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Abstract— We study the joint source-channel coding (JSCC)
error exponent for discrete memoryless source-channel systems
with side information which is correlated to the transmitted
source. Two cases are considered: (1) the side information is
available only at the decoder; (2) the side information is available
at both the encoder and decoder. We employ the method of types
to establish a lower bound for the JSCC error exponent for
each case. As a consequence, a JSCC theorem on the reliable
transmissibility of the source over the channel is obtained. It is
noted that the same JSCC theorem applies for both cases. For
binary sources and symmetric channels, we derive a sufficient
condition for which the side information at the decoder can
strictly improve the JSCC error exponent. Numerical results
show that side information can enlarge the region for reliable
transmissibility and increase the JSCC error exponent for awide
class of source-channel parameters.

I. I NTRODUCTION

In [2], Csiszár establishes a lower bound and an upper bound
for the lossless (fixed-length) joint source-channel coding
(JSCC) error exponent for systems consisting of a discrete
memoryless source (DMS) and a discrete memoryless channel
(DMC). Given a DMS{QS : S}, a DMC {WY |X : X → Y},
and a transmission ratet (t > 0 is a constant measured in
source symbol/channel use), he proved that the JSCC error
exponentEJ (QS ,WY |X , t) satisfies

EJ(QS ,WY |X , t) ≤ EJ(QS ,WY |X , t) ≤ EJ(QS ,WY |X , t),

where

EJ(QS ,WY |X , t)

, min
PS

[tD(PS‖QS) + Er(tHPS
(S),WY |X)] (1)

is called Csiszár’s random-coding lower bound toEJ , and

EJ (QS ,WY |X , t)

, min
PS

[tD(PS‖QS) + Esp(tHPS
(S),WY |X)] (2)

is called Csiszár’s sphere-packing upper bound toEJ . In
(1) and (2),D(PS‖QS) is the Kullback-leibler divergence,
andEr(R,WY |X) andEsp(R,WY |X) are the random-coding
lower bound and the sphere-packing upper bound, respec-
tively, for the channel error exponentE(R,WY |X), i.e.,
Er(R,WY |X) ≤ E(R,WY |X) ≤ Esp(R,WY |X). The com-
putation of the bounds forEJ and the sufficient and necessary
condition for whichEJ = EJ have been studied in [5].
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Fig. 1. The JSCC system with source side information.

In this work we extend Csiszár’s JSCC problem by consid-
ering the availability of side information on the transmitted
source at the decoder or at both the decoder and the encoder.
Our system is depicted in Fig. 1. The source message pair
(s, l) of length tn is drawn in an independent and identically
distributed (i.i.d.) manner from a joint distribution{QSL :
S × L}. We need to transmit the source messages over
the DMC WY |X via JSCC block codes of lengthn and
transmission ratet. The source messagel, viewed as a noisy
observation ofs, contains the source side information and
helps the decoder reconstructs. Now consider the following
two cases:

1) Switch A is open, i.e., the side information is only
available at the decoder;

2) SwitchA is closed, i.e., the side information is available
at both the encoder and the decoder.

We establish an (achievable) lower bound for the JSCC error
exponent for each case. The sufficient and necessary condition
for which the source1 QS can be reliably transmitted over the
channelWY |X , i.e., the JSCC theorem, is also formulated for
each case. It is seen that the same JSCC theorem applies for
both cases. A sufficient condition for which the source side
information at the decoder can strictly enlarge the JSCC error
exponent for a system consisting of a binary source and a
symmetric channel is derived. Numerical results show that side
information (at the decoder) not only enlarges the region ofthe
source-channel parameters for which reliable transmissibility
is possible, but it can also provide a noticeable increase in
the JSCC error exponent for a large class of source-channel
parameters.

1We refer to a single source by using its distribution. HereQS denotes the
marginal distribution ofQSL on S.



II. PROBLEM FORMULATION

For any finite set (or alphabet)X , the size ofX is denoted
by |X |. For any finite setsX andY, the set of all probability
distributions onX is denoted byP(X ), and the set of all con-
ditional distributionsVY |X : X → Y is denoted byP(Y|X ).
For finite setsX , Y, Z with joint distribution PXY Z ∈
P(X ×Y ×Z), we usePX , PXY , PY Z|X , etc, to denote the
corresponding marginal and conditional probabilities induced
from PXY Z . For any distributionPXY Z ∈ P(X × Y × Z),
HPXY Z

(·) and IPXY Z
(·; ·) denote the entropy and mutual

information underPXY Z , respectively.D(PX ‖ QX) denotes
the Kullback-Leibler divergence between distributionsPX ∈
P(X ) andQX ∈ P(X ). D(VY |X ‖ WY |X |PX) denotes the
Kullback-Leibler divergence between conditional distributions
VY |X ∈ P(Y|X ) and WY |X ∈ P(Y|X ) conditional on
distribution PX ∈ P(X ). Given distributionsPX ∈ P(X )

and WY |X ∈ P(Y|X ), let P (n)
X and W

(n)
Y |X be their n-

dimensional product distributions, respectively. All logarithms
and exponentials in this paper are in base 2; furthermore, all
alphabets are finite.

We consider a communication system consisting of two
correlated DMS’s{QSL : S × L} with finite alphabetS × L
and joint distributionQSL, and a DMC{WY |X : X → Y}
with finite input alphabetX , finite output alphabetY, and
transition probability distributionWY |X . We need to transmit
the sourceQS over the channelWY |X with side information
QL available at (1) the decoder only, and (2) both the encoder
and the decoder. We next define the probability of error and
the JSCC error exponent for each case.

1) A joint source-channel (JSC) code of block length
n and transmission ratet > 0 for the system with
side information at the decoder is a pair of mappings,
(fn, ϕn), wherefn : Stn → Xn is the encoder, and
ψn : Yn × Ltn → Stn is the decoder. The probability
of error is given by

PSID
e,n (QSL,WY |X , t)

,
∑

(s,l)∈Stn×Ltn

Q
(tn)
SL (s, l)

∑

y:ϕn(y,l) 6=s

W
(n)
Y |X(y|fn(s)).

GivenQSL, WY |X andt > 0, the JSCC error exponent
ESID

J (QSL,WY |X , t) is defined as supremum of the set
of all numbersE for which there exists a sequence of
JSC codes (fn, ϕn) with blocklengthn and transmission
rate t such that

E ≤ lim inf
n→∞

−
1

n
log2 P

SID
e,n (QSL,WY |X , t). (3)

2) A JSC code of block lengthn and transmission rate
t > 0 for the system with side information at both the
encoder and the decoder is a pair of mappings,(fn, ϕn),
wherefn : Stn × Ltn → Xn is the encoder, andψn :
Yn×Ltn → Stn is the decoder. The probability of error

is given by

PSIED
e,n (QSL,WY |X , t)

,
∑

(s,l)∈Stn×Ltn

Q
(tn)
SL (s, l)

∑

y:ϕn(y,l) 6=s

W
(n)
Y |X(y|fn(s, l)).

GivenQSL, WY |X andt > 0, the JSCC error exponent
ESIED

J (QSL,WY |X , t) is defined as supremum of the
set of all numbersE for which there exists a sequence of
JSC codes (fn, ϕn) with blocklengthn and transmission
rate t such that

E ≤ lim inf
n→∞

−
1

n
log2 P

SIED
e,n (QSL,WY |X , t). (4)

In this paper we shall lower bound the JSCC error exponent
for each case.

III. M AIN RESULTS

GivenWY |X ∈ P(Y|X ) and anyR > 0, define the random-
coding exponent forWY |X by

Er(R,WY |X) , max
PX∈P(X )

Er(R,WY |X , PX)

where

Er(R,WY |X , PX) , min
VY |X∈P(Y|X )

[

D(VY |X ‖WY |X |PX)

+
∣

∣IPXVY |X
(X ;Y ) −R

∣

∣

+
]

,

where |x|+ = max{0, x}. For the joint distribution of the
sourcesQSL, we can look at the conditional distribution
QL|S ∈ P(L|S) as a dummy channel betweenQS andQL.
For anyPS ∈ P(S) and anyR ≤ HPS

(S), we define an
exponent for the dummy channelQL|S by

er(R,QL|S, PS) , Er(HPS
(S) −R,QL|S, PS)

= min
PL|S∈P(L|S)

[

D(PL|S‖QL|S|PS)

+|R−HPSPL|S
(S|L)|+

]

.

Note thatEr(R,WY |U ) is a strictly decreasing function of
R and vanishes at the channel capacity ofWY |X , C(WY |X) =
maxPX

IPXWY |X
(X ;Y ). Accordingly, er(R,QL|S, PS) is a

strictly increasing function ofR and is zero if and only if
R ≤ HPSQL|S

(S|L). Let

ESI(PS , QL|S,WY |X) , max
0≤R≤tHPS

(S)

min

{

Er(R,WY |X), ter

(

R

t
,QL|S, PS

)}

. (5)

Theorem 1: GivenQSL, WY |X and t > 0, when the side
informationQL is available only at the decoder, the JSCC
error exponent satisfies

ESID
J (QSL,WY |X , t) ≥ ESID

J (QSL,WY |X , t)

, min
PS∈P(S)

[

tD(PS‖QS) + E∗
r (PS ,WY |X)

]

, (6)

where

E∗
r (PS ,WY |X)

= max
{

Er(tHPS
(S),WY |U ), ESI(PS , QL|S,WY |U )

}

.



The proof of Theorem 1 follows from a two-stage encoding
two-stage decoding scheme which combines the approaches
of Csiszár [2] and Oohama and Han [4] and is based on the
method of types. In particular, at the decoding side, we employ
a generalized maximum mutual information decoder followed
by a minimum conditional entropy decoder.

GivenWY |X and an arbitrary finite alphabetU , we intro-
duce an auxiliary RVU ∈ U such thatU , X , andY form a
Markov chain in this order,U → X → Y , i.e., the conditional
probability Pr(Y = y|U = u,X = x) = WY |X(y|x) for any
u ∈ U , x ∈ X and y ∈ Y. For the sake of convenience, we
denote the conditional probability Pr(Y = y|U = u,X = x)
induced fromWY |X by WY |UX , and call it the augmented
channel ofWY |X .

For arbitrary and finite alphabetU , distributionPU ∈ P(U),
and everyR > 0, define

E†
r(R,PU ,WY |X) = max

PX|U∈P(X|U)
E†

r(R,WY |UX , PU , PX|U )

(7)
where

E†
r(R,WY |UX , PU , PX|U )

, min
VY |UX∈P(Y|U×X )

[

D(VY |UX ‖WY |UX |PUX)

+
∣

∣IPUXVY |UX
(X ;Y |U) −R

∣

∣

+
]

, (8)

wherePUX = PUPX|U .
Theorem 2: GivenQSL, WY |X and t > 0, when the side

information QL is available at both the encoder and the
decoder, and for arbitrary and finite alphabetU and distribution
PU ∈ P(U), the JSCC error exponent satisfies

ESIED
J (QSL,WY |X , t) ≥ min

PSL∈P(S×L)
[tD(PSL‖QSL)

+ E†
r

(

tHPSL
(S|L), PU ,WY |X

)]

.

The proof of the above lower bound is also based on the
method of types, employing a pre-encoding function at both
the encoder and the decoder on the side information message
l, and a generalized maximum conditional mutual information
decoder.

Of course, we can maximize the above lower bound by
taking the supremum over all finite alphabetsU and taking
the maximum over all possible distributionsPU ∈ P(U), i.e.,

ESIED
J (QSL,WY |X , t) ≥ ESIED

J (QSL,WY |X , t)

, sup
U

max
PU

min
PSL∈P(S×L)

[tD(PSL‖QSL)

+E†
r

(

tHPSL
(S|L), PU ,WY |X

)]

. (9)

By examining the positivity of the lower boundESID
J or

ESIED
J , we obtain a sufficient condition for which the source

QS can be reliably transmitted over the channel. We also can
prove a necessary condition by using Fano’s inequality [1],
and thus complete the JSCC theorem. It turns out that the
availability of the side information at the encoder does not
make any difference on the transmissibility of the sourceQS

over the channelWY |X if the side informationQL is already
known by the decoder.

Theorem 3: (JSCC Theorem) GivenQSL,WY |X andt > 0,
when the side informationQL is available either (1) at only
the decoder, or (2) at both the encoder and the decoder, we
have the following conditions.

1) The sourceQS can be transmitted over the channel
WY |X with an arbitrarily small probability of error
if tHQSL

(S|L) < C(WY |X), whereC(WY |X) is the
channel capacity ofWY |X .

2) Conversely, if the sourceQS can be transmitted over the
channelWY |X with an arbitrarily small probability of
error, thentHQSL

(S|L) ≤ C(WY |X).

IV. D ISCUSSION

By definition, we know that the error exponent with side
information must be larger than the one without side infor-
mation, and the error exponent with side information at both
the encoder and decoder must be larger than the one with side
information only at the decoder. In other words, any lower
bound ofEJ must be a lower bound ofESID

J andESIED
J ,

and similarly, the lower bound ofESID
J is automatically a

lower bound ofESIED
J . Furthermore, we can relate the derived

lower bounds as follows.
Theorem 4:

EJ(QSL,WY |X , t) ≤ ESID
J (QSL,WY |X , t)

≤ ESIED
J (QSL,WY |X , t). (10)

We next observe that the side information does not only
enlarge the achievable region for transmission (see Theorem
3 and recall thatHQSL

(S|L) ≤ HQS
(S)), but also improves

the reliability of transmission. Obviously, if the sourcesQSL

and the channelWY |X satisfy tHQSL
(S|L) < C(WY |X) <

tHQS
(S), then we have

ESID
J (QSL,WY |X , t) ≥ ESID

J (QSL,WY |X , t)

> 0 = EJ (QSL,WY |X , t).

Recalling that we also have an upper bound forEJ given
by (2), thus, we can study the benefits ofESID

J overEJ by
comparing the lower boundESID

J with the upper boundEJ .
For a DMSQS , denote Gallager’s source function by

Es(ρ,QS) , (1 + ρ) log2

∑

s∈S

QS(s)
1

1+ρ . (11)

For a DMCWY |X , denote Gallager’s channel function by

Eo(ρ,WY |X) , max
PX∈P(X )

Eo(ρ, PX ,WY |X) (12)

where

Eo(ρ, PX ,WY |X) , − log
∑

y∈Y

(

∑

x∈X

PX(x)W
1

1+ρ

Y |X(y|x)

)1+ρ

,

(13)
ρ ≥ 0. We remark that for symmetric channels (in the
Gallager sense [3, p. 94]), the maximum in (12) is achieved
by a uniform input distribution. We associate with the source



distributionQS a family of tilted distributionsQ(ρ)
S defined

by

Q
(ρ)
S (s) ,

Q
1

1+ρ

S (s)
∑

s′∈S Q
1

1+ρ

S (s′)
, s ∈ S, ρ ≥ 0. (14)

Using the results of [5], we obtain a sufficient condition
for which ESID

J > EJ for binary sources and symmetric
channels.

Lemma 1: LetQS = {q, 1−q} (q < 0.5) be a binary DMS,
andWY |X be symmetric such thattHQS

(S) < C(WY |X). If
ρ∗ ≤ 1 and

Eo(ρ
∗,WY |X) − tEs(ρ

∗, QS)

< tEo(1, Q
(ρ∗)
S , QL|S) + tD(Q

(ρ∗)
S ‖QS),

then ESID
J > EJ , where ρ∗ achieves the maximum of

Eo(ρ,WY |X) − tEs(ρ,QS).
Remark 1: The conditionρ∗ ≤ 1 is to ensure thatEJ

is determined by the boundsEJ = EJ [5]. The condition
in Lemma 1 can be easily verified sinceρ∗ can be solved
analytically [5, Eq. (40)].

To illustrate our results, a numerical example is next given.
Let the transmitted sourceQS be a binary DMS with dis-
tribution QS = {q, 1 − q} (q < 0.5), and let the channel
WY |X be a binary symmetric channel (BSC) with crossover
probability ε ∈ (0, 0.5). The sourceQL is a noisy version of
QS described byL = S ⊕ N mod 2 (L = N = {0, 1})
with noise distributionPN (N = 1) = 0.05, i.e., the side
information is transmitted through a dummy BSCQL|S with
crossover probability0.05. Set the transmission ratet = 0.75.
Fig. 2 shows the regions of the binary source and the BSC
parameters, i.e.,(ε, q) pairs, for which the source can be
reliably transmitted over the channel andESID

J can be strictly
larger thanEJ by Lemma 1. RegionA (including the boundary
with B) is the region wheretHQSL

(S|L) ≥ C(WY |X), i.e.,
where bothESID

J and EJ are zero. RegionB (including
the boundary withC) is the region wheretHQSL

(S|L) <

C(WY |X) ≤ tHQS
(S), i.e., whereEJ is zero, butESID

J is
positive. RegionC (not including the boundary withD) is
the region where bothESID

J and EJ are positive, but the
condition given in Lemma 1 holds, i.e.,ESID

J > EJ > 0. In
RegionD, both exponentsESID

J andEJ are positive, and the
condition in Lemma 1 is not satisfied. Note that Lemma 1 only
gives a sufficient condition which can be easily verified. This
condition is however not necessary for havingESID

J > EJ ;
this is illustrated in Fig. 3, where we note thatESID

J > EJ

for some(ε, q) ∈ D.
We plot in Fig. 3 the lower boundESID

J given in (6), the
sphere-packing upper boundEJ given in (2), and the random-
coding lower boundEJ given in (1) for the above DMS(q)–
BSC(ε) system withq = 0.1. The plots show thatESID

J is
strictly larger thanEJ for ε > 0.0045, andESID

J coincides
with EJ for ε ≤ 0.002. We note that when the channel has
large noise (ε > 0.01), the side information can substantially
improve the error exponent. Furthermore,EJ is zero forε ≥
0.175, but ESID

J is still positive until ε = 0.29. Thus with

the side informationQL at the decoder,ESID
J > EJ holds

for a large class of source-channel conditions. Finally, note
that we do not yet know whether the error exponentESIED

J

can be strictly larger than the exponentESID
J . To answer this

question, we may need to establish an upper bound forESID
J .

This may be considered in future research.
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