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Abstract—We consider the problem of reliable communication
over multiple-access channels (MAC) where the channel is driven
by an independent and identically distributed state process and
the encoders and the decoder are provided with various degrees
of asymmetric (noisy or partial) channel state information (CSI).
Namely, we provide a single letter characterization for the
capacity region when the encoders have access to non-causal
asymmetric partial CSI and the decoder has complete CSI. When
the encoders observe asymmetric noisy CSI with asymmetric
delays and the decoder observes complete CSI, we provide a
single letter characterization for the capacity region. Finally,
we consider a cooperative scenario with common and private
messages, with noisy CSIT and complete CSIR and provide
a single letter expression for the capacity region. For the
cooperative scenario, we also note that as soon as the common
message encoder does not have access to CSI, then for any noisy
CSIT and CSIR setup it is possible to obtain a single letter
characterization for the capacity region.

I. INTRODUCTION AND LITERATURE REVIEW

Channels which are controlled by a state process have
been widely studied for both single and multi-user channels.
For single-user channels, Shannon [2] provides the capacity
formula with causal noiseless CSIT, where the state process
is i.i.d., and [3] extends Shannon’s result to the noisy CSIT
and the noisy CSIR case, which is later shown to be a special
case of Shannon’s model [4].

The literature on FS-MAC with different assumptions of
CSIT and CSIR is extensive and the main contributions of
the current paper have several interactions with the results in
the literature, which we present in Subsection I-A. Hence, we
discuss the relevant literature for the multi-user setting in more
detail. To start, [5] provides a multi-letter characterization
of the capacity region of time-varying MACs with general
channel statistics (with/without memory) under a general state
process (not necessarily stationary or ergodic) and with various
degrees of CSIT and CSIR. In [6], a general framework for the
capacity region of MACs with causal and non-causal CSI is
presented. In particular, an achievable rate region is presented
for the memoryless FS-MAC with correlated CSI and the sum-
rate capacity is established under the condition that the state
information available to each encoder are independent. This
result is extended to a correlated setup in [7]. In [8], MACs
with complete CSIR and noncausal, partial, rate limited CSITs
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are considered. In particular, for the degraded case, a single
letter formula for the capacity region is provided and when the
CSITs are not degraded, inner and outer bounds are derived,
see [8, Theorems 1, 2]. Another active research direction on
the FS-MAC regards the so-called cooperative FS-MAC where
there exists a degraded condition on the message sets. In
particular, [9] and [10] characterize the capacity region of the
cooperative FS-MAC with states non-causally and causally
available at the transmitters. For more recent results on the
FS-MAC problem see [11]-[14].

A. Main Contributions and Connections with the Literature

We consider several scenarios where the encoders and the
decoder observe various degrees of asymmetric (noisy or par-
tial) CSI. For the noisy CSI, the essential requirement we im-
pose is that the noisy CSI available to the encoders is realized
via the corruption of CSI by different noise processes, which
give a realistic physical structure of the communication setup.
We herein note that the asymmetric noisy CSI assumption is
plausible as typically the feedback links are imperfect and
sufficiently far from each other so that the information carried
through them is corrupted by different (independent) noise
processes. What makes (asymmetric) noisy setups particularly
interesting are the facts that
(a) No transmitter’s CSI contains the CSI at the other one;
(b) CSIR does not contain any of the CSITs;
and when existing results, which give a single letter capacity
formulation, are examined, it can be seen that most of them
do not satisfy (a) or (b) or both (e.g., [1], [5], [6], [8], [12]).

With this motivation, we treat the scenarios below and pro-
vide single letter characterizations for their capacity regions:
(1) The FS-MAC with asymmetric non-causal partial CSITs

and complete CSIR (Theorem 1).
(2) The FS-MAC with asymmetrically delayed and asymmet-

ric noisy CSITs and CSIR (Theorem 2).
(3) The cooperative FS-MAC in which both encoders trans-

mit a common message and one transmitter (informed
transmitter) transmits an additional private message. The
informed encoder has causal noisy CSI, the other encoder
has a delayed noisy CSI and the receiver has various
degrees of CSI (Theorems 3 and 4).

The solution that we provide to (1) solves [8, Theorem 2]
without rate constraints on the coded side information and



extends [6, Theorem 5] to the case where the encoders have
correlated CSI. Furthermore, since the causal and non-causal
capacities are identical for scenario (1), it can be considered
as an extension of [4, Proposition 1] to a noisy multi-user
case. Finally, (3) is an extension of [9, Theorem 4] to a noisy
setup.

B. The Converse Coding Approach

The main component in this paper is a generalization
of the converse coding approach recently introduced in [1]
and herein considerably extended and adapted for the noisy
CSI setup. The converse coding approach of [1] is based
on using memoryless stationary team policies which play a
key role in showing that the past information is irrelevant.
This is obtained by showing that under any policy that one
can achieve using an arbitrary decentralized coding policy,
the same performance can be achieved by using memoryless
stationary team policies. However, as the authors mention in
[1, Remark 2], the arguments in their paper hold if the state
information available at the decoder contains the one available
at the two transmitters. In this way, the decoder does not need
to estimate the coding policies used under decentralized time-
sharing.

For the noisy setup, we need to modify this approach to
account for the fact that the decoder does not have access to
the CSITs, and that the past state information does not lead
to a tractable recursion.

The rest of the paper is organized as follows. In Section II,
we present notation and preliminaries, in Sections III, IV and
V, we formally state scenarios (1), (2) and (3), respectively,
and present the main results and several observations. In
Section VI, we present concluding remarks. The proofs of all
our results are available in detail in [15].

II. NOTATION AND PRELIMINARIES

Throughout the paper, a random variable will be denoted
by an upper case letter X and its particular realization by a
lower case letter x. For a vector v, and a positive integer i,
vi will denote the i-th entry of v, while v[i] = (v1, · · · , vi)
and v[i,j] = (vi, · · · , vj), i ≤ j. For a finite set A, P(A)
will denote the simplex of probability distributions over A.
Probability distributions are denoted by P (·) and subscripted
by the name of the random variables and conditioning, e.g.,
PU,T |V,S(u, t|v, s) is the conditional probability of (U =
u, T = t) given (V = v, S = s). All sets considered hereafter
are finite.

We consider a two-user memoryless FS-MAC, with two
encoders, a, b, and two independent message sources Wa

and Wb which are uniformly distributed in the sets Wa ∈
{1, 2, · · · , |Wa|} and Wb ∈ {1, 2, · · · , |Wb|}, respectively.
The channel inputs of the encoders are Xa ∈ Xa and
Xb ∈ Xb, respectively. The channel state process is modeled
as a sequence {St}∞t=1 of i.i.d. random variables in some
space S. Let the CSI at the two encoders be modeled by
Sat ∈ Sa, Sbt ∈ Sb, respectively, for t ≥ 1. Depending on the
scenario, Sit , i = {a, b}, shall denote either the partial or the

noisy CSITs, which we will explicitly mention in each section.
The asymmetric partial CSITs are obtained via deterministic
mappings; Sat = βa(St) and Sbt = βb(St), where βi : S → Si,
i = {a, b}, can be considered as quantizers.

When the CSITs are asymmetric noisy versions of St, we
assume that the joint distribution of (St, S

a
t , S

b
t ) factorizes as

PSa
t ,S

b
t ,St

(sat , s
b
t , st) = PSa

t |St
(sat |st)PSb

t |St
(sbt |st)PSt(st) (1)

and that {(St, Sat , Sbt )}∞t=1 is a sequence of i.i.d. triples and
independent from (Wa,Wb);

PS[n],S
a
[n]
,Sb

[n]
,Wa,Wb

(s[n], s
a
[n], s

b
[n], wa, wb)

=

n∏
t=1

1

|Wa|
1

|Wb|
PSa

t |St
(sat |st)PSb

t |St
(sbt |st)PSt

(st). (2)

Let W := (Wa,Wb) and X := (Xa, Xb). The channel is
memoryless and hence,

PY[n]|W,X[n],S[n],S
a
[n]
,Sb

[n]
(y[n]|w,x[n], s[n], s

a
[n], s

b
[n])

=

n∏
t=1

PYt|Xa
t ,X

b
t ,St

(yt|xat , xbt , st), (3)

where the channel’s transition probability distribution,
PYt|Xa

t ,X
b
t ,St

(yt|xat , xbt , st), is given a priori.
When CSITs are causal, we shall use Shannon strategies [2]:

Let the set of all possible functions from Sa to Xa and Sb to Xb
be denoted by Ta := XaSa and Tb := XbSb , respectively. We
refer to Ta-valued and Tb-valued random vectors as Shannon
strategies.

We next introduce memoryless stationary team policies [1]
which will be invoked in the main results of this paper.

Definition 1: A memoryless stationary (in time) team pol-
icy is a family of one of

Π = {π = (πTa (·), πT b (·)) ∈ P(Ta)× P(Tb)} (4)

Π̄ =
{
π̄ =

(
πXa|Sa (·|βa(s)), πXb|Sb (·|βb(s))

)
∈ P(Xa)× P(Xb)

}
(5)

Π̃ = {π̃ = (πXa (·), πXb (·)) ∈ P(Xa)× P(Xb)} (6)

Π̂ =
{
π̂ =

(
πXa,T b (·, ·)

)
∈ P(Xa × Tb)

}
(7)

probability distributions on the appropriate sets.

Finally, for a region R(α), co
(⋃

α∈ΛR(α)

)
denotes the

closure of the convex hull of the regions R(α) associated to
all possible α ∈ Λ.

We now present the main results. Note that the first section
considers the case where the encoders observe asymmetric,
partial CSI non-causally. In the other sections, CSITs are noisy
versions of St.

III. ASYMMETRIC NON-CAUSAL PARTIAL CSIT AND
COMPLETE CSIR

Let Sat = βa(St) and Sbt = βb(St) and assume also that
St is fully available at the receiver; see Fig. 1. The channel
inputs at time t are, i.e. Xa

t and Xb
t , are functions of the locally

available information (Wa, S
a
[n]) and (Wb, S

b
[n]), respectively.
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Fig. 1. The multiple-access channel with partial state feedback.

Definition 2: An (n, 2nRa , 2nRb) code with block length n
and rates (Ra, Rb) for an FS-MAC with partial state feedback
consists of
(1) A sequence of mappings for each encoder

φ
(a)
t : Sna ×Wa → Xna
φ

(b)
t : Snb ×Wb → Xnb .

(2) An associated decoding function
ψ : Sn × Yn →Wa ×Wb.

The system’s probability of error, P (n)
e , is given by

1

2n(Ra+Rb)

2nRa∑
wa=1

2nRb∑
wb=1

P
(
ψ(Y[n], S[n]) 6= (wa, wb)|W = w

)
.

A rate pair (Ra, Rb) is achievable if for any ε > 0 there exists,
for all n sufficiently large, an (n, 2nRa , 2nRb) code such that
1
n log |Wa| ≥ Ra ≥ 0, 1

n log |Wb| ≥ Rb ≥ 0 and P
(n)
e ≤

ε. The capacity region, CNC , is the closure of the set of all
achievable rate pairs (Ra, Rb).

For every π̄ defined in (5), RNC(π̄) denotes the region of
all rate pairs R = (Ra, Rb) satisfying

Ra < I(Xa;Y |Xb, S) (8)
Rb < I(Xb;Y |Xa, S) (9)

Ra +Rb < I(Xa, Xb;Y |S) (10)

where S, Xa, Xb and Y are random variables taking values
in S, Xa, Xb and Y , respectively, and whose joint probability
distribution factorizes as

PS,Xa,Xb,Y (s, xa, xb, y) = PS(s)PY |Xa,Xb,S(y|xa, xb, s)
×πXa|Sa(xa|βa(s))πXb|Sb(xb|βb(s)). (11)

Theorem 1: CNC = co

(⋃
π̄∈Π̄RNC(π̄)

)
.

For the achievability proof, see [1, Section III] and observe that
any rate which is achievable with causal CSI is also achievable
with non-causal CSI. For the converse proof see [15, Appendix
A]. The proof for the non-causal case is realized by observing
that there is no loss of optimality if not only the past, as shown
in [1], but also the future CSI is ignored given that the receiver
is provided with complete CSI.

Remark 1: Following [1, Remark 1], it is worth to empha-
size that for the above argument to work, it is crucial that
CSIR contains the CSITs. In particular, this fact plays a role
in the converse part of the coding theorem by enabling the
decoder to ignore the past channel outputs, without any loss
of optimality.

A. Non-causal Extension of a Noisy Setup

Let us consider the scenario considered in [7] where the two
encoders observe causal asymmetric noisy version of CSI, Sat ,
Sbt , respectively, whose joint distribution satisfy (1) and the
decoder has complete CSI. Although the full capacity region
is not known, it is shown in [7] that the sum rate capacity
is given by supπTa (ta)π

Tb (tb) I(T a, T b;Y |S). Obviously, the
CSIR does not contain the CSITs. We now demonstrate that if
the encoders in this setup observe noisy CSI non-causally, then
it is not guaranteed that the Shannon strategies are optimal,
for the sum-rate capacity. The reason for this is that Remark
1 is violated.

For the converse, using Fano’s inequality and standard steps
we get Ra+Rb ≤ 1

nI(W;Y[n], S[n])+εn, where limε→0 εn =
0. Let us now consider the term I(W;Y[n], S[n]). We have

I(W;Y[n], S[n])

=

n∑
t=1

[
H(Yt|S[n], Y[t−1])−H(Yt|W, S[n], Y[t−1])

]
≤

n∑
t=1

[
H(Yt|S[n], Y[t−1])−H(Yt|W, S[n], Y[t−1],Tt)

]
(12)

where Tt := (T at , T
b
t ). Observe now that, given the full CSI

and Shannon strategies, the past channel output information is
not useless in the non-causal setup. This is because, we have

PYt|W,S[n],Y[t−1],T
a
t ,T

b
t
(yt|w, s[n], y[t−1], t

a
t , t

b
t)

=
∑
sat ,s

b
t

PYt|St,Sa
t ,S

b
t ,T

a
t ,T

b
t
(yt|st, sat , sbt , tat , tbt)

×PSa
t ,S

b
t |Y[t−1],St

(sat , s
b
t |y[t−1], st),

where the equality is verified by (3), and therefore, the past
channel outputs can not be ignored, which was one of the
main reasons of optimality of Shannon strategies in the causal
noisy setup.

IV. ASYMMETRIC DELAYED, ASYMMETRIC NOISY CSIT
AND COMPLETE CSIR

Let the two encoders have accesses to asymmetrically
delayed, where delays are da ≥ 1 and db ≥ 1, respectively,
and noisy versions of the state information St at each time
t ≥ 1, Sat−da ∈ Sa, Sbt−db ∈ Sb, respectively. Hence, the
model satisfies (1), (2) and (3). We also assume that St is
fully available at the receiver. A code can be defined as in
Definition 2, except now

φ
(a)
t : St−daa ×Wa → Xa, t = 1, 2, ...n;



φ
(b)
t : St−dbb ×Wb → Xb, t = 1, 2, ...n.1

Let CDN denotes the capacity region of the delayed setup. For
every memoryless stationary team policy π̃, RDN (π̃) denotes
the region of all rate pairs R = (Ra, Rb) satisfying

Ra < I(Xa;Y |Xb, S) (13)
Rb < I(Xb;Y |Xa, S) (14)

Ra +Rb < I(Xa, Xb;Y |S) (15)

where S, Xa, Xb and Y are random variables taking values
in S, X a, X b and Y , respectively and whose joint probability
distribution factorizes as

PS,Xa,Xb,Y (s, xa, xb, y)

= PS(s)PY |Xa,Xb,S(y|xa, xb, s)πXa(xa)πXb(xb). (16)

Theorem 2: CDN = co

(⋃
π̃∈Π̃RDN (π̃)

)
.

See [15, Appendix B] for the proofs.
Remark 2 (Strictly Causal Case): When da = db = 1,

Theorem 2 is the capacity region of the setup with strictly
causal noisy CSITs. In [11], achievable rate region is provided
for the case when the channel is driven by two independent
states (with no CSIR). When the encoders have strictly causal
CSI (not noisy/not asymmetric), the authors proposed a region
which is based on sending a compressed version of the CSITs
to the decoder. Theorem 2 verifies that since the full CSI is
available at the receiver there exists no loss of optimality if
the past information at the encoders is ignored.
Finally, for an asymmetric delayed CSIT setup of an FS-MAC
with Markovian state process see [12].

V. COOPERATIVE FS-MAC WITH NOISY CSIT
Assume a common message is provided to both encoders

and one of the encoders has its own private message. Assume
further that the encoder with the private message causally
observes noisy state information, whereas the encoder with the
common message only observes noisy state information with
delay da ≥ 1. Let the common and the private messages be
Wa and Wb, respectively, and Sa[t−da], da ≥ 1, and Sb[t] denote
the noisy CSI at encoder a, b, respectively, where (St, S

a
t , S

b
t )

satisfies (1) and (2). Hence, Xa
t = φ

(a)
t (Wa, S

a
[t−da]) and

Xb
t = φ

(b)
t (Wa,Wb, S

b
[t]); see Fig. 2. Let CC denote the

capacity region for this channel. Let for every π̂, RC(π̂)
denote the region of all rate pairs R = (Ra, Rb) satisfying

Rb < I(T b;Y |Xa, S) (17)
Ra +Rb < I(Xa, T b;Y |S) (18)

where S, Xa, T b and Y are random variables taking values
in S, Xa, Tb and Y , respectively and whose joint probability
distribution factorizes as

PS,Xa,T b,Y (s, xa, tb, y)

= PS(s)PY |Xa,T b,S(y|xa, tb, s)πXa,T b(xa, tb). (19)

1Obviously, when dl ≥ t, l = a, b then Xa
t = φ

(a)
t (Wa) and Xb

t =

φ
(b)
t (Wb).
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Fig. 2. Cooperative multiple-access channel with noisy state feedback.
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Fig. 3. Cooperative multiple-access channel with noisy CSIT and CSIR.

Theorem 3: CC = co

(⋃
π̂∈Π̂RC(π̂)

)
.

See [15, Appendix C] for the proof.
One important observation to be made in the cooperative

scenario is that we do not require a product form on the pair
(Xa, T b) (see (19)). In connection with this observation, let
us consider the following noisy CSIR setup.

Let the encoder with the private message causally observe
noisy CSI, whereas the encoder with the common message has
no CSI, i.e., Xa

t = φ
(a)
t (Wa) and Xb

t = φ
(b)
t (Wa,Wb, S

b
[t]),

and the decoder also has access to noisy CSI at time t, Srt ∈
Sr; see Fig. 3. Let CGC denote the capacity region for this setup.
Let for every memoryless stationary team policy π̂ defined in
(7), RGC(π̂) denote the region of all rate pairs R = (Ra, Rb)
satisfying,

Rb < I(T b;Y |Xa, Sr) (20)
Ra +Rb < I(Xa, T b;Y |Sr) (21)

where Sr, Xa, T b and Y are random variables taking values
in Sr, Xa, Tb and Y , respectively and whose joint probability
distribution factorizes as

PSr,Xa,T b,Y (sr, xa, tb, y)

= PSr (sr)PY |Xa,T b,Sr (y|xa, tb, sr)πXa,T b(xa, tb). (22)

Theorem 4: CGC = co

(⋃
π̂∈Π̂RGC(π̂)

)
.



See [15, Section IV] for the proof.
Remark 3: It should be observed that unlike Theorem 3

and results in the previous sections, for the validity of The-
orem 4, it is not required to have a Markov condition on
PSt,Sb

t ,S
r
t
(st, s

b
t , s

r
t ) such as the one given in (1). Furthermore,

the result also holds with no CSIR, i.e., Sr = ∅ is allowed,
and in this case Theorem 4 is as an extension of [9, Theorem
4] to a noisy setup.

Note that for the setup given in [9, Theorem 4], The-
orem 4 provides an equivalent characterization. Recall that
in [9, Theorem 4] the informed encoder has full CSI, i.e.,
Xb
t = φ

(b)
t (Wa,Wb, S[t]), both the uniformed encoder and the

decoder has no CSI and the capacity region, CAS , is given as
the closure of all rate pairs (Ra, Rb) satisfying

Rb < I(U ;Y |Xa) (23)
Rb +Ra < I(U,Xa;Y ) (24)

for some joint measure on S × Xa × Xb × Y × U having the
form

PY |Xa,Xb,S(y|xa, xb, s)PXb|U,Xa,S(xb|u, xa, s)
×PS(s)PXa,U (xa, u), (25)

where |U| ≤ |S||Xa||Xb|+1. On the other hand, for this setup,

Theorem 4 gives the capacity region, CGFS , as co
(⋃

π̂R
′

C(π̂)

)
where R′C(π̂) denotes the region of all rate pairs R =
(Ra, Rb) satisfying

Rb < I(T ;Y |Xa) (26)
Ra +Rb < I(T,Xa;Y ) (27)

where PY,T,Xa,Xb,S(y, t, xa, xb, s) factorizes as

PY |Xa,Xb,S(y|xa, xb, s)PXb|S,T (xb|s, t)PS(s)π̂Xa,T (xa, t),

and T : S → Xb.
For the proof of CGFS = CAS , see [15, Appendix D]. Note

that for this multi-user setup, the relation between the auxiliary
variable and Shannon strategies requires more attention; in
particular, note the difference between |U| and |T |.

We conclude this section with the following remark.
Remark 4: For the validity of Theorem 4 it is crucial that

Xa
t only depends on Wa. To be more explicit, let us assume
Sr = ∅ and consider the following steps of the converse

I(Wb;Y[n])

≤
n∑
t=1

H(Yt|Y[t−1], X
a
[n])−H(Yt|Y[t−1],W, Xa

[n], T
b
t )

=

n∑
t=1

H(Yt|Y[t−1], X
a
[n])−H(Yt|Y[t−1], X

a
t , T

b
t ). (28)

Since St is not available to the decoder, the above equality
is valid if and only if Xa

[n] does not provide any information
about St. Hence, whether CSITs are noisy or not, if there
is no CSI or noisy CSI at the decoder, the arguments above
would fail if the uninformed encoder observes some degree of

CSI, i.e., da <∞ so that Xa
[n] carry some information about

(St, S
b
t , S

r
t ).

VI. CONCLUSION AND REMARKS

We have considered several scenarios for the memoryless
FS-MAC with various degrees of asymmetric (noisy and
partial) CSIT and complete and noisy CSIR. We obtain single
letter characterizations for the capacity regions when the en-
coders observe non-causal, partial asymmetric CSI and when
the CSITs are asymmetric noisy and asymmetrically delayed.
We further discuss a cooperative scenario and show that when
the common message encoder does not have an access to the
current noisy CSI, due to delay, it is possible to obtain a single
letter expression for the capacity region. Since a product form
is not required in a cooperative scenario, we observed that as
soon as the common message encoder does not have access
to CSI, then in any noisy setup, covering the cases where no
CSIR or noisy CSIR, it is possible to obtain a single letter
expression for the capacity region.
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