L) > C(Wy|x), i.e.,
where both E5'P and E; are zero. RegiorB (including
the boundary withC) is the region whereHg,, (S|L) <

T

Exponents

o
o

C(Wy|x) < tHq,(S), i.e., whereE; is zero, butE5P is o2

positive. RegionC (not including the boundary wittD) is

the region where botlE5’” and E; are positive, but the o om o om or om0 ow om0
condition given in Lemma 1 holds, i.eE5” > E; > 0. In €

RegionD, both exponent#&$/? and E,; are positive, and the
condition in Lemma 1 is not satisfied. Note that Lemma 1 onfyg. 3. Side information (SI) at the decoder can increaseJB€C error
gives a sufficient condition which can be easily verified.sThi*Ponent for the binary DMF}-BSCE) system,g = 0.1, ¢ = 0.75.
condition is however not necessary for havieg’? > E;
this is illustrated in Fig. 3, where we note that’? > E, REFERENCES
for Some(g,’ q) 6 D. SID i [1] T. M. Cover and J. A. Thomaglements of Information Theory, 2nd Ed.,
We plot in Fig. 3 the lower bound&5‘~ given in (6), the Wiley, 2006.
sphere-packing upper boun}_ﬂ] given in (2), and the random- [2] I. Csiszar, “Joint source-channel error exponefobl. Contr. Inform.
coding lower bound® ; given in (1) for the above DMg}— Theory, vol. 9, pp. 315-328, 1980. _ .
=J SID [3] R. G. Gallager,Information Theory and Reliable Communication, New
BSCE) system Wlmq = 0.1. The plots show thatZ7"~ is York: Wiley, 1968.
strictly larger thanE ; for e > 0.0045, and E?ID coincides [4] Y. Ochama and T. S. Han, “Universal coding for the Slepisiolf data
: . compression system and the strong converse theor&BEE Trans.
with £, _for e < 0.002. We.notfa that w_hen the channel_has Inform. Theory, vol. 40, pp. 19081919, Nov. 1994,
large noise £ > 0.01), the side information can substantially{s] v. zhong, F. Alajaji, and L. L. Campbell, “On the joint sme-channel
improve the error exponent. Furthermofg; is zero fore > coding error exponent for discrete memoryless systetisEE Trans.

0.175, but E5'P is still positive untile = 0.29. Thus with Inform. Theory, vol. 52, no. 4, pp. 1450-1468, April 2006.



