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1. Introduction

The derivation of sharp and computationally efficient bounds on

the probability of a finite union of events when partial information is

available about the events joint probabilities is a longstanding actively

researched problem (Gallot 1966; Dawson and Sankoff 1967; Kounias

1968; Galambos and Simonelli 1996; De Caen 1997; Kuai, Alajaji, and

Takahara 2000a; Vizvári 2004; Prékopa and Gao 2005; Feng, Li, and

Shen 2010; Frolov 2012; Boros et al. 2014; Yang, Alajaji, and Takahara

2014; Yang, Alajaji, and Takahara 2016a, 2016b) and has pertinent

applications in several areas including among others, probability theory

(e.g., Erdős and Rényi 1959; Feng, Li, and Shen 2009; Feng and Li

2013; Frolov 2017), statistics (Owen, Maximov, and Chertkov 2017),

operations research (Ahmed and Papageorgiou 2013), and information

theory and statistical communications (e.g., Seguin 1998; Kuai, Alajaji,

and Takahara 2000b; Behnamfar, Alajaji, and Linder 2007).

Optimal lower/upper bounds of P
(⋃N

i=1 Ai

)
in terms of the indi-

vidual event probabilities P (Ai)’s and the pairwise event probabilities

P (Ai ∩ Aj)’s can be seen as special cases of the Boolean probability

bounding problem (Boros et al. 2014; Vizvári 2004), which can be

solved numerically via a linear programming (LP) problem involving

2N − 1 variables. Unfortunately, the number of variables for Boolean

probability bounding problems increases exponentially with N , which

makes finding the solution impractical. Therefore, some suboptimal

numerical bounds were proposed (Galambos and Simonelli 1996; Vizvári

2004; Prékopa and Gao 2005; Boros et al. 2014) in order to reduce the
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complexity of the LP problem. However, among the existing works,

very few can provide optimality guarantees in any sense. Recently,

lower/upper bounds shown to be optimal within the class of bounds

that use the individual P (Ai)’s and the sums of pairwise event probabil-

ities,
∑

j P (Ai ∩ Aj)’s were proposed via numerical algorithms solving

a linear programming (LP) problem with N2 −N + 1 variables (Yang,

Alajaji, and Takahara 2014; Yang, Alajaji, and Takahara 2016a).

In this paper, we consider exploiting the full knowledge of {P (Ai)}

and {P (Ai∩Aj)}. Specifically, we establish new numerical lower/upper

bounds by solving an LP problem with (N−1)3+N+3
2

variables. These

bounds are optimal among all bounds having knowledge of {P (Ai)}

and {P (Ai ∩ Aj)} when N ≤ 5. They are also guaranteed to be

sharper than the optimal bounds in (Yang, Alajaji, and Takahara

2014; Yang, Alajaji, and Takahara 2016a) which employ {P (Ai)} and

{
∑

j P (Ai ∩ Aj)}. Finally, numerical comparisons with state-of-the-art

bounds, including bounds that utilize more information, illustrate the

competitive sharpness of the new bounds.

2. Main Results

Consider a finite family of N events {A1, . . . , AN} in a finite proba-

bility space (Ω,F , P ) where N is a fixed positive integer. Note that

there are only finitely many Boolean atoms specified by the Ai’s.

Let B denote the collection of all non-empty subsets of {1, 2, . . . , N}.

For simplicity, for given B ∈ B, we let ωB denote the atom in the union

∪N
i=1Ai such that for i = 1, . . . , N , ωB ⊂ Ai if i ∈ B and ωB 6⊂ Ai if

i /∈ B (note that some of these “atoms” may be the empty set). For
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ease of notation, for a singleton ω ∈ Ω, we denote P ({ω}) by p(ω) and

P (ωB) by pB. Since {ωB : i ∈ B} is the collection of all the atoms in

Ai, we have P (Ai ∩ Aj) =
∑

ω∈Ai∩Aj
p(ω) =

∑
B∈B:i,j∈B pB, and

(1) P

(
N⋃
i=1

Ai

)
=
∑
B∈B

pB.

If we consider the pB’s in (1) as variables, the following (exhaustive)

LP problem with 2N − 1 variables gives the optimal lower/upper bound

established using the sets of probabilities {P (Ai)} and {P (Ai ∩ Aj)}:

min
{pB ,B∈B}

/ max
{pB ,B∈B}

∑
B∈B

pB

s.t.
∑

B∈B:i,j∈B

pB = P (Ai ∩ Aj), i, j ∈ {1, . . . , N},

pB ≥ 0, B ∈ B.

(2)

The optimality of (2) can be readily proved by showing its achievability

(see (Yang, Alajaji, and Takahara 2016a, Lemma 3)): for each pB,

construct an atom ωB such that P (ωB) = pB and let ωB ∈ Ai,∀i ∈ B.

However, the computational complexity of the optimal lower/upper

bound in Eq. (2) is exponential in N .

Defining Bk := {B ∈ B : |B| = k}, we can write B as the disjoint

union of {Bk, k = 1, . . . , N}, i.e., B =
⋃N

k=1 Bk. Furthermore, we

define Ak to be the set of all ordered subsets of {1, · · · , N} of size k.
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Next, we consider the following relaxed version of (2):

min
{pB ,B∈B}

/ max
{pB ,B∈B}

∑
B∈B

pB,

s.t.
∑

B∈B:i,j∈B

pB = P (Ai ∩ Aj), i, j ∈ {1, . . . , N},

∑
B∈Bk:i,j∈B

pB ≥ 0, (i, j) ∈ A2, k = 1, N,

∑
B∈Bk:i,j /∈B

pB ≥ 0, (i, j) ∈ A2, k = 1, N,

∑
B∈Bk:i∈B,j /∈B

pB ≥ 0, (i, j) ∈ A2, k = 1, N,

∑
B∈Bk:
i,j,l∈B

pB +
∑

B∈Bk:
i,j,l /∈B

pB ≥ 0, (i, j, l) ∈ A3, k = 1, N,

∑
B∈Bk:

i,j∈B,l/∈B

pB +
∑

B∈Bk:
l∈B,i,j /∈B

pB ≥ 0, (i, j, l) ∈ A3, k = 1, N,

(3)

where k = 1, N is short for k = 1, . . . , N . Note that several of the

constraints above are identical for every ordering of (i, j) ∈ A2 or

(i, j, l) ∈ A3, but we leave this redundancy in the constraints in the

interest of notational simplicity.

Lemma 2.1. The solution of problem (3) coincides the optimal lower/upper

bound in (2) when N ≤ 5.

Proof. It is straightforward to verify that the last five constraints of (3)

reduce to pB ≥ 0, B ∈ B when N ≤ 5. �
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We next show that the solution of (3), which yields a lower/upper

bound for the union probability P
(⋃N

i=1Ai

)
, can actually be deter-

mined by solving an LP problem with only (N−1)3+N+3
2

variables.

Theorem 2.2. Defining aij(k) =
∑

B∈Bk:i,j∈B pB, the LP problem (3)

can be reformulated as an LP in {aij(k)}; i.e., with N3 variables. The

number of variables can further be reduced from N3 to (N−1)3+N+3
2

.

Proof. Define a(k) =
∑

B∈Bk
pB and ai(k) =

∑
B∈Bk:i∈B pB. Then it

can be shown that a(k) =
∑N

i=1
ai(k)
k

and ai(k) =
∑N

j=1
aij(k)

k
. Therefore,

both a(k) and ai(k) are linear functions of {aij(k)}.

We next demonstrate that the number of variables can be reduced

from N3 to (N−1)3+N+3
2

. Note that according to the definition of aij(k),

the following hold:

i) For ∀i 6= j, we have aij(1) = P ({x ∈ Ai ∩ Aj, deg(x) = 1}) = 0;

ii) For any i and j, we have aij(k) = aji(k);

iii) Since aij(N) = P
(⋂N

l=1 Al

)
for any i and j, then the aij(N)’s

are all equal.

Therefore, the number of variables for different values of k can be

reduced to

(4)


N if k = 1

N(N−1)
2

if k = 2, . . . , N − 1

1 if k = N

Thus, the total number of variables is N + N(N−1)(N−2)
2

+ 1.
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Now it suffices to show that the objective function and all the con-

straints in (3) can be written as functions of aij(k). Indeed the following

identities hold.

The objective function and the first constraint of (3) can be written

as ∑
k

∑
i

∑
j

aij(k)

k2
=
∑
B∈B

pB,

∑
k

aij(k) =
∑

B∈B:i,j∈B

pB = P (Ai ∩ Aj), ∀i, j.
(5)

Finally, for all i, j, l, k ∈ {1, . . . , N}, the sums in the other constraints

of (3) as functions of {pB} can be written as functions of {aij(k)} as

follows:

aij(k) =
∑

B∈Bk:i,j∈B

pB,

a(k)− ai(k)− aj(k) + aij(k) =
∑

B∈Bk:i,j /∈B

pB,

ai(k)− aij(k) =
∑

B∈Bk:i∈B,j /∈B

pB

a(k)− al(k)− ai(k)− aj(k) + aij(k) + ail(k) + ajl(k)

=
∑

B∈Bk:i,j,l∈B

pB +
∑

B∈Bk:i,j,l /∈B

pB,

al(k) + aij(k)− ail(k)− ajl(k)

=
∑

B∈Bk:i,j∈B,l/∈B

pB +
∑

B∈Bk:l∈B,i,j /∈B

pB.

(6)

Therefore, the lower/upper bounds of (7) can be solved by an LP with

(N−1)3+N+3
2

variables. �



8 LINEAR PROGRAMMING BOUNDS

Remark 2.3. The proposed lower/upper bounds are sharper than the

numerical bounds in (Yang, Alajaji, and Takahara 2014; Yang, Alajaji,

and Takahara 2016a), which have been shown to be optimal within the

class of lower/upper bounds that employ {P (Ai)} and {
∑

j P (Ai∩Aj)}.

This can be proven by observing that the LP problem of the numerical

bounds in (Yang, Alajaji, and Takahara 2016a, Theorem 1) is a relaxed

version of (3). /

Remark 2.4. We conjecture that problem (3) shares the same solution

with the following LP:

min
{pB ,B∈B}

/ max
{pB ,B∈B}

∑
B∈B

pB,

s.t.
∑

B∈B:i,j∈B

pB = P (Ai ∩ Aj), i, j ∈ {1, . . . , N},

∑
B∈Bk:i,j,l∈B

pB ≥ 0, (i, j, l) ∈ A3, k = 1, N,

∑
B∈Bk:i,j∈B,l/∈B

pB ≥ 0, (i, j, l) ∈ A3, k = 1, N,

∑
B∈Bk:i∈B,j,l/∈B

pB ≥ 0, (i, j, l) ∈ A3, k = 1, N,

∑
B∈Bk:i,j,l /∈B

pB ≥ 0, (i, j, l) ∈ A3, k = 1, N.

(7)

Since it can be shown that the solution of problem (7) coincides the

optimal lower/upper bound in (2) when N ≤ 7, we therefore conjecture

that our new bounds (3) coincide with the optimal bounds when N ≤ 7.

/
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3. Numerical Examples

In this section, we investigate existing lower and upper bounds for

comparison with the proposed new bounds. For lower bounds, we

include bounds that utilize {P (Ai)} and {
∑

j P (Ai∩Aj), i = 1, . . . , N},

such as the Kuai-Alajaji-Takahara (KAT) lower bound (Kuai, Alajaji,

and Takahara 2000a), the numerical Yang-Alajaji-Takahara (YAT-I)

lower bound in (Yang, Alajaji, and Takahara 2016a; Yang, Alajaji, and

Takahara 2014), and the analytical optimal lower bound (YAT-II) in this

class (Yang, Alajaji, and Takahara 2014; Yang, Alajaji, and Takahara

2016a). Note that in this class, the YAT-I bound is known to be optimal.

Also, both YAT-I and YAT-II are sharper than KAT (see Yang, Alajaji,

and Takahara 2016a for details). We do not include the Dawson-Sankoff

(DS) bound since the KAT bound is always sharper than the DS bound

(see Kuai, Alajaji, and Takahara 2000a). We also include the Gallot-

Kounias (GK) lower bound (Gallot 1966; Kounias 1968; Feng, Li, and

Shen 2010) and the stepwise lower bound (Kuai, Alajaji, and Takahara

2000b), which fully exploits {P (Ai)} and {P (Ai∩Aj)}. We do not show

the Chung-Erdős bound (Chung and Erdős 1952) as it is a special case

of the GK bound (see Feng, Li, and Shen 2010). Another recent lower

bound in (Yang, Alajaji, and Takahara 2016b, Theorem 2), denoted

as YAT-III, which uses {P (Ai)} and {
∑

j cjP (Ai ∩ Aj)} for any given

positive weight vector c = (c1, . . . , cN)T is also included. We randomly

generate 100, 000 weight vectors c and select the best possible result

(Yang, Alajaji, and Takahara 2016b). Note that it is known that,

although not always, the YAT-III bound can be sharper than the GK
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bound under certain conditions (see Yang, Alajaji, and Takahara 2016b

for details).

For upper bounds, we include the widely-used union upper bound

(8) P

(
N⋃
i=1

Ai

)
≤
∑
i

P (Ai),

as well as a new analytical upper bound using {P (Ai)} and {
∑

j P (Ai∩

Aj)} that is sharper than the union bound (Yang, Alajaji, and Takahara

2016b, Corollary 2):

P

(
N⋃
i=1

Ai

)
≤

∑
i

P (Ai)−
1

N − 1

∑
j:j 6=i

P (Ai ∩ Aj)

+
1

N − 1
min

i
{
∑
j:j 6=i

P (Ai ∩ Aj)}.(9)

Note that (9) is one example of the class of new upper bounds in (Yang,

Alajaji, and Takahara 2016b). It is conjectured in (Yang, Alajaji, and

Takahara 2016b, Corollary 2) to be the best upper bound in that class.

Furthermore, we include the numerical optimal upper bound (YAT-I)

in the class using {P (Ai)} and {
∑

j P (Ai ∩ Aj)} (Yang, Alajaji, and

Takahara 2016a; Yang, Alajaji, and Takahara 2014) and the algorithmic

Greedy upper bound (Kuai, Alajaji, and Takahara 2000b) which fully

uses {P (Ai)} and {P (Ai ∩ Aj)}.

The Prékopa-Gao (PG) lower/upper bounds (Prékopa and Gao 2005),

which extend the KAT bound by using {P (Ai)}, {
∑

j P (Ai ∩Aj)} and

{
∑

j,l P (Ai ∩ Aj ∩ Al)}, is also investigated in the examples. Note that

the PG lower/upper bounds can be sharper than the optimal bounds

(2) since they utilize probabilities of intersections of three events. In
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all numerical examples, we use italics to denote the PG bound if it is

sharper than the optimal bound (2).

First, the same eight systems as in (Yang, Alajaji, and Takahara

2016a) are used and the corresponding results are shown in Tables 1

and 2. From Table 1, one remarks that the PG bound which uses sums of

joint probabilities of three events, may be even poorer (e.g., see Systems

I and VI) than the numerical bound YAT-I of (Yang, Alajaji, and

Takahara 2016a; Yang, Alajaji, and Takahara 2014) which utilizes less

information but is optimal in the class of lower bounds using {P (Ai)}

and {
∑

j P (Ai ∩Aj)}. It is also weaker than some other tested bounds

in several cases (see Systems I-IV). The proposed numerical bound (3)

is always sharper than the other tested bounds which use individual

event probabilities and pairwise event probabilities, and coincides with

the optimal bound (2) with exponential complexity in N when N ≤ 7,

thus agreeing with our conjecture in (2.4). Similar performance trends

for the upper bounds can be seen from Table 2. For example, in Systems

VI and VII, the PG upper bound is weaker than YAT-I, the Greedy

upper bound as well as the proposed upper bound in (3) even though

it utilizes more information.

We next provide additional examples for N > 7 to illustrate cases

where the proposed lower/upper bounds do not coincide with the optimal

lower/upper bounds of (2). System IX (with N = 8) and System X

(with N = 10) are given in Appendix A, while System XI (with N = 15

and System XII (with N = 17) are not included due to space limitations.

We generated these four systems randomly as follows. First we randomly
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generated the number of atoms N0 in the union uniformly form 1 to

min{2N − 1, N4}. We chose a relatively smaller number of atoms for

large values of N (by constraining it via N4) due to the computational

load. For example, Systems IX, X, XI and XII had 68, 84, 2975 and

4292 randomly generated atoms, respectively. Then we constructed an

indicator matrix of size N0×N , each element of which belongs to {0, 1},

to indicate which events the atom belongs to. Finally, we assigned

probabilities for all atoms under a proper scaling to guarantee that the

true union probability is less than 1.

The lower and upper bounds for these four systems are given in

Tables 3 and 4, respectively (note that “N/A” means “not available”

as the optimal bound (2) is exponentially complex in N). The results

indicate that the new bounds (3) do not coincide with the optimal

bounds (2). However, they are still sharper than all other tested bounds

that do not use more information and can be computed in polynomial

time. The PG bounds, which utilize the additional knowledge of joint

probabilities of three events, are mostly better than (2) and (3), except

for Systems XI and XII in Table 3. Overall, these numerical examples

(and others) demonstrate a competitive effectiveness for the new bounds.

Finally, we give a comment on the computational complexity of the

proposed bounds. The proposed upper/lower bounds require solving

numerically an LP problem with (N−1)3+N+3
2

variables. Therefore, al-

though tighter than the existing numerical bound YAT-I, the proposed

bounds have a slightly higher computational complexity than YAT-I,
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which is an LP problem with N2 − N + 1 variables (see Yang, Ala-

jaji, and Takahara 2016a). Furthermore, although analytical bounds

are in general weaker than numerical bounds, they usually have lower

computational complexity. For example, the analytical lower bounds

YAT-II, KAT and DS are looser in comparison with YAT-I and the

new numerical bound in (3); however, they are much easier to calculate

particularly in large data sets applications involving a high number of

events.
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Table 1. Comparison of lower bounds (in the table,

P (
⋃

Ai) is short for P
(⋃N

i=1 Ai

)
, a bold number indicates

coincidence with the optimal bound (2) of exponential
complexity in N , and an italic number for the PG bound
indicates that this bound is sharper than the optimal
bound (2) by using more information).

System I II III IV V VI VII VIII

N 6 6 6 7 3 4 4 4
P (
⋃
Ai) .7890 .6740 .7890 .9687 .3900 .3252 .5346 .5854

KAT .7247 .6227 .7222 .8909 .3833 .2769 .4434 .5412
GK .7601 .6510 .7508 .9231 .3813 .2972 .4750 .5390
PG .7443 .6434 .7556 .9148 .3900 .3240 .5281 .5726

YAT-II .7247 .6227 .7222 .8909 .3900 .3205 .4562 .5464
YAT-I .7487 .6398 .7427 .9044 .3900 .3252 .5090 .5531

YAT-III .7783 .6633 .7810 .9501 .3900 .3203 .4992 .5666
Stepwise .7890 .6740 .7890 .9687 .3900 .3027 .5009 .5673

Bound (3) .7890 .6740 .7890 .9687 .3900 .3252 .5090 .5673

Table 2. Comparison of upper bounds (in the table,

P (
⋃

Ai) is short for P
(⋃N

i=1 Ai

)
, a bold number indicates

coincidence with the optimal bound (2) of exponential
complexity in N , and an italic number for the PG bound
indicates that this bound is sharper than the optimal
bound (2) by using more information). Upper bounds
are not truncated by 1.

System I II* III* IV V VI VII VIII*

N 6 6 6 7 3 4 4 4
P (
⋃
Ai) .7890 .6740 .7890 .9687 .3900 .3252 .5346 .5854

Union (8) 2.07 1.716 1.916 2.418 .5 .5612 .8022 1.574
(9) 1.374 1.136 1.282 1.776 .4125 .3814 .5642 .7813

YAT-I 1.28 .9310 1.133 1.505 .3900 .3252 .5346 .7070
Greedy 1.144 .8910 1.078 1.457 .4450 .3252 .5346 .7070

PG .8222 .6847 .8038 .9959 .3900 .3413 .5494 .6132
Bound (3) .8550 .8130 .9550 1.070 .3900 .3252 .5346 .7070
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Table 3. Comparison of lower bounds: Additional sys-
tems for N > 7 (a bold number indicates coincidence
with the optimal bound (2) of exponential complexity
in N , and an italic number for the PG bound indicates
that this bound is sharper than the optimal bound (2)
by using more information).

System IX X XI XII

N 8 10 15 17

P
(⋃N

i=1Ai

)
.5051 .5261 .1678 .1684

KAT .4391 .4847 .1581 .1593
GK .4381 .4852 .1581 .1592
PG .4747 .5027 .1630 .1638

YAT-II .4391 .4847 .1581 .1593
YAT-I .4393 .4847 .1582 .1593

YAT-III .4381 .4852 .1581 .1592
Stepwise .4349 .4758 .1316 .1301

Bound (3) .4400 .4874 .1646 .1641
Optimal Bound (2) .4421 .4878 N/A N/A

Table 4. Comparison of upper bounds: Additional sys-
tems for N > 7 (a bold number indicates coincidence
with the optimal bound (2) of exponential complexity
in N , and an italic number for the PG bound indicates
that this bound is sharper than the optimal bound (2) by
using more information). Upper bounds are not truncated
by 1.

System IX X XI XII

N 8 10 15 17

P
(⋃N

i=1Ai

)
.5051 .5261 .1678 .1684

Union (8) 2.110 2.749 1.262 1.429
(9) 1.070 1.418 .6729 .7569

YAT-I .9566 1.265 .6588 .7396
Greedy .8735 1.158 .6465 .7325

PG .6387 .6415 .2157 .2213
Bound (3) .7362 .9887 .5906 .6466

Optimal Bound (2) .7359 .9831 N/A N/A
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A. Additional Examples: Systems IX and X

For simplicity and without loss of generality, we assume ωi = i for

all i. Then each event is a set of integers. We use pi := p(ωi) to denote

the probability of the i-th atom.

A.1. System IX. System IX consists of 69 atoms with probabilities:

{pi,i = 1, . . . , 69}

= {0.0100, 0.0019, 0.0066, 0.0069, 0.0054, 0.0137, 0.0136, 0.0120, 0.0129, 0.0021,

0.0106, 0.0036, 0.0062, 0.0010, 0.0043, 0.0081, 0.0120, 0.0102, 0.0008, 0.0075,

0.0026, 0.0087, 0.0129, 0.0074, 0.0012, 0.0070, 0.0063, 0.0091, 0.0058, 0.0073,

0.0080, 0.0034, 0.0030, 0.0017, 0.0011, 0.0128, 0.0141, 0.0119, 0.0087, 0.0108,

0.0070, 0.0015, 0.0127, 0.0084, 0.0038, 0.0004, 0.0060, 0.0089, 0.0032, 0.0030,

0.0026, 0.0083, 0.0136, 0.0135, 0.0101, 0.0034, 0.0091, 0.0062, 0.0055, 0.0117,

0.0023, 0.0014, 0.0054, 0.0143, 0.0036, 0.0137, 0.0070, 0.0112, 0.0141}

The N = 8 events A1, . . . , A8 are as follows:

A1 ={2, 5, 9, 11, 12, 15, 17, 18, 21, 23, 24, 25, 26, 27, 32, 33, 34,

36, 37, 40, 43, 44, 45, 46, 47, 52, 55, 58, 59, 61, 62, 63, 67}

A2 ={1, 2, 3, 5, 6, 8, 9, 10, 12, 16, 18, 19, 22, 23, 24, 26, 28, 29, 30, 33, 35,

36, 38, 39, 40, 41, 43, 46, 48, 50, 55, 57, 58, 60, 62, 63, 65, 68, 69}

A3 ={5, 8, 9, 15, 18, 21, 23, 25, 26, 32, 34, 35, 36, 37, 38, 39,

40, 42, 43, 44, 46, 50, 51, 52, 53, 55, 56, 57, 58, 59, 63, 64, 69}

A4 ={3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 36, 37, 40, 42, 47, 49, 50, 51, 52, 55, 57, 58, 61, 62, 63, 64, 67, 69}
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A5 ={1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 19, 21, 24, 26, 27, 28, 30, 31,

32, 36, 38, 40, 42, 43, 44, 46, 47, 50, 51, 55, 57, 58, 59, 60, 62, 64, 66, 68}

A6 ={4, 6, 8, 11, 12, 15, 16, 19, 22, 24, 25, 27, 28, 32, 33, 38,

40, 41, 43, 44, 46, 48, 50, 54, 56, 57, 59, 60, 61, 63, 66}

A7 ={3, 6, 7, 8, 9, 13, 14, 15, 16, 19, 20, 22, 24, 27, 28, 30,

32, 35, 36, 42, 47, 48, 51, 53, 55, 56, 57, 58, 63, 66, 67, 68}

A8 ={2, 5, 6, 9, 11, 12, 15, 18, 19, 20, 21, 23, 24, 25, 26, 28, 30, 32, 36, 39,

b40, 41, 43, 45, 46, 48, 50, 51, 53, 54, 55, 56, 58, 61, 62, 63, 67, 68, 69}

A.2. System X. System X consists of 85 atoms with probabilities:

{pi,i = 1, . . . , 85}

= {0.0045, 0.0048, 0.0014, 0.0057, 0.0099, 0.0006, 0.0033, 0.0003, 0.0072, 0.0064,

0.0103, 0.0074, 0.0091, 0.0057, 0.0111, 0.0071, 0.0117, 0.0105, 0.0099, 0.0033,

0.0058, 0.0072, 0.0110, 0.0041, 0.0057, 0.0061, 0.0089, 0.0055, 0.0025, 0.0058,

0.0026, 0.0050, 0.0028, 0.0085, 0.0080, 0.0101, 0.0075, 0.0066, 0.0019, 0.0109,

0.0067, 0.0058, 0.0051, 0.0111, 0.0097, 0.0115, 0.0080, 0.0042, 0.0065, 0.0010,

0.0063, 0.0041, 0.0018, 0.0065, 0.0101, 0.0109, 0.0028, 0.0082, 0.0014, 0.0026,

0.0039, 0.0056, 0.0106, 0.0073, 0.0024, 0.0049, 0.0015, 0.0112, 0.0073, 0.0032,

0.0035, 0.0091, 0.0049, 0.0063, 0.0062, 0.0096, 0.0012, 0.0111, 0.0062, 0.0069,

0.0017, 0.0110, 0.0091, 0.0031, 0.0077}

The N = 10 events A1, . . . , A10 are as follows:

A1 ={1, 4, 6, 7, 8, 12, 14, 17, 20, 22, 23, 24, 25, 27, 31, 32, 35, 36, 37, 39, 43, 48, 49,

52, 54, 55, 56, 57, 58, 61, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 77, 80, 82, 84, 85}
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A2 ={8, 10, 11, 12, 21, 22, 25, 30, 33, 35, 36, 38, 39, 40, 44, 46, 48, 49,

53, 54, 55, 57, 58, 59, 60, 65, 67, 68, 69, 70, 74, 75, 77, 79, 84}

A3 ={4, 6, 7, 9, 12, 13, 14, 19, 20, 21, 23, 24, 26, 30, 31, 32, 34, 35, 37, 38, 39, 44,

45, 47, 48, 50, 52, 57, 58, 59, 60, 62, 64, 68, 69, 70, 74, 75, 78, 80, 82, 83, 84}

A4 ={1, 2, 3, 4, 6, 7, 9, 12, 13, 14, 15, 17, 18, 20, 22, 23, 24, 26, 27, 31, 32, 34, 37, 38, 44, 45,

47, 48, 49, 50, 52, 53, 54, 55, 56, 59, 60, 61, 62, 64, 66, 67, 69, 71, 74, 77, 79, 80, 82, 83}

A5 ={1, 3, 8, 9, 10, 11, 13, 14, 15, 16, 19, 20, 21, 22, 27, 32, 35, 36, 37, 38, 41,

42, 43, 44, 45, 46, 49, 52, 55, 56, 58, 60, 62, 64, 66, 67, 69, 72, 76, 77}

A6 ={3, 8, 11, 13, 15, 16, 19, 20, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 39, 40,

47, 48, 50, 51, 52, 53, 54, 55, 58, 60, 61, 62, 64, 65, 67, 73, 74, 75, 77, 79, 84}

A7 ={3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 25, 26, 27, 30, 31, 32, 34, 35, 36, 37,

40, 42, 43, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 64, 72, 73, 76, 78, 79, 80, 82, 83, 84}

A8 ={1, 2, 5, 6, 7, 9, 12, 13, 14, 15, 17, 20, 21, 23, 26, 29, 33, 34, 36, 37, 38, 40, 41, 42, 44,

45, 47, 49, 50, 52, 54, 55, 58, 66, 67, 68, 69, 70, 71, 73, 76, 79, 82, 84, 85}

A9 ={3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 16, 19, 20, 21, 24, 26, 27, 28, 31, 32, 33, 34, 35,

36, 39, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 62, 64, 66, 72, 76, 81, 82, 85}

A10 ={1, 5, 12, 14, 17, 19, 22, 23, 24, 26, 27, 30, 31, 33, 34, 36, 39, 41, 43, 44, 45, 46, 48,

49, 50, 54, 55, 58, 60, 61, 62, 65, 67, 68, 70, 72, 74, 75, 76, 77, 78, 79, 80, 83, 85}
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