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Abstract

Most of the conventional communication systems use channel interleaving as well as

hard decision decoding in their designs, which lead to discarding channel memory and

soft-decision information. This simplification is usually done since the complexity of

handling the memory or soft-decision information is rather high.

In this work, we design two lossy joint source-channel coding (JSCC) schemes that

do not use explicit algebraic channel coding for a recently introduced channel model,

in order to take advantage of both channel memory and soft-decision information.

The channel model, called the non-binary noise discrete channel with queue based

noise (NBNDC-QB), obtains closed form expressions for the channel transition distri-

bution, correlation coefficient, and many other channel properties. The channel has

binary input and 2q-ary output and the noise is a 2q-ary Markovian stationary ergodic

process, based on a finite queue, where q is the output’s soft-decision resolution.

We also numerically show that the NBNDC-QB model can effectively approxi-

mate correlated Rayleigh fading channels without losing its analytical tractability.

The first JSCC scheme is the so called channel optimized vector quantizer (COVQ)

and the second scheme consists of a scalar quantizer, a proper index assignment, and

a sequence maximum a posteriori (MAP) decoder, designed to harness the redun-

dancy left in the quantizer’s indices, the channel’s soft-decision output, and noise
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time correlation. We also find necessary and sufficient condition when the sequence

MAP decoder is reduced to an instantaneous symbol-by-symbol decoder, i.e., a simple

instantaneous mapping.
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Chapter 1

Introduction

Looking at the recent ever increasing demands for communication systems, it is ob-

vious that in order to meet the present needs, modern communication systems are

required to become faster, more reliable, and more suitable for wireless and mobile

communications. As a result, the need arises for designing systems with less delay

and complexity without sacrificing reliability in wireless mobile environments. In

order to design such systems, some improvements can be proposed to enhance the

performance of conventional systems.

1.1 Literature Review

It is well known that the separate treatment of source and channel coding, as in

Shannon’s source-channel coding theorem [31, 32], is not optimal in the presence of

complexity and delay constraints. A variety of different joint-source channel coding

schemes have been proposed to address this problem, such as [5, 20, 23, 26, 34] and

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Block diagram of a separate (tandem) source and channel coding system
and a joint source-channel coding system.

many others for the case of lossy coding. It is also known that the capacity of a well-

behaved (ergodic) channel with memory is strictly greater than the capacity of its

memoryless counterpart channel (with identical one-dimensional transition distribu-

tion) realized by ideal (infinite) interleaving [10,37]. Consequently, given the memory

statistics, a communication system can be designed to take advantage of the channel’s

memory and outperform systems that discard memory information via interleaving.

Furthermore, it has been shown that the channel’s soft-decision information can im-

prove capacity and system performance over hard-decision decoded schemes (e.g.,

see [4, 6, 25,33,35].

1.2 Thesis Contribution

In this thesis we design a joint source channel-coding scheme, known as channel opti-

mized vector quantizer (COVQ), and a joint source-channel decoding scheme, which
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consists of a scalar quantizer (SQ) with a maximum a posteriori (MAP) decoder. Both

systems are source centric joint source-channel coding schemes (JSCC) and have less

complexity than the conventional tandem source-channel coding systems in which

the problem of source coding and channel coding are dealt with separately (Figure

1.1). There are other methods of JSCC such as channel centric approaches (that use

explicit channel coding) or unequal error protection approaches.

Both system performances are studied for the non-binary noise discrete chan-

nel (NBNDC) and the correlated Rayleigh fading channel used with soft-decoding

demodulation. The NBNDC is a channel model recently introduced in [28], where

the channel has binary input and 2q-ary output, making it possible to model soft-

quantized output channels with memory. We use the NBNDC channel with the

queue-based noise, introduced in [28], as the noise process in the NBNDC model to

provide closed form expressions for the channel transition distribution, and then use

the obtained model as an alternative representation of a correlated Rayleigh discrete

fading channel (DFC). Note that in contrast to the NBNDC with queue-based noise

model (which we refer to as NBNDC-QB), for the Rayleigh DFC no closed form tran-

sition distribution expression are known for block lengths of greater than 3, so the

distribution must be determined via numerical methods. We test the system designed

for the NBNDC model over the equivalent correlated Rayleigh DFC to simulate its

performance in wireless communications.

We also obtain necessary and sufficient condition for the sequence MAP detector

in the SQ-MAP system over the NBNDC-QB to reduce to an instantaneous symbol-

by-symbol mapping with the same sequence error probability of decoding.

We show numerically that both systems can successfully exploit the channel’s



CHAPTER 1. INTRODUCTION 4

memory and soft-decision information in order to gain better signal-to-distortion ratio

(SDR) performance, in contrast with systems that use interleaving and hard quantiza-

tion, hence disregarding the channel’s memory and soft-decision information. We also

validate numerically that the NBNDC-QB can effectively approximate the Rayleigh

DFC while in spite of the Rayleigh DFC, the NBNDC-QB maintains its analytical

tractability.

1.3 Thesis Overview

The organization of the thesis is as follows. In Chapter 2, we describe an overview

of digital communication channel models and source coding theory. The design and

study of the COVQ system is explained in Chapter 3 and the study of the SQ-MAP

system is presented in Chapter 4. Chapter 5 is devoted to conclusions and future

works.



Chapter 2

Preliminaries

2.1 Communication Channel Models

A communication channel whose input and output each have a finite alphabet is called

a discrete channel. In a discrete (digital) channel model, the transmitted message is

modeled as a digital signal. In contrast, in an analog channel model, the transmitted

message is modeled as an analog (continuous) signal.

The physical transmission of signals over a transmission medium always takes

place via analog signals. As a result, in order to transmit a digital signal on a physical

medium, a digital to analog conversion must take place. Similarly, an analog to digital

conversion is done at the receiver to retrieve the transmitted digital data. Consider

Figure 2.1 as a generic point-to-point digital communication system. As can be seen,

the data symbols are discrete before they are sent through the modulator, as well as

the data symbols after the demodulator. Therefore, the whole modulation process,

analog channel model, and demodulation process can be considered as a black-box,

performing as a digital input, digital output channel. Hence, a discrete channel can

5
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Figure 2.1: Block diagram of a digital communication system.

model an equivalent analog channel model, which uses a specific modulation scheme.

From another point of view, different channel models can be classified into two

large classes: memoryless channels and dynamic channels (channels with memory). A

channel is said to be memoryless if the probability distribution of the output depends

only on the input at that time and is conditionally independent of previous and future

channel inputs or outputs [9]. For a channel which is not memoryless, we consider

the case where the statistical properties of the output signal at time t depend only

on the present and past transmitted signal.

In the following, we review some of the well-known channel models, as well as

some recently introduced channel models which are relevant to this thesis.
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2.1.1 Memoryless channels

Discrete Memoryless Channels

The discrete memoryless channel (DMC) is a discrete channel with finite input al-

phabet X and finite output alphabet Y . Its transition probabilities, PY n|Xn(yn|xn),

for any input n-tuple xn = (x1, x2, . . . , xn) and received n-tuple yn = (y1, y2, . . . , yn),

satisfies

PY n|Xn(yn|xn) =
n∏
i=1

PYi|Xi
(yi|xi), (2.1)

for every n = 1, 2, . . .. A DMC is uniquely determined by the channel transition

matrix Q = [P (y|x)]. Condition (2.1) is actually equivalent to the following two sets

of conditions:
PYn|Xn,Y n−1(yn|xn, yn−1) = PY |X(yn|xn), ∀n = 1, 2, . . . , xn, yn;

PY n−1|Xn(yn−1|xn) = PY n−1|Xn−1(yn−1|xn−1), ∀n = 1, 2, . . . , xn, yn−1.


PYn|Xn,Y n−1(yn|xn, yn−1) = PY |X(yn|xn), ∀n = 1, 2, . . . , xn, yn;

PXn|Y n−1,Xn−1(xn|yn−1, xn−1) = PXn|Xn−1(xn|xn−1), ∀n = 1, 2, . . . , xn, yn−1.

These conditions imply that the current output Yn only depends on the current input

Xn, but not on the past inputs Xn−1 and outputs Y n−1. Also, given the current

input, the past outputs Y n−1 do not depend on the current input Xn. The current

input Xn is also independent of past outputs Y n−1 given the past inputs Xn−1.

A simple example for a DMC is the binary symmetric channel (BSC) depicted

in Figure 2.2, which has binary input and output alphabets, and is described by the
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Figure 2.2: Binary symmetric channel.

transition matrix

Q =

 1− ε ε

ε 1− ε

 .
It can be seen that the BSC can be described by a single parameter ε, referred to as

the crossover probability.

Additive White Gaussian Noise

The additive white Gaussian noise (AWGN) channel model is a well-known example

of analog memoryless channels. The model is discrete in time and continuous in

amplitude, with input and output alphabets X = Y = R. The output Yt at sample

time t is the sum of the input Xt and the noise Zt (Figure 2.3)

Yt = Xt + Zt, Zt ∼ N (0, N0/2)

where the noise is white (has a constant spectral density). Thus the noise random

variables, Zt, t = 1, 2, . . . , are independent and identically distributed (i.i.d.) each

having a Gaussian distribution, which we assume to have zero-mean and variance

N0/2.

This channel provides tractable mathematical model which is very useful in some
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Figure 2.3: The additive white Gaussian noise model.

simplified real world applications, such as single user wireline communications, but

cannot model phenomena such as fading, interference, and dispersion.

2.1.2 Channels With Memory

Discrete channels with memory are studied in detail in [16, p. 97-111]. A simple model,

used extensively in the literature, is the Gilbert-Elliott Channel (GEC). The GEC is a

varying binary symmetric channel, the crossover probabilities of which are determined

by the current state of a discrete stationary binary Markov process (Figure 2.4) [24].

According to this model, the channel has two states known as the good state (with

low crossover probability) and the bad state (with high crossover probability). Since

the state of the channel cannot be determined from the observations, the channel is

a so-called hidden Markov model.

A more explicit channel with memory is the binary Markov channel, in which the

channel memory is represented by an additive Markovian noise process. The output

Yj at time j is affected via the additive noise Zj, which is assumed to be independent
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Figure 2.4: The Gilbert-Elliot channel model.

of the input of the channel Xj,

Yj = Xj ⊕ Zj, j = 1, 2, 3, . . . ,

where the ⊕ represents modulo 2 addition. The noise process {Zj}∞j=1 is a binary

stationary ergodic Markov process with memory order M , generated by the finite-

memory contagion urn model described in [1]. More precisely, according to this model,

the noise transition probabilities are given by

Pr{Zj = 1|Zj−1 = zj−1, . . . , Z1 = z1} = Pr

{
Zj = 1

∣∣Zj−1 = zj−1, . . . , Zj−M = zj−M

}
= Pr{Zj = 1|

j−1∑
i=j−M

Zi =

j−1∑
i=j−M

zi}

=
ε+

(∑j−1
i=j−M zi

)
δ

1 +Mδ
,

where zi ∈ {0, 1}, ε is the channel bit-error rate (BER), and δ determines the noise

correlation via Cor = δ/(δ+1). It can be seen that letting δ = 0, the channel is equiv-

alent to a BSC with crossover probability ε. This channel can be fully characterized

by the parameters δ, ε, and memory order M .
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Non-Binary Noise Discrete Channel

The Non-Binary Noise Discrete Channel (NBNDC) [28] is a binary-input and 2q-

ary-output channel model. The input data bits Xj are affected by noise Zj via the

relation

Yj = (2q − 1)Xj + (−1)XjZj, (2.2)

where Yj, Zj ∈ {0, 1, . . . , 2q − 1} for j = 1, 2, . . ., with {Yj} denoting the channel

output process, and {Xj} denoting the channel input binary process. Also, {Zj} is

the noise process assumed to be independent of {Xj}. According to (2.2), Zj can also

be written in terms of input and output symbols,

Zj =
Yj − (2q − 1)Xj

(−1)Xj
, j = 1, 2, . . . . (2.3)

We will extensively use this channel model in this thesis, since we are interested

in taking advantage of the soft-decision information for improving the system’s per-

formance, which is feasible using the NBNDC because it has a non-binary output.

Furthermore, the number of the NBNDC’s parameters, and hence the model’s com-

plexity, is independent of the channel noise memory order M , so that noise models

with arbitrarily large memory orders can be implemented with no extra complexity.

On the other hand, the complexity is exponentially proportional to the soft-decision

quantization resolution q, although typical values for q are as low as 2 or 3.

The noise process {Zj}∞j=1 can in general be any stochastic process. For example,

if {Zj} is a binary stationary memoryless process (hence q = 1), the NBNDC reduces

to the BSC. The noise process applied in [28] (and also in this thesis), is a non-binary

generalization of the queue-based (QB) noise [37]. We refer to this channel model

as NBNDC-QB. The noise is modeled via a 2q-ary M th-order Markovian stationary



CHAPTER 2. PRELIMINARIES 12

ergodic process with 2q+2 independent parameters. According to this model, at each

sample time j, the noise is generated via one of the two following packages:

• A queue with M cells, shown in Figure 2.5, that contains a ball in each cell.

The balls are numbered, with integers ranging from 0 to 2q − 1. Each number

represents an error symbol.

• An urn that contains a large set of numbered balls; the same numbered balls as

in the queue(Figure 2.6).

Figure 2.5: A queue of length M .

Figure 2.6: An urn of numbered balls with 2q different numbers.
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At each sample time j, a biased coin is flipped to choose one of the packages.

Assume that the queue is selected with probability ε. If the queue is selected, the

noise symbol is determined by selecting one of the M cells and taking the number of

the ball it contains as the generated noise symbol. The probability of selecting the

kth cell of the queue is chosen as
1

M−1+α
, if k = 1, 2, . . . ,M − 1 ;

α
M−1+α

, if k = M .
, α ≥ 0

If the urn is selected, one of the balls will be taken out of the urn, and the ball

number will determine the noise symbol. The numbered balls in the urn satisfy the

probability distribution (ρ0, ρ1, . . . , ρ2q−1), i.e., a ball with number i on it is taken out

of the urn with probability ρi. After the noise symbol is generated, no matter which

package was selected, a ball with the same number as the generated noise symbol will

be pushed in front of the queue, pushing out the ball in Mth cell of the queue.

The resulting QB noise process is a stationary Mth order Markov source and

has only 2q + 2 independent parameters: the size of the queue M , the probability

distribution of the balls in the urn, and correlation parameters 0 ≤ ε < 1 and α ≥ 0.

The state process of the queue based noise {Sn}∞−∞, which is defined by Sn ,

(Zn, Zn−1, . . . , Zn−M+1) ∈ {0, 1, . . . , 2q − 1}M , is a homogeneous, first-order Markov

process. Define the noise state transition probability by

Q(sn|sn−1) , Pr{Sn = sn|Sn−1 = sn−1},

where sn = (zn, zn−1, . . . , zn−M+1), zn ∈ {0, 1, 2, . . . , 2q − 1}. According to [28],

Q(sn|sn−1) =

(
M−1∑
`=1

δzn,zn−`
+ αδzn,zn−M

)
ε

M − 1 + α
+ (1− ε)ρzn , (2.4)
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where,

δi,j =


1, if i = j

0, if i 6= j.

Since the noise process is independent of the input, we have

Pr{Y m = ym | Xm = xm} = Pr{Zm = zm}. (2.5)

Hence, the m-fold channel transition probability Pr{Zm = zm} , P
(m)
NBNDC(zm) =

PrNBNDC-QB{Z1 = z1, Z2 = z2, . . . , Zm = zm} is given by [28]:

• For m > M

P
(m)
NBNDC-QB(zm) =

m∏
i=M+1

[(
i−1∑

`=i−M+1

δzi,z` + αδzi,zi−M
) (2.6)

× ε

M − 1 + α
+ (1− ε)ρzi ]π(z1,z2,...,zM ),

where

π(z1,z2,...,zM ) =

2q−1∏
`=0

ξ∏̀
j=0

(
(1− ε)ρ` + j

ε

M − 1 + α

)
M−1∏
k=0

(
(1− ε) + k

ε

M − 1 + α

) , (2.7)

where ξ` =
∑M

k=1 δzk,`,

• For m ≤M

P
(m)
NBNDC-QB(zm) =

2q−1∏
`=0

ξ′∏̀
j=0

(
(1− ε)ρ` + j

ε

M − 1 + α

)
m−1∏
k=0

(
(1− ε) + k

ε

M − 1 + α

) , (2.8)
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where ξ′` =
∑m

k=1 δzk,`. Note from (2.8), for m = 1 we have P
(1)
NBNDC-QB(z1) = ρz1 for

z1 ∈ {0, 1, . . . , 2q − 1}. Finally the channel noise correlation is given by

Cor =
E[ZkZk+1]− E[Zk]

2

V ar(Zk)
=

ε
M−1+α

1− (M − 2 + α) ε
M−1+α

.

Rayleigh Fading Channel

The Rayleigh fading channel is a continuous alphabet, discrete time example for

channel with memory. The channel noise affects the input dataXk, k = 1, 2, 3, . . . with

both multiplicative and additive noise. The multiplicative noise Ak, k = 1, 2, 3, . . . is

a sequence of Rayleigh distributed random variables (correlated in general), known as

the fading coefficients, which cause an attenuation of the received signal. The additive

noise is an AWGN with zero-mean and variance N0/2. As a result, the output Yk is

given by

Yk = AkXk +Nk, k = 1, 2, 3, . . . .

Figure 2.7: Rayleigh discrete fading channel, with BPSK modulation.

The channel setup we are using in this thesis is a discrete fading channel model

(DFC) consisting of a binary phase-shift keying (BPSK) modulator, a time-correlated

flat Rayleigh fading channel with additive white Gaussian noise (AWGN), and a q-bit
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soft-quantized demodulator, shown in Figure 2.7. Let the input and output alphabet

be X = {0, 1} and Y = {0, 1, . . . , 2q − 1}, respectively. Denoting the DFC binary

input by {Xk}, k = 1, 2, . . ., the received channel symbols are given by

Rk =
√
EsAkSk +Nk, k = 1, 2, . . .

where Es is the energy of signal sent over the channel, Sk = 2Xk − 1 ∈ {−1, 1} is the

BPSK modulated signal and {Nk} is an additive white noise process, represented by a

sequence of independent and identically distributed (i.i.d.) Gaussian random variables

of varianceN0/2. {Ak} is the channel’s fading process with Ak = |Gk|, where {Gk} is a

time-correlated complex wide-sense stationary Rayleigh process with autocorrelation

function given by R[k] = J0(2πfDT |k|) from Clarke’s model [8], where fDT is the

normalized maximum doppler frequency and J0(·) is the zeroth-order Bessel function

of the first kind. Therefore, Ak is Rayleigh distributed, with unit second moment. The

fading process {Ak} is assumed to be independent of the noise and input processes.

The channel signal-to-noise ratio (SNR) is given by SNR= Es/N0.

In the last part of the DFC model, a soft-decision demodulator consisting of a

uniform quantizer with a resolution of q bits, takes the output Rk to produce the

discrete channel output:

Yk = j, ifRk ∈ (T ′j−1, T
′
j ],

where the T ′j are uniformly spaced thresholds with step-size ∆, such that

T ′j =


−∞, if j = −1

(j + 1− 2q−1)∆, if j = 0, 1, . . . , 2q − 2

∞, if j = 2q − 1.

Let δ , ∆/
√
Es and Tj , T ′j/

√
Es. The m-fold transition probability for the DFC
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can be calculated via [28]

P
(m)
DFC(ym | xm) , Pr{Y m = ym | Xm = xm} (2.9)

= EA1...Am

[
m∏
k=1

qxk,yk(Ak)

]
,

where ym = (y1, y2, . . . , ym), xm = (x1, x2, . . . , xm), qi,j(ak) , Pr{Yk = j|Xk =

i, Ak = ak}, and EX [·] denotes expectation with respect to the random variable X.

For m = 1, there is closed form expression for P
(1)
DFC(y|x) = P

(1)
DFC(j), y ∈ Y , x ∈ X ,

which is given by

P
(1)
DFC(j) = n(−Tj−1)− n(−Tj), (2.10)

where j = y−(2q−1)x
(−1)x

∈ Y , and

n(Tj) = 1−Q(Tj
√

2SNR)−

[
1−Q

(
Tj
√

2√
1

SNR
+1

)]
e
−

T2
j

( 1
SNR

+1)√
1

SNR
+ 1

,

where Q(·) is the Gaussian Q-function. In general, for m 6 3, P
(m)
DFC(ym | xm) can be

calculated in closed form. For m > 3, since the joint probability density function of

arbitrarily correlated Rayleigh and Rician random variables is not known in closed

form, it can only be determined via numerical methods. It can be shown that the DFC

is actually an NBNDC as given by (2.2) with a stationary ergodic noise process [28].

2.2 Source Coding and Quantization

Consider Figure 2.1 again. In a general digital communication system, in order to

send the information from the source to receiver, at first some processing on the

source data takes place (encoding). The data is expressed using the symbols of a
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given alphabet and sent over a channel with a certain statistical characteristics. As

well, the receiver needs to do some processing on the received data, as a means to

retrieve the source information (decoding). This encoding/decoding process is often

performed in two separate steps. The first step is referred to as source coding and

the second step is called channel coding.

2.2.1 Source Coding

In a separate source and channel coding system, also known as a tandem coding sys-

tem, the source coding process aims to represent the source information as compactly

as possible. To do this, source redundancy should be removed. The redundancy of a

source can be measured quantitatively, via the concept of source entropy. According

to Shannon [30], entropy is a measure of the uncertainty of a random variable. As-

sume the source is a stationary discrete memoryless source (DMS). Hence it can be

modeled as a random variable X with alphabet X = {0, 1, . . . , N − 1}. The entropy

H(X) of such source is defined as:

H(X) = −
∑
x∈X

p(x) log p(x) = −EX [log p(X)],

where p(x) = Pr{X = x}. For a source with memory, the source can be modeled as

a stochastic process {Xi}, i = 1, 2, . . .. The amount of randomness or uncertainty for

such sources is measured via the entropy rate, H∞(X ), defined as

H∞(X ) = lim
n→∞

1

n

(
− EX1,X2,...,Xn [log p(X1, X2, . . . , Xn)]

)
,

(if the limit exists,) where p(x1, x2, . . . , xn) = Pr{X1 = x1, X2 = x2, . . . , Xn = xn}.

Note that for a DMS, the entropy and entropy rate are equal. Setting the base
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of the logarithms to 2, the unit of these measures is expressed in bits. It can be

shown [9, p. 29-30], that for any stochastic process {Xi}, i = 1, 2, . . .,

H∞(X ) ≤ log2N,

where N is the size of the source alphabet, i.e. |X | = N .

For a discrete source {Xi}, i = 1, 2, . . . with alphabet size N , the redundancy is

defined as

ρT = log2N −H∞(X ).

The redundancy of a source can be due to non-uniformity of its marginal probability

distribution or its memory. As a result, the total redundancy ρT can be decomposed

into two parts:

ρT = ρD + ρM ,

ρD = log2N −H(X1),

ρM = H(X1)−H∞(X ).

Here ρD is the redundancy due to non-uniformity and ρM is due to the memory.

In general, we distinguish between two kinds of source coding; lossless and lossy

source coding. In lossless source coding, the aim is to remove all the source’s re-

dundancy by compressing the source, while the data is still fully retrievable; i.e., the

retrieved data after decompression is identical to the source data. In [30], Shannon

showed that for a lossless fixed-to-variable length source coding scheme and a sta-

tionary ergodic source {Xi}∞i=1, the coding rate R can be arbitrarily close to source

entropy rate H∞(X ). Conversely, he showed that for a source code with coding rate

R less than the entropy rate H∞(X ), the probability of decoding error is arbitrarily

close to one, for sufficiently large source blocks k.
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In a lossy source coding scheme, the minimum coding rate is a function of the

amount of allowed distortion. The rate distortion function R(D) is the infimum of

rates R such that (R,D) is in the rate distortion region of the source for a given dis-

tortion D, where the rate distortion region for a source is the closure of the achievable

rate distortion pairs (R,D) [9, p. 306]. In the rate distortion theorem, it is proved

that for an independent and identically distributed (i.i.d.) source X with distribution

p(x) and bounded distortion function d(x, x̂), the rate distortion function satisfies

R(D) = min
p(x̂|x):

∑
x,x̂ p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂),

where I(X; X̂) is the mutual information of the two random variables X ∈ X and

X̂ ∈ X̂ and is defined as

I(X; X̂) =
∑
x∈X

∑
x̂∈X̂

p(x, x̂) log
p(x, x̂)

p(x)p(x̂)
,

where p(x, x̂) is the joint probability distribution of the two random variables.

2.2.2 Quantization

Since the conventional entropy function H∞(X ) is undefined for continuous sources,

the information content of such sources is theoretically infinite. Thus it is practically

impossible to present a continuous source using a source code with finite rate. As

a result, using lossy source coding rather than lossless coding is inevitable. This is

a process in which the analog source is converted to a discrete (digital) source at

the cost of some distortion with respect to the original source. This task is done via

quantization.

A quantizer in general, partitions the continuous domain R of the source into a

finite number of regions and assigns a value to each region, which represents all the
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members of that region. The representing values are called output levels or recon-

struction points. More specifically, consider a source X with a continuous alphabet

R. An N -level quantizer Q is a mapping from the domain R to a set of output levels,

known as codebook C = {ci : i ∈ I}, with I being the index set of the quantizer,

such that

x̂ , Q(x) = ci if and only if x ∈ Ri.

Equivalently, Ri = {x ∈ R : Q(x) = ci}.

To measure the quality of a quantizer, a distortion measure d(X, X̂) is defined,

where X is the continuous random variable to be quantized and X̂ is the quantized

value. Different distortion measures may be chosen to quantify the quality of a

quantizer. WhenR is the real line, a popular choice is the rth power of the magnitude

error d(X, X̂) = |x − x̂|r, r > 0. A very common distortion measure which is

exclusively used in this thesis is the square error distortion d(X, X̂) = (x− x̂)2. For

a random variable X, often called a random source X, the expected distortion is

considered as measure of quality for a quantizer Q

D(Q) = E[d(X,Q(X))]. (2.11)

For the square error distortion, E[d(X,Q(X))] is called mean square error (MSE) and

is calculated via D(Q) = E[d(X,Q(X))] = E[(X −Q(X))2].

There are two necessary conditions for a quantizer to be optimal. One of the

conditions is about the quantization regions and the other is about output levels [17,

p. 176-185], [9, p. 303]:

• The Nearest neighbor condition (NNC): Given a codebook C, the distortion

is minimized by mapping a random source X to the output level ci that has
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minimum distortion with respect to it. The collection of quantization regions

in R defined by this mapping is called a Voronoi or Dirichlet partition indexed

by the output levels. These are given by

Ri ⊂ {x : d(x, x̂i) ≤ d(x, x̂j), j ∈ I} i ∈ I (2.12)

• The centroid condition (CC); The reconstruction points should minimize the

conditional expected distortion over their respective assignment regions. Hence,

the output level is simply the centroid of the part of source that lies in the region

Ri, i.e.,

x̂i = arg min
x̂∈R

E[d(X, x̂)|X ∈ Ri], i ∈ I. (2.13)

For the MSE distortion, it can be shown that the centroid of a region is its

center of mass, given by

x̂i = E[X|X ∈ Ri], i ∈ I. (2.14)

As can be seen, according to the above optimality conditions, the quantizer regions

can be obtained from the codebook and vice versa. Consequently, in order to describe

a quantizer, it is enough to specify its codebook.

Applying the NNC and CC conditions to design a quantizer, if the quantizer only

takes one source symbol at a time and outputs L q-ary symbols, it is called a scalar

quantizer (SQ) with rate R = (L log2 q)/1 bits/sample. If the output alphabet is q-

ary, then the quantizer’s codebook will have N = 2R output levels. In this thesis we

always consider output of the quantizer to be binary. The most common algorithm for

SQ design is the Lloyd algorithm [22]. Furthermore, a quantizer that takes k source

symbols at a time and outputs L quantized symbols, is called a vector quantizer
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(VQ) with rate R = (L log2 q)/k bits/sample and N = 2R output levels. The design

algorithm for VQ is the generalized Lloyd algorithm, also known as Linde-Buzo-Gray

vector quantizer algorithm (LBG-VQ) [21].

The Lloyd algorithm for SQ design is an iterative algorithm. Its idea comes di-

rectly from the CC and NNC conditions: For a fixed codebook, optimize the partition

set {Ri}. For the resulting partition, optimize the codebook C. Iterate. Algorithm

2.1 depicts the Lloyd-Max algorithm in more detail. A quantizer that is designed

using the Lloyd algorithm, is called a Lloyd-Max quantizer. When using the Lloyd

algorithm, the distortion in each iteration is either reduced or will be leaved un-

changed. As a result, since the distortion is nonnegative, the algorithm is guaranteed

to converge.

In order to start the algorithm, an initial codebook must be given. A well-known

technique for initial codebook selection is the splitting algorithm, [12, 21] which has

experimentally been shown to yield well-designed final codebooks. The splitting al-

gorithm is described in Section 3.1.2.

Algorithm 2.1 The Lloyd algorithm for SQ design (for MSE distortion)

Input: pdf f(x), initial codebook C1 = {x̂(1)
1 , x̂

(1)
2 , . . . , x̂

(1)
N }, threshold ε.

M ← 1
D0 ←∞
D1 ← E[d(X,Q(1)(X))]
while Dm−1−Dm

Dm−1
> ε do

m← m+ 1
R

(m)
i ← {x : d(x, x̂

(m)
i ) ≤ d(x, x̂

(m)
j ), j = 1, 2, . . . , N} i = 1, 2, . . . , N

x̂
(m)
i ← arg minx̂∈RE[d(X, x̂)|X ∈ R(m)

i ], i = 1, 2, . . . , N

Cm ← {x̂(m)
1 , x̂

(m)
2 , . . . , x̂

(m)
N }

Dm ← E[d(X,Q(m)(X))]
end while

Output: Cm
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The generalized Lloyd algorithm for vector quantizer design also follows the same

idea as the Lloyd algorithm. The only difference is that since the input is a vector

x = (x1, . . . , xk), the distortion measure is extended to k-dimensional vectors. For

instance the square error distortion is defined as d(x, Q(x)) =
∑k

i=1(xi − x̂i)2, where

x̂ , Q(x). Note that (2.12), (2.13), and (2.14) also change into vector forms

Ri ⊂ {x : d(x, x̂i) ≤ d(x, x̂j), j ∈ I} i ∈ I, (2.15)

x̂i = arg min
x̂∈R

E[d(X, x̂)|X ∈ Ri], i ∈ I, (2.16)

and

x̂i = E[X|X ∈ Ri], i ∈ I. (2.17)

The per-sample MSE distortion for a k-dimensional vector quantizer is calculated via

D(Q) =
1

k
E[d(X, Q(X)] (2.18)

=
1

k

∑
i∈I

E
[
‖X− x̂i‖2|X ∈ Ri

]
P (X ∈ Ri)

=
1

k

∑
i∈I

∫
Ri

p(x)‖x− x̂i‖2dx,

where ‖a− b‖2 ,
∑k

i=1(a− b)2, for k-dimensional vectors a,b.

Note that in order to send the quantized values (output levels) over a channel,

or store them in a storage medium, it is not necessary to send the actual quantized

values. In practice, assuming that the receiver already knows the quantizer codebook

C, it is enough to send the index i ∈ I of an output level ci to retrieve it in the receiver.

The index i is coded to be sent over the channel. As a result, each output level ci is

in correspondence with a codeword. For a binary input channel, the codewords can

be the binary form of the indices i ∈ I.



CHAPTER 2. PRELIMINARIES 25

A quantizer can also be viewed from another perspective. Consider a digital com-

munication system with a continuous valued stochastic process {Vi} as source (Figure

2.8). The VQ (or in general any quantizer) can be considered as an encoder/decoder

pair, where the source is encoded via the mapping γ, and decoded via the mapping β

γ(v) = i if v ∈ Ri,

β(j) = cj, cj ∈ C,

where cj is the output level corresponding to index j ∈ J and J is the output

index set. Note that we assume here that the quantizer codewords are sent through a

noiseless channel. As a result, for a quantizer model j = i, but for a general channel

this is not the case. Since the channel is noiseless, the end-to-end distortion can be

calculated via (2.18). It is interesting to note that in this case, assigning the indices

to the output levels can be done arbitrarily (as long as the same assignment is used

for quantization regions), with no effect on the system’s end-to-end distortion. That

is because a different index assignment will only change the order of integrals over

the quantization regions in (2.18). Since the sum of elements is independent of the

order of summation, the VQ’s performance is independent of index assignment. Note

that SQ is a specific case of VQ and hence the statement holds for SQ as well.

Figure 2.8: Block diagram of a vector quantizer in a communication system.

In Chapter 3, we survey the case where the channel is noisy and discuss that in

that case, in contrast with the noiseless channel case, the end-to-end distortion is not
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only due to quantization, but also the distortion due to channel noise and hence the

index-assignment has a vital effect on the end-to-end distortion.



Chapter 3

Exploiting Channel Memory and

Soft-Decision Information in

COVQ Design

As mentioned earlier, where applicable, the performance of a communication system

can be potentially improved by using joint source-channel coding instead of tandem

coding, as well as using the channel memory, rather than discarding it via interleaving,

and using soft-decision decoding, in contrast to hard decoding. In this chapter we

review a well-known joint source-channel coding scheme, channel optimized vector

quantization (COVQ), and present the design procedure of the COVQ for the non-

binary noise discrete channel with queue based noise (NBNDC-QB), described in

Chapter 2. We numerically illustrate that such a system can successfully exploit the

channel memory and soft decision information, in order to improve the performance

over systems designed for ideally interleaved (hence memoryless) channels and hard-

quantized output channels. We end this chapter by numerically confirming that the

27
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NBNDC-QB is an effective model for approximating the Rayleigh DFC, described in

Chapter 2, for COVQ design. The confirmation is done via fitting the NBNDC-QB to

the Rayleigh DFC, designing a COVQ for the NBNDC-QB, testing the COVQ over

the Rayleigh DFC, and comparing the training result of the COVQ for the NBNDC-

QB with the simulation results for the Rayleigh DFC.

3.1 Channel Optimized Vector Quantization

(COVQ)

In Chapter 2 we reviewed vector quantization (VQ) and its design procedure. Since

VQ is a source coding method, it disregard the channel’s statistics. As a result, since

the channel’s noise plays a vital role on the overall performance of a communication

system, it is not beneficial to send the output codewords of the VQ encoder directly

over the channel. Therefore, in a tandem coding system, a channel coding module is

added to the system, whose aim is to make the codewords robust to channel errors

at the cost of adding extra bits (and thus increasing the coding rate) to the VQ

codewords. This also adds extra online computational complexity and delay to the

system. However, in COVQ, as a joint source-channel coding scheme, the VQ is

designed by incorporating the channel’s statistics into the design algorithm. As a

result, the COVQ is expected to be more robust to noisy channels, in comparison with

VQ, while adding no extra redundancy to the codes, and adding less computational

complexity and delay to the encoder/decoder in comparison with channel coding

schemes.

The COVQ approach was first introduced by Kumazawa et al. [20]. It was further
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Figure 3.1: Block diagram of a COVQ system.

developed and studied by Farvardin and Vaishampayan in [12, 13]. Later in [14], it

was shown that the complexity of the encoding of a COVQ is proportional to the

number of non-empty encoding regions, and it was observed that as the channel gets

noisier, the number of non-empty encoding regions decrease.

3.1.1 System setup

Consider the communication system depicted in Figure 3.1. The input source to the

COVQ encoder is a real-valued stationary and ergodic process {Vi}∞i=1. The COVQ

encoder is a mapping γ that takes a vector of k source symbols v ∈ Rk and outputs

an index i ∈ {0, 1, . . . , 2n − 1}, such that

γ(v) = i if v ∈ Si,

where {Si : i ∈ {0, 1, . . . , 2n−1}} is a partition of Rk. Note that the encoder is similar

to a VQ encoder, except that the quantization regions Si are chosen according to both

the source and channel statistics.

The index i is then mapped to a binary vector x ∈ {0, 1}n via an index assignment

mapper b(·). The index assignment is a one-to-one mapping

b : {0, 1, . . . , 2n − 1} → {0, 1}n, b(i) = x
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where x is binary n-tuple. Since the mapping is one-to-one, for a given index mapping

b, we can denote the quantization regions by Sx instead of Si, where b(i) = x.

The binary n-tuples x ∈ {0, 1}n, each representing k source symbols, are then sent

over the NBNDC-QB. As noted in Chapter 2, the channel output is 2q-ary. Denote

the channel output by y. The decoder is a mapping β that maps the received n-tuple

2q-ary y to output levels of the quantizer codebook:

β(y) = cy, cy ∈ Rk, y ∈ {0, 1, . . . , 2q − 1}n.

For a given k dimensional source symbol v = (v1, . . . , vk) and its corresponding

retrieved output level cy = (cy1, . . . , cyk) , the end-to-end per-sample distortion of the

system is given by

d(v, cy) =
1

k
‖v − cy‖2 =

1

k

k∑
i=1

(vi − cyi)2.

3.1.2 COVQ Design

The COVQ training algorithm aims to select the codebook C = {ci, i ∈ {0, 1, . . . , 2q−

1}n} and the partition set P = {Si, i ∈ {0, 1}n}, as well as the index mapping b, to

minimize the following average distortion-per-sample measure:

D(C,P , b) =
1

k

∑
x

∫
Sx

p(v)
∑
y

P (y|x)d(v, cy)dv (3.1)

=
1

k

∑
x

∫
Sx

p(v)
∑
y

P (y|x)‖v − cy‖2dv

=
1

k

∑
x

∑
y

P (y|x)

∫
Sx

p(v)‖v − cy‖2dv,

where p(v) is the source k-fold probability density function and P (y | x) is calculated

via (2.6)-(2.8). The performance of this coding system is generally measured via
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D(C,P , b) and the encoding rate R, which is given by

R =
1

k
log2 |P| =

n

k
bits/sample.

It can be seen that the COVQ design problem is similar to the VQ design problem;

the difference is that the codebook and partition index sets are not the same here,

since the partition sets are indexed via binary n-tuples I = {0, 1}n and the codebook

is indexed via 2q-ary n-tuples J = {0, 1, . . . , 2q − 1}n, where q is the soft decision

resolution. Another difference between the two design problems is the applied dis-

tortion measure. For a VQ the distortion is given by (2.18), while COVQ distortion

is given in (3.1). Having these differences in mind, the LBG-VQ algorithm can be

generalized to be used for COVQ design. In this algorithm, two necessary optimality

conditions are satisfied iteratively. The conditions are called the generalized NNC

and generalized CC conditions:

• Generalized NNC [14]: Let P∗ = {S∗x} be the optimal partition set for a fixed

codebook C and a given index mapping b. The MSE distortion is minimized if

the partitions satisfy

S∗x =

{
v :
∑
y∈J

P (y|x)‖v − cy‖2 ≤
∑
y∈J

P (y|x̃)‖v − cy‖2, x̃ ∈ I

}
, x ∈ I.

(3.2)

As a result, the encoder function γ cascaded with the index mapping can be

written as

b(γ(v)) = arg min
x∈I

∑
y∈J

P (y|x)‖v − cy‖2. (3.3)

It can be seen that the computational complexity of encoding, using (3.3) is

O(|I| × |J | × k) = O(k2(q+1)n) which becomes intractable, even for moderate



CHAPTER 3. EXPLOITING MEMORY AND SOFT-DECISION IN COVQ 32

values of q and n. In order to decrease the computational complexity, the

following technique is proposed in [14]. For a fixed C and b, the encoding region

S∗x can be written as

S∗x =
⋂
x 6=t

Sxt
∗,

where S∗xt is described as follows:

S∗xt =

{
v : 2

∑
y∈J

[P (y|x)− P (y|t)] 〈v, cy〉 ≤
∑
y∈J

[P (y|x)− P (y|t)] ‖cy‖2

}
,

(3.4)

where 〈v, cy〉 represents the inner product of v and cy. According to (3.4), the

region S∗xt is characterized by a hyperplane Hxt, which separates the encoding

regions S∗x and S∗t and is described by

Hxt =

{
v : 2

∑
y∈J

[P (y|x)− P (y|t)] 〈v, cy〉 =
∑
y∈J

[P (y|x)− P (y|t)] ‖cy‖2

}
.

(3.5)

This fact can be used to reduce the encoding complexity in the following way.

Define for all nonempty encoding regions

v̂x , E[V̂|X ∈ Sx] =
∑
y∈J

P (y|x)cy, x ∈ I

and

αx , E[‖V̂‖2|X ∈ Sx] =
∑
y∈J

P (y|x)‖cy‖2, x ∈ I,

where V̂ denotes the random variable at the output of the decoder. Then, it

can be shown that (3.5) can be written as

Hxt = {v : 2〈v, v̂t − v̂x〉 = αt − αx}. (3.6)

It can also be shown that the distance of v to v̂x, dx(v) , αx− 2〈v, v̂x〉 can be

used to determine which side of Hxt the point v belongs to. In other words, to
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determine the quantization region for a source symbol v, the following relation

can be used as the encoder function

b(γ(v)) = arg min
x∈I

dx(v) = arg min
x∈I

(
αx − 2〈v, v̂x〉

)
. (3.7)

Using this technique, the parameters v̂x and αx are calculated only once with

complexities O(2nq) and O(k2nq) respectively, and for each source vector v to

be encoded, the complexity is O(k2n). It can be seen that the second technique

has a notable speedup over the technique that uses (3.3) for encoding, specially

for higher values of q. Furthermore, it is important to note that we only need

to calculate dx(v) for the non empty regions, whose number increases as the

channel gets noisier.

• Generalized CC [14]: Similar to the CC condition, the generalized CC condition

states that for a fixed index mapping b and fixed partition set P = {Sx},x ∈ I,

the optimal codebook C∗ = {cy},y ∈ J satisfies

c∗y = arg min
v̂∈Rk

E{d(V, v̂)|Y = y}, y ∈ J , (3.8)

where Y denotes the random vector at the channel output. For the MSE dis-

tortion, this relation is simplified to

c∗y =

∑
x P (y|x)

∫
Sx

vf(v)dv∑
x P (y|x)

∫
Sx
f(v)dv

. (3.9)

Similar to the Lloyd algorithm, a successive application of (3.2) and (3.9) will

lead to a non-increasing sequence of distortions. Hence the algorithm has to con-

verge. Therefore, we start with an initial point and iteratively satisfy one of the two

aforementioned conditions, in succession.
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To select the initial codebook C0 we have used the splitting algorithm [12,21]. This

method, which is also used for initial codebook selection in VQ and SQ design, first

designs a VQ (COVQ with noiseless channel) with only one output level C0
1 , {c0}

using the CC. Then, the number of output levels are doubled to 2 by letting C0
2 =

{c0 + d, c0 − d}, where d is a vector with very small values in each coordinate, and

training the quantizer using the initial codebook C0
2 . After the algorithm converges

to the locally optimum code C∗2 = {c0, c1}, the number of output levels is doubled to

4, by letting C0
4 = {c0 +d, c0−d, c1 +d, c1−d}, and again training the quantizer for

4 output levels. This procedure is continued until an initial codebook with desired

number of output levels (i.e., 2n) is obtained.

To design the COVQ we also need to address the index assignment problem. In

Chapter 2 we mentioned that for a VQ (over a noiseless channel) the order of assigning

indices to code levels does not affect the performance of the system. This is not the

case when the channel is noisy. According to the distortion expression (3.1) for a

COVQ, it can be shown [12] that for the MSE distortion and for a COVQ satisfying

the generalized CC, the average end-to-end distortion can be broken into two terms

DCOV Q = DV Q +DC ,

where

DV Q =
1

k

∑
x∈I

∫
Sx

p(v)‖v − cx‖2dv (3.10)

where cx represents the output level from the codebook C, the output of the COVQ

decoder, when the channel is noiseless and v ∈ Sx. In other words, DV Q is the

expected distortion when the channel deterministically outputs y ∈ J corresponding

to each binary vector x ∈ I sent over the channel. The other term DC is the distortion

due to the channel noise. Recalling that γ(v) = i if v ∈ Si and x = b(i), DC is given
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by

DC =
1

k

2n−1∑
i=0

∑
y∈J

Pr{v ∈ Si}P (y|b(i))‖cb(i) − cy‖2. (3.11)

It can be seen that for a different index mapping x′ = b′(i), the distortion caused

by the channel can be different. As a result, it is important to choose the mapping

b judiciously, in order to minimize the channel distortion DC . We have used the

simulated annealing algorithm, as suggested in [12], to perform this minimization.

The simulated annealing (SA) algorithm is a well-known probabilistic algorithm

[7, 19] which is shown to yield a good approximation to a globally optimum solution

in a large search space. At each step, the SA algorithm replaces the current solution

by a random nearby solution, chosen with a probability that depends both on the

difference between the corresponding function values and also on a global parameter

called temperature T , which is gradually decreased during the process. At the final

steps with T close to zero, the search is more local (downhill), while at the beginning

(high temperatures) it is more likely to have random solutions selected from the state

space to avoid being trapped in a local optima. Algorithm 3.1 generally describes how

the SA algorithm is applied to the index assignment problem. In this algorithm, the

system state is defined as a particular mapping b = (b(1), b(2), . . . , b(2N)), and the

energy function is defined as the channel distortion DC of the system, given in (3.11).

Some minor modifications can be made to the general algorithm, such as terminating

the algorithm if the number of trials exceeds an specific number, implying relative

stability of the state. The SA algorithm parameters we have used in this thesis are

the same as those used in [12] and are listed in Table 3.1

To select the initial codebook, at first we consider the error free channel and
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Algorithm 3.1 Simulated annealing algorithm for index assignment

Input: random initial state b, initial temperature T0, temperature decrease factor
α, final temperature Tf , and number of failed trials allowed, before temperature
decrease Ncut

T ← T0

count← 0
while T > Tf do

while count < Ncut do
choose state b′ by randomly perturbing b
∆DC ← DC(b′)−DC(b)
if ∆DC ≤ 0 then

b← b′

count← 0
else {with probability e∆DC/T , do}

b← b′

count← 0
end if
count← count+ 1

end while
T ← αT

end while
Output: b

train the COVQ with the initial codebook obtained from the splitting algorithm,

followed by simulated annealing for a locally optimum index assignment. Then we

use the resulting codebook as the initial state for a channel with high SNR. After

the training for high SNR channel is done, we decrease the channel SNR slightly and

train the COVQ again, setting the previously trained codebook (for higher SNR) as

the initial state of the system with the new SNR. We continue this process until we

eventually reach the desired channel SNR.
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Table 3.1: Simulated annealing parameters.

T0 10.0
Tf 2.5× 10−4

α 0.97
Ncut 200

3.2 Numerical Results

We now present the numerical results obtained using the training algorithm and the

NBNDC-QB channel model described previously.

Several source distributions were tested, including independent and identically

distributed (i.i.d.) Gaussian and Laplacian sources and correlated Gauss-Markov

sources. The correlated source was modeled via a Markov process of first-order :

Vi = φVi−1 + Ui

where φ ∈ (−1, 1) is the correlation parameter and {Ui} is a Gaussian i.i.d. process.

All of the source models had zero mean and unit variance.

For each source model, the COVQ was trained using 500,000 source vectors.

3.2.1 Exploiting memory and soft-decision information

Tables 3.2 and 3.3 depict COVQ training results for the memoryless Gaussian source

and NBNDC-QB with different channel noise correlation coefficients. The NBNDC-

QB noise one-dimensional distribution ρj is expressed in terms of the SNR of the

underlying DFC by setting ρj = P
(1)
DFC(j), where = P

(1)
DFC(j) is given in (2.10) for j ∈

{0, 1, . . . , 2q−1} and δ is chosen as in [28] to maximize the DFC capacity. The values

of ρj and δ are shown in Table 3.14. In practice, the memoryless channel behavior
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is realized by interleaving. It can be shown that by ideal (infinite) interleaving, a

correlated channel is reduced to its memoryless counterpart. It can be seen that

the highly correlated channel consistently outperforms the memoryless channel and

gains of more than 5 dB are achievable (e.g., for q = 1, R = 3, k = 3, SNR=0 in

Table 3.2), using the channel memory. Note that since the COVQ only makes use

of intra-block memory, for rate R = 1 and low dimensions k, the block length is

so small that there is not much channel memory to be harnessed. As a result, the

performance is constant for different channel correlations. However, it is observed

that in some cases, interleaving may give better COVQ performance over channels

with lower noise correlations. For example, the SDR performance of the memoryless

channel for q = 3, R = 3, k = 2 (see Tables 3.2 and 3.3,) is slightly better than the

corresponding performance for noise correlations 0.5 and 0.7 at high SNRs. Since

the capacity of the correlated channel is strictly higher than that of the memoryless

channel, this degradation may be due to poor selection of the initial codebook for the

vector quantizer. However, the results indicate a general trend of improved COVQ

performance when the channel noise correlation is increased. Similar observations

can be made for sources with Laplacian or Gauss-Markov distributions (see Tables

3.4 and 3.5).

Additionally, it is observed in Tables 3.2-3.5 that the system with soft-decision

quantization (q > 1), considerably outperforms hard-quantization (q = 1), by as

much as 2.3 dB (for R = 3, k = 1, Cor = 0, SNR=5) for a memoryless Gaussian

source, when using only a 2-bit soft-decision quantizer (q = 2). For 3-bit quantization

further gain is obtained, although the gain for q = 3 over q = 2 is less than the gain

for q = 2 over q = 1.
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Comparing the overall performance of a COVQ system that uses the combination

of memory and soft-decision information to a system that uses interleaving to discard

channel memory and hard-decision quantization in the output, it can be seen that

gains more than 5.7 dB (at R = 3, k = 3, SNR=0) can be achieved for memoryless

Gaussian sources. More gain is obtained for correlated Guass-Markov sources. It

is important to notice that in a uniform soft-quantized output system, the SDR

performance also depends on the soft-quantizer step size δ. However, according to

our results, the system’s performance is not very sensitive to the choice of δ. In this

work, we selected the δ values that maximize the capacity of the memoryless channel

as the initial choice and then tried to improve the performance by applying a local

search over the δ values.

In Tables 3.6-3.8, the training results for memoryless Gaussian source with differ-

ent channel parameters α and M are depicted. Table 3.9 shows the results of using

the same COVQ design technique, with a slight modification in the initial codebook

selection. More precisely, in the modified version, after training the COVQ for the

lowest SNR, the resulting codebook was again used as an initial codebook for design-

ing a new COVQ with higher SNR and the training is continued until the COVQ for

the highest SNR is trained. We did the same decrease-increase method [6] 5 times

to obtain the final COVQ codebooks for desired SNRs. As can be seen, the results

show a good improvement (up to 2.1 dB at q = 1, R = 3, k = 1, Cor=0.9, SNR=10)

at the cost of extra complexity in the training algorithm.
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3.2.2 Validating the NBNDC-QB model

As mentioned earlier, the m-fold probability distribution of correlated Rayleigh ran-

dom variables is not known in closed form, for m > 3. As a result, the channel

transition distribution P
(m)
DFC(ym|xm) can only be calculated numerically. It is shown

in [28] that the NBNDC-QB model can approximate the Rayleigh DFC in terms of

channel capacity and noise autocorrelation function, while providing closed form ex-

pression for the channel transition distribution for arbitrary channel block length m

and memory order M .

Approximating a given Rayleigh DFC (with fixed SNR and fDT and q) via the

NBNDC-QB is done via the following steps:

• Matching the noise one-dimensional probability distributions (as in Section

3.2.1) by setting ρj = P
(1)
DFC(j) for j ∈ Y , where P

(1)
DFC(j) is given by (2.10), in

terms of δ, q, and SNR. The values of ρj are given in Table 3.14.

• Matching the noise correlation coefficients (so that parameter α is determined).

• The remaining QB parameters (M, ε) are estimated by minimizing the Kullback-

Leibler divergence rate between the two (2q-ary) noise processes.

It is important to notice that in general, two channel models can not be matched

to have the exact same behavior. However, for the memoryless case (with Cor=0),

the NBNDC-QB is statistically identical to the ideally interleaved DFC. We have

used the values given in [29] in which the Kullback-Leibler divergence rate between

the two channel (2q-ary) noise processes is minimized over M and ε for SNR(dB) ∈

{2.0, 5.0, 10.0, 15.0}, fDT ∈ {0.005, 0.01}, and q = 2. The resulting values for q = 2,

given in Table 3.10, are also used for case of q = 1.
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Using the approximated NBNDC-QB to fit a given Rayleigh DFC, we trained a

COVQ using the previously described COVQ design algorithm. The resulting channel

optimized quantizer’s performance was then tested over the given Rayleigh DFC. For

generating the fading coefficients, we used the modified Clarke’s method introduced

in [36]. Training and simulation results (over the NBNDC-QB and Rayleigh DFC

channels) in terms of SDR are shown in Tables 3.12 and 3.13 for memoryless and cor-

related Gaussian sources, and in Table 3.11 for a memoryless Laplacian source . The

channel parameters used for training/simulation are given in Table 3.10. Comparing

the training and simulation performance of the COVQ, we observe that there is a

good conformity between the results of the two channel models, where the NBNDC-

QB is used for training and the Rayleigh DFC for testing. However, for higher rates,

some degradation between the simulation and training results is observed.
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Table 3.2: COVQ Training SDR results (in dB) for the memoryless NBNDC-QB and
the highly correlated NBNDC-QB with parameters α = 1.0, M = 1; memoryless
Gaussian source.

Memoryless (Cor=0) Cor=0.9
q R k SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.18 3.77 2.88 2.16 1.67 4.18 3.77 2.88 2.16 1.67
1 2 4.16 3.75 2.87 2.15 1.66 4.16 3.75 2.87 2.15 1.66

3 4.23 3.78 2.87 2.15 1.67 4.27 3.88 3.64 3.26 2.97
1 8.16 6.58 4.23 2.85 2.06 8.35 7.05 5.24 5.70 5.09

1 2 2 8.32 6.72 4.88 3.67 2.88 8.55 7.32 7.05 6.13 5.82
3 8.57 7.12 5.10 3.78 2.95 8.81 8.37 7.49 6.91 6.47
1 11.12 8.09 4.83 4.45 3.57 11.71 9.68 9.45 8.04 7.22

3 2 11.64 9.30 6.60 4.90 3.88 12.09 11.63 9.98 8.89 8.24
3 11.99 9.76 6.90 5.08 3.97 12.54 12.40 10.79 9.69 9.03

1 4.23 3.88 3.10 2.43 1.95 4.23 3.88 3.10 2.43 1.95
1 2 4.21 3.87 3.09 2.42 1.94 4.21 3.87 3.09 2.42 1.94

3 4.28 3.90 3.09 2.42 1.95 4.31 3.99 3.77 3.43 3.17
1 8.37 7.00 4.75 3.35 2.51 8.54 7.40 5.62 6.13 5.52

2 2 2 8.55 7.13 5.46 4.29 3.41 8.76 7.67 7.48 6.75 6.20
3 8.78 7.59 5.76 4.42 3.54 9.02 7.79 7.50 6.94 6.77
1 11.67 8.81 7.20 5.34 4.13 12.18 11.24 9.57 8.46 7.76

3 2 12.42 10.37 7.73 5.88 4.61 12.51 11.74 10.27 9.52 8.87
3 12.57 10.71 8.01 6.09 4.85 13.13 12.33 11.13 10.30 9.74

1 4.24 3.91 3.16 2.49 2.01 4.24 3.91 3.16 2.49 2.01
1 2 4.22 3.89 3.15 2.48 2.00 4.22 3.89 3.15 2.48 2.00

3 4.29 3.93 3.15 2.48 2.01 4.32 4.01 3.81 3.48 3.22
1 8.42 7.08 4.89 3.46 2.61 8.58 7.48 5.73 6.24 5.64

3 2 2 8.60 7.22 5.61 4.43 3.55 8.80 7.74 7.43 6.90 6.42
3 8.83 7.69 5.91 4.57 3.68 9.07 7.86 7.50 6.83 6.48
1 11.79 8.96 7.45 5.60 4.35 12.28 10.41 9.01 8.44 7.90

3 2 12.57 10.61 7.96 6.15 4.85 12.63 11.58 10.35 9.46 9.10
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Table 3.3: COVQ Training SDR results (in dB) for the NBNDC-QB with parameters
α = 1.0, M = 1 and channel correlations 0.5, 0.7 ; memoryless Gaussian source.

Cor=0.5 Cor=0.7
q R k SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.18 3.77 2.88 2.16 1.67 4.18 3.77 2.88 2.16 1.67
1 2 4.16 3.75 2.87 2.15 1.66 4.16 3.75 2.87 2.15 1.66

3 4.25 3.82 2.92 2.20 1.72 4.26 3.85 2.99 2.69 2.31
1 8.26 6.81 4.66 3.37 2.64 8.30 6.92 4.91 3.75 3.69

1 2 2 8.44 6.99 4.91 3.68 2.91 8.49 7.13 5.29 4.59 4.07
3 8.65 7.09 5.04 3.94 3.27 8.72 7.17 6.15 5.11 4.46
1 11.34 8.56 5.56 4.01 3.20 11.50 8.96 6.51 5.26 4.41

3 2 11.64 9.13 6.35 4.72 4.21 11.78 9.25 7.79 6.49 5.70
3 11.79 9.48 6.88 5.41 4.47 11.88 10.48 8.19 6.81 6.00

1 4.23 3.88 3.10 2.43 1.95 4.23 3.88 3.10 2.43 1.95
1 2 4.21 3.87 3.09 2.42 1.94 4.21 3.87 3.09 2.42 1.94

3 4.30 3.94 3.14 2.47 2.00 4.30 3.97 3.20 2.93 2.57
1 8.47 7.20 5.11 3.84 3.10 8.50 7.30 5.34 4.20 4.17

2 2 2 8.66 7.34 5.48 4.30 3.75 8.71 7.45 5.84 5.08 4.45
3 8.87 7.53 5.80 4.65 3.89 8.94 7.57 6.14 5.57 5.07
1 11.93 9.21 6.30 4.75 3.90 12.04 9.53 7.28 6.05 5.27

3 2 12.21 10.22 7.74 5.98 5.14 12.34 10.18 8.36 7.20 6.59
3 12.51 10.67 8.24 6.50 5.47 12.62 10.97 9.05 7.78 7.03

1 4.24 3.91 3.16 2.49 2.01 4.24 3.91 3.16 2.49 2.01
1 2 4.22 3.89 3.15 2.48 2.00 4.22 3.89 3.15 2.48 2.00

3 4.31 3.97 3.21 2.54 2.07 4.31 3.99 3.26 3.00 2.66
1 8.51 7.28 5.26 3.97 3.24 8.55 7.37 5.47 4.33 4.34

3 2 2 8.71 7.42 5.71 4.49 4.02 8.76 7.52 6.02 5.26 4.68
3 8.93 7.62 6.01 4.92 4.19 8.99 7.64 6.27 5.61 5.06
1 12.05 9.36 6.59 5.04 4.24 12.16 9.65 7.57 6.42 5.61

3 2 12.34 10.48 8.09 6.46 5.51 12.47 10.57 8.69 7.68 6.85
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Table 3.4: COVQ Training SDR results (in dB) for the memoryless NBNDC-QB and
the highly correlated NBNDC-QB with parameters α = 1.0, M = 1; Gauss-Markov
source with correlation parameter φ = 0.9.

Memoryless (Cor=0) Cor=0.9
q R k SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.17 3.76 2.87 2.14 1.66 4.17 3.76 2.87 2.14 1.66
1 2 7.09 5.85 3.87 2.63 1.91 7.23 6.23 4.74 5.13 4.61

3 8.05 6.63 5.00 3.69 3.10 8.26 7.30 7.22 6.38 5.85
1 8.17 6.57 4.22 2.83 2.05 8.36 7.05 5.23 5.70 5.08

1 2 2 10.66 8.79 6.61 5.01 3.93 11.46 11.25 9.40 8.27 7.59
3 12.03 10.31 7.70 5.75 4.81 12.53 12.08 10.60 9.88 9.37
1 11.14 8.10 4.82 4.44 3.56 11.73 9.70 9.53 8.21 7.44

3 2 13.93 11.62 8.33 6.43 5.02 16.00 14.38 12.28 11.20 10.50
3 15.53 13.10 9.81 7.71 6.33 17.25 15.82 13.80 12.63 11.96

1 4.22 3.87 3.09 2.42 1.94 4.22 3.87 3.09 2.42 1.94
1 2 7.25 6.19 4.32 3.08 2.32 7.37 6.51 5.06 5.49 4.98

3 8.30 7.40 5.84 4.48 3.56 8.48 7.59 7.48 6.77 6.30
1 8.38 7.00 4.74 3.34 2.49 8.55 7.41 5.61 6.13 5.51

2 2 2 11.32 9.90 7.55 6.00 4.83 11.71 11.45 10.35 9.46 8.90
3 12.79 11.15 8.84 7.12 5.84 13.21 12.50 11.41 10.63 10.00
1 11.69 8.82 7.19 5.33 4.12 12.21 11.12 9.82 8.74 8.04

3 2 15.06 12.85 9.83 7.86 6.30 16.13 14.99 13.30 12.15 11.38
3 16.26 14.30 11.41 9.18 7.64 17.32 16.27 14.75 13.69 13.12

1 4.23 3.90 3.15 2.48 2.00 4.23 3.90 3.15 2.48 2.00
1 2 7.28 6.26 4.44 3.19 2.41 7.40 6.56 5.15 5.58 5.08

3 8.35 7.51 6.00 4.66 3.74 8.53 7.64 7.60 6.94 6.49
1 8.43 7.08 4.89 3.45 2.60 8.59 7.48 5.72 6.24 5.64

3 2 2 11.42 10.15 7.51 5.94 5.09 11.78 10.80 10.03 9.13 8.71
3 12.94 11.44 9.17 7.25 6.16 13.22 12.57 11.51 10.98 10.47
1 11.81 8.97 7.45 5.59 4.34 12.31 10.40 10.01 8.98 8.31

3 2 15.33 13.22 10.15 8.11 6.56 15.61 14.62 13.15 12.18 11.57
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Table 3.5: COVQ Training SDR results (in dB) for the memoryless NBNDC-QB and
the highly correlated NBNDC-QB with parameters α = 1.0, M = 1; memoryless
Laplacian source.

Memoryless (Cor=0) Cor=0.9
q R k SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 2.87 2.63 2.07 1.58 1.25 2.87 2.63 2.07 1.58 1.25
1 2 3.46 3.12 2.42 1.84 1.44 3.48 3.16 2.45 1.85 1.44

3 4.06 3.46 2.44 1.90 1.48 4.26 3.93 3.38 2.91 2.60
1 6.64 5.39 3.48 2.32 1.67 6.71 5.64 4.12 4.34 3.83

1 2 2 7.67 6.18 4.18 3.12 2.39 7.76 7.08 6.44 5.62 5.12
3 8.11 6.61 4.55 3.38 2.59 8.40 8.16 7.07 6.38 5.88
1 9.70 7.08 4.21 3.54 2.66 9.84 9.15 8.01 6.78 6.07

3 2 10.92 8.52 5.96 4.36 3.37 11.27 10.91 9.33 8.17 7.71
3 11.40 9.25 6.41 4.65 3.59 12.26 11.97 10.23 9.10 8.43

1 2.90 2.70 2.21 1.77 1.44 2.90 2.70 2.21 1.77 1.44
1 2 3.50 3.22 2.59 2.06 1.67 3.52 3.25 2.63 2.08 1.68

3 4.14 3.63 2.66 2.03 1.72 4.31 4.04 3.46 3.10 2.81
1 6.85 5.79 3.96 2.77 2.06 6.95 6.05 4.48 4.74 4.21

2 2 2 7.91 6.59 4.88 3.73 2.91 8.06 7.01 6.69 5.98 5.46
3 8.37 7.13 5.24 3.94 3.14 8.66 7.62 7.25 6.51 6.18
1 10.32 7.84 5.97 4.41 3.38 10.63 8.46 8.45 7.31 6.61

3 2 11.45 9.51 7.04 5.30 4.18 11.71 10.52 9.02 8.51 8.01
3 12.08 10.13 7.52 5.62 4.44 12.53 11.58 10.36 9.65 9.00

1 2.90 2.71 2.25 1.81 1.48 2.90 2.71 2.25 1.81 1.48
1 2 3.51 3.24 2.64 2.11 1.72 3.53 3.27 2.68 2.14 1.73

3 4.16 3.66 2.73 2.08 1.77 4.31 4.06 3.51 3.15 2.86
1 6.89 5.86 4.08 2.88 2.15 6.99 6.12 4.59 4.84 4.31

3 2 2 7.95 6.67 5.02 3.86 3.03 8.11 7.01 6.72 6.23 5.81
3 8.42 7.26 5.40 4.08 3.30 8.71 7.53 7.20 6.60 6.21
1 10.43 7.99 6.18 4.62 3.56 10.77 8.59 7.57 7.07 6.60

3 2 11.59 9.72 7.26 5.53 4.39 11.87 10.41 9.18 8.61 8.24
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Table 3.6: COVQ Training SDR results (in dB) for the memoryless NBNDC-QB and
the highly correlated NBNDC-QB with parameters α = 0.5, M = 5; memoryless
Gaussian source.

Memoryless (Cor=0) Cor=0.9
q R k SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.18 3.77 2.88 2.16 1.67 4.18 3.77 2.88 2.16 1.67
1 2 4.16 3.75 2.87 2.15 1.66 4.16 3.75 2.87 2.15 1.66

3 4.23 3.78 2.87 2.15 1.67 4.27 3.88 3.69 3.30 3.03
1 8.16 6.58 4.23 2.85 2.06 8.35 7.05 5.24 5.70 5.09

1 2 2 8.32 6.72 4.88 3.67 2.88 8.56 7.35 7.40 6.53 6.01
3 8.57 7.12 5.10 3.78 2.95 8.85 8.73 7.74 6.92 6.41
1 11.12 8.09 4.83 4.45 3.57 11.71 9.72 9.31 8.30 7.51

3 2 11.64 9.30 6.60 4.90 3.88 12.22 12.43 10.28 8.96 8.26
3 11.98 9.76 6.90 5.08 3.97 13.75 12.65 10.55 9.35 8.65

1 4.23 3.88 3.10 2.43 1.95 4.23 3.88 3.10 2.43 1.95
1 2 4.21 3.87 3.09 2.42 1.94 4.21 3.87 3.09 2.42 1.94

3 4.28 3.90 3.09 2.42 1.95 4.31 3.99 3.31 3.47 3.21
1 8.55 7.13 5.46 4.29 3.41 8.76 7.70 7.76 7.00 6.49

2 2 2 8.37 7.00 4.75 3.35 2.51 8.54 7.40 5.62 6.13 5.52
3 8.78 7.59 5.76 4.42 3.54 9.05 8.90 8.05 7.30 6.82
1 11.67 8.81 7.20 5.34 4.13 12.18 12.02 10.06 8.84 8.09

3 2 12.42 10.37 7.73 5.88 4.61 12.56 12.69 10.77 9.60 8.92
3 12.57 10.71 8.01 6.09 4.85 13.93 12.91 11.19 10.14 9.53

1 4.24 3.91 3.16 2.49 2.01 4.24 3.91 3.16 2.49 2.01
1 2 4.22 3.89 3.15 2.48 2.00 4.22 3.89 3.15 2.48 2.00

3 4.29 3.93 3.15 2.48 2.01 4.32 4.02 3.36 3.51 3.26
1 8.42 7.08 4.89 3.46 2.61 8.58 7.48 5.73 6.24 5.64

3 2 2 8.60 7.22 5.61 4.43 3.55 8.80 7.77 7.86 7.12 6.63
3 8.83 7.69 5.91 4.57 3.68 9.09 8.94 8.12 7.44 7.01
1 11.79 8.96 7.45 5.60 4.35 12.29 11.45 9.66 8.85 8.21

3 2 12.57 10.61 7.96 6.15 4.85 12.68 12.26 10.96 9.89 9.22
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Table 3.7: COVQ Training SDR results (in dB) for the memoryless NBNDC-QB and
the highly correlated NBNDC-QB with parameters α = 1.0, M = 5; memoryless
Gaussian source.

Memoryless (Cor=0) Cor=0.9
q R k SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.18 3.77 2.88 2.16 1.67 4.18 3.77 2.88 2.16 1.67
1 2 4.16 3.75 2.87 2.15 1.66 4.16 3.75 2.87 2.15 1.66

3 4.23 3.78 2.87 2.15 1.67 4.27 3.88 3.69 3.30 3.03
1 8.16 6.58 4.23 2.85 2.06 8.35 7.05 5.24 5.70 5.09

1 2 2 8.32 6.72 4.88 3.67 2.88 8.56 7.35 7.40 6.53 6.01
3 8.57 7.12 5.10 3.78 2.95 8.85 8.73 7.74 6.93 6.42
1 11.12 8.09 4.83 4.45 3.57 11.71 9.72 9.31 8.30 7.51

3 2 11.64 9.30 6.60 4.90 3.88 12.22 12.36 10.36 9.03 8.27
3 11.98 9.76 6.90 5.08 3.97 13.73 12.70 10.57 9.35 8.63

1 4.23 3.88 3.10 2.43 1.95 4.23 3.88 3.10 2.43 1.95
1 2 4.21 3.87 3.09 2.42 1.94 4.21 3.87 3.09 2.42 1.94

3 4.28 3.90 3.09 2.42 1.95 4.31 3.99 3.31 3.47 3.21
1 8.37 7.00 4.75 3.35 2.51 8.54 7.40 5.62 6.13 5.52

2 2 2 8.55 7.13 5.46 4.29 3.41 8.76 7.70 7.76 7.00 6.49
3 8.78 7.59 5.76 4.42 3.54 9.05 8.94 8.03 7.30 6.84
1 11.67 8.81 7.20 5.34 4.13 12.18 12.02 10.06 8.84 8.09

3 2 12.42 10.37 7.73 5.88 4.61 12.56 12.68 10.76 9.62 8.93
3 12.57 10.71 8.01 6.09 4.85 13.99 12.94 11.20 10.16 9.55

1 4.24 3.91 3.16 2.49 2.01 4.24 3.91 3.16 2.49 2.01
1 2 4.22 3.89 3.15 2.48 2.00 4.22 3.89 3.15 2.48 2.00

3 4.29 3.93 3.15 2.48 2.01 4.32 4.02 3.36 3.51 3.26
1 8.42 7.08 4.89 3.46 2.61 8.58 7.48 5.73 6.24 5.64

3 2 2 8.60 7.22 5.61 4.43 3.55 8.80 7.77 7.86 7.12 6.63
3 8.83 7.69 5.91 4.57 3.68 9.09 8.96 8.15 7.43 6.97
1 11.79 8.96 7.45 5.60 4.35 12.29 11.45 9.66 8.85 8.21

3 2 12.57 10.61 7.96 6.15 4.85 12.68 12.20 10.89 9.87 9.22
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Table 3.8: COVQ Training SDR results (in dB) for the memoryless NBNDC-QB and
the highly correlated NBNDC-QB with parameters α = 2.0, M = 5; memoryless
Gaussian source.

Memoryless (Cor=0) Cor=0.9
q R k SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.18 3.77 2.88 2.16 1.67 4.18 3.77 2.88 2.16 1.67
1 2 4.16 3.75 2.87 2.15 1.66 4.16 3.75 2.87 2.15 1.66

3 4.23 3.78 2.87 2.15 1.67 4.27 3.88 3.69 3.30 3.03
1 8.16 6.58 4.23 2.85 2.06 8.35 7.05 5.24 5.70 5.09

1 2 2 8.32 6.72 4.88 3.67 2.88 8.56 7.35 7.40 6.53 6.01
3 8.57 7.12 5.10 3.78 2.95 8.85 8.78 7.72 6.91 6.40
1 11.12 8.09 4.83 4.45 3.57 11.71 9.72 9.31 8.30 7.51

3 2 11.64 9.30 6.60 4.90 3.88 12.23 12.49 10.36 9.08 8.32
3 11.98 9.76 6.90 5.08 3.97 13.76 12.74 10.63 9.40 8.69

1 4.23 3.88 3.10 2.43 1.95 4.23 3.88 3.10 2.43 1.95
1 2 4.21 3.87 3.09 2.42 1.94 4.21 3.87 3.09 2.42 1.94

3 4.28 3.90 3.09 2.42 1.95 4.31 3.99 3.31 3.47 3.21
1 8.37 7.00 4.75 3.35 2.51 8.54 7.40 5.62 6.13 5.52

2 2 2 8.55 7.13 5.46 4.29 3.41 8.76 7.70 7.76 7.00 6.49
3 8.78 7.59 5.76 4.42 3.54 9.05 8.94 8.06 7.31 6.84
1 11.67 8.81 7.20 5.34 4.13 12.18 12.02 10.06 8.84 8.09

3 2 12.42 10.37 7.73 5.88 4.61 12.56 12.69 10.80 9.62 8.95
3 12.57 10.71 8.01 6.09 4.85 14.05 12.97 11.25 10.23 9.58

1 4.24 3.91 3.16 2.49 2.01 4.24 3.91 3.16 2.49 2.01
1 2 4.22 3.89 3.15 2.48 2.00 4.22 3.89 3.15 2.48 2.00

3 4.29 3.93 3.15 2.48 2.01 4.32 4.02 3.36 3.51 3.26
1 8.42 7.08 4.89 3.46 2.61 8.58 7.48 5.73 6.24 5.64

3 2 2 8.60 7.22 5.61 4.43 3.55 8.80 7.77 7.86 7.12 6.63
3 8.83 7.69 5.91 4.57 3.68 9.09 8.96 8.10 7.45 7.00
1 11.79 8.96 7.45 5.60 4.35 12.29 11.45 9.66 8.85 8.21

3 2 12.57 10.61 7.96 6.15 4.85 12.68 12.21 10.92 9.90 9.28
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Table 3.9: COVQ Training SDR results (in dB) for the memoryless NBNDC-QB and
the highly correlated NBNDC-QB with parameters α = 1.0, M = 1; memoryless
Gaussian source- Decrease increase method (5 times).

Memoryless (Cor=0) Cor=0.9
q R k SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.18 3.77 2.88 2.16 1.67 4.18 3.77 2.88 2.16 1.67
1 2 4.17 3.75 2.87 2.15 1.66 4.17 3.75 2.87 2.15 1.66

3 4.23 3.78 2.88 2.15 1.67 4.37 4.16 3.68 3.27 2.98
1 8.16 6.58 4.23 2.85 2.06 8.84 8.08 6.69 5.70 5.09

1 2 2 8.42 6.98 4.95 3.67 2.88 9.20 8.54 7.29 6.40 5.84
3 8.68 7.21 5.12 3.79 2.96 9.51 8.89 7.76 6.97 6.47
1 11.12 8.48 5.80 4.45 3.57 13.41 11.80 9.45 8.04 7.23

3 2 11.64 9.30 6.60 4.94 3.88 13.92 12.36 10.27 9.05 8.34
3 12.16 9.78 6.92 5.11 3.99 14.40 12.94 10.95 9.76 9.06

1 4.23 3.88 3.10 2.43 1.95 4.23 3.88 3.10 2.43 1.95
1 2 4.21 3.87 3.09 2.42 1.94 4.21 3.87 3.09 2.42 1.94

3 4.28 3.91 3.10 2.43 1.95 4.39 4.22 3.81 3.44 3.17
1 8.37 7.00 4.75 3.35 2.51 8.94 8.32 7.06 6.13 5.52

2 2 2 8.55 7.43 5.65 4.32 3.43 9.34 8.77 7.60 6.75 6.20
3 8.86 7.64 5.79 4.44 3.54 9.60 9.07 8.00 7.28 6.80
1 11.67 9.43 7.21 5.35 4.13 13.69 12.34 10.10 8.72 7.91

3 2 12.42 10.38 7.78 5.88 4.61 14.02 12.87 11.04 9.94 9.22
3 12.80 10.84 8.07 6.12 4.86 14.51 13.35 11.65 10.60 9.94

1 4.24 3.91 3.16 2.49 2.01 4.24 3.91 3.16 2.49 2.01
1 2 4.22 3.89 3.15 2.48 2.00 4.22 3.89 3.15 2.48 2.00

3 4.29 3.93 3.15 2.49 2.01 4.40 4.23 3.85 3.49 3.23
1 8.42 7.08 4.89 3.47 2.61 8.96 8.37 7.17 6.25 5.64

3 2 2 8.60 7.52 5.75 4.46 3.56 9.32 8.80 7.75 6.95 6.45
3 8.87 7.74 5.94 4.58 3.68 9.57 9.06 8.05 7.33 7.07
1 11.79 9.65 7.47 5.60 4.35 13.74 12.44 10.32 8.95 8.16

3 2 12.57 10.61 8.01 6.15 4.86 13.86 12.87 11.24 10.24 9.58
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Table 3.10: NBNDC parameters for fitting the Rayleigh DFC with q = 2.

γ(dB) fDT = 0.005 fDT = 0.01
M = 11 M = 8

2 ε = 0.7537 ε = 0.6846
(δ = 0.5) α = 0.6362 α = 0.5313

Cor = 0.22 Cor = 0.22
M = 10 M = 7

5 ε = 0.7967 ε = 0.7260
(δ = 0.4) α = 0.6318 α = 0.5286

Cor = 0.29 Cor = 0.29
M = 7 M = 5

10 ε = 0.7563 ε = 0.6765
(δ = 0.2) α = 0.5932 α = 0.4818

Cor = 0.32 Cor = 0.32
M = 5 M = 4

15 ε = 0.7076 ε = 0.6371
(δ = 0.12) α = 0.5511 α = 0.399

Cor = 0.35 Cor = 0.34
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Table 3.11: COVQ training results (for DFC-fitted NBNDC-QB) and simulation
results (for the Rayleigh DFC) in terms of SDR (dB); memoryless Laplacian source.
fDT = 0.01.

Training Simulation
q R = k SNR (dB) SNR (dB)

n/k 15 10 5 2 15 10 5 2

1 2.87 2.63 2.07 1.59 2.87 2.63 2.07 1.59
1 2 3.47 3.12 2.42 1.84 3.46 3.12 2.41 1.84

3 4.15 3.63 2.64 1.88 4.06 3.45 2.39 1.70
1 6.67 5.46 3.62 2.46 6.71 5.45 3.58 2.42

1 2 2 7.69 6.22 4.14 2.90 7.71 6.20 4.10 2.89
3 8.21 6.62 4.56 3.21 8.17 6.53 4.50 3.17
1 9.65 7.14 4.40 2.91 9.73 7.15 4.30 2.83

3 2 10.78 8.20 5.31 3.93 10.79 8.19 5.26 3.94
3 11.16 8.69 5.92 4.24 10.95 8.60 5.89 4.27

1 2.90 2.70 2.21 1.77 2.90 2.70 2.21 1.77
1 2 3.51 3.23 2.60 2.06 3.50 3.22 2.59 2.06

3 4.21 3.78 2.86 2.13 4.15 3.62 2.62 1.94
1 6.89 5.88 4.09 2.89 6.96 5.98 4.21 2.97

2 2 2 7.97 6.69 4.75 3.57 8.01 6.76 4.76 3.53
3 8.50 7.08 5.15 3.89 8.46 7.04 4.95 3.66
1 10.45 8.00 5.01 4.19 10.64 8.28 5.18 4.03

3 2 11.50 9.16 6.60 4.97 11.48 8.95 6.08 4.55
3 11.95 9.87 7.25 5.41 11.49 8.87 6.18 4.67
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Table 3.12: COVQ training results (for DFC-fitted NBNDC-QB) and simulation
results (for the Rayleigh DFC) in terms of SDR (dB); memoryless Gaussian source.
fDT = 0.005.

Training Simulation
q R = k SNR (dB) SNR (dB)

n/k 15 10 5 2 15 10 5 2

1 4.17 3.76 2.87 2.14 4.17 3.76 2.86 2.13
1 2 7.14 5.96 4.05 2.78 7.08 5.86 3.84 2.60

3 8.11 6.75 4.52 3.10 8.07 6.54 4.23 3.03
1 8.23 6.71 4.43 3.01 8.26 6.71 4.38 2.95

1 2 2 10.87 8.27 5.46 4.21 10.84 8.16 5.45 4.31
3 11.79 9.25 6.43 4.87 11.79 9.37 6.60 5.08
1 11.29 8.36 5.16 3.41 11.29 8.32 5.02 3.31

3 2 13.21 10.02 6.85 5.14 13.25 10.18 7.14 5.41
3 14.25 10.93 7.54 5.78 14.25 11.11 7.93 6.19
1 4.22 3.87 3.09 2.42 4.21 3.87 3.09 2.42

1 2 7.29 6.29 4.48 3.22 7.26 6.19 4.30 3.05
3 8.37 7.02 5.53 4.29 8.30 6.91 5.89 4.49
1 8.45 7.13 4.92 3.49 8.50 7.19 4.94 3.49

2 2 2 11.30 9.26 6.79 5.28 11.38 9.02 6.36 4.90
3 12.40 10.45 7.94 6.27 12.32 9.85 7.05 5.59
1 11.89 9.07 6.19 5.03 12.01 9.23 6.03 4.83

3 2 14.34 11.72 8.65 6.78 14.03 10.86 7.54 6.00
3 15.62 13.05 9.94 7.77 14.27 11.29 8.15 6.54
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Table 3.13: COVQ training results (for DFC-fitted NBNDC-QB) and simulation
results (for the Rayleigh DFC) in terms of SDR (dB); Gauss-Markov source with
correlation factor φ = 0.9. fDT = 0.005.

Training Simulation
q R = k SNR (dB) SNR (dB)

n/k 15 10 5 2 15 10 5 2

1 4.18 3.77 2.88 2.16 4.18 3.76 2.88 2.16
1 2 4.16 3.75 2.87 2.15 4.16 3.75 2.87 2.14

3 4.24 3.81 2.89 2.15 4.23 3.78 2.85 2.14
1 8.23 6.71 4.44 3.02 8.23 6.71 4.36 2.95

1 2 2 8.43 6.88 4.72 3.40 8.39 6.83 4.72 3.42
3 8.67 7.08 4.94 3.59 8.65 7.05 4.96 3.61
1 11.26 8.36 5.17 3.42 11.25 8.29 5.00 3.32

3 2 11.66 8.85 5.98 4.42 11.62 8.88 6.04 4.53
3 11.71 9.13 6.27 4.61 11.46 9.06 6.34 4.72
1 4.23 3.88 3.10 2.43 4.23 3.88 3.10 2.43

1 2 4.21 3.87 3.09 2.42 4.21 3.87 3.08 2.42
3 4.29 3.93 3.11 2.43 4.28 3.90 3.08 2.41
1 8.44 7.12 4.93 3.50 8.47 7.18 4.93 3.50

2 2 2 8.65 7.29 5.34 4.00 8.63 7.29 5.19 3.89
3 8.90 7.49 5.54 4.27 8.87 7.48 5.34 4.07
1 11.86 9.06 6.20 5.03 11.97 9.21 6.05 4.82

3 2 12.25 9.94 7.20 5.54 12.25 9.65 6.58 5.06
3 12.43 10.30 7.68 5.82 11.96 9.23 6.57 5.11
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Table 3.14: The ρ and δ values for the NBNDC-QB for soft-decision resolutions
q = 1, 2, 3.

SNR (dB) q δ ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7

1 - 0.992 0.008 - - - - - -
15 2 0.12 0.972 0.020 0.006 0.001 - - - -

3 0.60 0.955 0.018 0.012 0.008 0.004 0.002 0.001 0.000

1 - 0.977 0.023 - - - - - -
10 2 0.20 0.924 0.053 0.019 0.005 - - - -

3 0.11 0.865 0.051 0.037 0.024 0.013 0.006 0.003 0.001

1 - 0.936 0.064 - - - - - -
5 2 0.40 0.782 0.154 0.054 0.010 - - - -

3 0.18 0.703 0.100 0.078 0.055 0.034 0.018 0.008 0.005

1 - 0.892 0.108 - - - - - -
2 2 0.50 0.695 0.196 0.085 0.024 - - - -

3 0.25 0.563 0.132 0.112 0.084 0.054 0.031 0.015 0.009

1 - 0.854 0.146 - - - - - -
0 2 0.60 0.627 0.227 0.110 0.036 - - - -

3 0.31 0.472 0.145 0.132 0.104 0.071 0.041 0.021 0.013



Chapter 4

Joint Source-Channel MAP

Decoding of the NBNDC-QB

The COVQ system explained in Chapter 3 is only able to take advantage of the intra-

block memory (the dependency within each codeword block) of the data sent over the

channel. As a result, the inter-block memory of codewords (the dependency on the

previous received blocks of the current block) are discarded during the system design.

In this chapter, we describe a source-channel decoding approach which utilizes inter-

block memory. This also extends the work in [26], where only binary output channels

with Markovian noise are examined. In particular, we study the sequence maximum-

a-posteriori (MAP) decoding problem of quantized sources over the NBNDC-QB and

the correlated Rayleigh DFC described in Chapter 2. We consider a scalar quantizer

(SQ) designed for a noiseless channel. The SQ output is passed through an index

assignment mapping and then sent over the channel. The output is soft-demodulated

with resolution q and delivered to a sequence MAP detector to combat channel errors.

As in [26], we refer to such a coding scheme as SQ-MAP. We use scalar-quantization,

55
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rather than vector-quantization (VQ), since although VQ achieves better signal-to-

distortion (SDR) performance due to the space-filling gain, it retains less redundancy

in the index codewords at the quantizer output; but using SQ, such redundancy is

kept to be exploited by the MAP decoder together with the channel’s characteristics,

for error correction. As a result, it is likely for the system to perform better using an

SQ.

It is important to mention that the SQ-MAP scheme is designed to minimize the

sequence error probability, while we evaluate the performance of the system via the

signal-to-distortion ratio (SDR) with the mean square error (MSE) distortion mea-

sure. Hence, the SQ-MAP is not necessarily optimal in terms of achieving minimum

mean square error (MMSE). However, this system has tractably low complexity as

well as good performance according to simulations results, which makes it an efficient

joint source-channel coding scheme. MMSE optimal and suboptimal MAP decoding

metrics are studied in [23,34]. Furthermore, in this work, we study the use of residual

source redundancy as well as noise correlation and soft-decision information on the

NBNDC model, in order to achieve better SDR performance. Minimizing distortion

via improved MAP metrics is not studied here.

Similar to Chapter 3, we show that the channel’s memory and soft-decision in-

formation can be exploited to improve the SQ-MAP system performance. We also

numerically show that the NBNDC-QB effectively models the Rayleigh DFC when

measured in terms of SDR performance. Furthermore, we prove a theorem for a spe-

cific case of our system setup (SQ-MAP for the NBNDC-QB), in which we provide

necessary and sufficient condition for a sequence MAP decoder to be replaceable with

a simple instantaneous (symbol-by-symbol) decoding rule.
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4.1 Sequence MAP decoding

Figure 4.1: Block diagram of an SQ-MAP system.

4.1.1 System setup

Consider the communication system depicted in Figure 4.1. The analog source V =

{Vi}∞i=1 is assumed to be a real-valued stationary ergodic process. The scalar quantizer

(SQ) encoder is a mapping γ from the real domain of source symbols to the index set

{0, 1, . . . , 2n − 1}, such that

γ(v) = i if v ∈ Si,

where {Si : i ∈ {0, 1, . . . , 2n − 1}} is a partition of R. Hence the SQ rate is R = n.

The partitions are chosen according to Lloyd-Max formulation given in Chapter 2,

with the initial codebook selection obtained via the splitting algorithm, described in

Section 3.1.2.

As in the COVQ system, the index assignment module is a one-to-one mapping,

which maps each index i to a binary vector x ∈ {0, 1}n

b : {0, 1, . . . , 2n − 1} → {0, 1}n, b(i) = x

where x is represented in binary form. Since the mapping is one-to-one, for a given

index mapping b, we can present the quantization regions by Sx instead of Si, where



CHAPTER 4. SQ-MAP OVER THE NBNDC-QB 58

Figure 4.2: FBC and NBC index assignments for an hypothetical source distribution
and its quantization regions; MSB is the rightmost bit.

b(i) = x.

To assign a binary n-tuple codeword to each index, different index assignment

methods such as the natural binary code (NBC), the folded binary code (FBC),

simulated annealing, and some heuristic assignment methods were tested. The FBC

was selected because of its simplicity and good performance. An example of the

FBC and NBC index assignment (with the right-most bit as the most significant

bit) is depicted in Figure 4.2, for a hypothetical source with the probability density

shown in the figure. The horizontal line represents the real axis and the quantization

regions are separated by the short vertical lines. Note that the FBC index assignment

tends to set more zeros to the rightmost bits of the codewords corresponding to code-

levels with moderate values. Since the source distributions used here are symmetric

and denser around the origin, the rightmost bits are more likely to be zero. This

non-uniformity of the distribution of zeros and ones in each codeword leads to more
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redundancy in the codewords which helps to improve the performance of the sequence

MAP decoder. The n-tuple codeword x is then sent bit-by-bit over the NBNDC-QB

channel where it is affected by the error n-tuple zn.

The channel output y ∈ {0, 1, . . . , 2q − 1}n, corresponding to each binary n-tuple

x sent over the channel, is fed to a MAP decoder where the data redundancy is used

for error correction. Finally, the SQ decoder β maps the decoder output x̂ into output

levels of the quantizer codebook

β(x̂) = cx̂, cx̂ ∈ R, x̂ ∈ {0, 1}n.

4.1.2 MAP decoder design

The MAP decoder is designed to minimize the sequence error probability by exploiting

the residual redundancy of the source and channel model statistics to combat channel

errors. Since we are considering a general source, the redundancy ρT , in general, is

due to a combination of non-uniformity of the distribution (ρD) and memory (ρM),

such that ρT = ρD + ρM . Similar to [26], we first assume to have an i.i.d. source and

then we modify the metric for sources with memory.

If V is i.i.d., then the SQ encoder output process, X = {Xi}, is also i.i.d. Hence

ρM = 0 and the only remaining redundancy is due to non-uniformity of the source.

Consequently, the MAP detector could be considered as a system observing a sequence

of n-tuples

yN = (y1,y2, . . . ,yN) ∈ {0, 1, . . . , 2q − 1}nN ,

where q is the soft-decision quantization resolution, N denotes the number of source

symbols to be transmitted over the channel, and n is the codeword length. Note

that since the transmission over the channel is done bit-by-bit (and not n-tuple
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by n-tuple), the observation of the MAP detector can also be considered as se-

quence of 2q-ary symbols ynN = (y1, y2, . . . , ynN) ∈ {0, 1, . . . , 2q − 1}nN , where yk =

(y(k−1)n+1, y(k−1)n+2, . . . , y(kn)), k = 1, 2, . . . , N . yN is a noisy observation of the

source sequence

xN = (x1,x2, . . . ,xN) ∈ {0, 1}nN ,

which can be similarly represented bit-by-bit via xnN = (x1, x2, . . . , xnN) ∈ {0, 1}nN ,

where xk = (x(k−1)n+1, x(k−1)n+2, . . . , x(kn)), k = 1, 2, . . . , N . Therefore, the n-tuple

by n-tuple and bit-by-bit notations can be interchangeably used for ease of explana-

tion. The channel contaminates the source bits via 2q-ary error symbols

znN = (z1, z2, . . . , znN) ∈ {0, 1, . . . , 2q − 1}nN .

The MAP decoder estimates xN by x̂N according to

x̂N = arg max
xN

Pr{XN = xN | YN = yN}.

Similar to the reasoning in [2, 27], the above equation is equivalent to

x̂N = arg max
xnN∈{0,1}nN

Pr{Y nN = ynN | XnN = xnN}Pr{XnN = xnN}

= arg max
xnN∈{0,1}nN

Pr{ZnN = znN}Pr{XnN = xnN}

= arg max
xnN∈{0,1}nN

[
Q(zn1 )P (x1)

N−1∏
i=1

(
Q(zni+nni+1 |zni1 )P (xi+1)

)]
(4.1)

where

Q(zi+ji+1|zii−k) , Pr{Zi+1 = zi+1, Zi+2 = zi+2, . . . , Zi+j = zi+j|Zi = zi, . . . , Zi−k = zi−k},

i, j, k ∈ {1, 2, . . . , nN − 1}, i+ j ≤ nN, i− k ≥ 1,

and P (xi) , Pr{Xi = xi} is the probability mass function of the n-tuple codewords.

Note that since the channel model we are considering is the NBNDC-QB with Marko-

vian memory order M , for nN > M (which is always the considered case since N is
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assumed to be large,) it can be shown that (4.1) is equivalent to

x̂N = arg max
xN
{log[P

(n)
NBNDC-QB(zn1 )p(x1)] +

N−1∑
i=1

log[Q(z
(i+1)n
in+1 | zinin−(M−1))p(xi+1)]},

(4.2)

where

Q(zj+nj+1 | z
j
j−(M−1)) = (4.3)

j+n∏
i=j+1

 i−1∑
`=i−(M−1)

δzi,z` + αδzi,zi−M

× ε

M − 1 + α
+ (1− ε)ρzi

 ,
which is obtained from (2.4), zi , 0 if i < 1, zji = (zi, zi+1, . . . , zj), j ≥ i, P

(n)
NBNDC-QB(zn1 ) =

Pr{Zn
1 = zn1 } is given via (2.6)-(2.8), and z is related to its corresponding symbols

x, y via (2.3).

According to (4.2) and (4.3), the MAP detection can be implemented using a

modified version of the Viterbi algorithm [15]. We consider the state space to be the

set of all possible n-tuple codewords. Therefore, the trellis has 2n states, each having

2n outgoing and entering states and the path metric at step i is

log[Q(z
(i+1)n
in+1 | zinin−(M−1))P (xi)].

When the source has memory, we assume that it forms a discrete Markov chain of

order 1 with state transition probability matrix P (xi | xi−1), and the path metric will

be updated to

log[Q(z
(i+1)n
in+1 | zinin−(M−1))P (xi | xi−1)].

The pmf P (xi) and state transition matrix [P (xi | xi−1)] of the source codewords are

calculated from a training set of symbols (the same training set used for designing

the SQ).
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The SQ-MAP system has low complexity due to the Viterbi algorithm and the

simplicity of SQ encoding/decoding. On the other hand, the sequence MAP detector

imposes a significant amount of delay in the receiver since the decoder needs to

receive all of the nN symbols to be able to minimize the sequence probably of error.

Furthermore, the storage complexity of the system grows with asymptotical growth

order O(nN2n). Hence, the storage requirement becomes unmanageable for very

large values of nN . Therefore, it is useful to know when it is possible to replace

the MAP detector with an instantaneous (symbol-by-symbol) decoding rule, without

sacrificing the system’s optimality in terms of sequence probability of error.

4.1.3 A specific case of the SQ-MAP system

In this section, we consider the MAP decoder system with the SQ coding rate R =

n = 1 for the NBNDC-QB with memory order M = 1. We investigate necessary and

sufficient conditions for the MAP detector to be replaceable with a symbol-by-symbol

instantaneous decoder (mapping) without losing system optimality. We call the MAP

detector useless, when it can be replaced with the instantaneous mapping.

According to Figure 4.1, the output of the SQ is a binary n-tuple. Letting R =

n = 1, the SQ output is binary. The binary sequence xi, i = 1, 2, . . . , N is transmitted

across the NBNDC-QB. According to the queue noise model, as stated in Chapter

2, for M = 1, the noise process is a homogeneous first-order Markov process. Recall

that

Q(zn) , Pr{Zn = zn}

and

Q(zn|zn−1) , Pr{Zn = zn|zn−1 = zn−1}, zn ∈ {0, 1, 2, . . . , 2q − 1}.
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In this section, we always consider the special case M = 1. As a result, according

to the channel noise model, α = 1. Furthermore, it can be seen that the probability

distribution of the noise is

Q(zn) = ρzn , zn ∈ Y , (4.4)

where ρzi is known from the noise model.

The matrix Q = [Q(i|j)], i, j ∈ {0, 1, . . . , 2q−1} can be calculated in closed form,

for arbitrary q, via

Q(i|j) = [εδi,j + (1− ε)ρzi ] , (4.5)

where

δi,j =


1, if i = j

0, if i 6= j.

For instance, letting q = 2 we have:

Q =



Q(0|0) Q(1|0) Q(2|0) Q(3|0)

Q(0|1) Q(1|1) Q(2|1) Q(3|1)

Q(0|2) Q(1|2) Q(2|2) Q(3|2)

Q(0|3) Q(1|3) Q(2|3) Q(3|3)



=



ε+ (1− ε)ρ0 (1− ε)ρ1 (1− ε)ρ2 (1− ε)ρ3

(1− ε)ρ0 ε+ (1− ε)ρ1 (1− ε)ρ2 (1− ε)ρ3

(1− ε)ρ0 (1− ε)ρ1 ε+ (1− ε)ρ2 (1− ε)ρ3

(1− ε)ρ0 (1− ε)ρ1 (1− ε)ρ2 ε+ (1− ε)ρ3


.

The channel output is fed to the MAP decoder described in the previous section.
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To figure out when the MAP detector is useless, we find necessary and sufficient

conditions such that applying MAP detector does not yield a lower sequence error

probability than applying a mapping θ, where θ is a mapping from the set of channel

output alphabet to the binary input alphabet, i.e.

θ(yn) = ỹn, yn ∈ Y = {0, 1, . . . , 2q − 1}, ỹn ∈ {0, 1}, (4.6)

with

ỹn =

 0, if yn ∈ Y0;

1, if yn ∈ Y1,

where, Y1 = Yc0 ⊆ Y . To replace the MAP detector with the mapping we simply skip

the MAP detector and set x̂i = ỹi, i = 1, 2, . . . , N .

Lemma 4.1. For the NBNDC-QB with parameters satisfying the condition

ρ0 ≥ ρ1 ≥ ρ2 ≥ . . . ≥ ρ2q−1, (4.7)

among all mappings θ : {0, 1, . . . , 2q − 1} → {0, 1}, the following mapping θ∗ yields

the lowest symbol probability of error:

θ∗(yn) , ỹn =

 0, if yn < k∗;

1, otherwise.
(4.8)

where k∗ ∈ {0, 1, . . . , 2q} is the smallest value satisfying

ρk∗

ρ2q−k∗−1

≤ P (1)

P (0)
, (4.9)

where ρ−1 , ∞, ρ2q , 0, and P (x) , Pr{X = x}, x ∈ {0, 1}. In other words,

assuming (4.7) holds, setting Y0 = {0, 1, . . . , k∗− 1}, Y1 = Yc0 = {k∗, k∗+ 1, . . . , 2q −

1}, with Y0 = ∅ for k∗ = 0 and Y1 = ∅ for k∗ = 2q, yields the best symbol probability

of error, among all instantaneous mapping rules.
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Proof. We first show that any general mapping other than θ∗ defined via (4.8), can

be modified to have a less than or equal symbol error probability. To this end, we

consider the mapping as a classification rule that classifies 2q different output symbols

from {0, 1, . . . , 2q − 1} into two classes Y0 and Y1. According to (4.8), for θ∗ we have

Y∗0 = {0, 1, . . . , k∗ − 1} and Y∗1 = {k∗, k∗ + 1, . . . , 2q − 1}. Let Pe denote the symbol

error probability under mapping θ

Pe , Pr{θ(Y ) 6= X}.

If θ 6= θ∗, at least one of the two following cases happen:

i) There exists an element a ∈ Y1, such that a < k∗. Removing a from Y1 and

adding it to Y0 yields

Pe2 − Pe1 = Pr{Y = a|X = 1}Pr{X = 1} − Pr{Y = a|X = 0}Pr{X = 0}

= Q(2q − 1− a)P (1)−Q(a)P (0)

= P (1)ρ2q−1−a − P (0)ρa,

where Pe2 represents the error probability after a is placed in Y0 and Pe1 is the

error probability before this modification. According to (4.7), ρa ≥ ρk∗−1 and

ρ2q−k∗ ≥ ρ2q−1−a. Hence by (4.9),

P (1)

P (0)
≤ ρk∗−1

ρ2q−k∗
≤ ρa
ρ2q−1−a

and therefore,

Pe2 − Pe1 ≤ 0.

Thus, putting a into Y0 will not increase the error probability.
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ii) There exists an element b ∈ Y0, such that b ≥ k∗. Similarly, it can be shown

that

Pe2 − Pe1 = −P (1)ρ2q−1−b + P (0)ρb.

According to (4.7), ρb ≤ ρk∗ and ρ2q−k∗−1 ≤ ρ2q−1−b. Hence by (4.9),

P (1)

P (0)
≥ ρk∗

ρ2q−k∗−1

≥ ρb
ρ2q−1−b

and therefore,

Pe2 − Pe1 ≤ 0.

Thus, removing b from Y0 and adding it to Y1 does not increase error probability.

The proof is complete by observing that by repeatedly applying the above replace-

ments, the mapping obtained will be identical to θ∗.

As mentioned in the previous section, the sequence {Xi} (which is the same as

{Xi} here, since R = 1) is modeled via a first order stationary Markov chain. Define

pxn,xn−1 , P (xn|xn−1) , Pr{Xn = xn|Xn−1 = xn−1} (4.10)

and

pxn , P (xn) , Pr{Xn = xn},

where xn ∈ {0, 1}. For the special case of a symmetric binary Markov source i.e.,

P (0)/P (1) = 1, it can be seen from (4.9) that for k∗ = 2q−1

i)
ρk∗

ρ2q−k∗−1

=
ρ2q−1

ρ2q−1−1

≤ 1,

ii)
ρk∗−1

ρ2q−k∗
=
ρ2q−1−1

ρ2q−1

≥ 1.
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From now on in this subsection, we will only consider symmetric binary Markov

sources (i.e., we assume that p00 = p11).

Define the auxiliary binary noise symbol z̃n which is related to its corresponding

noise symbol zn via

z̃n =

 0, if zn < 2q−1;

1, otherwise.
(4.11)

The sequence of auxiliary binary noise symbols represents the auxiliary noise process

{Z̃n}∞n=1. Since the noise process {Zn}∞n=1 is independent of the input process {Xn}∞n=1

and the auxiliary binary noise variable Z̃n is only a function of Zn, the auxiliary noise

process {Z̃n}∞n=1 is also independent of the input process {Xn}∞n=1. Correspondingly,

we can define

Q̃(z̃n) , Pr{Z̃n = z̃n}

Q̃(z̃n|z̃n−1) , Pr{Z̃n = z̃n|Z̃n−1 = z̃n−1}.

It can be seen that

Q̃(z̃n) =

 Pr {Zn ∈ {0, 1, . . . , 2q−1 − 1}} , if z̃n = 0;

Pr {Zn ∈ {2q−1, 2q−1 + 1, . . . , 2q − 1}} , if z̃n = 1.
(4.12)

Therefore, according to (4.4)

Q̃(0) = 1− Q̃(1) = ρ0 + ρ1 + ρ2 + . . .+ ρ2q−1−1. (4.13)

Lemma 4.2. The auxiliary noise process {Z̃n}∞n=1 forms a first order Markov chain,

if {Zn}∞n=1 is a first-order Markov chain.
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Proof. We use a theorem given in [11, p. 325] [18] which states that if {Zn}∞n=1 is

a Markov process, then a sufficient condition for the process {Z̃n}∞n=1, where Z̃n =

f(Zn), to be a Markovian is that

Pr{Z̃n+1 = z̃n+1|Zn = zn} = Pr{Z̃n+1 = z̃n+1|Z̃n = f(zn)}, (4.14)

for all z̃n+1 and zn, where f(·) is a function mapping the state space SZ = Y into the

set {0, 1}. Let the function f be given by (4.11). Then using (4.5), we have

Pr{Z̃n+1 = 0|Zn = zn} = Pr
{
Zn+1 ∈ {0, 1, . . . , 2q−1 − 1}|Zn = zn

}
= Pr{Zn+1 = 0|Zn = zn}+ Pr{Zn+1 = 1|Zn = zn}+ . . .+

Pr{Zn+1 = 2q−1 − 1|Zn = zn}

= Q(0|zn) +Q(1|zn) + . . .+Q(2q−1 − 1|zn)

=

 ε+
∑2q−1−1

i=0 (1− ε)ρi, if zn < 2q−1;∑2q−1−1
i=0 (1− ε)ρi, if zn ≥ 2q−1.

(4.15)

Also

Pr{Z̃n+1 = 0|Z̃n = 0} = Pr
{
Z̃n+1 = 0|Zn = 0

} Pr{Zn = 0}
Pr{Z̃n = 0}

+

Pr
{
Z̃n+1 = 0|Zn = 1

} Pr{Zn = 1}
Pr{Z̃n = 0}

+ . . .+ (4.16)

Pr
{
Z̃n+1 = 0|Zn = 2q−1 − 1

} Pr{Zn = 2q−1 − 1}
Pr{Z̃n = 0}

.

Note that according to (4.15),

Pr{Z̃n+1 = 0|Zn = 0} = {Z̃n+1 = 0|Zn = 1} = ...

= {Z̃n+1 = 0|Zn = 2q−1 − 1} = ε+
2q−1−1∑
i=0

(1− ε)ρi.
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Hence, (4.16) is equal to

[
ε+

2q−1−1∑
i=0

(1− ε)ρi
]
× Pr{Zn = 0}+ Pr{Zn = 1}+ . . .+ Pr{Zn = 2q−1 − 1}

Pr{Z̃n = 0}

=
[
ε+

2q−1−1∑
i=0

(1− ε)ρi
]
× Pr{Z̃n = 0}
Pr{Z̃n = 0}

= ε+
2q−1−1∑
i=0

(1− ε)ρi.

With the same reasoning, it can be shown that

Pr{Z̃n+1 = 0|Z̃n = 1} = 1− Pr{Z̃n+1 = 1|Z̃n = 1} =
2q−1−1∑
i=0

(1− ε)ρi. (4.17)

Thus condition (4.14) is satisfied for the NBNDC-QB with memory order M = 1 and

for the function f(·) given via (4.11). Consequently, the process {Z̃n}∞n=1 is a first

order Markov chain.

Since {Z̃n}∞n=1 is Markov process, it can be shown that its state transition proba-

bility matrix Q̃ is

Q̃ =

 Q̃(0|0) Q̃(1|0)

Q̃(0|1) Q̃(1|0)

 (4.18)

=

 ε+ (1− ε)Q̃(0) (1− ε)Q̃(1)

(1− ε)Q̃(0) ε+ (1− ε)Q̃(1)

 ,
where Q̃(z̃n) is given in (4.12).

Note by the definition of the NBNDC given via (2.2), the mapping θ∗ described

in (4.8), and the fact that for symmetric binary Markov sources k∗ = 2q−1, it can be

seen that if ỹn = xn, then zn < 2q−1 (and hence z̃n = 0) and vice versa. As a result,
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the auxiliary binary noise symbol can also be defined in terms of the input xn and ỹn

z̃n ,

 0, if ỹn = xn;

1, if ỹn = xcn,
(4.19)

where xcn is the binary complement of xn and ỹn = θ∗(yn).

We next seek the answer to question “for a given sequence MAP decoder system,

when is it optimal to replace the N-sequence MAP detector with an application of an

instantaneous mapping (such as θ∗) applied N times?”. In other words, “when is

X̂N = Ỹ N an optimal sequence (MAP) detection rule, in the sense of minimizing the

sequence error probability?”.

The answer to this question is partly given in [3]. To be more specific, for q = 1

the NBNDC model is identical to the queue based channel (QBC) model which is

introduced in [37]. It is shown there that for α = 1 (which is the case here since

M = 1), the channel reduces to the binary Markov channel described in Chapter 2.

Theorem 1 of [3] states necessary and sufficient conditions for the MAP decoder to

be useless over a binary Markov channel and for binary Markov sources. In this case,

a MAP decoder is defined to be useless when it decodes what is sees (i.e., X̂N = Y N)

and thus does not make any improvement in the channel bit error rate. As a result,

they show that under certain conditions, it is optimal to skip the MAP decoder and

believe in what is seen in the receiver. Note that skipping the decoder and believing

in the output sequence can only be applied for q = 1 so that the output sequence is

also binary. On the other hand, for q ≥ 2, the received sequence is not binary; hence,

we use the mapping θ∗ in order to convert the 2q-ary received sequence Y N , into a

binary sequence Ỹ N . Since θ∗ is also (trivially) defined for q = 1 (k∗ = 1 here and

ỹ = y), Theorem 1 of [3] yields necessary and sufficient conditions for the mapping
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θ∗ to be an optimal sequence detection rule for q = 1. The following theorem gives

a necessary and sufficient condition for the mapping θ∗ to be an optimal sequence

detection rule for q > 1.

Theorem 4.1. For a symmetric binary Markov source with p00 = p11 ∈ [1
2
, 1] and

the NBNDC-QB with correlation parameter ε ≥ 0, memory order M = 1, q > 1, and

satisfying (4.7), assume that sequence length N ≥ 3, X1 = Ỹ1, and XN = ỸN . Then

X̂N = Ỹ N is an optimal sequence MAP detection rule if and only if

ρ2q−1−1

ρ2q−1

×
[

1− p00

p00

]2

≥ 1, (4.20)

where Ỹ N = θ∗(Y N) is obtained via applying the mapping θ∗ N-times component-wise

to Y N .

Proof. For θ∗ to be the optimal detection rule, then ∀xN ∈ {0, 1}N and ∀yN ∈

{0, 1, . . . , 2q − 1}N , we should have

γ ,
Pr{XN = ỹN |Y N = yN}
Pr{XN = xN |Y N = yN}

≥ 1.

γ can be written as

γ =
Pr{Y N = yN |XN = ỹN}Pr{XN = ỹN}
Pr{Y N = yN |XN = xN}Pr{XN = xN}

.

Note that by (2.3) and (2.5), we have Pr{Y N = yN |XN = xN} = Pr{ZN = zn},

where zi , yi−(2q−1)xi
(−1)xi

, i = 1, 2, . . . , N . Also note that by definition of θ∗ (with

k∗ = 2q−1), we have that ai ,
yi−(2q−1)ỹi

(−1)ỹi
∈ {0, 1, . . . , 2q−1− 1}, where ỹi = θ∗(yi), i =
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1, 2, . . . , N . Define

A , Pr{ZN = aN}Pr{XN = ỹN}, aN ∈ {0, 1, . . . , 2q−1 − 1}N ,

B , Pr{ZN = zN}Pr{XN = xN}, zN ∈ {0, 1, . . . , 2q − 1}N ,

where aN = (a1, a2, . . . , aN) and zN = (z1, z2, . . . , zn) are defined above. Hence,

γ =
A

B
=
Pr{ZN = aN}Pr{XN = ỹN}
Pr{ZN = zN}Pr{XN = xN}

=

[
Pr{Z1 = a1}P (ỹ1)

Pr{Z1 = z1}P (x1)

] [ N∏
k=2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)

]

=
N∏
k=2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
,

where the last equality follows from Pr{Z1 = a1}P (ỹ1) = Pr{Z1 = z1}P (x1) since

X1 = Ỹ1 according to the hypothesis.

We partition the index set as follows: K = A1 ∪ A2 ∪ A3 ∪ A4, where

K , {2, 3, . . . , N},

A1 , {k ∈ K : xk = ỹk, xk−1 = ỹk−1},

A2 , {k ∈ K : xk 6= ỹk, xk−1 6= ỹk−1},

A3 , {k ∈ K : xk 6= ỹk, xk−1 = ỹk−1},

A4 , {k ∈ K : xk = ỹk, xk−1 6= ỹk−1}.

Hence,

γ =
4∏
i=1

∏
k∈Ai

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
.

In set A1, since xk = ỹk and xk−1 = ỹk−1 we see that zk = ak and zk−1 = ak−1. Thus,∏
k∈A1

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
=
∏
k∈A1

Q(ak|ak−1)P (xk|xk−1)

Q(ak|ak−1)P (xk|xk−1)
= 1,
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In A2, xk 6= ỹk and xk−1 6= ỹk−1 imply that xk = 1− ỹk and xk−1 = 1− ỹk−1. Also,

if xk 6= ỹk and xk−1 6= ỹk−1, then by (4.11) and (4.19) zk, zk−1 ≥ 2q−1. Now since the

Markov source is symmetric (p00 = p11), we obtain that P (ỹk|ỹk−1) = P (xk|xk−1).

Noting ak, ak−1 < 2q−1 and according to (4.5) and (4.7)

∏
k∈A2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
=
∏
k∈A2

Q(ak|ak−1)

Q(zk|zk−1)
≥ 1.

We next note that since X1 = Ỹ1 and XN = ỸN , for each k ∈ A3 there should

exist a corresponding index ` ∈ A4 and vice versa. As a result, |A3| = |A4| where

|A3| denotes the number of elements in set A3. Furthermore, in A3 we have xk 6= ỹk

implying xk = 1− ỹk. Therefore, according to the definitions of zk and ak and using

(2.3), it can be seen that zk = (2q − 1)− ak and zk−1 = ak−1. Similarly, in set A4 we

have zk = ak and zk−1 = (2q − 1) − ak−1. Besides, due to the source symmetry and

noting that p00 ∈ [1
2
, 1], we have

min
k∈A3

P (ỹk|ỹk−1)

P (xk|xk−1)
= min

j∈A4

P (ỹj|ỹj−1)

P (xj|xj−1)
=
p10

p00

=
1− p00

p00

.

Now according to (4.5) and (4.7), we have

∏
k∈A3

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
×
∏
k∈A4

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)

≥
∏
k∈A3

Q(ak|ak−1)(1− p00)

Q(2q − 1− ak|ak−1)p00

×
∏
k∈A4

Q(ak|ak−1)(1− p00)

Q(ak|2q − 1− ak−1)p00︸ ︷︷ ︸
(α)

≥
∏
k∈A3

(1− ε)ρ2q−1−1(1− p00)

(1− ε)ρ2q−1p00

×
∏
k∈A4

(1− p00)

p00

=

|A3|∏
i=1

ρ2q−1−1

ρ2q−1

×
[

1− p00

p00

]2

,

where (α) follows by noting that Q(ak|ak−1)

Q(ak|2q−1−ak−1)
≥ 1, ∀k ∈ A4. Evidently, if (4.20)
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holds, then
|A3|∏
i=1

ρ2q−1−1

ρ2q−1

×
[

1− p00

p00

]2

≥ 1.

Thus γ ≥ 1 and the mapping θ∗ is an optimal MAP decoding rule.

To prove the converse, assume that (4.20) does not hold; i.e.,

ρ2q−1−1

ρ2q−1

×
[

1− p00

p00

]2

< 1.

Now for XN = (0, 0, . . . , 0) and Y N = (0, 0, . . . , 0, 2q−1, 0, . . . , 0) where the only non-

zero component of Y N is in any arbitrary position i ∈ {2, . . . , N − 1}, we have

γ = 1× 1× . . .×
(
ρ2q−1−1

ρ2q−1

×
[

1− p00

p00

]2)
× 1× . . .× 1 < 1.

Hence, if (4.20) does not hold, there exists some XN and Y N such that the mapping

θ∗ does not decode optimally.

For the binary symmetric first-order Markov sources with p00 = p11 ∈ [0, 1
2
), with

the same approach, a similar theorem can be proved with the following condition

ρ2q−1−1

ρ2q−1

×
[

p00

1− p00

]2

≥ 1.

Tables 4.1-4.4 depict the simulation results for three binary symmetric sources, in

terms of symbol error rate over the NBNDC-QB with noise correlations Cor = 0.0, 0.9,

soft-decision resolutions q = 1, 2, 3, and different SNRs. The calculated values for

condition (4.20), denoted by C, are also given in the tables. For q = 1, the values C

are calculated via the condition in Theorem 1 of [3]. The ρ values for the simulations

can be seen in Table 3.14. It is observed from Tables 4.1-4.4 that the results verify

Theorem 4.1, since for all the cases where (4.20) holds the MAP decoder and the
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instantaneous mapping perform equally (they both actually output the same decoded

sequence). It is also observed that for the cases where (4.20) does not hold, the

mapping θ∗ does not perform as well as the MAP decoder, so that it is not optimal

in these cases. An other interesting observation is that for q = 1, the optimality

of the mapping θ∗ is dependent on the channel noise correlation (as it is observed

numerically and analytically in [3]), while for q > 1, this is not the case.
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4.2 Numerical Results

We now present numerical results for the described communication system, over both

the NBNDC-QB model and the Rayleigh DFC model.

Similar to Chapter 3, several source distributions are tested, including memoryless

(i.i.d.) Gaussian and Laplacian sources and Gauss-Markov sources. All of the source

models have zero mean and unit variance.

For each simulation, the SQ training and statistics collection is done over a set

of 1,000,000 source symbols. Afterwards, 100,000 source symbols are transmitted for

simulation and the SDR with the mean square error distortion is measured. We ran

each simulation 10 times and took average for more consistent results.

4.2.1 Exploiting memory and soft-decision quantization

Tables 4.5-4.11 depict simulation results (in dB) for different sources over the NBNDC-

QB model with several parameters of SNR, SQ codeword length n, noise correlation

Cor, channel memory order M , and soft-decision resolution q.

Memoryless sources

As can be seen from the tables, the performance of a system with high noise correlation

(or even moderate correlation as in Table 4.6,) can be significantly better than a

system working over a fully-interleaved (Cor = 0) channel. For example, more than

2.5 dB of SDR gain is obtained for memoryless Gaussian sources at q = 3, n = 3,

SNR = 2 (see Table 4.5). Furthermore, for n = 1 since the quantized codewords

form a symmetric i.i.d. source, the results illustrate Theorem 1 of [3] and Theorem
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4.1 (compare the results of Tables 4.5 and 4.12 for n = 1). Considerable gains (up

to 2.25 dB) are also obtained by increasing the quantizer resolution to q = 2 (at

n = 3, SNR = 5, Cor = 0.9 for Laplacian sources). More gain is obtained for a 3-bit

quantizer.

Gauss-Markov sources

For Gauss-Markov sources, we have up to 3.8 dB SDR gain (at q = 3, n = 3,

SNR = 0), by exploiting the noise correlation instead of interleaving the channel.

As can be seen, in general better performance is observed when channel is highly

correlated.

At low rates, especially at n = 1, the SDR performance for the correlated channel

is worse than that for the uncorrelated channel. This behavior was expected for

n = 1 and q = 1 using Corollary 3 of [3]. According to this corollary and the

numerical results, for the correlated channel, the source memory has a mismatch with

the channel memory. As a result, increasing the channel noise correlation will also

increase the mismatch between the source and channel memory information. This

makes the SQ-MAP perform worse on correlated channels than over uncorrelated

channels. However, this mismatch does not occur for higher rates (n > 2) and the

SDR performance of the system significantly improves with increasing channel noise

correlation.

The mismatch between the source and channel memory is investigated for the

binary Markov channel in [3], in which to handle this mismatch a convolutional coder

is proposed in order to convert the source memory redundancy ρM to redundancy ρD

due to non-uniformity.
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It is also observed that system gains up to 2.8 dB (at n = 3, SNR = 2, Cor = 0.9

for Gauss-Markov sources) using only a 2-bit soft-decision quantizer in the receiver

over a hard-decision quantizer (q = 1). More gain is obtained by further increasing

of q.

4.2.2 Validating the NBNDC-QB model

We next assess how well the NBNDC-QB model can approximate the correlated

Rayleigh DFC in terms of SDR performance of the SQ-MAP system.

To validate the NBNDC-QB model as a good representation of the Rayleigh DFC

for SQ-MAP systems, we design the MAP detector using the path metric obtained

for an NBNDC-QB (with proper parameters to match a specific Rayleigh DFC) and

run simulation using both the NBNDC-QB and the Rayleigh DFC to compare their

performance. For a given DFC (with fixed SNR and fDT ) and a given q, we have used

the same technique described in Chapter 3, to fit the NBNDC-QB to the Rayleigh

DFC. The ρj values and other channel parameters used for simulation are given in

Tables 3.14 and 3.10 respectively.

To simulate the Rayleigh DFC, we generate the fading coefficients using the mod-

ified Clarke’s method introduced in [36]. Simulation results (over the NBNDC-QB

and Rayleigh DFC channels) in terms of SDR are shown in Tables 4.14-4.16 for mem-

oryless i.i.d. Gaussian sources, Gauss-Markov sources with correlation factor φ = 0.9,

and memoryless i.i.d. Laplacian sources, respectively. The results in symbol error

rate are depicted in Tables 4.17-4.19.

Comparing the performance of the system for the two channels, we observe that

for lower rates (codeword lengths n = 1 and 2 for the memoryless Gaussian source),



CHAPTER 4. SQ-MAP OVER THE NBNDC-QB 83

there is a good conformity between the results for the two channel models. This

agreement in SDR performance can be heuristically explained by noting that for

low rates (n = 1 and 2), the SQ output sent to the channel input is nearly i.i.d.

uniform. But the NBNDC-QB and DFC channels were matched by minimizing the

divergence rate between their noise processes. Hence, when both channels are driven

by the same capacity-achieving input (which must be i.i.d. uniform as both channels

are symmetric), they will then have a similar probability of error performance in

addition to nearly identical capacities. The same agreement in SDR performance is

also observed for memoryless Laplacian and Gauss-Markov sources for n = 1. We

finally note that for n ≥ 3, some disagreement in SDR performance is observed

between the two systems (in this case the SQ output is not i.i.d. uniform). The

distribution P (x) of the quantized symbols is depicted in Table 4.20.
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Table 4.5: SQ-MAP Training SDR results (in dB) for the memoryless NBNDC-QB
and the highly correlated NBNDC-QB with parameters M = 1, α = 1; memoryless
Gaussian source.

Memoryless (Cor=0) Cor=0.9
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.17 3.75 2.78 1.94 1.33 4.19 3.77 2.85 1.97 1.35
1 2 8.15 6.49 3.85 2.14 1.10 8.37 6.89 4.47 2.84 1.82

3 11.05 7.80 4.02 1.93 0.70 11.58 8.43 4.76 2.76 1.62

1 4.17 3.75 2.78 1.94 1.33 4.19 3.77 2.85 1.97 1.35
2 2 8.15 6.49 3.85 2.14 1.10 8.69 7.68 5.61 4.03 3.05

3 11.10 7.94 4.33 2.53 1.45 12.61 10.15 6.64 4.51 3.30

1 4.17 3.75 2.78 1.94 1.33 4.19 3.77 2.85 1.97 1.35
3 2 8.17 6.54 4.02 2.41 1.44 8.76 7.77 5.91 4.48 3.56

3 11.15 7.98 4.38 2.57 1.51 12.86 10.52 7.16 5.12 4.00

Table 4.6: SQ-MAP Training SDR results (in dB) for the NBNDC-QB with param-
eters M = 1, α = 1, and correlations 0.5, 0.7; memoryless Gaussian source.

Cor=0.5 Cor=0.7
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.17 3.74 2.78 1.95 1.32 4.18 3.75 2.79 1.94 1.34
1 2 8.26 6.67 4.13 2.44 1.38 8.28 6.75 4.23 2.57 1.52

3 11.18 7.90 4.16 2.06 0.84 11.30 8.06 4.30 2.22 1.00

1 4.17 3.74 2.78 1.95 1.32 4.18 3.75 2.79 1.94 1.34
2 2 8.31 6.77 4.27 2.64 1.61 8.43 7.01 4.59 3.01 2.00

3 11.40 8.31 4.61 2.66 1.51 11.76 8.76 5.08 3.08 1.92

1 4.17 3.74 2.80 1.95 1.33 4.17 3.73 2.79 1.95 1.35
3 2 8.33 6.85 4.44 2.83 1.86 8.43 7.06 4.78 3.21 2.25

3 11.49 8.43 4.82 2.87 1.76 11.87 8.92 5.36 3.38 2.22
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Table 4.7: SQ-MAP Training SDR results (in dB) for the memoryless NBNDC-QB
and the highly correlated NBNDC-QB with parameters M = 1, α = 1; Gauss-Markov
source with correlation factor φ = 0.9.

Memoryless (Cor=0) Cor=0.9
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.21 3.78 3.74 3.22 3.09 4.23 3.81 2.89 2.01 1.39
1 2 8.95 8.29 6.97 6.34 5.41 8.94 8.24 6.88 5.71 4.90

3 13.38 11.84 9.46 7.52 6.18 13.89 12.69 10.43 8.69 7.51

1 4.38 4.23 3.89 3.61 3.22 4.35 4.14 3.44 2.65 2.02
2 2 9.16 8.81 8.00 6.98 6.08 9.24 8.97 8.26 7.36 6.59

3 13.98 12.87 10.72 8.91 7.56 14.47 14.02 12.88 11.51 10.34

1 4.39 4.30 4.01 3.65 3.39 4.37 4.20 3.62 2.97 2.39
3 2 9.18 8.87 8.09 7.24 6.43 9.29 9.18 8.64 8.00 7.38

3 14.07 13.06 10.96 9.16 7.81 14.57 14.34 13.47 12.58 11.58

Table 4.8: SQ-MAP Training SDR results (in dB) for the memoryless NBNDC-QB
and the highly correlated NBNDC-QB with parameters M = 1, α = 1; memoryless
Laplacian source.

Memoryless (Cor=0) Cor=0.9
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 2.87 2.62 2.00 1.44 1.00 2.88 2.63 2.05 1.45 1.01
1 2 6.65 5.27 2.91 1.30 0.27 6.89 5.88 4.28 3.21 2.56

3 9.59 6.49 2.72 0.58 0.82 10.14 7.64 4.88 3.34 2.51

1 2.87 2.62 2.00 1.44 1.00 2.88 2.63 2.05 1.45 1.01
2 2 6.69 5.42 3.32 2.01 1.18 7.26 6.72 5.53 4.47 3.79

3 9.90 7.09 3.81 2.06 1.06 11.59 9.86 7.14 5.35 4.30

1 2.87 2.62 2.00 1.44 1.00 2.88 2.63 2.05 1.45 1.01
3 2 6.72 5.45 3.27 2.01 1.20 7.32 6.91 5.88 4.97 4.36

3 9.96 7.12 3.75 1.99 1.27 11.85 10.47 7.94 6.23 5.27
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Table 4.9: SQ-MAP Training SDR results (in dB) for the memoryless NBNDC-QB
and the highly correlated NBNDC-QB with parameters M = 5, α = 0.5; memoryless
Gaussian source.

Memoryless (Cor=0) Cor=0.9
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.17 3.75 2.78 1.94 1.33 4.22 3.86 2.89 2.03 1.45
1 2 8.15 6.49 3.85 2.14 1.10 8.37 7.06 4.61 2.91 1.80

3 11.05 7.80 4.02 1.93 0.70 13.11 11.11 8.24 6.69 5.81

1 4.17 3.75 2.78 1.94 1.33 4.22 3.86 2.89 2.03 1.45
2 2 8.15 6.49 3.85 2.14 1.10 9.03 8.32 6.77 5.34 4.35

3 11.10 7.94 4.33 2.53 1.45 14.09 13.03 10.87 9.21 8.09

1 4.17 3.75 2.78 1.94 1.33 4.22 3.86 2.89 2.03 1.45
3 2 8.17 6.54 4.02 2.41 1.44 9.14 8.75 7.42 6.39 5.69

3 11.15 7.98 4.38 2.57 1.51 14.29 13.65 11.74 10.34 9.38

Table 4.10: SQ-MAP Training SDR results (in dB) for the memoryless NBNDC-QB
and the highly correlated NBNDC-QB with parameters M = 5, α = 1; memoryless
Gaussian source.

Memoryless (Cor=0) Cor=0.9
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.17 3.75 2.78 1.94 1.33 4.26 3.91 2.90 2.09 1.44
1 2 8.15 6.49 3.85 2.14 1.10 8.40 7.07 4.61 2.95 1.85

3 11.05 7.80 4.02 1.93 0.70 13.18 11.27 8.50 6.90 6.07

1 4.17 3.75 2.78 1.94 1.33 4.26 3.91 2.90 2.09 1.44
2 2 8.15 6.49 3.85 2.14 1.10 9.09 8.35 6.57 5.25 4.20

3 11.10 7.94 4.33 2.53 1.45 14.33 13.02 11.03 9.32 8.36

1 4.17 3.75 2.78 1.94 1.33 4.26 3.91 2.90 2.09 1.44
3 2 8.17 6.54 4.02 2.41 1.44 9.12 8.72 7.46 6.38 5.46

3 11.15 7.98 4.38 2.57 1.51 14.29 13.75 11.87 10.46 9.59
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Table 4.11: SQ-MAP Training SDR results (in dB) for the memoryless NBNDC-QB
and the highly correlated NBNDC-QB with parameters M = 5, α = 2; memoryless
Gaussian source.

Memoryless (Cor=0) Cor=0.9
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.17 3.75 2.78 1.94 1.33 4.19 3.85 2.93 2.23 1.43
1 2 8.15 6.49 3.85 2.14 1.10 8.41 7.09 4.52 2.86 1.68

3 11.05 7.80 4.02 1.93 0.70 13.25 11.42 8.84 7.26 6.33

1 4.17 3.75 2.78 1.94 1.33 4.19 3.85 2.93 2.23 1.43
2 2 8.15 6.49 3.85 2.14 1.10 9.03 8.00 6.12 4.56 3.57

3 11.10 7.94 4.33 2.53 1.45 14.33 13.28 11.11 9.63 8.66

1 4.17 3.75 2.78 1.94 1.33 4.19 3.85 2.93 2.23 1.43
3 2 8.17 6.54 4.02 2.41 1.44 9.07 8.54 7.06 5.74 4.84

3 11.15 7.98 4.38 2.57 1.51 14.31 13.76 11.89 10.79 9.80

Table 4.12: SQ with instantaneous mapping- Training SDR results (in dB) for the
memoryless NBNDC-QB and the highly correlated NBNDC-QB with parameters
M = 1, α = 1; memoryless Gaussian source.

Memoryless (Cor=0) Cor=0.9
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.17 3.75 2.78 1.94 1.33 4.19 3.77 2.85 1.97 1.35
1 2 8.15 6.49 3.85 2.14 1.10 8.37 6.89 4.42 2.74 1.66

3 11.05 7.80 4.02 1.93 0.70 11.58 8.38 4.61 2.47 1.21

1 4.17 3.75 2.78 1.94 1.33 4.19 3.77 2.85 1.97 1.35
2 2 8.15 6.49 3.85 2.14 1.10 8.37 6.89 4.42 2.74 1.66

3 11.05 7.80 4.02 1.93 0.70 11.58 8.38 4.61 2.47 1.21

1 4.17 3.75 2.78 1.94 1.33 4.19 3.77 2.85 1.97 1.35
3 2 8.15 6.49 3.85 2.14 1.10 8.37 6.89 4.42 2.74 1.66

3 11.05 7.80 4.02 1.93 0.70 11.58 8.38 4.61 2.47 1.21
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Table 4.13: SQ with instantaneous mapping- Training SDR results (in dB) for the
memoryless NBNDC-QB and the highly correlated NBNDC-QB with parameters
M = 1, α = 1; Gauss-Markov source with correlation factor φ = 0.9.

Memoryless (Cor=0) Cor=0.9
q n SNR (dB) SNR (dB)

15 10 5 2 0 15 10 5 2 0

1 4.21 3.78 2.82 1.97 1.36 4.23 3.81 2.89 2.01 1.39
1 2 8.19 6.52 3.87 2.16 1.11 8.40 6.91 4.44 2.74 1.66

3 11.13 7.81 4.03 1.93 0.71 11.59 8.38 4.64 2.51 1.24

1 4.21 3.78 2.82 1.97 1.36 4.23 3.81 2.89 2.01 1.39
2 2 8.19 6.52 3.87 2.16 1.11 8.40 6.91 4.44 2.74 1.66

3 11.13 7.81 4.03 1.93 0.71 11.59 8.38 4.64 2.51 1.24

1 4.21 3.78 2.82 1.97 1.36 4.23 3.81 2.89 2.01 1.39
3 2 8.19 6.52 3.87 2.16 1.11 8.40 6.91 4.44 2.74 1.66

3 11.13 7.81 4.03 1.93 0.71 11.59 8.38 4.64 2.51 1.24

Table 4.14: SQ-MAP simulation SDR results (in dB) for the DFC-fitted NBNDC-QB
and the DFC; memoryless Gaussian source, q = 2.

Channel SNR (dB)
model fDT n 15 10 5 2

Cor=0.35 Cor=0.32 Cor=0.29 Cor=0.22
1 4.18 3.76 2.77 1.94

0.005 2 8.34 6.73 4.01 2.29
NBNDC- 3 11.75 8.62 4.48 2.28

QB 1 4.17 3.75 2.80 1.94
0.01 2 8.34 6.75 4.07 2.28

3 11.60 8.59 4.67 2.35

1 4.17 3.75 2.78 1.94
0.005 2 8.15 6.52 3.91 2.18

Rayleigh 3 11.05 7.77 3.97 1.89
DFC 1 4.18 3.75 2.79 1.95

0.01 2 8.17 6.51 3.88 2.18
3 11.13 7.77 3.91 1.90
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Table 4.15: SQ-MAP simulation SDR results (in dB) for the DFC-fitted NBNDC-QB
and the DFC; Gauss-Markov source with correlation factor φ = 0.9, q = 2.

Channel SNR (dB)
model fDT n 15 10 5 2

Cor=0.35 Cor=0.32 Cor=0.29 Cor=0.22
1 4.35 4.15 3.73 3.19

0.005 2 9.19 8.76 7.66 6.33
NBNDC- 3 14.25 13.07 10.48 8.02

QB 1 4.35 4.16 3.74 3.21
0.01 2 9.20 8.80 7.71 6.41

3 14.19 13.22 10.72 8.26

1 4.22 3.88 3.28 2.82
0.005 2 8.82 7.99 6.39 5.05

Rayleigh 3 13.28 11.38 8.38 6.41
DFC 1 4.24 3.93 3.39 2.85

0.01 2 8.90 8.15 6.59 5.33
3 13.35 11.52 8.60 6.66

Table 4.16: SQ-MAP simulation SDR results (in dB) for the DFC-fitted NBNDC-QB
and the DFC; memoryless Laplacian source, q = 2.

Channel SNR (dB)
model fDT n 15 10 5 2

Cor=0.35 Cor=0.32 Cor=0.29 Cor=0.22
1 2.87 2.62 2.00 1.44

0.005 2 6.92 5.77 3.26 1.66
NBNDC- 3 10.73 8.09 4.06 1.69

QB 1 2.87 2.62 2.02 1.44
0.01 2 6.91 5.82 3.51 1.76

3 10.62 8.03 4.21 1.80

1 2.87 2.61 2.01 1.43
0.005 2 6.50 4.99 2.68 1.16

Rayleigh 3 9.50 6.42 2.64 0.63
DFC 1 2.87 2.61 2.00 1.43

0.01 2 6.57 5.09 2.67 1.20
3 9.64 6.42 2.64 0.71
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Table 4.17: SQ-MAP simulation results in symbol error rate(%), for the DFC-fitted
NBNDC-QB and the DFC; memoryless Gaussian source, q = 2.

Channel SNR (dB)
model fDT n 15 10 5 2

Cor=0.35 Cor=0.32 Cor=0.29 Cor=0.22
1 0.73 2.27 6.45 10.86
2 0.005 1.12 3.65 10.73 18.21

NBNDC- 3 1.33 4.31 13.10 22.77
QB 1 0.74 2.31 6.36 10.87

2 0.01 1.13 3.61 10.55 18.36
3 1.42 4.35 12.75 22.94

1 0.75 2.31 6.41 10.85
2 0.005 1.46 4.29 11.61 19.42

Rayleigh 3 2.03 6.06 16.32 26.70
DFC 1 0.73 2.30 6.39 10.76

2 0.01 1.42 4.34 11.78 19.53
3 2.05 6.24 16.61 26.92

Table 4.18: SQ-MAP simulation results in symbol error rate(%), for the DFC-fitted
NBNDC-QB and the DFC; Gauss-Markov source with correlation factor φ = 0.9,
q = 2.

Channel SNR (dB)
model fDT n 15 10 5 2

Cor=0.35 Cor=0.32 Cor=0.29 Cor=0.22
1 0.36 1.20 3.30 6.27
2 0.005 0.36 1.36 4.55 9.36

NBNDC- 3 0.43 1.69 5.95 12.40
QB 1 0.37 1.21 3.44 6.31

2 0.01 0.38 1.39 4.67 9.65
3 0.50 1.71 6.07 12.82

1 0.77 2.14 5.27 8.14
2 0.005 1.21 3.43 8.97 14.87

Rayleigh 3 1.57 4.61 12.39 20.32
DFC 1 0.72 2.02 5.02 8.05

2 0.01 1.15 3.37 8.96 14.57
3 1.59 4.72 12.66 20.46
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Table 4.19: SQ-MAP simulation results in symbol error rate(%), for the DFC-fitted
NBNDC-QB and the DFC; memoryless Laplacian source, q = 2.

Channel SNR (dB)
model fDT n 15 10 5 2

Cor=0.35 Cor=0.32 Cor=0.29 Cor=0.22
1 0.73 2.27 6.45 10.86
2 0.005 0.89 2.95 9.76 16.75

NBNDC- 3 0.99 3.33 10.91 19.95
QB 1 0.74 2.31 6.36 10.87

2 0.01 0.91 2.87 9.01 16.52
3 1.08 3.43 10.71 20.29

1 0.77 2.34 6.44 10.88
2 0.005 1.66 4.89 12.48 20.09

Rayleigh 3 2.06 6.14 16.42 26.85
DFC 1 0.74 2.33 6.43 10.83

2 0.01 1.59 4.78 12.59 20.09
3 2.07 6.34 16.89 27.10

Table 4.20: P (x) for different source distributions and SQ coding rates.

Distribution R P (x)

1 0.499 0.501 - - - - - -
Gaussian 2 0.335 0.165 0.335 0.165 - - - -

3 0.186 0.111 0.160 0.043 0.186 0.111 0.160 0.043

1 0.500 0.500 - - - - - -
Laplace 2 0.397 0.104 0.396 0.103 - - - -

3 0.258 0.072 0.152 0.019 0.257 0.072 0.151 0.019

1 0.497 0.503 - - - - - -
Gauss− 2 0.334 0.163 0.336 0.167 - - - -
Markov 3 0.185 0.110 0.160 0.043 0.185 0.111 0.161 0.045



Chapter 5

Conclusions and Future Work

We designed two joint source-channel coding schemes for the NBNDC-QB channel in

order to take advantage of channel memory and soft-decision information.

The COVQ performance results show that the COVQ system, as a joint source-

channel coding technique, can successfully exploit the channel’s memory and soft-

decision information to combat channel errors while having the advantage of low

encoding/decoding delay in comparison with tandem coding systems. Furthermore,

the NBNDC-QB model, which (unlike the Rayleigh DFC) is mathematically tractable

by virtue of having closed-from expressions for its statistics, was experimentally shown

to be a practical model for the Rayleigh DFC in terms of COVQ performance.

A scalar quantizer based MAP decoding system (SQ-MAP) was also designed

over the recently introduced channel model NBNDC-QB, which consists of a scalar

quantizer, a proper index assignment and a sequence maximum a posteriori (MAP)

decoder designed to harness the redundancy left in the quantizers indices, the channels

soft-decision output, and noise time correlation. The system was tested for both

correlated and uncorrelated source distributions and numerical results show that the
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proposed system can successfully utilize memory and soft-decision information over

the NBNDC-QB channel model. It was also observed that for correlated sources, in

some cases the system with interleaved channel (system with no noise correlation)

performs better than the system with highly correlated channel. This observation

was investigated and necessary and sufficient condition for this phenomenon to occur

was obtained at rate R = 1. Finally, the channel model was compared to the Rayleigh

DFC, in terms of SDR, and it was shown numerically that the NBNDC-QB model

can effectively approximate the Rayleigh discrete fading channels for low coding rates,

while providing closed form expression for transition distribution. However, some

degradation was observed for approximating the Rayleigh DFC for high rates.

This work can be extended in some directions. The COVQ system we presented

here does not use the optimal quantizer step size δ for soft-decision decoding. Note

that since our training algorithm uses the resulting codebook of each COVQ with a

specific SNR and an initial codebook of an other COVQ with lower SNR, each δ value

affects the whole collection of COVQ systems (for different SNRs). Consequently, the

choice of proper δ value for a COVQ with specific SNR is rather complicated since

each candidate δ value improves the performance for some cases and deteriorates it

for some others. Defining a proper qualifying factor and further optimization of the

systems performance by finding the optimal set of δ values could a subject of interest

for future work.

For the SQ-MAP system, further investigations can be made in order to find the

cases were the MAP-decoder is useless for higher rates or channel noise memory or-

ders. Furthermore, the optimal index assignment is still an open problem, and we
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observed that proper choice of index assignment can critically improve the perfor-

mance of the SQ-MAP system.
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