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Abstract

We examine bit and symbol interleaving strategies for limen-binary block codes (under bounded distance
decoding) over the family of binary additive noise finitetst Markov channel (FSMC) models with memory. We
derive a simple analytical sufficient condition under whymérfect (i.e., with infinite interleaving depth) symbol
interleaving outperforms perfect bit interleaving in tenwf the probability of codeword error (PCE). It is shown
that the well-known Gilbert-Elliott channel (GEC) with ptige noise correlation coefficient as well as the recently
introduced Markovian queue-based channel (QBC) of memidrysatisfy this condition. This result has been
widely illustrated numerically (without proof) in the litgture, particularly for the GEC. We also provide examples
of binary FSMC models for which the reverse result holds, iperfect bit interleaving outperforming perfect
symbol interleaving. Finally, a numerical PCE study of imfpet symbol-interleaved non-binary codes over the
QBC indicates that there is a linear relationship betweenoitimal interleaving depth and a function of a single

parameter of the QBC.
Index Terms

Additive noise channels, binary finite-state Markov chdsn&ilbert-Elliott channel, Markovian queue-based

channel, Reed-Solomon and non-binary block codes, symizbb# interleaving.

. INTRODUCTION

An important class of non-binary error correcting codesdusedely in data transmission and storage
systems is the family of Reed-Solomon (RS) codes [1]. A comgnosed strategy to employ an RS code
to correct errors generated by a channel with (statistio@nory is to incorporate block interleaving into

the communication system. It is also known that binary mathd time-correlated flat fading channels
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used in conjunction with hard-decision demodulation camdpeesented by stationary binary (modulo-2)
additive noise channels with memory (e.g., see [2], [3]).eWImon-binary codewords are sent over such
channels, two interleaving strategies are worth considdd], [5]: (i) interleaving the code symbols; (ii)
interleaving the code (or channel) bits which, under pértecinfinite interleaving depth, reduces the
channel to the memoryless binary symmetric channel (BST) [6

In prior works, the performance of non-interleaved RS camles correlated fading channels is analyzed
in [7]-[9] using a two-step procedure. First, a binary fingiate Markov channel (FSMC) model is
introduced for the generation of the bit or symbol error pss; and then a formula for the probability
of codeword error (PCE) under bounded distance decodingilizatl for the proposed model. In [7],
the channel is modeled via the Gilbert-Elliott channel (GH& whose parameters are calculated using
a simple threshold model. In [8], level crossing statistes applied to characterize the fading arrival
process and the fading durations, and the PCE is expresséeims of the probability distribution
of the fading durations. In [9], the bit error process raagltfrom the hard-decision demodulation of
binary frequency-shift keying modulated signals over elated Rician fading channels is modeled via a
Fritchman channel [10]. Imperfect (finite-length) symhalerleaving is also considered in [8], [9]. In a
recent work [11], the performance of symbol-interleavedd®8es over fading channels modeled via the
GEC is examined in the context of CDMA2000 Broadcast and st Services.

A numerical study of the superiority of symbol-interleav@yer bit-interleaved) RS codes is given
in [4] for the case of slow fading channels. This result matéd the authors of [8] to consider only
symbol interleaving in their investigations. An analytieapression for the PCE of RS codes over binary
FSMC models under imperfect bit- and symbol-interleavimglérived in [5] for two decoding strategies
(bounded distance decoding and error-forecasting deghdiie study conducted in [5] to compare the
performance of these two interleaving strategies for theCGIarroborates the superiority of symbol-
interleaving found in previous numerical studies. Howgesarce there is no known analytical proof in the
literature for this result, it is natural to investigate \ither perfect symbol interleavirgjwaysoutperforms
perfect bit-interleaving for a given class of binary FSMCdals or if there exist conditions on the channel
parameters under which bit-interleaving provides betteE Berformance.

In this work, we analytically investigate the merits of matf symbol and bit interleaving for linear
non-binary block codes under bounded-distance decodiegtbe class of binary FSMCs (with additive
stationary hidden Markovian noise). This class of FSMC nwoeludes the GEC (which has been widely

shown to be a good model for flat fading channels [2], [3]) dredrecently introduced queue-based channel
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(QBC) [12]. The QBC, which features anth-order additive Markov noise process generated via &finit
gueue, has only four parameters (like the GEC), while algwits memory order to be arbitrarily large.
It also offers (unlike the GEC) closed form expressions far block transition probability, capacity and
autocorrelation function [12]. Furthermore, it has beeovahthat the QBC can accurately approximate the
GEC [12] as well as (uncoded and RS coded) hard-decision diglated Rician flat fading channels [13],
[14].

Imperfect (i.e., with finite interleaving depth) interléag is an important issue in practice. In particular,
for non-binary block codes over the GEC it was found in [5}t therfect interleaving can be realized when
the interleaving depth is a multiple of the channel’'s averagrst length (e.g., the typical interleaving
depth needed to achieve perfect symbol and bit interleagirdpuble and four times the average burst
length of the GEC, respectively [5]). Another motivatiom this work is to verify if a similar result also
holds for the QBC. We provide PCE numerical results when mege symbol interleaved RS codes are
sent over the QBC and investigate the choice of the optintatleaving depth in terms of the parameters
of this channel.

The contributions of this correspondence are summarizddllasvs. In Proposition 1, we establish a
simple explicit condition (in terms of the FSMC noise stits) under which perfect symbol interleaving
results in a lower PCE compared to perfect bit interleavimgany linear non-binary block code used
over the FSMC with bounded-distance decodinge analytically show that both the GEC with positive
noise correlation coefficient (i.e., with persistent meynf@]) and the QBC satisfy this condition; see
Propositions 2 and 3. Interestingly, we note an oppositeasieh for the simplified Gilbert channel
(SGC) [15] (i.e., the first-order Markov noise channel) whisnnoise correlation coefficient is negafive
(this channel is a special instance of the GEC with oscifatnemory [6]); in this case, we show that
perfect bit-interleaved non-binary codes outperform garfsymbol-interleaved ones. We also provide
other examples of FSMC models (Fritthman channels with theggaoise correlation coefficient) where
bit interleaving can be better than symbol interleavingnétefor some classes of channels (such as the
GEC), the choice of the best interleaving strategy is dyealated to the sign of the noise correlation
coefficient. Finally, we conduct a numerical study to analylze sensitivity of the QBC and interleaving

11t is worth pointing out that the result in Proposition 1 does require that the noise process be hidden Markovian (Ve meed that

the noise be stationary). We however restrict it be hiddemkbMaan since FSMC models are widely used to model fadingclks.
2Note that the case of negative noise correlation coefficientreflect situations involving very fast correlated Ridiading (cf. Remark 1).

Even if such fast fading situations may occur rarely in geactthe fact that negative noise correlation leads to bérieaving outperforming

symbol interleaving (i.e., the reverse result of Proposgi1-3) is at least of conceptual interest.
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parameters with respect to the PCE. We found that, simikarlthe GEC, there is a linear relationship

between the optimal interleaving depth and a function oinglsi parameter of the QBC.

II. SYSTEM DESCRIPTION

We consider a coded communication system where non-bimangmitted symbols, assuming values
from the Galois field GR?), b > 2, are mapped one-to-one to a binaryuple and are transmitted across
a binary FSMC model. Théth received binary symbdt;, is described by, = X, & 7, k=1,2,-- -,
where@® denotes addition modulo-Z; € {0,1} is thekth transmitted symbol and, € {0, 1} is thekth
channel noise symbol. We assume that the noise prddéss> , is a stationary hidden Markov source
and is independent from the transmitted procgss};>, . Two channel models considered in this letter
(one with anMth-order Markovian noise and one with a hidden Markoviarsepiwhich belong to the

class of binary FSMC models, are next briefly described.

A. Queue-Based Channel

The queue-based channel (QBC) uses a simple approach td arodli&h-order Markov noise process
via a finite queue [12]. At théth time, the channel generates a noise outputhat depends on four
parameters: the size of the queud, the channel bit error rate (BER),= Pr(Z; = 1), and correlation
parameters and «, where0 < ¢ < 1, a > 0. First, one of two parcels (an urn and a queue of size
M) are selected with probability distributiofe, 1 — ¢}. If the urn is selected, the model generates an
error (Z, = 1) with probability p. If the queue is selected, a binary noise symbol is seleciu av
probability distribution that depends ol and on the parameter (o« determines the bias for operating
on the last cell of the queue of lengii and is equal to 1 when/ = 1 [12]). The channel state process
{Si}e ., whereS, £ (Zy, Zj_1,-- -, Zr_n41) iS @ homogeneous first-order Markov process with an
alphabet of size&™ with 2/ x 2M transition probability matri¥> = [p;;] given by [12, Eq.(4)] and state
stationary distribution column vectofI = [m;] given by [12, Eq.(5)]. The QBC allows simple closed-
form expressions for several statistics. In particulag, ¢hannel noise block probabili§r (7, = z1, Z, =
Zoy vy Ly = zy) = Pr(Z™ = 2") is expressed as [12]

« For blocklengthn < M,

L5 g + (-0 =) 5 s + (- o))
[T 1= (o + ) 3]

whered? = z, + 2,1 + -+ + 2, (d% = 0 if a > 1), ande:O(-) £ 1ifa<0.

Pr(Z" =2") = (1)
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« For blocklengthn > M + 1,

n n - i— € .
PI‘(Z =z ) :L(M) | H |:(di_:]l\/[+1+0é2i—M) m+(1—6)p:|
i=M+1
) e 1—21'
{[(M—l—d::}vjﬂ) +a(1—zi_M)} m+(1—5)(1_p)} (2)

where

M—1-dM . . ai-1r1. .
O _ Hj:O [Jm+(1—5)(1—29)] Hj:O []mﬂL(l—f)p}'
IG5 [t = (@ + 5) 3]
The noise correlation coefficient, Cor, for the QBC is a negative quantity given by
E[Z, 25| -~ E[Z\|E[Z)] _ W-ita
E[Z}] — (E[Z1])? 1= (M =2+ )55

M—-14+o

Cor=

whereE[:] denotes expectation. When= 0 (Cor = 0), the resulting model reduces to the memoryless

BSC with crossover probability.

B. Gilbert-Elliott Channel

The GEC is driven by an underlying stationary ergodic twatestMarkov chain composed of state O,
which produces errors with probabiliy;, and state 1, where errors occur with probability, where
pa < pp. The transition probabilities of the Markov chain arg = @ andp;o = ¢, where0 < @ < 1
and0 < ¢ < 1. Mushkin and Bar-David [6] defined the “memory” of the GECias 1 —¢— Q. If 1 >0
the channel has persistent memory, o ik 0 the channel has oscillatory memory [6]. When= 0 the
model reduces to the memoryless BSC. We define two matii¢esandP (1), P(0)+P(1) = P, where
the (i, j)th entry of the matrixP(z), z € {0,1} is Pr(Z, = 2,5 = j | Sx—1 = i). The state stationary
distribution vector isII = [ry, m]" = [¢/(¢ + Q),Q/(q + Q)]" (where the superscrigt]” indicates
transposition), and the matric&y0) andP(1) are given by

P(0) =
q(1—pg) (1-q¢)(1—-ps

The channel noise block probability can be expressed inixni@im as

Pr(Z" =2") = I’ (H P(zk)> 1 (3)
k=1

where1 is a column vector of ones of length 2. For example, an exjmeder p, = Pr(Z, = 0) is

(1 - Q) (1 - pG) Q (1 - pB) P(1) = (1 - Q)pG Qps .
) qpc (1-4q)ps

po =1—BER=m(1 — pg) + m1 (1 — pp). 4)
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The noise correlation coefficient for the GEC is expressed as

_ u(BER—pg)(pp — BER)
COr= " BER1-BER) ®)

The SGC [15] can be obtained from the GEC by setiing= 0 andpg = 1. As a result, the SGC with

BER p and noise correlation coefficieptis a two-state first-order Markov noise channel with paramset
Q= (1—-ppandqg=(1-pu)(1—p).Itdirectly follows from (4) and (5) that Cor and have identical

signs.

[1l. PERFECTBIT INTERLEAVING VS PERFECT SYMBOL INTERLEAVING FOR NON-BINARY CODES

The objective of this section is to analytically compare peeformance of non-binary codes under both
perfect symbol interleaving and perfect bit interleavingen transmitted over the binary FSMC model
described at the beginning of the previous section.

Let C be any non-binary linear block code over the Galois field(Z5Fwith length n and error
correction capabilityt (e.g., a Reed-Solomon code). A transmitted symbol is redenorrectly if the
stationary noise corrupting it is a sequence of zeros ofttegdenoted a$’. Otherwise, the transmitted
symbol is received incorrectly and a symbol error occurg.the probability that the channel produces
the b-tuple all zeros be denoted by(b) = Pr(Z® = 0°). Then the probability of correct decoding under
bounded distance decoding, denoted for the perfect symbol-interleaved system is given by

p - Z(’?)G—F(b»i(ﬂb»”—i- 6)

=0 !

On the other hand, for the perfect bit-interleaved non4lyirade, denote the probability of correlet
transmissions byG(h) = Pr(Z = 0)°. Hence the probability of correct decoding for this intavieg
scheme is given by (6) with replacing(b) by G(b). The performance comparison carried out in this
section is done in terms a?., or equivalently, in terms of PCE 1 — P..

Proposition 1: If F(b) > G(b) for the binary FSMC model, then perfect symbol interleavingper-
forms perfect bit interleaving for the transmission®iinder bounded distance decoding.

Proof: 3 If x denotes the symbol error probability, then the PCE (undented distance decoding)

can be expressed as a functionzoés follows:

n

n . .
PCEz) = ) (-)xl(l—x)”ﬂ:@(tﬂ,n—w
i=t+1 !
3This proof, which is based on expressing the PCE (which isbthemial complementary cumulative distribution functidn terms of
the regularized incomplete Beta function, is due to one efahonymous reviewers (Reviewer 1). We herein include iiein of our original

proof as it is simpler.
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where I, (a, b) is the regularized incomplete Beta function given by

I.(a,b) = 1 /m ya_l (1-— y)b_l dy = aibfl a+b—1 2 (1- x>a+b—1—i
o B<a’7 b) 0 1

i=a

fora > 0, b > 0 and B(a,b) = fol y* 1 (1 —y)*Ldy is the Beta function and is positive for all positive

pairs (a, b). The functionl,(a,b) is monotonically increasing with respect toin the ranged < z < 1,

since 1 -

oD £l
Therefore, the PCE under perfect symbol interleaving, RCEF'(b)), is smaller than the PCE under
perfect bit interleaved, PGE — G (b)), wheneverF'(b) > G(b). [ |

In light of Proposition 1, we next show that perfect symbdkiteaving is always better compared to
perfect bit interleaving when the non-binary code is traitteh over either the QBC or the GEC with

positive memory.

A. Queue-Based Channel

Proposition 2: Under bounded distance decoding, perfect symbol interigavutperforms perfect bit
interleaving when non-binary codes over @F are transmitted over the QBC, fer> 0 andp > 0.
Proof: From Proposition 1, it is enough to show thétb) > G(b) for the QBC. For this channel,
G(b) = (1 —p)® and forb < M we expressF(b) using (1) as

b—1

F(b) = H Jirsm + (1 —e)(1—p)

For eachj > 0 we notice that fop > 0,
U el Ut Lt D P
Because > 1 (for non-binary codes), we get
b—1
Jirme T (1—e)(1—p)
H M—-1+ > (1 _p)b

3201—(OZ+M—1—])M+1+06

which implies thatF’(b) > G(b). Whenb > M, F(b) is expressed using (2) as
M-1 . €
B Jira T (1 —e)(1 —p) B =M
F<b)_H1_(a+M_1_j) —(E+(1-2)(1-p) .

j=0 M—-14+a

g{m‘*'(l—f)(l—?)

We already remarked that: a3

> (1 —p) for 7 > 0. We also note that

__ &
M—-1+4+«

et+(I-e)(1-p)=0~-p)+ep=>(1-p)
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with equality if and only if eithep = 0 or ¢ = 0. Therefore, we combine the above two inequalities to

get that

(f[ jM_al_’_a + (1 — 5)(1 _€p> (6 + (1 _ €><1 _p))b—M) > (1 —p)M(l _p>b—1\/l — (1 _p)b.

§=0
ThereforeF'(b) > G(b) (the inequality is strict because we assume that batind = # 0). [ |

B. Gilbert-Elliott Channel

For the GEC model(b) = pj, wherep, is given by (4). We do not derive an explicit expression for

F(b). Alternatively, we define the generating series fib) as
F(z)2) F(b)2".
b=0
It follows from (3) thatF'(b) = TTI7P*(0)1. Then [16]
F(z)= OITI1-P(0)2)"1 (7)

wherel is the identity matrix. For the GECF(z) in (7) becomes

1+az

f<Z) - 1 + blz + b222

(8)
where
a1 = —p[m(1l—pe) +m(l —pp)l,  bi=—[1—ppo+u2—pc—ps)l, be=p(l—pe)(l—ps).
The following recursion formula is derived directly from)(8

F)=-bF(b—1)—bF(b—2) 9)

for b > 2, with initial conditionsF(0) = 1 and F'(1) = p,. The condition stated in Proposition 1 holds
for the GEC in light of the next lemma.

Lemma 1: The following relation is satisfied for the GEC with> 0

% > py, for b>2. (20)

Proof: The proof is by induction orb. For b = 2, the expressions fop, and pyy = Pr(Z;, =
0, Zry1 = 0) calculated from (3) yield

by ToT1 (pB - pG)2
F(1)  po P A Do ‘
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sinceyx > 0. Next assume that the statement (10) is true for a fixed2. It follows from (9) that

Fb+1)=—=bF(b) —bF(b—1)

or
Fib+1) b b F(b-1)
Fib)y — " 7 F(b)
We conclude from the inductive hypothesis tath — 1)/F(b) < 1/py, and sinceh, > 0 for u > 0, we
obtain that
Fb+1) by F(2)
——" > —b — — = —— > pp.
F(b) e PP

[ |
By using (10) repeatedly for increasing valueshpfve obtain a chain of inequalities of the forA(b) >
F(b—z)p§. In particular, whenr = b, F'(b) > G(b). Thus, we have proved the following proposition.
Proposition 3: Perfect symbol interleaved transmissionCoperforms better than the perfect bit inter-

leaved one over the GEC witta > 0, assuming bounded distance decoding.

C. Channels with Negative Noise Correlation Coefficient

We next observe that for some classes of FSMC models withtimegaoise correlation coefficient,
perfect bit interleaving can be better than perfect symbtarleaving.

Remark 1:The noise correlation coefficient of a communication fadaygtem is generally (but not
always) a positive quantity. To illustrate this, let us miofiesing the fitting method of [13]) via a
GEC a discrete channel with binary frequency-shift keyingdmation, Rician fading with Clarke’s
autocorrelation function, and hard quantized non-cohedemodulation [13]. For the case of Rayleigh
fading, the correlation coefficient of this discrete chdnisealways non-negative. However, when the
fading is Rician, there exists a range of fading parameteas yield a GEC with negative memoyy
(or negative noise correlation coefficient). For exampbe,& discrete fading channel with signal-to-noise
ratio (SNR) 13 dB, normalized Doppler frequengyT = 0.6 and Rician factorKz = 3 dB, we obtain
a fitting GEC with parameters; = 0.0014, pg = 0.06, ¢ = 0.923, Q = 0.6175. The resulting GEC
BER is0.025 and u = —0.54; also the capacity of the GEC and the (equivalent) BSC (upééiect bit
interleaving) are 0.8323 and 0.8319 bits/channel usegntisply.

Remark 2:Note that in Proposition 1, it’'(b) < G(b), then we get the opposite result compared to the
positive noise correlation case; i.e., perfect bit interlag outperforms perfect symbol interleaving. For

the simplified Gilbert channeli’(b) and G(b) are given by

FO) = [(1-p)(u+ (1 - w1 -p)"] and Go)=[(1-p)].
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Note that ifx < 0, then F'(b) < G(b).

Remark 3:Finally, note that we can construct examples of a simplifiedicikman channel [10] of
negative noise correlation coefficient and with two goodestaand one bad state such t#dR) < G(2)
but F(3) > G(3). * Thus, for this channel, neither perfect symbol interleguiior perfect bit interleaving
is always better, since this comparison depends on the sdieél size2’.

Propositions 1-3 consider the PCE performance of non-picades under perfect interleaving. The next
section provides a practical guideline to design the ogtimarleaving depth (e.g. the typical interleaving

depth needed to achieve perfect interleaving) for the QBC.

V. PERFORMANCE EVALUATION UNDER IMPERFECTINTERLEAVING

In this section, we conduct a numerical PCE study of imperieterleaved non-binary block codes
(under bounded distance decoding) over the QBC. The pesimce is evaluated via the derivation of
the probability ofm errors in a block of lengtm, namely P(m,n), yielding a PCE given by PCE
> m—ii1 P(m,n). For our purposes, we numerically calculdt¢m,n) and the PCE using the method
of [9]; however the recent analytical method of [5] can alsouged. We consider dm, k) RS code over
GF(2%) with codewords of lengttn and k information symbols. We assume block symbol interleaving
with nb columns (codeword length in bits) argl (interleaving depth) rows. Thiebits within each symbol
are transmitted consecutively through the channel.

The superiority of imperfect symbol-interleaved to imgetfbit-interleaved non-binary codes over the
GEC was observed in [5]. Similar results can be obtained lier@BC; see, for example, Fig. 1. This
figure presents PCE versig a bit and symbol interleaved shortened (73,57) RS code (withr, t = 8
symbols) over the QBC with parametev6 = 2, a« = 1, p = 0.007, and two values of Cor, Cet 0.75, 0.9.
We observe that imperfect symbol interleaving outperformperfect bit interleaving for all values of
1;. In particular, for sufficiently largd,, these curves corroborate the result presented in Prapo&t
Motivated by these results we hereafter focus on symbotleaeing and our objective is to investigate
the existence of a relationship between the optimal irdeney depth and the QBC parameters.

Fig. 2 presents PCE versug for a symbol interleaved shortened (73,57) RS code (Wwith7, ¢t =8
symbols) over the QBC. The parameters of the QBCMre- 1 (o« = 1), p = 0.007, and four values of
Cor(ore), Cor=0.5,0.9,0.95,0.98. For a given value of Cor, we observe that the PCE decreasés as

increases until a threshold point at which it is no longersgae to improve the PCE. We denote this

4Using the notation of [10], consider for example a Fritchmbannel with parametegs; = 0.11, p22 = 0.82, ps1 = 0.42 andpss = 0.3;

its noise correlation coefficient is -0.057. For this chanme haveF'(2) < G(2) and F(3) > G(3).
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value ofI; that renders the channel block memoryless (i.e., achiguanfect symbol-interleaving) by;.

The approximate values df; found from each curve of this figure are listed in Table I. Weéiggofrom
this table a linear relationship betweé&hand1/(1 — ) which is expressed ak = . We conduct in
the following a similar analysis for a QBC with higher memamders/.

Fig. 3 presents PCE versus for a symbol interleaved shortened (73,57) RS code over tBE Q
with M = 4, ¢ = 0.8, p = 0.007, and two values of Cor, Cor 0.22 (a« = 11.2),0.5 (o = 1). The
values ofI; are roughly the same for each curve, which allow us to comchiat, for a fixede, I is
weakly dependent on the parameterA similar conclusion can be derived for the parametdcurves
not shown). We now fixx = 1, p = 0.007, and plot in Fig. 4 the PCE versus for a QBC with M =4
and Cor= 0.2 (¢ = 0.5),0.5 (¢ = 0.8),0.69 (¢ = 0.9),0.83 (¢ = 0.95). A similar curve is presented in
Fig. 5 for M = 6 and Cor= 0.14 (¢ = 0.5),0.4 (¢ = 0.8),0.6 (¢ = 0.9),0.76 (¢ = 0.95). The values
of I; achieved for each in these figures are shown in Table II, which can be expressed a -,
wherel’ = 1.5 for M = 4 andT" = 2.0 for M = 6. Thus, for fixed(«, p, M), a linear relationship
between/}; and1/(1 —¢) is valid for the QBC, where the proportional consténincreases withV/. The
same trend is observed for other values of code parametgsg$i are not herein shown due to space
limitations). This result provides the communication systdesigner with some insight for the practical
interleaving design for the QBC. For example, in a recentkwar], QBC models at the packet level
were developed for a non-interleaved RS coded communitalystem with time-correlated flat fading
channel. ForfpT = 0.0005, SNR = 15 dB, and Rayleigh fading, an accurate QBC has paeasidt = 4
ande = 0.8773 (cf. Table I in [14]). The results of this section indicatett; = 12 for this QBC.

V. CONCLUSIONS

In this work, we mathematically demonstrate that for a ctddsnary additive noise finite-state channels
satisfying an explicit (sufficient) condition expressedtamms of the channel noise statistics, perfectly
interleaving the channel at the (code) symbol level alwaygperforms perfectly interleaving it at the
bit level when transmitting non-binary linear block codegiosuch channels. We show that the Gilbert-
Elliott channel (GEC) with positive noise correlation ame trecently introduced Markovian queue-based
channel (QBC) are two finite-state channels for which thedd@n holds. Both of these channels have
been previously shown to accurately model hard-decisionodiellated time-correlated Rayleigh fading
channels as well as slow fading Rician channels (e.g., Je¢1fd). Furthermore, we remark that there
exist finite-state channels (such as the GEC and Fritchmanngs with negative noise correlations

which can model Rician channels with fast fading) for whichegerse result holds; i.e., for which bit-
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interleaving outperforms symbol-interleaving. Finaillg conduct a numerical study to evaluate the effects
of finite-length (imperfect) symbol-interleaving on therfpemance of Reed-Solomon codes sent over the
QBC. We observe that, as for the case of the GEC [5], therdseaisimple linear relationship between
the optimal interleaving depth and a function of a channetetation parameter; such property provides
useful interleaving design criteria when operating over @BC and the underlying fading channels it

represents.
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Fig. 1. PCE versug, for (73,57) RSp = 7,t = 8, over the QBC with parametef® = 2, « = 1, p = 0.007, Cor= 0.75, 0.90. Symbol

and bit interleaving.

TABLE |

OPTIMAL INTERLEAVING DEPTH FOR THEQBC WITH PARAMETERSM =1, a = 1, p = 0.007.

€ I;
0.5 2
0.9 | 10
0.95 | 20
0.98 | 50
TABLE 1l

OPTIMAL INTERLEAVING DEPTH FOR THEQBCWITH M = 4 AND M = 6 DERIVED FROMFIGS. 4 AND 5

e | Ip (M=4)| I} (M =6)

0.5 3 4
0.8 8 10
0.9 15 20

0.95 30 40
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Fig. 2. PCE versud, for (73,57) RSp = 7,t = 8, over the QBC with parametef® = 1, « = 1, p = 0.007. Cor= 0.5,0.9,0.95, 0.98.

Symbol interleaving.
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Fig. 3. PCE versug, for (73,57) RSp = 7,t = 8, over the QBC with parametef® = 4, ¢ = 0.8, p = 0.007, Cor= 0.22, 0.5. Symbol

interleaving.
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Fig. 4. PCE versud, for (73,57) RSp = 7,¢t = 8, over the QBC with parametel® = 4, a = 1, p = 0.007, Cor= 0.2,0.5, 0.7, 0.83.

Symbol interleaving.
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Fig. 5. PCE versug, for (73,57) RSp = 7,t = 8, over the QBC with parametef® = 6, « = 1, p = 0.007, Cor= 0.14, 0.4, 0.6, 0.76.

Symbol interleaving.



