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Abstract

Mean shift (MS) and subspace constrained mean shift (SCMS) algorithms are non-parametric,

iterative methods to find a representation of a high dimensional data set on a principal curve

or surface embedded in a high dimensional space. The representation of high dimensional

data on a principal curve or surface, the class of mean shift type algorithms and their prop-

erties, and applications of these algorithms are the main focus of this dissertation.

Although MS and SCMS algorithms have been used in many applications, a rigorous

study of their convergence is still missing. This dissertation aims to fill some of the gaps

between theory and practice by investigating some convergence properties of these algo-

rithms. In particular, we propose a sufficient condition for a kernel density estimate with a

Gaussian kernel to have isolated stationary points to guarantee the convergence of the MS

algorithm. We also show that the SCMS algorithm inherits some of the important conver-

gence properties of the MS algorithm. In particular, the monotonicity and convergence of

the density estimate values along the sequence of output values of the algorithm are shown.

We also show that the distance between consecutive points of the output sequence con-

verges to zero, as does the projection of the gradient vector onto the subspace spanned by

the D − d eigenvectors corresponding to the D − d largest eigenvalues of the local inverse

covariance matrix.

i



Furthermore, three new variations of the SCMS algorithm are proposed and the running

times and performance of the resulting algorithms are compared with original SCMS algo-

rithm. We also propose an adaptive version of the SCMS algorithm to consider the effect

of new incoming samples without running the algorithm on the whole data set.

As well, we develop some new potential applications of the MS and SCMS algorithm.

These applications involve finding straight lines in digital images; pre-processing data be-

fore applying locally linear embedding (LLE) and ISOMAP for dimensionality reduction;

noisy source vector quantization where the clean data need to be estimated before the

quanization step; improving the performance of kernel regression in certain situations; and

skeletonization of digitally stored handwritten characters.
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Chapter 1

Introduction

Dimensionality reduction and manifold-learning are two important problems in many in-

formation processing fields including statistical pattern recognition, machine learning, ar-

tificial intelligence, information retrieval, statistics, data mining, and data compression.

Real world data, such as digital images, genomic data, fMRI scans, and speech signals,

often have high dimensionality, which makes their processing difficult and time consum-

ing. It is often desirable that the observed high-dimensional data be represented in a lower

dimensional space while preserving the original information as much as possible.

Dimensionality reduction and manifold-learning techniques provide compact and mean-

ingful representations, which facilitate compression, classification, and visualization of

high-dimensional data. Using these techniques, one can tackle practical issues, such as

limited computational power and memory, which arise during the processing of a high-

dimensional data set. In many applications, it is a realistic assumption that the observed

high-dimensional data will have an intrinsically low-dimensional structure, so that the data

points lie on or near a low-dimensional manifold embedded in the high-dimensional space.
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Learning the underlying manifold from the high-dimensional data can help to reduce the

dimensionality of the observed data. A multitude of different algorithms have been intro-

duced to find or approximate the underlying low-dimensional manifold. These algorithms

can be classified as either linear or nonlinear dimensionality reduction techniques.

Linear dimensionality reduction techniques, such as principal component analysis (PCA)

[67], multidimensional scaling (MDS) [23], independent component analysis (ICA) [63],

factor analysis [52], and linear discriminant analysis (LDA) [91], provide a low-dimensional

representation of the high-dimensional data in a linear subspace. These linear techniques

are simple to implement and if the observed data lie on or near a linear subspace, they

guarantee to find the low-dimensional linear structure. However, in real world problems

the underlying low-dimensional manifold often has a nonlinear structure that cannot be

revealed using the linear techniques. For a nonlinear underlying manifold, different tech-

niques including locally linear embedding (LLE) [108], ISOMAP [116], kernel PCA [110],

maximum variance unfolding (MVU) [125], and Hessian LLE [31], among others, have

been proposed.

The problem becomes more complicated when the high-dimensional input data is cor-

rupted by noise. In this case, the observed data can be modeled as low-dimensional “clean”

data corrupted by high-dimensional noise. In this case, applying common linear/nonlinear

dimensionality reduction techniques [66] on the noisy observations may not lead to a mean-

ingful low-dimensional representation of the observed data. Partly to overcome this prob-

lem, nonlinear generalizations of principal components, called principal curves (and sur-

faces) have been proposed. The first formal definition of a principal curve was given by

Hastie and Stuetzle [57]. According to their definition, a principal curve is a smooth (one-

dimensional) curve that passes through the middle of a data set to provide a nonlinear
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summary of the data. Several definitions of principal curves and algorithms to construct

them have been proposed based on, or inspired by, Hastie and Stuetzle’s original definition

(see [6], [117], [15], [28], [74], and [107], among others). The aim of these new definitions

and algorithms was to address some of the shortcomings of the original (and subsequent)

definition(s) and to extend the range of potential applications.

1.1 Problem Statement

As mentioned before, since Hastie and Stuetzle’s groundbreaking work, many different

definitions and algorithms have been proposed to estimate a principal curve or surface.

In fact, one difficulty with principal curves and surfaces is that there are several differ-

ent notions of them in the literature. Recently, an interesting new definition of principal

curves and surfaces has been proposed by Ozertem and Erdogmus [96]. According to this

definition, given a smooth (at least twice continuously differentiable) probability density

function (pdf) f on RD, a d-dimensional principal surface (d < D) is the collection of all

points where the gradient of f is orthogonal to exactly D − d eigenvectors of the Hessian

of f , and the eigenvalues corresponding to these eigenvectors are negative. An attractive

property of this new definition is that the smoothness of the principal curves and surfaces

is not stipulated by their definition, but rather it is inherited from the smoothness of the

underlying pdf or its estimate.

To estimate principal curves/surfaces based on the new definition, [96] proposed the

so-called subspace constrained mean shift (SCMS) algorithm. It is a generalization of the

well-known mean shift (MS) algorithm ([44], [16], and [18]), which iteratively tries to find

modes of a pdf (estimated from data samples) in a local subspace. On synthetic data sets,
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the performance of the SCMS algorithm is comparable to (and in some situations better

than) the principal curve algorithms of Hastie and Stuetzle [57] and Kégl et al. [74], and it

is computationally less demanding. Moreover, in contrast to most previous principal curve

algorithms, the SCMS algorithm can naturally handle loops and self-intersections, and it

easily generalizes from principal curves to surfaces. The SCMS algorithm has been suc-

cessfully used for applications such as time-series denoising [95], independent component

analysis [96], nonlinear dimensionality reduction in the presence of noise [48], and vector

quantization of noisy sources [47].

Based on an assertion in [18] that the so-called mean shift (MS) algorithm converges,

Ozertem and Erdogmus claimed that their SCMS algorithm converges to a principal curve/surface.

However, there is a fundamental mistake in the proof of the convergence of the MS algo-

rithm in [18]. The authors in [18] claimed that the sequence generated by the MS algorithm

is a Cauchy sequence, which is not true in general. Therefore, the convergence of the MS

algorithm does not follow. The authors in [96] claimed that the SCMS algorithm will con-

verge to a point on the principal surface with appropriate dimensionality. This claim was

based on the assumption that the MS algorithm always converges, which, as we discussed,

has so far been unproven. In addition, it does not seem at all clear that the convergence

of the MS algorithm actually implies the convergence of the SCMS algorithm, let alone its

convergence to the principal surface. Furthermore, the authors in [96] provided two stop-

ping criteria for the SCMS algorithm, but they did not prove that the algorithm stops after

a finite number of iterations when using these two criteria. In other words, although the

MS and SCMS algorithms have been widely used in many applications related to informa-

tion and signal processing, a rigorous study of their convergence properties is still missing.

Thus it seems that, similar to most previous principal curve algorithms (with the exception

4



of [74]), no optimality properties for the SCMS algorithm have been proved.

We are interested in investigating the convergence properties of the MS and SCMS

algorithms in order to fill some of the gaps between theory and practice. Our goal is to

take initial steps to show that the SCMS algorithm inherits some important convergence

properties of the MS algorithm. We are also interested in using the MS and the SCMS

algorithms for new applications.

1.2 Thesis Organization and Contributions

This dissertation is divided into seven chapters. We give a short survey of some of the

existing definitions of principal curves and surfaces in Chapter 2. We start with the original

definition of a principal curve given by Hastie and Stuetzle and continue to more recent def-

initions. A brief review of the proposed algorithms used to find a principal curve based on

a given definition is also provided in Chapter 2. In Chapter 3, we review a recent definition

of a principal curve/surface given by Ozertem and Erdogmus, which is the main subject of

this thesis. The MS and the SCMS algorithm are also briefly reviewed in Chapter 3.

In Chapter 4, we first show that the MS algorithm with isolated stationary points gener-

ates a convergent sequence. Then, we provide a sufficient condition for the MS algorithm

with the Gaussian kernel to have isolated stationary points. A convergence proof for the

MS algorithm for the one-dimensional case is also given in Chapter 4. We show that by

slightly modifying the MS algorithm, the convergence can be guaranteed. For the SCMS

algorithm, we first provide an alternative interpretation for the points on a principal curve.

Then the monotonicity and convergence of the density estimate values along the sequence
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of output values of the SCMS algorithm are shown. Also, it is shown that the distance be-

tween consecutive points of the output sequence converges to zero, as does the projection

of the gradient vector onto the subspace spanned by the D − d largest eigenvectors of the

local inverse covariance matrix. These last two properties provide theoretical guarantees

for the stopping criteria. By modifying the projection step, three variations of the SCMS

algorithm are proposed and the running times and performance of the resulting algorithms

are compared. Finally, we propose an adaptive version of the SCMS algorithm to consider

the effect of new samples.

Nonlinear dimension reduction in the presence of noise is discussed in Chapter 5. In

this chapter, we first give a brief review of some of the popular nonlinear dimensionality

reduction techniques. Then we show how using the SCMS algorithm as a pre-processing

step before LLE and ISOMAP can improve the performance of these techniques in regards

to finding a low-dimensional representation of the data points.

Some new applications for the MS and the SCMS algorithms are presented in Chap-

ter 6. We first show that the MS algorithm can be used to accurately find straight lines in

digital images. The performance of this method is compared with the Hough transform.

We then investigate the application of the SCMS algorithm to the problem of noisy source

vector quantization where the clean source needs to be estimated from its noisy observation

before quantizing with an optimal vector quantizer. We demonstrate that an SCMS-based

preprocessing step can be effective for sources that have intrinsically low dimensionality

in situations where clean source samples are unavailable and the system design relies only

on noisy source samples for training. We also show how the SCMS algorithm can improve

the performance of the kernel regression technique when the explanatory variables are cor-

rupted by noise. Finally, we propose a weighted version of the SCMS algorithm that can

6



be used for skeletonization.

Chapter 7 presents a summary of the thesis.
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Chapter 2

Literature Review

Principal Curves and Surfaces

Principal curves and surfaces can be interpreted as a nonlinear generalization of principal

component analysis (PCA) [69]. By mapping the high-dimensional observations onto a

low-dimensional manifold, embedded in the high-dimensional space, they provide a new

representation of the input data that makes tasks such as visualization and dimensionality

reduction much easier and more accurate. There are different approaches to defining a

principal curve or surface in the literature. In this chapter we give a short survey of some

of the existing definitions for the principal curves and surfaces. We also briefly review the

proposed algorithms used to find a principal curve or surface based on a given definition.
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2.1 The Hastie-Stuetzle Definition

The first formal definition of a principal curve was given by Hastie and Stuetzle [57] (here-

after HSPC). According to their definition, a principal curve is a smooth (infinitely differen-

tiable) one-dimensional curve that passes through the middle of a data set. More formally,

a principal curve of a probability distribution is a smooth, self-consistent, parameterized

curve that does not intersect itself and has finite length inside any bounded ball. Hastie

and Stuetzle’s definition of a principal curve relies on the concept of self-consistency. The

self-consistency property means that for every point selected on the principal curve, the

average of the collection of data points that project onto that point will coincide with the

selected point on the curve. This intuitive concept can be made mathematically rigorous as

follows.

Definition 2.1. Let x ∈ RD denote a random vector with probability density function (pdf)

f and finite second moments. A smooth parameterized curve h(l) that does not intersect it-

self and has finite length inside any finite ball in RD is a principal curve for the distribution

f(x) if h is self-consistent. The curve h is called self-consistent if

E(X|λh(X) = λ) = h(λ), (2.1)

where the projection index λh : RD → R is defined as λh(x) = supλ{λ : ‖x − h(λ)‖ =

infµ ‖x− h(µ)‖}.

The projection index λh(x) of x in Definition 2.1 represents the value of λ for which h(λ)

is the closest to x. If the value of λ is not unique, the sup operator simply selects the largest

value among the candidates. It was shown that the projection index λh(x) is well-defined

9



and measurable [57]. Based on Definition 2.1, it can be proved that if a straight line is

self-consistent then it is a principal component and as a result for ellipsoidal distributions,

the lines determined by principal components are principal curves. Let d(x,h) denote the

Euclidean distance of point x to its projection on h, i.e., d(x,h) = ‖x− h(λh(x))‖. The

mean squared Euclidean distance of points to their projection on the curve is defined by

D(f,h) = Efd
2(X,h) =

∫
d2(X,h)f(X)dX, (2.2)

where the expected value is computed with respect to the density function f of the data

points. By generalizing the minimum distance property of linear principal component,

Hastie and Stuetzle proved that a principal curve is a critical point of the mean squared

Euclidean distance D(f,h). Therefore, we have the following result [56]:

Theorem 2.1. Let h be a principal curve, and let ht be a family of smooth curves with

h0 = h, then

d

dt
D(f,ht)

∣∣∣∣
t=0

= 0.

The authors in [57] observed that ifht is restricted to be a straight line, then the eigenvectors

of the covariance matrix Σ satisfy the required conditions in Theorem 2.1 to be a principal

curve. Two major theoretical contributions of Hastie and Stuetzle are as follows

1. If a straight line is self-consistent, then it is a principal component (see Chapter 5.2).

2. Based on the minimum mean squared error criterion, principal curves are the station-

ary points of the mean squared Euclidean distance between the data points and their

projection on the curve.
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The second property is used to design an algorithm that starts from the principal line and

iteratively finds the HSPC by minimizing the averaged squared distance of the data points

and the curve. The proposed algorithm to find the principal curve for a data set with density

function f in D dimensional space is given as follows [57].

1. Initialization: set h0(λ) = x̄ + aλ, where x̄ is the average of the data set and a is

the first principal component of the covariance matrix of the density f . Set λ0(x) =

λh0(x), where λh0(x) is the value of λ for which h0(λ) is closest to x.

2. Repeat the following steps for j ∈ Z ≥ 1:

• Set hj(·) = E[X|λhj−1(X) = ·].

• Define λj(x) = λhj(x) for every x ∈ f . Transform λj so that hj is unit speed

(a curve with ‖h′‖ = 1 is called a unit speed parameterized curve).

• Evaluate D(f,hj) = Ef [‖X − h(λj(X))‖2].

Until: the change in D(f,hj) is under some threshold.

There are certain problems with the HSPC algorithm. By definition the HSPC are dif-

ferentiable curves, but there is no guarantee that the curves generated by the conditional

expectation will also be differentiable. Discontinuities can happen at the end points of a

curve where the mean of the points with the closest distance to an endpoint can be dis-

jointed from the updated new curve. Convergence of the HSPC algorithm is not proved,

and therefore existence of the principal curves could be proven only for special cases, such

as ellipsoidal distributions. For ellipsoidal distributions (e.g., Gaussian distribution), the

principal components are principal curves. Also any subspace spanned by the d largest

principal components is a d dimensional principal surface. For spherical symmetric dis-

tributions, any straight line passing through the center is a principal curve. The authors
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in [57] showed that if each iteration generates a differentiable curve, then the expected

squared distance D(f,hj) converges.

The HSPC algorithm generates the principal curve under the assumption that the pdf of the

observations is known. In real world applications, we usually do not have access to the

probability distribution and we are only provided with a finite data set. In the absence of

prior information about the probability distribution, the HSPC algorithm represents a curve

h(λ) by n tuples (λi,hi), where n is the size of the data set. The n tuples are connected

together in an increasing order of λ to form a polygon. The projection index λi is the

arc length along the polygon from h1 to hi and λ1 = 0. Similar to the previous case,

the algorithm is initialized to the first principal component line and alternatively repeats

the projection and the expectation steps. The iterations stop when the relative change in

the average distance ‖D(f,hj) − D(f,hj−1)‖/‖D(f,hj−1)‖ becomes less than some

predefined threshold. The average distance D(f,h) is estimated by averaging over the

squared distances of the points in the sample to their closest points on the current curve.

Although the authors in [57] could not prove the convergence of the algorithm and did not

show that each step guarantees a decrease in the given criterion, they reported that they

have not had any convergence issues in their simulations.

2.2 Principal Curves with a Length Constraint

The existence of the HSPC for special cases, such as the uniform distribution on rectangles

and annuli, was investigated in [34][33]. The authors in [34][33] showed that the HSPC

are a solution of a differential equation and by solving the differential equation they found

principal curves for the uniform distribution on rectangles and annuli. Unfortunately, it
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is not known if the HSPC exists for a large class of distribution functions in general. To

address this problem, Kégl et al. redefined the principal curves. They observed that the

first principal component minimizes the expected squared distance among all straight lines.

Therefore, in contrast to the HSPC, which defined principal curves as critical points of the

distance function, Kégl et al. [74] defined principal curves as a minimizer of the expected

squared distance over a class of curves. The authors in [74] put a constraint on the length

of the curve to avoid a principal curve having an infinite length. They also relaxed the

requirement of differentiability of a principal curve [70]. The new definition is given as

follows. [74]

Definition 2.2. A curve h∗ is called a principal curve with length l for a density f , if h∗

minimizes D(f,h) over all curves of length less than or equal to l.

Finding a principal curve based on Definition 2.2 is similar to finding k principal points of a

D variate random variable. The k principal points of a random variable x ∈ RD are defined

as those points y∗i ∈ RD, i = 1, 2, . . . , k that minimize the expected squared distance

of X from the nearest of the y∗i [42]. Therefore, both definitions try to minimize the

same expected squared distance criterion. There is a constraint on the number of principal

points, whereas there is a length constraint for a principal curve based on Definition 2.2. A

further discussion on the principal points and how to estimate them is given in [114][43].

According to the terminology used in [114], a principal curve based on Definition 2.2 is

a set of principal points, while a principal curve based on Definition 2.1 is a set of self-

consistent points [70]. A set of points {y1,y2, . . . ,yk} is called self consistent if [114]

yi = E[X|X ∈ Di] for i = 1, 2, . . . , k, (2.3)
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where Di, i = 1, 2, . . . , k form a partition of RD, the so-called Voronoi partitions with

respect to the points {yi,y2, . . . ,yk} [17]. In this sense, the set C = {y1, . . .yk} represents

a codebook corresponding to a k-point vector quantizer satisfying the necessary optimality

conditions [86].

The authors in [74] proved the existence of principal curves based on this definition and

proposed an algorithm for constructing them. The proposed algorithm is initialized with

the shortest segment of the first principal component line, which contains the projected

data set [73]. The data set is then partitioned into disjoint sets based on the Euclidean

distance between the data points and vertices and segments. The projection and vertex

optimization steps are done iteratively until convergence occurs, and then a new vertex is

added to the curve. The algorithm stops when the total number of vertices k exceeds a

predefined threshold [74]. Selecting the number of segments k and the curve length l are

an essential issue, since an inappropriate choice of them may result in a poor estimation of

the principal curve. In a recent work, the parameter selection issue using the point of view

of model selection via penalization is addressed [7].

2.3 Alternative Definitions

Hastie and Stuetzle showed that if each iteration in the proposed algorithm is well defined

and generates a differentiable curve, then the expected value of the squared Euclidean dis-

tance D(f,h) converges. Unfortunately, convergence of D(f,h) does not imply that the

estimated curve h is a meaningful solution to the problem. Duchamp and Stuetzle showed

that while HSPCs are critical points of D(f,h), they are not local minima [34]. In fact,

the authors in [34] proved that the HSPC are saddle points of the expected value of the
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squared distance function, therefore any algorithm that tries to estimate a principal curve

by minimizing the distance function will fail to converge to a stable solution. The HSPCs

are biased at points of large curvature, and the authors in [57] exclude the handling of

crossings or closed curves. There are also two sources of bias during the estimation of a

principal curve based on Definition 2.1: model bias and estimation bias. The problems with

the HSPC motivated the researchers to modify the HSPC definition or give new definitions

to overcome the aforementioned difficulties.

2.3.1 Modified HSPC

The estimation bias occurs because of averaging over neighborhoods in order to estimate

the conditional expectations [57]. As a result, the generated curve is biased toward the

center of the curvature. The estimation bias increases as the size of the local neighborhood

that is used for the averaging increases. In other words, we get a smoother curve at the price

of having more estimation bias. The estimation bias problem was addressed by Banfield

and Raftery [6]. They used the HSPC definition and extended it to closed curves to model

the outlines of ice floes in satellite images. They modified the algorithm in [57] and reduced

the estimation bias by estimating the error residual instead of the actual curve during the

computation. According to [6], the estimated curve h is updated at the j-th iteration as

hj+1(λ) = hj(λ) + bj(X, λ), (2.4)

where bj(X, λ) = E
(
X − hj(λ)|λhj(X) = λ

)
can be thought of as the measure of the

estimation bias at the (j+ 1)-th iteration at hj(λ). The projection residual of the data point

xi projected onto hj is defined by pji = xi − hj(λhj(xi)). Therefore, the expected value
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of the projection residuals of the data points that project onto hj at λ is the estimation bias

measure bj(x, λ). In situations where the distribution of the data is unknown, the authors in

[6] suggested that a weighted average of the projection residuals of the data points, rather

than data points, should be used to update hj+1(λ). So, when the distribution of data is not

available, hj+1(λ) is given by

hj+1(λjh(xi)) = hj(λjh(xi)) + p̄i
j, (2.5)

where p̄ij is the weighted average of the projection residuals of the data points. Similar to

the HSPC algorithm, there is no formal proof of the convergence for the modified version

proposed in [6]. Furthermore, the modified HSPC algorithm in [6] introduces numerical

instabilities that may lead to a smooth but incorrect principal curve in practice.

2.3.2 Tibshirani’s Definition

Model bias occurs when the data has an additive form. Let ε = (ε1, ε2, . . . , εD) and E(ε) =

0 for random variables ε1, ε2, . . . , εD. Hastie and Stuetzle observed that if x = h(λ) + ε,

where λ and εi, i = 1, . . . , D are independent, then the HSPC may not generate h as the

principal curve of the distribution of x. Instead, the HSPC generates a biased version of h

even if it is initialized at the generating curve. The model bias is proportional to the ratio

of the noise 1 variance to the radius of curvature. By relaxing the self-consistency property,

Tibshirani gave a different definition of a principal curve to address the this problem. Let

x = (x1, x2, . . . , xD) be a D-dimensional random vector with density gx. Assume that the

random vector x is generated by an additive model in two stages as follows

1In the additive model x = h(λ) + ε, the second term, ε, can be considered as noise.
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1. A point on a parameterized curve h(λ) is generated according to some distribution

gλ.

2. The random vector x is generated from a conditional distribution gx|λ such that

E(x|λ) = h(λ) and x1, . . . , xD are conditionally independent given λ.

Using the above model, Tibshirani defined the principal curve for density gx as follows

Definition 2.3. The principal curve for a random variable x with distribution gx is a triplet

(gλ, gx|λ,h) that satisfies the following conditions:

1. Two distributions gλ and gX|λ are consistent with gX , that is gX(x) =
∫
gX|λ(x|µ)gλ(µ)dµ.

2. x1, x2, . . . , xD are conditionally independent given λ.

3. h(t) is a parameterized curve in RD, where t is on a closed interval in R and h(t) =

E(X|λ = t).

The main advantage of Definition 2.3 is that it solves the model bias problem. According

to Definition 2.3, if a random vector x is the result of adding noise to a random point over

a one-dimensional curve h, then the generative h is the principal curve of x (The principal

surface is defined in the same way.) Based on Definition 2.3, Tibshirani proposed a semi-

parametric model that estimates a principal curve via the expectation maximization (EM)

algorithm. Although Tibshirani’s definition solved the model bias issue, there is no evi-

dence that the proposed procedure works any better than that given by Hastie and Stuetzle

and the self-consistency property no longer holds. As well, Tibshirani’s approach does not

seem to be flexible enough to recover curves with high curvature. This problem has been

addressed in [120] by using polygonal lines to estimate the principal curve that generate
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unsmooth curves. In a later work, LeBlanc and Tibshirani used multivariate adaptive re-

gression splines to develop the estimation procedure of the principal curves and surfaces

[80].

2.3.3 Principal oriented points

LetX ∈ RD be a multivariate normal random variable with mean µ and covariance matrix

Σ, i.e., X ∼ N(µ,Σ). A well-known property of the first principal component of multi-

variate normal distribution states that the total variance 1 of the conditional distribution of

X , given that X belongs to a hyperplane, is minimal when the hyperplane is orthogonal

to the first principal component [27], i.e., the normal vector b is in the direction of the first

eigenvector of Σ. By generalizing the above observation, Delicado [28] introduced the no-

tion of principal oriented points (POP) and defined a principal curve as a one-dimensional

curve that passes through POPs. Let

µ(x0, b) = E(x|x ∈ H(x0, b)),

φ(x0, b) = TV (x|x ∈ H(x0, b)),

where TV is the total variance. A vector b∗ is called the principal direction for x0 if

b∗(x0) = arg min‖b‖=1 φ(x0, b), and µ∗(x0) = µ(x0, b
∗(x0)) is called a POP [27]. Deli-

cado gave a new definition of a principal curve as follows [28]

Definition 2.4. Let h : [a, b]→ RD be a continuous curve that is parameterized by the arc

1The total variance for a vector is defined as the sum of the variances of all elements
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length. It is a principal curve of oriented points (PCOP) if

{h(λ) : λ ∈ [a, b]} ⊂ X,

where X is the set of all POPs.

According to Definition 2.4, for a multivariate normal distribution only the first principal

component can be considered as a principal curve; however, based on Definition 2.1 every

principal component satisfies the self-consistency property and can be a HSPC. Delicado

proved that POPs exist for theoretical distributions 1[27]. In contrast to the self-consistency

property, which is defined for a curve (or for a set of points), the POP property is a point

property, which means that regardless of knowing the underlying principal curve it can be

verified if an arbitrary point x0 is a POP, i.e., x0 = µ∗(x0).

Delicado also proposed an algorithm to find principal oriented points for a given data set

and by using smoothing techniques tried to find a smoother version of the polygonal curve

(PCOP) passing through these points [28]. Similar to the HSPC, there is a bias for the

PCOP when the data are generated in the form x = h(λ) + e and the PCOP is unable to

recover the generative curve h [28]. The simulation results in [28] and [27] indicate that

the PCOPs are less smooth than HSPCs. One reason for this observation could be the small

size of the set of the POPs (compared with a higher number of points generated by the

HSPC algorithm), which causes the smoothing techniques to generate less smooth curves

compared to the HSPC algorithm.

1Distributions that describe or define a probability model are called theoretical distributions, e.g., normal
distribution.
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Chapter 3

Locally Defined Principal Curves and Sur-

faces

3.1 Introduction

An interesting new definition of principal curves and surfaces has recently been proposed

by Ozertem and Erdogmus [96]. The principal curves generated based on the new defini-

tion correspond to the ridge of the probability density function (pdf). Based on the new

definition, every point on a principal curve/surface is the local maximum of the pdf in the

orthogonal subspace. This contrasts with the self-consistency property, which states that

every point on a principal curve coincides with the expected value of the points in the or-

thogonal subspace of the principal curve at that point. According to the definition in [96],

given a smooth pdf f on RD, a d-dimensional principal surface (d < D) is the collection of
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all points where the gradient of f is orthogonal to exactly D − d eigenvectors of the Hes-

sian of f and the eigenvalues corresponding to these eigenvectors are negative [95]. Thus

each point on the principal surface is a local maximum of the pdf in a (D− d)-dimensional

affine subspace and the principal surface is a d-dimensional ridge of the pdf. An attractive

property of this new definition is that the smoothness of the principal curves and surfaces

is not stipulated by their definition, but rather it is inherited from the smoothness of the

underlying pdf or its estimate.

To estimate principal curves/surfaces based on the new definition, [96] proposed the so-

called subspace constrained mean shift (SCMS) algorithm. It is a generalization of the

well-known mean shift (MS) algorithm [44] that iteratively tries to find modes of a pdf

(estimated from data samples) in a local subspace. On synthetic data sets, the performance

of the SCMS algorithm is comparable to (and in some situations better than) the principal

curve algorithms of Hastie and Stuetzle [57] and Kégl et al. [74], and it is computationally

less demanding. Moreover, in contrast to most previous principal curve algorithms, the

SCMS algorithm can naturally handle loops and self intersections, and it easily generalizes

from principal curves to surfaces.

3.2 Locally Defined Principal Curves and Surfaces

Let f be a smooth (at least twice continuously differentiable) pdf on RD with gradient ∇f

and Hessian H . The d-dimensional critical set Cd is defined as the set of all points x such

that the gradient vector ∇f(x) is orthogonal to at least D − d eigenvectors of the Hessian

matrixH(x) [96]. Therefore, C0 consists of all critical points of f , and it is trivial to show

Cd ⊂ Cd+1. A point x is called regular if x ∈ Cd − Cd−1, otherwise it is called an irregular
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point. Thus, for a regular point x, the gradient vector∇f(x) is orthogonal to exactlyD−d

eigenvectors of the Hessian matrix H(x) and the subspace spanned by these eigenvectors

is called the normal subspace of Cd(x), denoted by Cd⊥. The orthogonal subspace is called

the tangent space and denoted by Cd‖(x), i.e., Rd = Cd⊥ ∪ Cd‖(x)(x). Ozertem proved the

following result [95]

Theorem 3.1. Let x be a regular point of Cd and I be an index set with cardinality |I| =

(D − d) such that ∇f(x)Tvi(x) = 0 if and only if i ∈ I , where vi are the eigenvectors of

the Hessian matrix at x. The following statements hold:

1. x is a local maximum in Cd⊥(x) if and only if λi(x) < 0, ∀i ∈ I .

2. x is a local minimum in Cd⊥(x) if and only if λi(x) > 0, ∀i ∈ I .

3. x is a saddle point in Cd⊥(x) if and only if ∃λi(x) < 0 and ∃λj(x) > 0 for i, j ∈ I ,

where λi(x), i ∈ I is an eigenvalues of the Hessian matrix of f at x corresponding to

vi(x), i ∈ I . Let the principal set Pd consist of all the local maxima of Cd⊥(x). Then,

P 0 consists of the local maxima of f(x) and we have Pd ⊂ Pd+1. According to the

new definition, members of the principal set Pd are points on a d-dimensional principal

surface. In other words, for d ∈ {0, 1, . . . , D − 1}, Ozertem and Ergodmus defined the

d-dimensional principal surfaces associated with the pdf f as follows [96]

Definition 3.1. The d-dimensional principal surface associated with pdf f is the collection

of all points x ∈ RD such that the gradient ∇f(x) is orthogonal to exactly D − d eigen-

vectors of the Hessian H(x) and the eigenvalues of H(x) corresponding to these D − d

orthogonal eigenvectors are negative.

For the one-dimensional (d = 1) case, this definition simplifies to the following: the

one-dimensional principal surface (principal curve) is the collection of all points x ∈ RD
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at which the gradient of the pdf is an eigenvector of the Hessian of the pdf and the rest

of the eigenvectors of the Hessian have negative eigenvalues. Clearly, all points on a d-

dimensional principal surface in Definition 3.1 are local maxima of the pdf in a local affine

orthogonal D − d-dimensional subspace. In other words, a principal curve is a ridge of

the pdf, and every point on the principal curve is a local maximum of the pdf in the affine

subspace orthogonal to the curve. Thus Ozertem and Ergodmus’ definition replaces Hastie

and Stuetzle’s requirement that every point on the principal curve be the conditional expec-

tation of the pdf in a local orthogonal subspace with the requirement that the pdf have a

local maximum in a local orthogonal subspace.

For the Gaussian distribution, the principal surfaces of Definition 3.1 coincide with the

subspaces spanned by the eigenvectors of the covariance matrix, which reveals the con-

nection with principal component analysis [96]. According to Definition 3.1, a principal

curve always exists as long as the pdf is twice differentiable such that the Hessian matrix

is nonzero. In practice, the underlying pdf is usually unknown. Hence, if the pdf is esti-

mated using methods such as kernel density estimation (KDE) with a Gaussian kernel then

it is guaranteed to have non zero Hessian matrix. Further existence issues and properties

of the new definition for principal surfaces were not treated in detail in [96], but an effec-

tive iterative algorithm was given. This algorithm is based on the well-known mean shift

(MS) procedure, which we review before turning to the subspace constrained mean shift

algorithm (SCMS) of [96].
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3.3 The Mean Shift Algorithm

The modes of a probability density function play an important role in many pattern recogni-

tion applications, including classification [1], clustering [83], multi-valued regression [11],

image segmentation [18], and object tracking [20]. The mean shift (MS) algorithm is a

simple non-parametric iterative method introduced by Fukunaga and Hostetler [44] for lo-

cating modes of a pdf obtained via a kernel density estimate (see, e.g., [111]) from a given

data set. The algorithm was generalized by Cheng [16] in order to show that the MS al-

gorithm is a mode seeking process on a surface constructed with a shadow kernel. Later,

the algorithm became popular in the machine learning community when its potential usage

for feature space analysis was studied [18]. The MS algorithm iteratively shifts each data

point to a weighted average of neighboring points to find stationary points of the estimated

pdf. The MS algorithm can be used as a clustering tool, where each mode represents a clus-

ter. In contrast to the k-mean clustering approach, the MS algorithm does not require any

prior knowledge of the number of clusters and there is no assumption for the shape of the

clusters. In recent years, the algorithm has been successfully used for applications such as

image segmentation [131][122], edge detection [132][54], object tracking [68][130], and

information fusion [83].

A D-variate kernel K : RD → R is a non-negative real-valued function that satisfies

the following conditions [121]

∫
RD
K(x)dx = 1, lim

‖x‖→∞
‖x‖DK(x) = 0,∫

RD
xK(x)dx = 0,

∫
RD
xxTK(x)dx = cKI,
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where cK is a constant and I is the identity matrix. Let xi ∈ RD, i = 1, . . . , n be a

sequence of n independent and identically distributed (iid) random variables. The kernel

density estimate f̂ at an arbitrary point x using a kernel K(x) is given by

f̂(x) =
1

n

n∑
i=1

KH(x− xi), (3.1)

where KH(x) = |H|−1/2K(H−1/2x), H is a symmetric positive definite D × D matrix

called the bandwidth matrix, and |H| denotes the determinant of H. A special class of

kernels, called radially symmetric kernels, has been widely used for pdf estimation. Radi-

ally symmetric kernels are defined by K(x) = ck,Dk(‖x‖2), where ck,D is a normalization

factor that causes K(x) to integrate to one and k : [0,∞) → [0,∞) is called the profile

of the kernel. The profile of a kernel is assumed to be a non-negative, non-increasing, and

piecewise continuous function that satisfies
∫∞
0
k(x)dx < ∞. Two widely used kernel

functions are the Epanechnikov kernel and the Gaussian kernel, defined by

1. Epanechnikov kernel

KE(x) =


1
2
c−1D (D + 2)(1− ‖x‖2) if ‖x‖ ≤ 1

0 if ‖x‖ > 1.

where cD is the volume of the unit D-dimensional sphere.

2. Gaussian kernel

KN(x) = (2π)−D/2 exp
(
− ‖x‖

2

2

)
.

The probability density estimation that results from this technique is asymptotically unbi-

ased and consistent in the mean square sense [98]. For the sake of simplicity, the bandwidth
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matrix H is chosen to be proportional to the identity matrix, i.e., H = hI . Then, by using

the profile k and the bandwidth h, the estimated pdf changes to the following well-known

form [36]

f̂h,k(x) =
ck,D
nhD

n∑
i=1

k(‖x− xi
h
‖2). (3.2)

Assuming that k is differentiable with derivative k′, taking the gradient of (3.2) yields

∇f̂h,k(x) =
2ck,D
nhD+2

[ n∑
i=1

g
(
‖x− xi

h
‖2
)][∑n

i=1 xig(‖x−xi
h
‖2)∑n

i=1 g(‖x−xi
h
‖2)

− x
]
, (3.3)

where g(x) = −k′(x). The first term in the above equation is proportional to the density

estimate at x using kernel G(x) = cg,Dg(‖x‖2) . The second term is called the mean shift

(MS) vector,mh,g(x), and (3.3) can be rewritten in the following form

∇f̂h,k(x) = f̂h,g(x)
2ck,D
h2cg,D

mh,g(x). (3.4)

The above expression indicates that the MS vector computed with bandwidth h and profile

g is proportional to the normalized gradient density estimate obtained with the profile k

(normalization is done by density estimate with profile g). Therefore, the MS vector always

points toward the direction of the maximum increase in the density function. In fact, the

MS algorithm is an instance of the gradient ascent algorithm with an adaptive step size

[39].

The modes of the estimated density function are located at the zeros of the gradient

function, i.e., ∇f̂(x) = 0. Equating (3.3) to zero, reveals that the modes of the estimated
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Table 3.1: Mean shift algorithm

a) Initialize the mode estimate y0 to be one of the observed data. Set j = 0.

b) Compute the mean shift vectormh,g(yj) =
∑n
i=1 xig

(
‖
yj−xi
h
‖
)

∑n
i=1 g
(
‖
yj−xi
h
‖
) − yj .

c) Update the mode estimate yj+1 = yj +m(yj). Increment j.

d) Iterate (b) and (c) until |yj+1 − yj| < ε, where ε is a predefined threshold.

pdf are fixed points of the function

mh,g(x) =

∑n
i=1 xig

(
‖x−xi

h
‖2
)∑n

i=1 g
(
‖x−xi

h
‖2
) − x, (3.5)

The MS algorithm initializes the mode estimate sequence to be one of the observed data.

The mode estimate yj in the jth iteration is updated as

yj+1 = yj +m(yj)

=

∑n
i=1 xig

(
‖yj−xi

h
‖2
)∑n

i=1 g
(
‖yj−xi

h
‖2
) . (3.6)

The MS algorithm iterates this step until the norm of the difference between two consec-

utive mode estimates becomes less than some predefined threshold. The MS algorithm is

summarized in Table 3.1. Typically n instances of the MS algorithm are run in parallel,

with the ith instance initialized to the ith data point.

Although the MS algorithm has been used in different applications, a rigorous proof

for the convergence of the algorithm has not been given. The following statement is

claimed to be true about the MS algorithm [18]: if the kernel K has a convex, mono-

tonically decreasing, and bounded profile, the mode estimate sequence {yj}j=1,2,... and the
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sequence {f̂h,k(yj)} converge. The authors in [18] successfully showed that the sequence

{f̂h,k(yj)}j=1,2,... is an increasing and convergent sequence. However, an error was pointed

out in [84] in the proof of the main statement of Theorem 1 in [18], which claims that the

sequence {yi; i = 1, 2, . . .} converges. Through further manipulation of the proof in [18],

it can be shown that limk→∞ ‖yk+1 − yk‖ → 0, which does not imply convergence of the

mode estimate sequence {yj}. Carreira-Perpiñán [14] showed that the MS algorithm with

the Gaussian kernel K(x) = c e−‖x‖
2 is an instance of the EM algorithm and claimed that

this fact implies the convergence of {yj}. However, without additional conditions the EM

algorithm may not converge (see [9] or [127]), and so it appears that the convergence of the

MS algorithm has not yet been proved. Incidentally, the error in the original proof for the

convergence of the EM algorithm in [29] and the error in the proof of the convergence of

the MS algorithm in [18] are both due to the same incorrect use of the triangle inequality.

3.4 Gaussian Blurring Mean Shift Algorithm

Let κ be the average number of iterations in the mean shift algorithm. The computational

cost of each iteration isO(Dn) (D is the dimensionality of the space), so applying the mean

shift algorithm to the entire data set has cost O(κDn2). This is particularly expensive

for applications like image segmentation where the total number of pixels is large. By

only considering k nearest neighbors for each data point, the computational cost for each

iteration can be reduced. Decreasing the average number of iterations is an alternative way

to reduce the computational cost. Gaussian blurring mean shift (GBMS) is a technique

to reduce the average number of iterations [13]. It uses the Gaussian kernel and in every

iteration an updated data set is used. It is expected that the GBMS algorithm leads to a
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Table 3.2: Gaussian blurring mean shift algorithm

a) For m = 1, . . . , n compute ym =
∑n
i=1 xie

−1
2 ‖

xi−xm
σ ‖2∑n

i=1 e
−1
2 ‖

xi−xm
σ ‖2

.

b) ∀m : xm ← ym and stop when the average update
drops below some small tolerance, otherwise go to step (a).

data set where all points coincide. However, if GBMS stops before the clusters start to

move toward each other then it can be used as a clustering tool. The GBMS algorithm

is summarized in Table 3.2 [12]. The typical behavior of the GBMS algorithm has two

phases. First, points merge into compact clusters, which takes a few iterations. In the

second phase, which may take several hundred iterations, the clusters move toward each

other and finally merge into a single point. It is desirable to stop the GBMS algorithm right

after the first phase where points merge into clusters. The following stopping criteria can

be used to terminate the iterations

1

n

n∑
i=1

‖xji − x
j−1
i ‖ < ε.

Simulation results show that the average number of iterations for each data point is dramati-

cally reduced using the GBMS algorithm. The computational cost for the GBMS algorithm

isO(ηκDn2), where η < 1. LetX = (x1, . . . ,xn) be aD×nmatrix of data points andW

be a n×n symmetric matrix whose (i, j)th component is wij = exp(−‖xi−xj‖2/(2h2)).

Then each iteration of the GBMS algorithm can be written in the following matrix form

[13]

Xupdate = XWD−1,
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where D is a diagonal matrix, whose diagonal elements are
∑n

i=1wim. Although the

GBMS algorithm is faster than the mean shift algorithm, clustering large data sets is still

computationally expensive because the computational cost of the GBMS algorithm is pro-

portional to O(n2).

3.5 Subspace Constrained Mean Shift Algorithm

Under some regularity conditions, the set of local maxima of a pdf is exactly the zero-

dimensional principal manifold, P0, resulting from Definition 3.1 for d = 0. The SCMS

algorithm [96] generalizes the MS algorithm to estimate higher order principal curves and

surfaces (d ≥ 1). Similar to the MS algorithm, the SCMS algorithm starts from a finite

data set sampled from the probability distribution and forms a kernel density estimate f̂

based on the data, and it evaluates the MS vector in each iteration. However, the SCMS

algorithm projects the mean shift vector to the local (affine) subspace spanned by theD−d

eigenvectors corresponding to the D − d largest eigenvalues of the so-called local inverse

covariance matrix of the pdf estimate at that point, given by

Σ̂
−1

(x) = −Ĥ(x)f̂(x)−1 +∇f̂(x)∇f̂(x)T f̂(x)−2, (3.7)

where Ĥ(x) and ∇f̂(x) are the Hessian and gradient of the pdf estimate at x. Note that

Σ̂
−1

is the negative Hessian of the logarithm of f̂ . The main reason that the above definition

is attractive is its connection to the Gaussian distribution. If the underlying density has the

Gaussian distribution then the projection subspace coincides with the subspace spanned by

the principal components.

30



For the special case of the Gaussian distribution f̂ ∼ N(µ,Σ), we have

f̂(x) = CΣ exp
(
− x

TΣ−1x

2

)
,

∇f̂(x) = −f̂(x)Σ−1x,

Ĥ(x) = f̂(x)(Σ−1xxTΣ−1 −Σ−1),

where CΣ is the normalization factor. Then the local inverse covariance matrix in (3.7)

becomes constant and equal to the inverse covariance matrix, i.e., Σ̂
−1

(x) = Σ−1. The

subspace spanned by theD−d eigenvectors corresponding to theD−d largest eigenvalues

of Σ̂
−1

(x) coincides with the subspace spanned by the last D − d principal components.

Therefore, through projection into this subspace in each iteration, the SCMS algorithm tries

to find local maxima in the d-dimensional space (d-dimensional principal surface) spanned

by the first d principal components. The SCMS algorithm can be summarized as follows

1. Set ε > 0, j = 1, and initialize the SCMS algorithm to an arbitrary point y1.

2. Evaluate the mean shift vectorm(yj) using (3.5).

3. Evaluate the gradient, the Hessian matrix, and the local inverse covariance matrix

Σ̂
−1

given in (3.7) at yj . Perform the eigendecomposition of Σ̂
−1
j = Σ̂

−1
(yj) and

find its eigenvalues and eigenvectors.

4. Let V j = [v1, . . . ,vD−d] be the D × (D − d) matrix whose columns are the D − d

orthonormal eigenvectors corresponding to the D − d largest eigenvalues of Σ̂
−1
j .

5. Compute yj+1 = V jV
T
jm(yj) + yj .

6. Stop if ‖yj+1 − yj‖ < ε; otherwise increment j by 1 and go to step 2.
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Remark. In [96], the stopping rule ‖yj+1− yj‖ < ε was suggested as an alternative to the

recommended rule,
‖V T

j+1∇f̂(yj+1)‖
‖∇f̂(yj+1)‖

< ε

which is meant to check if the gradient is (nearly) orthogonal to the subspace spanned by

the columns of V j . However, this criterion seems to be problematic (e.g., the denominator

is zero if the algorithm starts at a stationary point). We will later consider the following

simpler stopping rule of a similar flavor:

6’. Stop if ‖V T
j+1∇f̂(yj+1)‖ < ε; otherwise increment j by 1 and go to step 2.

Typically, n instances of the SCMS algorithm are run, each time initialized to one of the

n data points. The resulting n output points are considered as a discrete approximation to

the underlying principal curve or surface; see the illustrative example in Figure 3.1. In both

the MS and the SCMS algorithms, the stopping threshold ε is set manually so that a good

tradeoff between running time and approximation accuracy is achieved. The problem of

selecting the bandwidth h for the MS algorithm is discussed in detail in [18], and variable-

bandwidth, locally-adaptive MS algorithms are introduced and investigated in [19]. The

bandwidth selection problem for the SCMS algorithm is discussed in detail in [96], but it is

not clear that the automatic rules suggested from the literature of kernel density estimation

are in any way optimal when applied in conjunction with the SCMS algorithm.
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Figure 3.1: (a) n = 600 data points were generated by adding 3-dimensional standard
Gaussian noise samples to 600 points uniformly sampled on a spiral in R3. (b) The output
of the SCMS algorithm using D = 3, d = 1, the Gaussian kernel with bandwidth h = 3,
and stopping threshold ε = 0.005.

33



Chapter 4

Theoretical Results

4.1 Preliminary Results

Let {yj}j=1,2,... denote the mode estimate sequence generated by the MS algorithm. As

mentioned before, it was proved in [18] that if the kernel K has a convex, differentiable,

and strictly decreasing profile k 1, then {f̂h,k(yj)}j=1,2,... is a monotonically nondecreasing

and convergent sequence. To prove the monotonicity of the sequence, the authors in [18]

assumed that yj = 0 and based on this assumption, they showed f̂h,k(yj+1) > f̂h,k(yj) for

an arbitrary j. In the following theorem, we relax the assumption yj = 0 and prove the

monotonicity and convergence of {f̂h,k(yj)}.

Theorem 4.1. If the kernel K has a convex, differentiable, and strictly decreasing profile

k, then the sequence {f̂h,k(yj)}j=1,2,... is monotonically increasing and convergent.

1Recall that profile k : [0,∞) → [0,∞) is a non-negative, non-increasing, and piecewise continuous
function that satisfies

∫∞
0
k(x)dx < ∞ and K(x) = ckk(‖x‖2), where ck is a normalization factor that

causes K(x) to integrate to one.
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Proof. The proof is a reproduction of the proof in [18], except yj 6= 0. Let {x1,x2, . . . ,xn}

denote the data set. Let yj 6= yj+1, we show f̂h,k(yj+1) > f̂h,k(yj). From (3.2), we have

f̂h,k(yj+1)− f̂h,k(yj) =
ck,D
nhD

[ n∑
i=1

k
(
‖
yj+1 − xi

h
‖2
)
−

n∑
i=1

k
(
‖
yj − xi

h
‖2
)]

≥ ck,D
nhD

n∑
i=1

k′
(
‖
yj − xi

h
‖2
)(
‖
yj+1 − xi

h
‖2 − ‖

yj − xi
h
‖2
)
,

(4.1)

where the last inequality comes from the convexity of the profile function k, i.e., k(x2) −

k(x1) ≥ k′(x1)(x2− x1). By expanding the terms in the right side of (4.1) and using (3.6),

we have

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck,D
nhD+2

n∑
i=1

k′
(
‖
yj − xi

h
‖2
)(
‖yj+1‖2 − ‖yj‖2 − 2(yj+1 − yj)Txi

)
,

=
ck,D
nhD+2

n∑
i=1

k′
(
‖
yj − xi

h
‖2
)(
‖yj+1‖2 − ‖yj‖2 − 2(yj+1 − yj)Tyj+1

)
,

= − ck,D
nhD+2

n∑
i=1

k′
(
‖
yj − xi

h
‖2
)(
‖yj+1 − yj‖2), (4.2)

where yT denotes the transpose of y. Since the profile function k is strictly decreasing, the

right side of (4.2) is strictly greater than zero. Therefore, the sequence {f̂(yj)}j=1,2,... is

strictly increasing and for an arbitrary j we have f̂(yj+1)− f̂(yj) > 0.

The mode estimate sequence {yj} is bounded sequence. The boundedness and mono-

tonicity of {f̂(yj)} implies the convergence. �

The authors of [18] claimed that the mode estimate sequence {yj}j=1,2,... is a Cauchy se-

quence, which is not true in general. This error was also pointed out in [84]. From (4.2),
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we have

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck,D
nhD+2

‖yj+1 − yj‖2
n∑
i=1

g(‖
yj − xi

h
‖2), (4.3)

where g(x) = −k′(x). If k(x) is a convex and strictly decreasing function such that

0 < |k′(x)| for all x ≥ 0, then g(x) is positive and decreasing on [0,∞). Let M(j) =

min{g
(
‖yj−xi

h
‖2
)
, i = 1, . . . , n}. Since yj lies in the convex hull C of the data set

{x1, . . . ,xn}, we have M(j) ≥ g(( a
h
)2), where a is the diameter of C. Let ϕ = g(( a

h
)2).

Hence, the above equality implies

f̂h,k(yj+1)− f̂h,k(yj) ≥
ck,D
hD+2

‖yj+1 − yj‖2ϕ. (4.4)

Therefore, we have

(
f̂h,k(yj+1)− f̂h,k(yj)

) hD+2

ϕck,D
≥ ‖yj+1 − yj‖2 ≥ 0. (4.5)

Since f̂h,k(yj+1) is a convergent sequence, the limit of the left side of the above inequality

converges to zero. Therefore, the following limit relation holds

lim
j→∞
‖yj+1 − yj‖ = 0. (4.6)

Combining the above result with (3.4) and (3.6) gives

lim
j→∞
∇f̂h,k(yj) = 0. (4.7)

According to the definition of the mean shift vectors, the mode estimate sequence

36



{yj}j=1,2,... is always in the convex hull of the data set, i.e., yj ∈ C, j = 1, 2, . . .. There-

fore, {yj} is a bounded sequence satisfying the above limit. Despite the claim in [18], the

last two properties are not enough to prove the convergence of {yj}j=1,2...,. For example,

consider the sequence {zj}j=1,2,... ∈ R2 defined as follows

zj =
(

sin(2π

j∑
k=1

1

k
), cos(2π

j∑
k=1

1

k
)
)
, j = 1, 2, . . .

The above sequence is bounded and satisfies the inequality

‖zj − zj+1‖ ≤ 2π
1

j + 1
.

The left side is the length of the chord connecting two consecutive members of the se-

quence, and the right side is the geodesic distance along the unit circle between those two

members. It can be observed that the right side of the above inequality goes to zero as

j →∞, but {zj} is not a convergent sequence.

4.2 The MS Algorithm with the Gaussian Kernel

In this section, we consider the MS algorithm with the Gaussian kernel. The Gaussian ker-

nel has been widely used in various applications, and its properties have been extensively

studied in the literature. We show that for the MS algorithm with the Gaussian kernel, all

the stationary points of the estimated pdf are inside the convex hull of the data set. We

also find a sufficient condition to have isolated stationary points. Later in this chapter we

prove that if the stationary points of the estimated pdf are isolated then the mode estimate

sequence generated by the MS algorithm converges.
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4.2.1 Stationary points are inside the convex hull of the data set

Let xi ∈ RD, i = 1, . . . , n be the input data. From (3.2), the estimated pdf using the

Gaussian kernel is given by f̂(x) = c
∑n

i=1 k(‖(x − xi)/h‖2), where k(x) = exp(−x/2)

and c = (2π)−D/2/(nhD). Let C denote the convex hull of the data set {x1, . . . ,xn}.

The authors in [101] showed that all the stationary points of the estimated pdf using the

Gaussian kernel are inside the convex hull of the data set. In the following lemma, we prove

the same result for a wide class of kernels K with a strictly decreasing and differentiable

profile k.

Lemma 4.1. If a kernel function K has a strictly decreasing differentiable profile k, such

that |k′(x)| > 0 for all x > 0, then the gradient of the estimated pdf using the kernel K

and bandwidth h is nonzero outside the convex hull of the data set.

Proof. Let t 6∈ C be an arbitrary point outside the convex hull C. Since the input data is a

finite set, C is a bounded closed set. Therefore, there exists x0 ∈ C such that x0 has the

smallest distance to t

d(x0, t) = inf
x∈C

d(x, t) > 0,

where d(x, t) = ‖x−t‖. Since the profile function k is strictly decreasing and |k′(x)| > 0,

we have k′(x) < 0, x ∈ (0,∞). The estimated pdf and the gradient of the estimated pdf at

point t 6∈ C are computed as follows

f̂(t) = c

n∑
i=1

k(‖(t− xi)/h‖2)

∇f̂(t) =
c

h2

n∑
i=1

2(t− xi)k′(‖(t− xi)/h‖2). (4.8)
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The directional derivative Du in the direction of the unit vector u = x0−t
‖x0−t‖ at point t is

given by

Du(t) = ∇f̂(t) · u, (4.9)

where x · y denotes the inner product of x,y ∈ RD. We will show that Du(t) is positive.

Because the profile k is a strictly decreasing function, we have

k′(‖(t− xi)/h‖2) < 0.

It follows from (4.8) that it suffices to show that (t− xi) · u < 0, i = 1, . . . , n. According

to the separating hyperplane theorem [94], there exists a hyperplane P with normal vector

u = x0−t
‖x0−t‖ that contains x0 and separates t and C. The hyperplane P is defined by

P = {x : (x− x0) · (x0 − t) = 0}

= {x : x · (x0 − t) = c},

where c = x0 · (x0 − t). Let P− and P+ be the half spaces separated by the hyperplane

P such that C ⊂ P+ and t ∈ P−, i.e., P+ = {x : x · (x0 − t) ≥ c} and P− = {x :

x · (x0 − t) ≤ c}. Consider a new hyperplane P̂ with the same normal vector u that

contains t. The new hyperplane P̂ is parallel to P and is defined by

P̂ = {x : (x− t) · (x0 − t) = 0}

= {x : x · (x0 − t) = ĉ},

where ĉ = t · (x0 − t). The half spaces P̂− and P̂+ corresponding to P̂ are P̂+ = {x :
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x · (x0− t) ≥ ĉ} and P̂− = {x : x · (x0− t) ≤ ĉ}. Since C ⊂ P+, we have x · (x0− t) ≥ c

for x ∈ C. Since ĉ + ‖x0 − t‖2 = c, we obtain x · (x0 − t) > ĉ for all x ∈ C. The last

inequality naturally holds for x = xi, i = 1, . . . , n, so that

xi · (x0 − t) > c− (x0 − t) · (x0 − t),

which is easily seen to be equivalent to

(xi − t) · (x0 − t) > 0, i = 1, . . . , n.

From the above inequality and equations (4.8) and (4.9), we conclude that Du(t) > 0 for

all t 6∈ C. Therefore, the gradient of the estimated pdf cannot be zero outside of the convex

hull, so all stationary points of f̂(x) must lie in C. �

Lemma 4.1 guarantees that for a certain class of kernel functions, e.g., Gaussian kernel,

all the stationary points of the estimated pdf lie inside the convex hull C.

4.2.2 Isolated stationary points using the Gaussian kernel

Now, we are in a position to introduce a sufficient condition for the stationary points

of the estimated pdf using the Gaussian kernel to be isolated. The probability density

estimate using the Gaussian kernel with the covariance matrix Σ is given by f̂(x) =

cN
∑n

i=1 exp(− (x−xi)TΣ−1(x−xi)
2

), where cN > 0 is a normalization factor to ensure that
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f̂(x) integrates to one. The gradient and Hessian matrix of the estimated pdf are given by

∇f̂(x) = cN

n∑
i=1

Σ−1(xi − x) exp(−(x− xi)TΣ−1(x− xi)/2),

H(x) = cN

n∑
i=1

Σ−1(−I + (x− xi)(x− xi)TΣ−1) exp(−(x− xi)TΣ−1(x− xi)/2).

Let

C(x) =
n∑
i=1

exp(−(x− xi)TΣ−1(x− xi)/2),

A(x) =
n∑
i=1

(x− xi)(x− xi)T exp(−(x− xi)TΣ−1(x− xi)/2).

Let S denote the set of stationary points of the estimated pdf, i.e., S = {x∗ : ∇f̂(x∗) =

0}. Since f̂(x) has partial derivatives of arbitrarily high order, a well-known theorem of

differential geometry states that if the Hessian matrix at the stationary points is of full

rank, the stationary points are isolated [50]1. We provide a sufficient condition for Σ such

that the Hessian matrix at the stationary points has full rank. If the Hessian matrix H is

not full rank, then there exists a vector v 6= 0 such that Hv = 0. This is equivalent to

1This result can also be deduced from the inverse function theorem. The inverse function theorem states
that if f : Rn → Rn is a continuously differentiable function on some open set containing a ∈ R, such that
|Jf(a) 6= 0|, where J denotes the Jacobian of f , then there is some open set V containing a and an open W
containing f(a) such that f : V →W has a continuous inverse f−1 :W → V which is differentiable for all
y ∈ W . Therefore, if f denotes the pdf estimate, then the Hessian matrix is the Jacobian of the gradient of
f . If the Hessian matrix is of full rank at some stationary point x∗, then its determinant is nonzero and based
on the inverse function theorem the stationary point x∗ is isolated.
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A(x)Σ−1v = C(x)v. By expanding the last equality, we obtain

(
xxTC(x)− 2x

n∑
i=1

xTi exp(−(x− xi)TΣ−1(x− xi)/2)

+
n∑
i=1

xix
T
i exp(−(x− xi)TΣ−1(x− xi)/2)

)
Σ−1v = C(x)v. (4.10)

By definition, a stationary point x∗, we have

x∗ =

∑n
i=1 xi exp(− (x∗−xi)TΣ−1(x∗−xi)

2
)

C(x∗)
. (4.11)

Then, equation (4.10) at a stationary point x∗ can be simplified to

B(x∗)︷ ︸︸ ︷(
− x∗x∗TC(x∗) +

n∑
i=1

xix
T
i exp(−(x∗ − xi)TΣ−1(x∗ − xi)/2)

)
Σ−1v = C(x∗)v.

(4.12)

The above equality implies that if the Hessian matrix is not of full rank at a stationary point

x∗, then C(x∗) is an eigenvalue ofB(x∗)Σ−1.

Let Σ be a symmetric, positive definite matrix. We show that if Σ satisfies a certain

condition, then C(x∗) can never be an eigenvalue of B(x∗)Σ−1. We need the following

lemmas.

Lemma 4.2. Let Σ be a nonsingular D ×D matrix and x ∈ RD. Then, for any x ∈ RD,

xxTΣ−1 has rank one and its only nonzero eigenvalue λ̂ is xTΣ−1x.

Lemma 4.3. Let ‖.‖ be any matrix norm on CD×D. Let λ1, λ2, . . . , λD be the (real or
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complex) eigenvalues ofA ∈ CD×D. Then, we have

ρ(A) ≤ ‖A‖,

where ρ(A) is the spectral radius ofA and is defined as ρ(A) = maxi |λi|.

Lemma 4.4. Let A be a D × D matrix. Let A∗ denotes conjugate transpose of A. Then

A∗A andAA∗ have the same eigenvalues.

Lemma 4.5. Let A be a D ×D Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λD.

Then

max
x6=0

xTAx

‖x‖2
= λ1.

Lemma 4.6. [113] Let A and B be two D × D symmetric matrices. Then we have the

following inequality

λmax(A+B) ≤ λmax(A) + λmax(B),

where λmax denotes the largest eigenvalue.

The spectral norm of a D ×D matrixA induced by L2 vector norm is given by [60]

‖A‖2 = max
‖x‖=1

‖Ax‖ =
√
λmax(A

∗A),
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where λmax denotes the largest eigenvalue of A∗A. Note that A∗A is a positive semi-

definite matrix, therefore λmax ≥ 0. Using the triangle inequality for norm of any two

D ×D matricesA andB, we have ‖A+B‖ ≤ ‖A‖+ ‖B‖ [60]. Using Lemma 4.3 and

triangle inequality for spectral norm, we have

ρ(B(x∗)Σ−1) ≤ ‖B(x∗)Σ−1‖2

= ‖ − x∗x∗TC(x∗)Σ−1 +
n∑
i=1

xix
T
i exp(−(x∗ − xi)TΣ−1(x∗ − xi)/2)Σ−1‖2

≤ ‖x∗x∗TC(x∗)Σ−1‖2 +
n∑
i=1

‖xixTi exp(−(x∗ − xi)TΣ−1(x∗ − xi)/2)Σ−1‖2

= C(x∗)‖x∗x∗TΣ−1‖2 +
n∑
i=1

exp(−(x∗ − xi)TΣ−1(x∗ − xi)/2)‖xixTi Σ−1‖2.

(4.13)

Using Lemma 4.4 for ‖xixTi Σ−1‖2, i = 1, 2, . . . , n, we have

‖xixTi Σ−1‖2 =

√
λmax(Σ

−1xixTi xix
T
i Σ−1)

=

√
λmax(xixTi Σ−1Σ−1xixTi )

=

√
λmax(xixTi Σ−2xixTi )

= ai

√
λmax(xixTi )

= ai
√
‖xi‖2

= ai‖xi‖, (4.14)

where ai =
√
xTi Σ−2xi and ‖xi‖2 is the largest eigenvalue of xixTi . Combining (4.13)
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and (4.14), we obtain

ρ(B(x∗)Σ−1) ≤ C(x∗)a∗‖x∗‖+
n∑
i=1

exp(−(x∗ − xi)TΣ−1(x∗ − xi)/2)ai‖xi‖

≤ C(x∗)a∗‖x∗‖+ amax‖xmax‖
n∑
i=1

exp(−(x∗ − xi)TΣ−1(x∗ − xi)/2)

= C(x∗)a∗‖x∗‖+ amax‖xmax‖C(x∗)

≤ C(x∗)a∗‖xmax‖+ amax‖xmax‖C(x∗), (4.15)

where a∗ =
√
x∗TΣ−2x∗, amax = maxi ai, and ‖xmax‖ = maxi ‖xi‖. Let ‖x∗‖2 = b

(b is unknown but less than ‖xmax‖2), then from Lemma 4.5, a∗ ≤
√
bλmax(Σ

−2) ≤

‖xmax‖λmax(Σ−1).

If ‖xmax‖2λmax(Σ−1) + amax‖xmax‖ < 1, then we observe that ρ(B(x∗)Σ−1) <

C(x∗). This meansC(x∗) cannot be an eigenvalue ofB(x∗)Σ−1, which contradicts (4.12).

Therefore, we have the following result.

Lemma 4.7. Let xi ∈ RD, i = 1, . . . , n. Let ‖xmax‖2 denote the largest norm among all

xi, i = 1, . . . , n. Let amax = maxi
√
xTi Σ−2xi. Let f̂(x) denote the estimated pdf using

the Gaussian kernel with the covariance matrix Σ. If ‖xmax‖2λmax(Σ−1)+amax‖xmax‖ <

1, then the Hessian matrix of the estimated pdf at the stationary points is of full rank and

the stationary points are isolated.

Remark. Note that for the special case that Σ = h2I , using Lemma 4.2 we know the only

nonzero eigenvalue of xixTi /h
2, i = 1, . . . , n is equal to xTi xi/h

2. Then using Lemma 4.6
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we obtain

λ1(B(x∗)/h2) ≤ λ1(−x∗x∗TC(x∗)/h2) +
n∑
i=1

λ1(xix
T
i exp(−(x∗ − xi)T (x∗ − xi)/(2h2))/h2)

≤
n∑
i=1

xTi xi/h
2 exp(−(x∗ − xi)T (x∗ − xi)/(2h2))

≤ ‖xmax‖2C(x∗)/h2 (4.16)

where λ1(A) denotes the largest eigenvalue ofA and ‖xmax‖2 = maxi=1,...,n ‖xi‖2.

If ‖xmax‖2/h2 < 1, then we observe from (4.16) that λ1(B(x∗)Σ−1) < C(x∗). This

means C(x∗) cannot be an eigenvalue of B(x∗)Σ−1, which contradicts equation (4.12).

Therefore, we have the following result

Lemma 4.8. Let xi ∈ RD, i = 1, . . . , n. Let f̂(x) denote the estimated pdf using the

Gaussian kernel with the covariance matrix Σ = h2I . Let ‖xmax‖2 = maxi=1,...,n ‖xi‖2.

If ‖xmax‖2/h2 < 1, then the Hessian matrix of the estimated pdf at the stationary points is

of full rank and the stationary points are isolated.

Using a fully parameterized Σ increases the computational complexity of the Gaussian

pdf estimate. Furthermore, finding a covariance matrix Σ that satisfies the sufficient con-

dition in Lemma 4.7 is a challenging task, especially when the size of the input data set

is large. Therefore, in practice in order to reduce the computational cost, the covariance

matrix Σ is chosen either as a diagonal matrix Σ = diag(h21, h
2
2, . . . , h

2
D) or proportional to

the identity matrix Σ = hI . The main advantage of the latter case it that only one param-

eter h, the bandwidth, needs to be set in advance. When the covariance matrix is chosen

proportional to the identity matrix, Lemma 4.8 states that the modes of the Gaussian pdf
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estimate are isolated if h2 ≥ ‖xmax‖2. Choosing a large value of the bandwidth h gen-

erates a smooth pdf estimate with low estimation variance, at the expense of introducing

a large bias into the estimation [111]. The latter is not practically desirable, since a large

bias will lead to a poor estimation of the pdf that results in an inaccurate mode estimate.

Furthermore, it has been shown that conditions for the consistency1 of such a Gaussian pdf

estimate are hn → 0 and nhn → ∞, as n → ∞ [111]. It is clear that the first consistency

condition contradicts the sufficient condition given in Lemma 4.8.

Therefore, the theoretical conditions provided by Lemma 4.7 and Lemma 4.8 for a

Gaussian pdf estimate to have isolated stationary points, are of limited use in practice.

Proof of Lemma 4.2. First, we show that xxTΣ−1 has rank one. Since Rank(Σ) = D and

Rank(xxT ) = 1, we have [89]

Rank(xxTΣ−1) ≤ min{Rank(xxT ),Rank(Σ−1)} = 1. (4.17)

Also, according to the Sylvester’s rank inequality [25], we have

Rank(xxTΣ−1) ≥ Rank(Σ−1) + Rank(xxT )−D = 1. (4.18)

Using (4.17) and (4.18), Rank(xxTΣ−1) = 1.

Assume y is an eigenvector of xxTΣ−1 so that xxTΣ−1y = λy. If λ 6= 0, then

λy = (xTΣ−1y)x, so y is a constant multiple of x. Setting y = x, we obtain that

xTΣ−1x is the only nonzero eigenvalue of xxTΣ−1. �

Proof of Lemma 4.3. Let λ be an arbitrary eigenvalue ofAwith corresponding normalized

1A consistent pdf estimate f̂(x) is an estimator having the property that as the number of data points
increases indefinitely, the resulting sequence of estimates converges in probability to f(x).
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eigenvector v. i.e.,Av = λv. Using definition of a matrix norm, we have

‖A‖ = max
‖x‖=1

‖Ax‖ ≥ ‖Av‖ = |λ|‖v‖ = |λ|.

Hence

‖A‖ ≥ ρ(A).

�

Proof of Lemma 4.4. The matrices A∗A and AA∗ are symmetric, therefore they have

real eigenvalues. Let λ be an eigenvalue of AA∗ with corresponding eigenvector v, i.e.,

AA∗v = λv. We show λ is also an eigenvalue ofA∗A. Let u = A∗v, then we obtain

Au = λv ⇒ A∗Au = λA∗v = λu.

That means λ is also an eigenvalue of A∗A. Using the same argument we can show that

if λ̂ is an eigenvalue of A∗A, then it is also an eigenvalue of AA∗. Therefore A∗A and

AA∗ have the same eigenvalues. �

Proof of Lemma 4.5. From the spectral decomposition we obtain A = V ΛV T , where

V = [v1,v2, . . . ,vD] and Λ = diag(λ1, . . . , λD). Let u = V Tx. Then x 6= 0 implies

that u 6= 0, and we obtain

xTAx

‖x‖2
=
uTΛu

xTx
=

∑D
i=1 λiu

2
i∑D

i=1 u
2
i

≤ λ1

�
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4.3 Convergence Proof when the Set of Stationary Points

is Finite

Assuming that the stationary points are isolated, then the total number of stationary points

of the estimated pdf inside the convex hull C cannot be infinite. Since the stationary points

are inside the closed and bounded set C, an infinite number of stationary points would have

a convergent subsequence whose limit would not be isolated. By continuity, the limit point

is also a stationary point and it is not isolated, which contradicts the fact that each stationary

point is isolated. Hence, the number of stationary points is finite.

Next, we show that when the number of stationary points of the estimated pdf is fi-

nite, then the mode estimate sequence {yj}j=1,2,... is a convergent sequence. We prove the

following theorem

Theorem 4.2. Let xi ∈ RD, i = 1, . . . , n. Assume that the stationary points of the esti-

mated pdf are isolated. Then the mode estimate sequence {yj}j=1,2,... converges.

Proof. Let C denote the convex hull of the data set {x1, . . . ,xn}. Let S denote the set of

stationary points of the estimated pdf f̂h,k, i.e., S =
{
x∗i : ‖∇f̂h,k(x∗i )‖ = 0

}
. Let ζ be the

smallest distance between the points in S, i.e., ζ = min{‖x∗i − x∗j‖ : x∗i ,x
∗
j ∈ S, i 6= j}.

Since S is finite we have ζ > 0. Let {yj}j=1,2,... be the mode estimate sequence generated

by the MS algorithm. From the definition, it is clear that the mode estimate sequence

{yj}j=1,2,... is always inside the convex hull C. From (4.7), we have

lim
j→∞
∇f̂h,k(yj) = 0. (4.19)
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This implies that the norm of the difference between two consecutive mode estimates con-

verges to zero. Hence, there exists N1 > 0 such that ‖yj+1 − yj‖ < ζ
3

for all j ≥ N1.

Assume S = {x∗1, . . . ,x∗M} and define B(x∗i , ζ/3) as the open ball of radius ζ/3 cen-

tered at x∗i . Then the gradient of the estimated pdf outside of these balls is nonzero, i.e.,

∇f̂h,k(yj) 6= 0, yj 6∈ B(x∗i , ζ/3), i = 1, 2, . . . ,M . If these open balls are removed from

the convex hull of the data set, then the remaining set is compact. The norm of the gradient

is a continuous function and attains its minimum value, say c, over this compact set. From

(4.19), we can find N2 such that ‖∇f̂h,k(yj)‖ < c for all j ≥ N2. Thus for j ≥ N2,

yj cannot be outside
⋃M
i=1B(x∗i , ζ/3). Letting N = max{N1, N2}, we will prove that

for all j > N , if yj ∈ B(xi, ζ/3) then yj+1 ∈ B(xi, ζ/3). We know that for j ≥ N ,

yj+1 ∈
⋃M
i=1B(x∗i , ζ/3). Assume yj+1 ∈ B(x∗k, ζ/3), k 6= i. Then by the triangle

inequality

‖x∗k − x∗i ‖ = ‖yj+1 − yj+1 + x∗k − x∗i + yj − yj‖

≤ ‖yj+1 − yj‖+ ‖yj − x∗i ‖+ ‖x∗k − yj+1‖.

Since by definition of ζ , ‖x∗k − x∗i ‖ ≥ ζ , and by assumption ‖yj − x∗i ‖ ≤ ζ/3, and

‖yj+1 − x∗k‖ ≤ ζ/3, we have

‖yj+1 − yj‖ ≥ ‖x∗k − x∗i ‖ − ‖yj − x∗i ‖ − ‖x∗k − yj+1‖

≥ ζ − ζ

3
− ζ

3

=
ζ

3
.

This contradicts that ‖yj+1 − yj‖ < ζ
3
. Therefore if yj ∈ B(x∗i , ζ/3), then yj+1 ∈

B(x∗i , ζ/3) for all j ≥ N . Since yj ∈
⋃M
i=1B(x∗i , ζ/3) for all j ≥ N , we obtain that

50



there is an index i such that yj ∈ B(x∗i , ζ/3) for all j ≥ N . Since ‖∇f̂h,K(yj)‖ → 0 and

x∗i is the unique zero of ‖∇f̂h,K‖ in B(x∗i , ζ/3), by the continuity of ‖∇f̂h,K‖ we have

limj→∞ yj = x∗i . �

Theorem 4.2 guarantees the convergence of the mode estimate sequence when the num-

ber of modes of the estimated pdf is finite or, equivalently, when the stationary points of the

estimated pdf are isolated. Lemma 4.8 also provides sufficient conditions to have isolated

stationary points.

4.4 Convergence of the MS Algorithm in the One-Dimensional

Case

The following result considers the special case D = 1, which may admittedly be of limited

interest in applications.

Proposition 4.1. For D = 1 the mode estimate sequence {yj}j=1,2,... generated by the MS

algorithm using the profile k(x) = e−x associated with the Gaussian kernel converges to a

stationary point of f̂(x).

Proof. SinceK(x) = c e−x
2 , the derivative of the kernel pdf estimate, f̂ ′(x), is proportional

to
n∑
i=1

(xi − x) exp
(
−(x− xi)2

h2

)
,

which is easily seen to be a real analytic function that is not constant on R. Hence the set of

stationary points S = {x ∈ R : f̂ ′(x) = 0} has no limit points. However, S is a bounded
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set since one clearly has S ⊂ [m,M ], where m = min1≤i≤n xi and M = max1≤i≤n xi,

implying that S is finite. Thus {yj} converges to a point in S by Theorem 4.2. �

Remark. Note that the proof for Proposition 4.1 cannot be generalized for a high-dimensional

case, since a real analytic non-constant function from RD to R (D > 1) can have infinity

many stationary points inside a compact set.

Proposition 4.1 guarantees the convergence of the mode estimate sequence in the one-

dimensional space when the MS algorithm uses the Gaussian kernel. When the kernel

function is not Gaussian, the convergence result in the one-dimensional space still holds,

but the convergence proof is longer than in the previous case. The following lemma shows

the convergence of the MS algorithm in one dimension with a differentiable, convex, and

strictly decreasing profile function.

Theorem 4.3. Let X = {x1, x2, . . . , xn} denote the input data. Let f̂h,k(x) denote the

estimated pdf using a kernel K with a differentiable, convex, and strictly decreasing pro-

file k and a bandwidth h. Then the mode estimate sequence generated by the mean shift

algorithm converges.

Proof. From (4.6) and (4.7), we have

lim
j→∞
|yj+1 − yj| = 0, (4.20)

lim
j→∞

f̂
′

h,k(yj) = 0. (4.21)

Now we consider the case that f̂ ′h,k(xi) 6= 0,∀xi ∈ X . Then there exists εi > 0 such

that f̂ ′h,k(x) is nonzero in the closed interval centered at xi with radius εi, denoted by
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I[xi, εi], i = 1, . . . , n. Let ε = min{εi, i = 1, . . . , n}. Since f̂ ′h,k(x) is continuous,

it achieves its minimum absolute value over the compact set
⋃n
i=1 I[xi, ε], so let c =

minx∈⋃ni=1 I[xi,ε]
|f̂ ′h,k(x)|. By assumption, it is clear that c > 0. From (4.20) the sequence

{|yj+1 − yj|}j=1,2,... converges to zero. Therefore, for every ε/2 > 0, there exists a con-

stant N1(ε/2) > 0 such that for all j greater than N1(ε/2), the difference between two

consecutive mode estimates becomes less than ε/2, i.e., |yj+1 − yj| < ε/2,∀j > N1(ε/2).

Furthermore, there exists N2 such that for all j greater than N2 the estimated derivative

function along the mode estimates becomes less than c, i.e., f̂ ′h,k(yj) < c,∀j > N2. Let

N = max{N1(ε/2), N2}. Then, we have

∀j > N : yj 6∈
n⋃
i=1

I[xi, ε], yj − ε/2 < yj+1 < yj + ε/2. (4.22)

Let j > N and, without loss of generality, assume yj+1 ≥ yj . We show that yj+2 ≥ yj+1,

and hence for j > N the mode estimate sequence will be a non-decreasing sequence. We

define sets D1, D2, and D3 as follows

D1 = {xi : yj > xi}, D2 = {xi : yj+1 > xi > yj}, D3 = {xi : xi > yj+1}.

Let g(x) = −k′(x). Since g is a decreasing function, then the following inequality holds

∑
xi∈D3

(xi − yj+1)g
(
|xi − yj|2

)
≤
∑
xi∈D3

(xi − yj+1)g
(
|xi − yj+1|2

)
. (4.23)

Using (3.6), we obtain (we may assume without loss of generality that h = 1)

∑
xi∈D3

(xi − yj+1)g
(
|xi − yj|2

)
=

∑
xi∈D1∪D2

(yj+1 − xi)g
(
|xi − yj|2

)
. (4.24)
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Replacing the left side of (4.23) with the right side of (4.24), we get

∑
xi∈D1∪D2

(yj+1 − xi)g
(
|xi − yj|2

)
≤
∑
xi∈D3

(xi − yj+1)g
(
|xi − yj+1|2

)
. (4.25)

Adding
∑

xi∈D1∪D2
(xi − yj+1)g(|xi − yj+1|2) to both sides of equation (4.25) gives

∑
xi∈D1∪D2

(yj+1 − xi)g(|xi − yj|2) +
∑

xi∈D1∪D2

(xi − yj+1)g(|xi − yj+1|2) (4.26)

≤
∑
xi∈D3

(xi − yj+1)g(|xi − yj+1|2) +
∑

x∈D1∪D2

(xi − yj+1)g(|xi − yj+1|2).

From the properties given in (4.20) and (4.21), we observe that D2 is an empty set. There-

fore, the left side of the above inequality can be simplified to

∑
xi∈D1∪D2

(yj+1 − xi)g(|xi − yj|2) +
∑

xi∈D1∪D2

(xi − yj+1)(|xi − yj+1|2)

=
∑
xi∈D1

(yj+1 − xi)
(
g(|xi − yj|2)− g(|xi − yj+1|2)

)
≥ 0.

Hence, the right side of (4.26) is non-negative and we have

0 ≤
∑

xi∈D3∪D2∪D1

(xi − yj+1)g(|xi − yj+1|2).

This is equivalent to yj+2 ≥ yj+1. Therefore, for all j > N if yj+1 ≥ yj then yj+2 > yj+1.

By induction, for all j > N the sequence {yj} will be a monotonically increasing and

hence convergent sequence.
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For the case that yj+1 ≤ yj , we define sets D1, D2, and D3 as follows

D1 = {xi : xi < yj+1}, D2 = {xi : yj+1 < xi < yj}, D3 = {xi : xi > yj}.

Then, similar to the previous case, it is straightforward to show that yj+2 ≤ yj+1. Therefore,

the mode estimate sequence {yj} for all j > N becomes a monotonically decreasing and

convergent sequence.

It remains to prove the monotonicity of the mode estimate sequence for the case that

for some xi ∈ X , f̂ ′h,k(xi) = 0. Let f̂ ′h,k(x
∗
i ) = 0 for some x∗i ∈ X . If there exists N , such

that for all j > N there is not any x∗i between yj and yj+1, then the previous results can be

applied to show that the mode estimate sequence is a monotone sequence. Otherwise, we

assume that such N does not exist. We need the following lemma.

Lemma 4.9. Consider a fixed point iteration defined by yj+1 = m(yj), where m is a

differentiable function. Let x∗ denote a solution of the fixed point problem (if it exists),

i.e., x∗ = m(x∗), and let ej denote the distance between the fixed point x∗ and yj , i.e.,

ej = |x∗ − yj|. Then there exists δ such that ej+1 = ej|m
′
(δ)| and yj < δ < x∗ if yj < x∗

and x∗ < δ < yj if x∗ < yj .

Proof. Using the mean-value theorem, there exists δ such that yj < δ < x∗ (without loss

of generality, assume yj < x∗) and m(x∗)−m(yj) = (x∗ − yj)m′(δ). Then, we have

ej+1 = |x∗ − yj+1| = |m(x∗)−m(yj)|

= |(x∗ − yj)m′(δ)|

= |(x∗ − yj)||m′(δ)|

= ej|m′(δ)|.
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This shows that ej+1 = ej|m′(δ)|. �

Using Lemma 4.9, there are three possibilities for m′(x∗) that we check separately:

1. If |m′(x∗)| < 1, then there exists an interval I = [x∗ − ε, x∗ + ε] such that for all

x ∈ I , |m′(x)| < 1. Hence, if the sequence {yj} falls in I , then it converges to

x∗ using lemma 4.9 (since ej becomes a decreasing sequence and finally converges

to zero). If the sequence {yj} never falls in this interval, then there exists N large

enough such that for all j > N , x∗ is not between yj and yj+1, which contradicts the

assumption we have made about the non-existence of such N .

2. If |m′(x∗)| > 1, then there is a closed interval I = [x∗ − ε, x∗ + ε] such that for all

x ∈ I , we have |m′(x)| > 1. For some j, let the sequence yj fall in I . Otherwise, we

can find large enough N such that for all j > N there is no x∗i between yj and yj+1,

which contradicts our assumption about the non-existence of such N . We choose j

large enough such that |yj+1 − yj| < ε/2. There are four possibilities as follows

(a) x∗ − ε ≤ yj < x∗ − ε
2
,

(b) x∗ − ε
2
≤ yj < x∗,

(c) x∗ ≤ yj < x∗ + ε
2
,

(d) x∗ + ε
2
≤ yj < x∗ + ε.

Let x∗ − ε ≤ yj < x∗ − ε
2
. It is clear that in this case ek+1 > ek, since for all x ∈ I ,

m′(x) > 1. This means that the Euclidean distance between yj+1 and x∗ is greater

than the Euclidean distance between yj and x∗ (yj+1 is also on the left side of the x∗

because it is assumed that |yj+1− yj| < ε/2). Therefore, in this case the sequence yj

can never fall in the interval I ′ = [x∗ − ε
2
, x∗ + ε

2
]. Hence, for all j > N , there is no
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x∗i between yj and yj+1, which contradicts our assumption about the non-existence

of such N .(Case 4 can be treated in exactly the same way).

Let x∗− ε
2
≤ yj < x∗. Also for all x ∈ I , m′(x) > 1. It is obvious that the Euclidean

distance between yj+1 and x∗ is greater than the Euclidean distance between yj and

x∗ (yj+1 can be on the left or right side of the x∗). In this case, after some finite

iterations (let us say M iterations), the cases 1 or 4 will happen and then it can be

concluded for all j > N + M , the sequence yj 6∈ I ′ = [x∗ − ε
2
, x∗ + ε

2
], which

contradicts our assumption about the non-existence of such N . The third case can be

treated similar to the second case.

3. If |m′(x∗)| = 1, then there are three possibilities as follows:

(a) ∃I around x∗ such that ∀x ∈ I , m′(x) > 1. This case was discussed before.

(b) ∃I around x∗ such that ∀x ∈ I , m′(x) < 1. This case was discussed before.

(c) ∃I around x∗ such that ∀x ∈ I and x < x∗, m′(x) < 1. Also, ∀x ∈ I and

x > x∗, m′(x) > 1. In this case, the mode estimate sequence either converges

to x∗ or there is a closed interval I ′ around x∗ such that yj never falls in that

interval. Convergence of the latter case is guaranteed according to the above

discussion.

This completes the convergence proof of the sequence in one dimension.

�
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4.5 Modified MS Algorithm

Lemma 4.8 states that the modes of the estimated pdf are isolated if h2 > ‖xmax‖2. Un-

fortunately, this condition is not practically useful. The bandwidth h, as a function of the

sample size n, is chosen to satisfy limn→∞ h(n) = 0 to guarantee the asymptotic consis-

tency of the pdf estimate [111]. Although choosing the bandwidth h based on the lower

bound provided by Lemma 4.8 guarantees isolated stationary points, we get a poor estima-

tion of the pdf that results in an inaccurate mode estimate. Unfortunately, a general and

useful condition that leads to a set of isolated stationary points of the estimated pdf for

commonly used kernels (such as the Gaussian kernel) still seems to be missing (although

[14] makes the plausible claim, without proof, that the set of stationary points is always

finite for the Gaussian kernel).

We slightly modify the MS algorithm to guarantee the convergence of the mode esti-

mate sequence. The modified MS (MMS) algorithm is given as follows

(a) Initialize the mean shift vector to be one of the observed data.

(b) Compute the mean shift vectorm(yj) =
∑n
i=1 xig

(
‖
yj−xi
h
‖
)

∑n
i=1 g
(
‖
yj−xi
h
‖
) − yj .

(c) Update the mode estimate as ŷj+1 = yj +m(yj).

(d) Find the closest data point to the mode estimate yj+1 = arg minx∈{x1,...,xn} ‖ŷj+1−x‖.

(e) Iterate (b), (c), and (d) until the convergence occurs.

Similar to the MS algorithm, the sequence {f̂(yj)}j=1,2,... generated by the modified

MS algorithm is an increasing and convergent sequence. In fact, we have
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Lemma 4.10. The density estimate values along the sequence of output values of the mod-

ified MS algorithm is a non-decreasing and convergent sequence.

Proof. Let yj 6= yj+1. Then from (4.1) we have

f̂(yj+1)− f̂(yj) ≥
ck,D
nhD+2

n∑
i=1

k′
(
‖
yj − xi

h
‖2
)(
‖yj+1 − xi‖2 − ‖yj − xi‖2

)
. (4.27)

By the triangle inequality, we have

‖yj+1 − ŷj+1‖ ≤ ‖ŷj+1 − xi‖+ ‖yj+1 − xi‖, i = 1, 2, . . . , n. (4.28)

Using (4.27) and (4.28), we obtain

f̂(yj+1)− f̂(yj) ≥
ck,D
nhD+2

n∑
i=1

k′
(
‖
yj − xi

h
‖2
)
×

×
(
‖yj+1 − ŷj+1‖2 − ‖ŷj+1 − xi‖2 − 2‖ŷj+1 − xi‖‖yj+1 − xi‖ − ‖yj − xi‖2

)
.

(4.29)

From the definition of yj+1 we have ‖yj+1 − ŷj+1‖2 − ‖ŷj+1 − xi‖2 < 0, therefore the

right side of (4.29) is always positive and we have f̂(yj+1)− f̂(yj) > 0. Since {f̂(yj)} is

bounded, it is a convergent sequence. �

The modified MS algorithm starts from one of the observed data, and in each iteration

the mode estimate is assigned to be one of the data points. The algorithm stops when

two consecutive mode estimates become equal, i.e., yj+1 = yj for some j ≥ 1. From

Lemma 4.10, in each iteration each data point can be assigned to the mode estimate at most

one time, otherwise f̂(yj+k) = f̂(yj), k ≥ 1, which contradicts Lemma 4.10. Since the

data set is finite, after a finite number of iterations the convergence occurs.
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4.6 Theoretical Results for the SCMS Algorithm

In [96] extensive simulation results on artificial data demonstrated the ability of the algo-

rithm to effectively approximate principal curves and surfaces. As well, promising applica-

tions of the SCMS algorithm to time-varying MIMO channel equalization and time series

signal denoising were discussed. We note here that an algorithm for manifold denoising

that is somewhat similar in spirit to SCMS but is based on the blurring version of the MS

procedure was given by Wang and Carreira-Perpiñán [124]. On the theoretical side, [96]

claimed that the SCMS algorithm will converge to a point on the principal surface with

appropriate dimensionality. This claim was based on the assumption that the MS algorithm

always converges, which as we discussed, has so far been unproven. In addition, it does not

seem clear at all that the convergence of MS actually implies the convergence of SCMS,

let alone its convergence to the principal surface. The next proposition states three conver-

gence results relating to the density estimate values produced by the SCMS algorithm and

the two stopping criteria presented earlier [49].

Proposition 4.2. Assume the kernel pdf estimator f̂ is defined as in (3.2) with a radially

symmetric kernel K having profile k which is positive, non-increasing, and convex, such

that the function t 7→ k(t2) is twice continuously differentiable at all t ∈ R. Let {yj} denote

the sequence of points generated by the SCMS algorithm with arbitrary initialization. Then

the following hold:

(i) The sequence {f̂(yj)} is non-decreasing and convergent.

(ii) lim
j→∞
‖yj+1 − yj‖ = 0.

(iii) lim
j→∞
‖V T

j ∇f̂(yj)‖ = 0.
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Proof. The subspace constrained mean shift sequence {yj} is defined recursively by

yj+1 = V jV
T
jm(yj) + yj, (4.30)

where

m(yj) =

∑n
i=1 xig(

∥∥yj−xi
h

∥∥2)∑n
i=1 g(

∥∥yj−xi
h

∥∥2) − yj, (4.31)

with y1 being an arbitrary starting point. Here g(x) = −k′(x), where k is the profile

of kernel K and V j is the D × (D − d) matrix having orthonormal columns that are

eigenvectors corresponding to the largest eigenvalues of the local inverse covariance matrix

Σ̂
−1

evaluated at yj .

Since the profile k is bounded, the sequence {f̂(yj)} is bounded, so it suffices to show

that the sequence is non-decreasing to prove convergence. The convexity of k implies that

k(t2)− k(t1) ≥ g(t1)(t1 − t2) for all t1, t2 ≥ 0, where g = −k′. This and the definition of

f̂ yield

f̂(yj+1)− f̂(yj) =
c

nhD

n∑
i=1

(
k
(∥∥∥yj+1 − xi

h

∥∥∥2 )− k(∥∥∥yj − xi
h

∥∥∥2)
≥ c

nhD+2

n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )(‖yj − xi‖2 − ‖yj+1 − xi‖2
)

= Cj

n∑
i=1

pj(i)
(
‖yj − xi‖2 − ‖yj+1 − xi‖2

)
, (4.32)

where

pj(i) =
g
(
‖yj−xi

h
‖2
)∑n

k=1 g
(
‖yj−xk

h
‖2
) , i = 1, . . . , n

and

Cj =
c

nhD+2

n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 ).
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Since g(t) > 0 for all t ≥ 0, pj(1), . . . , pj(n) are well defined, positive, and sum to 1. In

fact, the term “mean shift” derives from the fact that the mean shift of yj , given in (3.5),

can be written in terms of an expectation, namely

m(yj) =
n∑
i=1

pj(i)(xi − yj) = E[Zj],

where Zj is an RD-valued random vector with discrete distribution given by Pr(Zj =

xi − yj) = pj(i), i = 1, . . . , n. Thus, letting T j = V jV
T
j , the SCMS update step can be

rewritten as

yj+1 − yj = T jm(yj) = T jE[Zj]. (4.33)

Let W j be a D ×D matrix representing any orthogonal projection onto the null space of

T j . Then x = T jx + W jx for all x ∈ RD, and T jx and W jy are orthogonal for all

x,y ∈ RD. We can rewrite the last sum in (4.32) as follows

n∑
i=1

pj(i)
(
‖xi − yj‖2 − ‖xi − yj+1‖2

)
= E

[
‖Zj‖2

]
− E

[∥∥Zj − T jE[Zj]
∥∥2]

= E
[
‖W jZj‖2 + ‖T jZj‖2

]
− E

[
‖W jZj‖2 +

∥∥T jZj − T jE[Zj]
∥∥2]

= E
[
‖T jZj‖2

]
− E

[∥∥T jZj − E[T jZj]
∥∥2]

=
∥∥E[T jZj]

∥∥2 = ‖yj+1 − yj‖2,

where in the penultimate equality we applied the identity E[Z2] = Var[Z] + (E[Z])2,

which is valid for real random variables with finite variance, to the components of T jZj .
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Combining this with (4.32), we obtain

f̂(yj+1)− f̂(yj) ≥ Cj‖yj+1 − yj‖2, (4.34)

where Cj > 0, which implies that {f̂(yj)} is non-decreasing and thus convergent, proving

part (i) of the proposition.

To prove part (ii), we note that k(x) > 0 for all x ≥ 0 implies that f̂(y1) > 0, so part (i)

yields min{f̂(yj) : j ≥ 1} = f̂(y1) > 0. But this in turn implies that {yj} is a bounded

sequence, since otherwise it would have a subsequence {yjk} such that limk→∞ ‖yjk‖ =∞

which, in view of limx→∞ k(x) = 0, would give limk→∞ f̂(yjk) = 0, contradicting our

uniform positive lower bound on the f̂(yj).

In view of the above, there exists R > 0 such that ‖yj − xi‖ ≤ R for all j ≥ 1 and

i = 1, . . . , n. Since g = −k′ is non-increasing on [0,∞), we obtain

Cj =
c

nhD+2

n∑
k=1

g
(∥∥∥yj − xk

h

∥∥∥2) ≥ c

hD+2
g
(R2

h2

)
= C,

where C > 0 since g(x) > 0 for all x ≥ 0. Thus (4.34) implies

‖yj+1 − yj‖2 ≤ C−1
(
f̂(yj+1)− f̂(yj)

)
,

and since lim
j→∞

(
f̂(yj+1)− f̂(yj+1)

)
= 0 by part (i), we obtain lim

j→∞
‖yj+1 − yj‖ = 0.
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Finally, to show (iii) we note that by definition (2.1) of f̂ ,

∇f̂(yj) =
2c

nhD+2

n∑
i=1

(xi − yj)g
(∥∥∥yj − xi

h

∥∥∥2 )
=

2c

nhD+2

[
n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )][∑n
i=1 xig(‖xi−yj

h
‖2)∑n

i=1 g(‖xi−yj
h
‖2)

− yj

]

=
2c

nhD+2

[
n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )]m(yj).

Therefore,

‖V T
j ∇f̂(yj)‖ =

2c

nhD+2

[
n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )] ‖V T
jm(yj)‖.

SinceV j has orthonormal columns andT j = V jV
T
j , we have ‖T jm(yj)‖ = ‖V T

jm(yj)‖.

This and (4.33) yield

‖V T
j ∇f̂(yj)‖ =

2c

nhD+2

[ n∑
i=1

g
(∥∥∥yj − xi

h

∥∥∥2 )]‖yj+1 − yj‖

so part (iii) follows from part (ii) and the fact that the conditions on k ensure that g = −k′

is bounded.

�

Remarks

(a) Parts (i) and (ii) of the proposition are analogous to what is proved in Theorem 1 of

[18] for the MS algorithm, with some proof ideas being similar. All three statements

indicate (but by no means prove) the ability of the SCMS algorithm to converge to the

principal surface of dimension d. In particular, (i) is related to the “ridge” property
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of locally defined principal curves and surfaces, (ii) and (iii) provide useful stopping

criteria, while (iii) is related to the fact that at any point y of Pd one must have

V (y)T∇f̂(yj) = 0, where V (y) is the D × (D − d) matrix whose columns are the

D − d orthonormal eigenvectors corresponding to the D − d largest eigenvalues of

Σ̂
−1

(y).

(b) The differentiability condition on the profile k ensures that f̂ is twice continuously

differentiable so that all quantities used in the SCMS updates are well defined no mat-

ter how the algorithm is initialized. The condition that the kernel K is integrable and

the conditions on k imposed in the proposition imply that k is bounded, its derivative

k′ is nondecreasing and negative on [0,∞), and both k(x) and k′(x) converge to zero

as x→∞. The profile k(x) = e−x of the widely used Gaussian kernel satisfies these

conditions.

(c) At the price of complicating the notation, the proof can straightforwardly be extended

to more general kernel density estimates of the form

f̂(x) =
c

nhD

n∑
i=1

k

(∥∥∥x− xi
h

∥∥∥2
Ki

)
,

where ‖y‖2Ki
= yTKiy, with Ki, i = 1, . . . , n being symmetric and positive def-

inite D × D matrices. The potential usefulness of considering such more general

estimates, which may account better for anisotropy and local scale information in the

data sample, has been argued in [84].
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4.7 Modified SCMS Algorithm

An inspection of the proof of Proposition 4.2 shows that all three statements remain valid

if V j , j = 1, 2, . . ., is an arbitrary sequence of D × (D − d) matrices having orthonormal

columns. Thus for the convergence results to hold, V j does not have to be the matrix whose

columns are theD−d orthonormal eigenvectors corresponding to the largest eigenvalues of

Σ̂
−1

(yj). Of course, for the outputs of the algorithm to be meaningful the columns of V j

should be (nearly) orthogonal to the gradient of f̂ at points on the d-dimensional principal

surface of f̂ . The choice of Σ̂
−1

was motivated in [96] by Definition 3.1 and the connec-

tion to principal components when the underlying pdf is Gaussian. In this case the local

inverse covariance matrix (of the Gaussian pdf, not estimated from data) is just the inverse

covariance matrix of the Gaussian pdf up to a constant at any point with eigendirections

the principal component directions. In practice, the density estimate f̂ is never Gaussian so

the use of Σ̂
−1

seems less well motivated for the SCMS algorithm than simply using the

estimated Hessian Ĥ , which is a more natural choice in the context of Definition 3.1, as

well as requiring slightly fewer operations to compute. At points x on the d-dimensional

principal surface of f̂ , the gradient ∇f̂(x) is orthogonal to exactly D − d eigenvectors of

Σ̂
−1

(x) and to exactly D − d eigenvectors of Ĥ(x), and these two sets of eigenvectors

are the same (see [96]). The eigenvalues of Ĥ(x) associated with these eigenvectors are

−f̂(x) times the corresponding eigenvalues of Σ̂
−1

(x) and so we form V j from the D−d

eigenvectors of Ĥ(yj) corresponding to the D − d smallest eigenvalues of Ĥ(yj).

In this section, we compare the use in the SCMS algorithm of Σ̂
−1

, Ĥ , and two local

estimates (local to yj) of the covariance matrix of f̂ due to Wang and Carreira-Perpiñán

[124]. In the resulting three variations of the original SCMS algorithm, the mean shift
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vectors and output updates are computed using (3.6) and Step 5 of the SCMS algorithm,

respectively, but instead of the local inverse covariance matrix in (3.7), three different ma-

trices are used. Let {y1
j , . . . ,y

n
j } denote the set of outputs after the jth iteration, where y(i)

j

is the output of the algorithm when it is initialized to the ith data point xi, i = 1, . . . , n. In

the jth iteration, the proposed matrices at a point x (set to one of the points y(i)
j ) are [49]

(i) The Hessian of f̂ ,

Ĥ(x) =
c

nh2+D

n∑
i=1

(
−I +

2(x− xi)(x− xi)T

h2

)
exp

(
−‖x− xi‖

2

2h2

)
,

where c is the kernel profile normalization factor and I is the D ×D identity matrix;

(ii) The estimated local covariance matrix using the κ nearest data points,

Σ̂κ(x) =
1

κ− 1

∑
xi∈Nκ(x)

(xi −mκ(x))(xi −mκ(x))T ,

where Nκ(x) is the set of the κ nearest neighbors of x in the observed data set

{x1, . . . ,xn}, andmκ(x) is the average over members of Nκ(x);

(iii) The estimated local covariance matrix using the κ nearest outputs,

Σ̂κ,j(x) =
1

κ− 1

∑
y
(i)
j ∈Nκ,j(x)

(y
(i)
j −mκ,j(x))(y

(i)
j −mκ,j(x))T ,

whereNκ,j(x) is the set of the κ nearest neighbors ofx among the outputs {y1
j , . . . ,y

n
j }

at the jth iteration and mκ,j(x) is the average over members of Nκ,j(x). In this case

we update all the outputs in each iteration.

67



For each matrix above the matrix V j at Step 4 of the SCMS algorithm is given by

V j = [vd+1, . . . ,vD],

where vi, i = d+ 1, . . . , D are the D− d eigenvectors corresponding to the D− d smallest

eigenvalues. The projection step and termination criterion are the same as in Steps 5 and 6,

respectively, in the SCMS algorithm. Proposition 4.2 guarantees that each of the resulting

three SCMS algorithm variations stops after a finite number of iterations.

The projection of the MS vectors onto the subspace spanned by the eigenvectors of

the Hessian matrix corresponding to the D − d smallest eigenvalues complies with Defi-

nition 3.1, since a point x is located on the d-dimensional principal surface if the gradient

at x is orthogonal to the D − d smallest eigenvectors of the Hessian at x and the cor-

responding eigenvalues are negative [37]. The matrices in (ii) and (iii) follow Wang and

Carreira-Perpiñán [124]. There the authors computed the blurred MS vectors using the

blurring version of the MS algorithm [13] and then a corrector projective step is computed

to constrain the motion to be orthogonal to the underlying manifold.

Although using only the κ nearest neighbors instead of the whole data set to estimate the

projection matrix does not change the theoretical complexity in each iteration, in practice

with a finite data set the running time significantly reduces. A good value of κ will in

general depend on the structure of the underlying manifold. In our simulations we chose

κ to be between 4 and 6 percent of the number of observations, but setting κ in general is

beyond the scope of this paper. We note that the authors in [124] suggest that κ typically

should grow sublinearly with the sample size n.

In the rest of this section, we present a simulation example using the original SCMS al-

gorithm and our three variations on the two and three-dimensional spiral and two-dimensional
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circle. The input data are generated as

xi = ui + ei, i = 1, . . . , n,

where the ui’s are independently and uniformly selected on the two or three-dimensional

spiral or circle, called the generative curve, and the e′is are independent, zero mean spher-

ical Gaussian random vectors of appropriate dimension, independent of the ui’s and with

component variance σ2. We used ε = 0.01 in the stopping criterion in Step 6 of the SCMS

algorithm in all runs. For the two-dimensional spiral we used n = 1000 data samples,

σ2 = 1 for the noise variance, h = 2 for the bandwidth of the kernel density estimator, and

κ = 50 nearest neighbors for computing the two variations of the local covariance matrix.

For the three-dimensional spiral we used n = 600, σ2 = 0.6, h = 3, and κ = 40. For

the two-dimensional circle we chose n = 500, σ2 = 0.4, h = 0.35, and κ = 40. For

performance evaluation we computed the average squared Euclidean distance between the

output points and the closest points on the generative curve, and the average running time,

in seconds. All simulations were run using Matlab on a desktop computer with an Intel

Core i7-870 processor.

Table 4.1 shows the results for the two and three-dimensional spirals and two-dimensional

circle using the original SCMS algorithm and the three variations using the Hessian, the

local covariance matrix using the original data points (Cov. 1), and the local covariance

matrix using the output points in each iteration (Cov. 2) in place of the inverse covari-

ance matrix. Performance in terms of closeness to the generative curve is similar for all 4

variations though, interestingly, use of the local covariance matrices gives no worse perfor-

mance. In terms of runtime, the local covariance matrices perform significantly better, as

expected. Adaptive optimization of the local neighborhood size κ should yield improved
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Table 4.1: Performance results for the two, three-dimensional spirals, and circle.
2-d Spiral SCMS Hessian Cov. 1 Cov. 2
Running time (sec.) 11.34 11.34 3.91 3.85
Av. Squared Euclidean Dis-
tance

0.074 0.075 0.077 0.077

3-d Spiral SCMS Hessian Cov. 1 Cov. 2
Running time (sec.) 109.89 111.56 19.53 17.89
Av. Squared Euclidean Dis-
tance

0.273 0.299 0.152 0.152

2-d Circle SCMS Hessian Cov. 1 Cov. 2
Running time (sec.) 22.900 23.011 7.490 6.950
Av. Squared Euclidean Dis-
tance

0.789 0.788 0.739 0.719

performance. Figures 4.1, 4.2, and 4.3 show the generative curve, the simulated data points,

and the output points from the four versions of the algorithm, for the two-dimensional and

the three-dimensional spirals and two-dimensional circle, respectively. All four versions of

the algorithm show similar performance visually.
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Figure 4.1: The blue points are n = 1000 samples uniformly selected on the two dimen-
sional spiral generative curve, the red points are the outputs of each algorithm, and the black
points are the observed data points generated by adding independent, zero mean Gaussian
noise to the points on the generative curve.
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Figure 4.2: The blue points are n = 600 samples uniformly selected on the three dimen-
sional spiral generative curve, the red points are the outputs of each algorithm, and the black
points are the observed data points generated by adding independent, zero mean Gaussian
noise to the points on the generative curve.
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Figure 4.3: The blue points are n = 500 samples uniformly selected on the three dimen-
sional spiral generative curve, the red points are the outputs of each algorithm, and the black
points are the observed data points generated by adding independent, zero mean Gaussian
noise to the points on the generative curve.
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4.8 Sequential Data and Effect of the New Samples

In the standard SCMS algorithm, it is assumed that the entire data set is given in advance

and new observations cannot be added to the data set during the process. However, when

the SCMS algorithm is used over data sets in real world applications, we may confront

difficult situations where a complete set of the observations is not available in advance.

For example, in applications such mobile robotics, data are presented as a stream and all

of the data are not available beforehand. Consider also a situation where the SCMS algo-

rithm has converged, but new observations become available. Running the algorithm with

augmented data set will change the location of the output points. Thus, the effect of the

new observations on the output needs to be studied. When the new observations are added

to the data set, if the SCMS algorithm is run on the updated data set there is no way to

update the previous output points by just looking at the incoming observations. Running

the SCMS algorithm on the entire data set is time consuming and increases the complexity,

which prevents the algorithm from quickly responding to the new incoming data. In this

section, we propose an adaptive version of the SCMS algorithm that can update the output

points on the principal curve/surface by observing the new data sequentially.

4.8.1 Adaptive SCMS algorithm

When the new observations are available, it is clear that they have insignificant effect on

the data points that are far from them. Therefore, we can consider the effect of the new

samples just on their neighbors in a certain neighborhood and assume that the rest of the

output points do not change. In other words, instead of running the SCMS algorithm on
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the entire data set, we just run the algorithm on the nearest neighbors. The output points

associated with the nearest points will be modified, but the rest of the output points remain

unchanged. The adaptive SCMS (ASCMS) algorithm is given as follows

(a) Let X = {x1, . . . ,xn} denote the data set. Run the SCMS algorithm on {x1, . . . ,xn}

and save the outputs.

(b) Let xnew denote the new incoming data. Find the k nearest neighbors of xnew in X .

Let xn1 , . . . ,xnk denote the k nearest neighbors of xnew.

(c) Run the SCMS algorithm on the new data set {xnew,xn1 , . . . ,xnk}.

(d) Repeat (b) and (c) as long as new observations are available.

We test the effectiveness of the ASCMS algorithm for adaptive estimation of a principal

curve on a noisy circle and noisy straight line. For the circle, the size of the initial data set

is five, and new observations are made from a noisy circle sequentially. The observations

have an additive form x + ε, where x is uniformly selected point on a unit circle and ε is

an additive Gaussian noise with independent components having zero mean and variance

0.1. The stopping threshold is set to 0.01. The outputs of the algorithm at certain times are

shown in Fig. 4.4. The blue points are the current input data, the red points represent the

outputs of the algorithm, and the green point is the new observed data. It can be observed

that as the number of the observed data increases, the output points move to on or near the

generative circle.

A similar experiment is repeated for a noisy straight line. Clean points on a straight

line with length 10 are uniformly selected and corrupted by adding a Gaussian noise with

variance σ2 = 1.2. The samples are given to the adaptive SCMS algorithm one by one.
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Fig. 4.5 shows the performance of the proposed adaptive SCMS algorithm at certain times.

The current input data are shown by blue points, the red points are the outputs of proposed

algorithm, and the new observed data is showed by a green point. It can be observed

from Fig. 4.5 that the output points gradually converge to a straight line as the number of

observed points increases.
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Figure 4.4: Output of the adaptive SCMS algorithm in certain times. The blue stars are
the current input data, the red circles are output of the algorithm and the green square
represents the new observed data.
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Figure 4.5: Output of the adaptive SCMS algorithm in certain times. The blue stars are
the current input data, the red circles are output of the algorithm and the green square
represents the new observed data.
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Chapter 5

Nonlinear Dimensionality Reduction for

Noisy Observations

5.1 Introduction

In certain situations, the observed high-dimensional data usually lie on or near a low-

dimensional manifold, embedded in the high-dimensional space, as a result of which the

observed data will have an intrinsically low-dimensional structure. For example, consider

a system that records gray scale images of an individual under different poses and lighting

conditions. Although the input dimensionality may be quite high, e.g., 4096 for 64 pixel

by 64 pixel images, the structure of interest of these images lies on a three-dimensional

manifold that can be parameterized by two pose variables and a lighting angle [116].

The goal of dimensionality reduction is to find a low-dimensional representation of high
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dimensional data while preserving the original information as much as possible. Many dif-

ferent algorithms have been introduced to accomplish this goal [66]. These can be classi-

fied as linear dimensionality reduction techniques and nonlinear dimensionality reduction

techniques. The most popular technique for linear dimensionality reduction is principal

component analysis (PCA) [69]. This technique assumes that the data can be well repre-

sented in a low-dimensional linear subspace of the high-dimensional space of the data. For

nonlinear underlying manifolds, different techniques have been proposed, including locally

linear embedding (LLE) [104], ISOMAP [116], kernel PCA [110], and maximum variance

unfolding (MVU) [125], among others.

In this chapter, we first briefly review a selection of the more popular dimensionality

reduction techniques. Then we show how the SMCS algorithm can be used to improve the

performance of the nonlinear dimensionality reduction techniques in the presence of noise.

5.2 Dimensionality Reduction Techniques

Principal component analysis, also known as the Karhunen-Loeve transform [123], is a

popular linear dimensionality reduction technique. PCA is a procedure that linearly trans-

forms correlated variables into uncorrelated variables called principal components such that

the first principal component has maximum variance, the second principal component has

maximum variance under the constraint that it be uncorrelated with the first one, and so on.

Assume that X ∈ RD is a vector consisting of D correlated zero mean random variables.

PCA projects X to a d dimensional (d� D) linear subspace such that the projection cap-

tures most of the variability in X . To find the first principal component, we wish to find a

unit vector b1 ∈ RD such that the variance of bt1X is maximized. If y = bt1X , then the
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variance is given by E(y2) = bt1Σb1, where Σ is the covariance matrix ofX . The standard

approach to find the unknown vector b1 is to use Lagrange multipliers [69]:

arg max
b,λ
{btΣb− λ(btb− 1)},

where λ is the Lagrange multiplier. Taking the derivative of the above cost function with

respect to b gives Σb = λb. Thus λ is the eigenvalue and b1 is the eigenvector of the co-

variance matrix Σ. It is straightforward to show that λ must be the largest eigenvalue of the

covariance matrix and therefore b1 is the eigenvector corresponding to the largest eigen-

value. In general, for any linear transformation y = btX , where b is a D× d (1 ≤ d ≤ D)

transformation matrix, the trace of the covariance matrix of y, tr(Σy) will be maximized if

b consists of the d eigenvectors of Σ corresponding to the d largest eigenvalues. In a similar

way, it can be shown that tr(Σy) is minimized if the transformation matrix b consists of the

d eigenvectors corresponding to the smallest eigenvalues of Σ [69]. To apply PCA to input

data x1, . . . ,xn, the covariance matrix Σ is replaced by the sample covariance matrix Σ̂.

The PCA algorithm can be summarized as follows

(a) The sample mean vector 1 µ̂ and the sample covariance matrix 2 Σ̂ of the input data

are computed and data are mean centered.

(b) The d eigenvectors corresponding to the d largest eigenvalues of Σ̂ are selected to

construct the D × d transformation matrix.

(c) The data samples are mapped to the d dimensional space using the transformation

matrix computed in (b).

1The sample mean µ̂ is defined by µ̂ =
∑n

i=1 xi/n.
2The sample covariance matrix is defined by Σ̂ =

∑n
i=1(xi − µ̂)(xi − µ̂)T /(n− 1)
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Another important property of PCA is that the projection onto the linear subspace min-

imizes the squared reconstruction error
∑n

i=1 ‖xi − x̂i‖2, where x̂i, i = 1, . . . , n is an

estimate of xi. In other words, the principal components of a set of data in RD provide a

sequence of best linear approximations to the data in d-dimensional subspace (d < D).

5.2.1 Locally linear embedding

Locally linear embedding (LLE) is a popular nonlinear dimensionality reduction technique

that is used for mapping high-dimensional data to a low-dimensional space [128]. The

LLE algorithm is based on a simple geometric intuition. The high-dimensional data, which

is assumed to lie near a smooth nonlinear manifold, is mapped into a lower dimensional

space such that the local structure in the data is preserved during the mapping [104]. In

other words, nearby points in the high-dimensional space remain near each other in the

low-dimensional space. The LLE algorithm first finds neighbors of each data point and

computes coefficients that best reconstruct that data sample using its neighbors. It is as-

sumed that each data point and its neighbors lie on or are close to a locally linear patch of

the underlying manifold. There are two popular ways to find the neighbors of each data

point, both of which are based on the Euclidean distance. The first is to select the k nearest

samples for each data point xi, where k is chosen by the user. The second is to choose the

neighbors of the data point xi to be the points inside a ball with fixed radius centered at xi.

The reconstruction of the i-th data point xi is computed as
∑

j∈NiWijxj , where Ni is

the set of indices of the neighbors of xi and the coefficients Wij satisfy
∑

j∈NiWij = 1

for each i = 1, . . . , n, where n is the number of input data points (note that i 6∈ Ni). The

reconstruction error is defined as
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e(W ) =
n∑
i=1

∥∥xi −∑
j∈Ni

Wijxj
∥∥2,

where W is the matrix whose (i, j)-th component is Wij . To find the optimal Wij , the

reconstruction error is minimized. The optimal coefficients Wij can be found by solving a

least squares problem [108].

In the final step, each high-dimensional x is mapped into a low-dimensional y such

that the local geometry in the high-dimensional space is preserved in the low-dimensional

space. This goal is achieved by minimizing the following cost function [104]

Φ(Y ) =
n∑
i=1

∣∣∣∣yi −∑
j∈Ni

Wijyj
∣∣∣∣2,

where yi ∈ Rd, i = 1, . . . , n is the representation of xi in the lower dimensional space and

Y is the d× n matrix whose ith column is yi, i = 1, . . . , n. In order to make the problem

well posed, it is assumed that the low-dimensional coordinates yi are centered around the

origin
∑n

i=1 yi = 0. In addition, to avoid degenerate solutions, the embedding vectors are

enforced to have unit covariance matrix 1
n

∑n
i=1 yiy

t
i = I (where I denotes d× d identity

matrix). The objective function can be reformulated as

Φ(y) =
n∑
i=1

n∑
j=1

Mijy
t
iyj,

where Mij = δij −Wij −Wji +
∑n

k=1WikWjk and Wij = 0 if j 6∈ Ni, i, j = 1, . . . , n. Let

M andW denote matrices whose (i, j)th elements are Mij and Wij , respectively. Then, it

is not difficult to show thatM = (I −W )t(I −W ). It is proved that the cost function is

minimized under the given constraints if the columns of Y T are the eigenvectors associated
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with the lowest eigenvalues of M [109]. The LLE algorithm is summarized in three steps

as follows

(a) Compute the k nearest neighbors of each data point.

(b) Compute the weight matrixW that best reconstruct each data point using its k nearest

neighbors.

(c) Find the d + 1 bottom eigenvectors 1 of (I −W )T (I −W ). Discard the eigenvector

[1, 1, 1, 1 . . .] corresponding to the eigenvalue zero.

(d) Set the qth row of Y to be the q smallest eigenvector.

5.2.2 ISOMAP

ISOMAP is a nonlinear dimensionality reduction technique that tries to preserve the intrin-

sic geometry of the data. In other words, the ISOMAP technique is looking for a map-

ping from the high-dimensional observation space into a low-dimensional feature space

that preserves the intrinsic metric structure of the observations as much as possible [115].

To achieve this goal, it tries to preserve the geodesic distances between data points. For

neighboring points, the Euclidean distance provides a good approximation to the geodesic

distance. For points far from one another, the geodesic distance can be approximated by

adding up the lengths of the paths between neighboring points. The neighborhood relations

are represented by a graph G such that data point i is connected to its neighbor j with

an edge of weight dX(i, j), which is the Euclidean distance between i and j [116]. The

1The eigenvectors corresponding to the d+ 1 smallest eigenvalues
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ISOMAP technique estimates the geodesic distance dM(i, j) between any point i and j by

computing the shortest path using distances dG(i, j) in the graph G. Simple algorithms,

such as Floyd-Warshall algorithm [41], can be employed to find the shortest path in the

graph G. The Floyd-Warshall algorithm finds the shortest path in the graph between data

points i and j, i, j = 1, . . . , n, i 6= j as an estimation of the geodesic distance. Let func-

tion P (i, j, k) return the shortest possible path from i to j using vertices only from the set

{1, 2, . . . , k} as intermediate points along the way. Now, having P (i, j, k), we can use a

recursive algorithm to find the shortest path from each i to each j using only vertices 1 to

k+ 1. The function P is initialized by P (i, j, 0) = dX(i, j), where dX(i, j) is the weight of

the edge between vertices i and j. We can find P (i, j, k + 1) using the following recursion

[21]

P (i, j, k + 1) = min{P (i, j, k), P (i, k + 1, k) + P (k + 1, j, k)}. (5.1)

The algorithm first computes P (i, j, 1) for all (i, j) pairs, then increases k by one, and

using (5.1), finds P (i, j, k + 1) for all (i, j) pairs. This process continues until k = n

and we have found the shortest path for all (i, j) pairs using intermediate vertices. The

shortest path can be considered as the estimated geodesic distance between all pairs in

the graph. The estimated geodesic distances construct a matrix of graph distances DG

whose (i, j)th element is dG(i, j). The final step of the ISOMAP technique is applying the

classical multidimensional scaling (MDS) [23] to the distance matrix DG to generate an

embedding of the data in a d (d < D) dimensional space. The cost function is defined by∑n
i=1

∑n
j=1(dG(i, j) − dY (i, j))2, where dY (i, j) denotes the Euclidean distance between

the transformed points in the lower dimensional space. Using the MDS algorithm [23], we

can find a representation of the data in the lower dimensional space such that the above cost

function is minimized. The ISOMAP technique can be summarized as follows
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(a) Construct the graph G by connecting points i and j if they are closer than some pre-

defined ε or if i is one of the k nearest neighbors of j. Set the edge lengths equal to

dX(i, j), which is the Euclidean distance between i and j.

(b) Initialize dG(i, j) = dX(i, j) if i, j are connected by an edge, otherwise set dG(i, j) =

∞.

(c) Use the Floyd-Warshall algorithm to find the shortest path distances between all pairs

of points in G. The matrix of final values DG will contain the estimated geodesic

distances between all pairs of points in G.

(d) Apply the MDS technique to the distance matrix DG to generate an embedding of the

data in a low-dimensional space.

5.2.3 Kernel PCA

Kernel PCA (KPCA) is an extension of the standard PCA, which has been used for feature

selection in a high-dimensional feature space. In KPCA, the principal components are

computed in a higher dimensional feature space that is related to the input space through

some nonlinear mapping. In other words, KPCA tries to find the low-dimensional latent

structure of the input data by nonlinearly mapping it to a higher dimensional space and

finding principal components in that space [103].

Let xi, i = 1, . . . , n be a set of mean centered observations in RD. Let Φ : RD →

RN be a mapping that transforms data samples into an N (N > D and N = ∞ is not

excluded) dimensional space, called feature space F. It is assumed that the transformed data

in the feature space are mean centered
∑n

i=1 Φ(xi) = 0. Let v and λ denote an arbitrary
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eigenvector and the corresponding eigenvalue of the covariance matrix in the feature space

F, represented by ΣF. Then, we have [110]

λ
n∑
i=1

αiΦ(xk)
tΦ(xi) =

1

n

n∑
i=1

αi
(
Φ(xk)

t

n∑
j=1

Φ(xj)
)(

Φ(xj)
tΦ(xi)

)
k = 1, . . . , n,

where αi, i = 1, . . . , n are computed from v =
∑n

i=1 αiΦ(xi). Let K be the inner product

matrix, also called the Gramian matrix, whose (i, j)th element is Φ(xi)
tΦ(xj). Then, the

last equality can be simplified as

nλKα = K2α,

where α = [α1, . . . , αn]t. The above equality is equivalent to Kα = nλα, which gives

us α [110]. The principal components are found by the projection of the transformed data

on the eigenvectors of the covariance matrix in the feature space. If vk denotes the kth

eigenvector of ΣF, then the nonlinear principal components in vk’s direction are computed

by

Φ(x)tvk =
n∑
i=1

αiΦ(xi)
tΦ(x).

The kernel trick makes it possible to compute the dot product in the feature space without

actually mapping the data into the feature space F. Since the feature space F is nonlin-

early related to the input space via Φ, the contour lines of the projection onto the principal

eigenvectors in F become nonlinear in the input space.

The KPCA can be summarized as follows

(a) Compute the inner product matrixK (Gramian matrix).
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(b) Find the nonzero eigenvalues and corresponding eigenvectors ofK (nλα = Kα).

(c) Find the nonlinear principal components by projecting the transformed data onto the

eigenvectors of the covariance matrix in the feature space.

The kernel PCA does not inherit all the advantages of the original PCA. For example, the

reconstruction of the data samples is not a trivial task in the KPCA. Data can be recon-

structed in the feature space F. However, finding the corresponding x in the initial space is

difficult and sometimes even impossible [66].

5.2.4 Maximum variance unfolding

Similar to the previous techniques, the maximum variance unfolding (MVU) algorithm is

based on simple geometric intuition. This algorithm tries to preserve distances and angles

between k nearest neighbors and pull apart the rest of the points by maximizing their total

variance [125]. Let xi and yi, i = 1, . . . n denote the input and output of the algorithm,

respectively. If xi and xj are themselves neighbors or common neighbors of another point

in the data set, then the local isometry is preserved if

‖xi − xj‖ = ‖yi − yj‖,

where yi and yj are corresponding embedded points in the lower dimensional space. The

MVU algorithm constructs a graph with n nodes such that each node is connected to its

k nearest neighbors (k is a parameter of the algorithm). The local geometry constraint

tries to preserve both lengths and angles between connected edges to the same node. To

achieve this goal, all neighbors of each node are connected and by preserving the distances
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along the edges in the new graph, both the angles and lengths in the original graph will

be preserved. To remove a translation degree of freedom, the outputs yi, i = 1, . . . , n

are forced to be centered on the origin,
∑n

i=1 yi = 0. The MVU algorithm tries to keep

neighbors together and pull non-neighbor points as far apart as possible. Let Dij denote

the Euclidean distance between xi and xj . Let K be the inner product matrix such that its

(i, j)-th element is given by Kij = ytiyj and ηij ∈ {0, 1} indicates whether there is a edge

between nodes i and j.

The MVU technique yields to the following optimization problem [125]

Maximize tr(K),

subject to
n∑
i=1

n∑
j=1

Kij = 0,

Kii − 2Kij +Kjj = Dij for all (i, j) with ηij = 1,

K is a symmetric, positive semi-definite matrix.

The above optimization problem is an example of semi-definite programming. There is a

large literature on efficiently solving these problems. As well, there are a number of tool

boxes. Outputs yi, i = 1, . . . , n can be recovered from the inner product matrix. If vα,i

denotes the ith element of the eigenvector corresponding to the eigenvalue λα, then the

(i, j)th element of the inner product matrix can be written as Kij =
∑n

α=1 λαvα,ivα,j . In

this case the ith element of yα corresponding to the xα is yα,i =
√
λαvα,i. The MVU

algorithm can be summarized as follows

(a) Compute k nearest neighbors for each data point and connect each input data to its
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neighbors as well as each neighbor to other neighbors of the same input.

(b) Compute the inner product matrix that is centered on the origin and preserves the dis-

tances of all edges in the graph.

(c) Compute the low-dimensional embedding from the top eigenvectors of the inner prod-

uct matrix learned by the semi-definite programming.

5.3 Nonlinear Dimensionality Reduction in the Presence

of Noise

Often it is reasonable to assume that the observed data set has an intrinsically low-dimensional

structure but is corrupted by some noise. In this case, applying common nonlinear dimen-

sionality reduction techniques, such as locally-linear embedding (LLE) [104], ISOMAP

[116], or kernel PCA [110] algorithms, on the noisy observations may not lead to a mean-

ingful low-dimensional representation of the data. When the observed noisy data are not

located on an underlying manifold of interest, we need first to estimate the points on the un-

derlying manifold before applying a dimensionality reduction technique. Principal curves

and surfaces provide a reasonable low-dimensional representation of data and can be used

as a preprocessing step before applying common nonlinear dimensionality reduction tech-

niques. As mentioned before, the SCMS algorithm has the capability to estimate principal

curves and surfaces. After this estimation step, one can apply dimensionality reduction

techniques to obtain a representation of the data in a low-dimensional space. To illustrate

how this works we used the SMCS algorithm as a preprocessing step before the LLE and

the ISOMAP.

90



5.3.1 The SMCS algorithm before the LLE

We selected 500 samples uniformly from a three-dimensional spiral. Then independent,

three-dimensional zero mean Gaussian noise with per component variance 0.7 is added to

those samples. Fig. 5.1 shows a scatterplot of the noisy observations and the output of

the SCMS algorithm. To assess the performance of the SCMS algorithm, we selected 12

clean data points from the spiral (the markers in Fig. 5.1 represent the selected points) and

applied the LLE algorithm [104] to obtain their one-dimensional representation. The three

dimensional spiral has an intrinsic dimensionality of one, thus we reduced the dimension

of the selected points to one. The second row in Fig. 5.2 shows the representation of

the selected clean points in one-dimensional space. Then we applied the LLE algorithm

to the estimates of these points computed as the output of the SCMS algorithm that was

run on the noisy data. The first row in Fig. 5.2 shows the representation of the estimated

points (output of the SCMS algorithm) after applying the LLE algorithm. The third row in

Fig. 5.2 is a one-dimensional representation of the noisy points after directly applying the

LLE algorithm. It can be observed from Fig. 5.1 and Fig. 5.2 that although the observed

data was corrupted by Gaussian noise, applying the LLE algorithm to the output of the

SCMS algorithm gives a one-dimensional representation very similar to that of the clean

data. On the other hand, applying the LLE algorithm directly to the noisy version of the

observed data changes the pairwise distances and the one-dimensional order of the points,

which is not desirable.

91



−4
−2

0
2

4

−4

−2

0

2

4
−20

0

20

40

60

80

Figure 5.1: Applying the SCMS algorithm on the noisy data in order to estimate the clean
data.The red points represent the output of the SCMS algorithm and the blue points are the
noisy data.

5.3.2 The SMCS algorithm before the ISOMAP

To demonstrate the effectiveness of the SCMS algorithm as a preprocessing step for non-

linear dimensionality reduction using ISOMAP, we uniformly selected 750 samples from a

two-dimensional spiral. The sample is corrupted by adding independent, two-dimensional

zero mean Gaussian noise with per component variance 0.7. Fig. 5.3 shows a scatterplot

of the noisy observations and the output of the SCMS algorithm. To show the performance

of the SCMS algorithm, we selected 10 clean data points from the spiral (the markers in
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Figure 5.2: The first row shows the output of the LLE algorithm when applied to the SCMS
estimates of the selected points.The second row shows the output of the LLE algorithm
applied to the clean data points. The third row shows the output of the LLE algorithm
applied directly to the noisy data points.

Fig. 5.3 represent the selected points) and applied the ISOMAP algorithm [116] to them to

obtain a one-dimensional representation. The intrinsic dimensionality of two-dimensional

spiral is one, thus we reduced the dimension of the selected points to one. The second row

in Fig. 5.4 shows the representation of the selected clean points in one-dimensional feature

space generated by ISOMAP. Then we applied the ISOMAP algorithm to the estimates of

the selected points computed as the output of the SCMS algorithm that was run on the noisy

data. The first row in Fig. 5.4 shows the representation of the estimated points (output of
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the SCMS algorithm) after applying the ISOMAP algorithm. We also directly applied the

ISOMAP algorithm on the noisy data points to find the one-dimensional representation of

them. The third row in Fig. 5.4 represents the one-dimensional representation of the noisy

points in the ISOMAP feature space. It can be observed from Fig. 5.3 and Fig. 5.4 that

although the observed data was corrupted by Gaussian noise, applying the ISOMAP al-

gorithm to the output of the SCMS algorithm gives a one-dimensional representation very

similar to that of the clean data. The order of the selected points and distance between

them are preserved. On the other hand, applying the ISOMAP algorithm directly to the

noisy version of the observed data changes pairwise distances and the one-dimensional

order of the selected points.
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Figure 5.3: Applying the SCMS algorithm on the noisy data in order to estimate the clean
data.The red points represent the output of the SCMS algorithm and the blue points are the
noisy data. The markers show the selected clean data points from the spiral
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Figure 5.4: The first row shows the output of the ISOMAP algorithm when applied to the
SCMS estimates of the selected points.The second row shows the output of the ISOMAP
algorithm applied to the clean data points. The third row shows the output of the ISOMAP
algorithm applied directly to the noisy data points.
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Chapter 6

New Applications of the MS and SCMS

6.1 Hough Transform

6.1.1 Introduction

The problem of detecting straight lines in digital images is of great importance in image

processing and machine vision. The detection of lines can be used in a variety of appli-

cations, such as object detection/recognition [93, 78, 26], data base navigation [75], target

tracking [59, 22], and camera calibration [118]. The classical Hough transform, introduced

by Hough [62], has been widely used in the image processing community as a technique

for detecting straight lines. The Hough transform basically implements a voting procedure

for all potential lines in an image, such that at the termination step the algorithm keeps

the lines with high voting scores. The original motivation for the algorithm was the de-

tection of straight lines in photographs obtained in cloud chambers [61]. Later the Hough

97



transform was extended to detect the position of shapes with a specified parametric form,

most commonly circles or ellipses [35][76]. In its extended form, the algorithm creates

meaningful groups of features that satisfy some parametric constraint. The transform was

popularized in the computer vision community in the 90s when Ballard revealed the po-

tential application of the Hough transform to detect arbitrary shapes [5]. In the rest of this

section we focus solely on the Hough transform for detecting straight lines; however the

given results can be generalized for finding parametric curves.

The main idea behind the algorithm is to consider sets of colinear points in an image

[64]. A set of image pixels that lie on a straight line can be described by y = mx + b,

where (x, y) denote the pixel’s location in the image. By considering the characteristics of

a straight line in terms of the slopem and the intercept b, for each pixel p there are infinitely

many straight lines passing through it. In other words, an arbitrary pixel p with coordinates

(x, y) on the image defines a bundle of straight lines in m− b space and each straight line

on the image maps to a single point in m − b space. Thus a single line connecting any

two arbitrary pixels p and q lies on the intersection of two of straight lines representing p

and q in m − b space. The main practical difficulty of the previous representation arises

for vertical lines, since the slope m becomes infinite. Duda and Hart [35] introduced an

alternative line parametrization, called normal parametrization, given by

ρ = x sin(θ) + y cos(θ), (6.1)

where ρ is the algebraic line distance from the origin and θ is the angle of the normal line.

The new ρ − θ space is called the Hough space [35]. Figure 6.1 illustrates ρ and θ for

an arbitrary line on the plane. The idea is the same as before: an arbitrary pixel p on the

image is mapped to all straight lines that pass through it. This yields a sine-like curve in

98



the Hough space. Then we have the following observations:
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Figure 6.1: The algebraic distance of the straight line from the origin is denoted by ρ and θ
is the angle of the normal line

• A pixel in the image corresponds to a sinusoidal curve in the Hough space.

• A point in the Hough space corresponds to a straight line in the image.

• Points lying on the same straight line in the image correspond to sinusoidal curves

passing through a common point in the Hough space.
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• Points lying on the same sinusoidal curve in the Hough space correspond to straight

lines passing through the same point in the image.

The above observations have been used to detect colinear points in an image. The com-

putational burden can be reduced considerably by specifying an acceptable error in ρ and

θ. To this end, the Hough space is quantized into finite intervals or accumulator cells. As

the algorithm runs, each pixel of the image is transformed into a discretized curve and

the accumulator cells that lie along this curve are incremented. The resulting peaks in the

accumulator array are the candidates to represent straight lines in the image. The Hough

transform algorithm for line detection can be summarized as follows

1. Find all edges in the image, e.g. using Canny edge detector [10].

2. Initialize all accumulator cells in Hough space to zeros.

3. Map edge points to the Hough space and increment corresponding accumulator cells.

4. Find the local maxima in the accumulator space. The local maxima represent the

straight lines in the image.

As mentioned before, quantizing the Hough space specifies an error in the values of ρ and

θ and in fact the major source of error comes from the finite size of the accumulator array.

In other words, the resolution of the accumulator determines the accuracy of the detected

lines. The cell size must not be too small, otherwise some votes will fall in the neighboring

bins, which will reduce the visibility of the main bin. The cell size must also not be too

big, since this would result in the generation of inaccurate lines. Furthermore, there exists

no criterion to guess the total number of the straight lines in an image. We usually define

a threshold and if the total number of votes for a cell is higher than the specified threshold,
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the cell represents a line in the image. The threshold is usually chosen heuristically and for

each specific problem it needs to be determined separately. In the rest of this section we

show how using the mean shift algorithm can address the above mentioned problems.

6.1.2 Proposed algorithm

The first step is similar to the original Hough transform technique. All the edges in the

image are found using an edge detector and the output is given as a binary (zero, one)

image. Each two edge pixels represent a possible straight line with a specific ρ and θ.

Therefore, if D denotes the total number of the edge pixels then each pixel generates D−1

points in the Hough space and the total number of points in the Hough space will be D ×

(D − 1)/2. The Hough space is not required to be quantized, hence the computed pair of

parameters (ρ, θ) is more precise than the Hough algorithm. The two-dimensional points in

the Hough space are given as input data to the mean shift algorithm. The algorithm starts

from the points in the Hough space and iteratively tries to estimate modes of the underlying

pdf. The output of the algorithm is a small set containing the modes of the estimated pdf.

Each mode represents a cluster corresponding to the set of all data points converging to that

mode. The modes with the highest number of converging data points will be our candidates

to represent the straight lines in the image. Instead of computing the Hough parameters for

all pairs of the edge pixels, which increases the computational cost, we can find (ρ, θ) pair

just for k nearest neighbors of each pixel. Intuitively, if two pixels are far from each other,

the probability that they fall in a line is not significant. The proposed algorithm can be

summarized as follows

1. Find all edges in the image, e.g. using Canny edge detector [10].
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2. For each edge pixel, find its k nearest neighbors.

3. Each edge pixel and its k nearest neighbors define k straight lines. Compute the pairs

of (ρ, θ) for these lines. If D denotes the total number of the edge pixels, then we

will have D × k points in the Hough space.

4. Apply the mean shift algorithm on the points in the Hough space and round the

outputs to the nearest integer.

5. The rounded outputs of the mean shift algorithm that attracted the highest number of

the data points are the most likely lines in the image space.

6.1.3 Simulation results

For the Hough transform in the following simulations the parameter θ, measured in degrees,

is quantized to 180 cells, −90 ≤ θ ≤ 90, and the parameter ρ is quantized into
√
N2 +M2

cells for a M × N image. The bandwidth h for the MS algorithm and the number of the

nearest neighbors k are set for each simulation separately. We first test the performance of

the proposed algorithm on simple binary images and then we perform simulations on gray

scale images.

• The input image is a 400× 400 binary image. We uniformly select 40 points on each

of the following lines y = x + 25, y = −0.1x + 50, and 20 points are uniformly

selected on each of y = 3.8x − 379, y = −0.2x + 224. We also randomly select

180 points from the image in order to have a total of 300 edge pixels. The bandwidth

h used in the MS algorithm is equal to 5 and for each edge pixel we computed its
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10 nearest neighbors (k = 10). Figure 6.2 shows the edge points and the detected

straight lines using the proposed method and the Hough transform. The detected

lines using the two algorithms may seem similar in Figure 6.2, but comparing the

detected values of (ρ, θ) with the exact values reveals that the proposed algorithm

generated more accurate results. Table 6.1 compares the computed values of the

pair (ρ, θ) using the two algorithms with their exact values. It can be observed that

computed (ρ, θ) using the proposed method is closer to the actual values. The bins

with the highest number of votes in the Hough space contain 41, 19, 12, 10, 7, 6, 6,

and 6 votes, which makes it difficult to guess the right number of straight lines. For

the proposed method, the first 8 dominant modes attract 134, 127, 92, 70, 30, 20, 20,

and 19 points. By observing the number of the attracted points for each mode, we

can guess that there are two large length lines and two lines of smaller length.

The proposed algorithm Hough Transform

Figure 6.2: The white pixels represent the selected points and the red lines are the detected
lines using the proposed algorithm and the Hough transform. The bandwidth h for the
proposed algorithm is 5 and for each pixel we computed its 10 nearest pixels.
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Table 6.1: Computed values of ρ and θ for each line using the proposed method and the
Hough transform.

Line 1 Line 2 Line 3 Line 4
Exact value of θ 84.29 -45.00 -14.74 78.69
θ using the MS 84 -45 -15 78
θ using the HT 85 -45 -11 75
Exact value of ρ 49.75 -17.67 -96.45 219.65
ρ using the MS 50 -18 -96 220
ρ using the HT 50 -19 -95 217

Table 6.2: The total number of votes for the bins with the highest votes and the total number
of the attracted points by the most attractive modes (vase).

Mode/Bin 1 2 3 4 5 6 7 8 9 10 11 12
The proposed algorithm 1758 1632 1571 1477 684 521 517 492 258 257 245 223
The Hough Transform 98 88 87 76 38 33 28 28 27 26 26 25

• The input is a binary image. For the proposed algorithm we choose the bandwidth

h = 5 and the number of the nearest neighbors for each pixel is set to be 20. Table 6.2

shows the cells with the highest number of votes and the mode estimates that attract

the highest number of points. From Table 6.2 it can be observed for the proposed

algorithm that the number of the attracted points decreases after the eighth mode

so we can predict that the number of the straight lines should be eight. Note that

this observation cannot be made using the output of the Hough transform. Figure 6.3

shows the first eight detected lines using the proposed technique and using the Hough

transform. It is clear from Figure 6.3 that the proposed algorithm has successfully

detected eight straight lines but the Hough transform has missed one of them.

• The input is a gray scale image containing seven straight lines separating black and

white areas. Figure 6.4 shows the original image and the extracted edges. We select
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Original image The proposed algorithm Hough Transform

Figure 6.3: The image on the left is the original binary image, the middle image shows the
detected lines using the proposed technique and the right image shows the detected lines
using the Hough transform

Table 6.3: The total number of votes for the bins with the highest votes and the total number
of the attracted points by the most attractive modes (eight lines).

Mode/Bin 1 2 3 4 5 6 7 8 9 10 11 12
The proposed algorithm 4959 4881 4471 3570 3150 2520 1055 700 360 306 86 72
The Hough Transform 181 150 131 113 111 99 45 41 29 20 20 19

the bandwidth h to be 5, and the number of the nearest neighbors is set to be 20.

Table 6.3 shows the local peaks in the Hough space and the modes with the highest

number of attracting points. The number of attracted points decreases after the eights

mode, which indicates that the number of the straight lines in the image should be

seven. Figure 6.5 shows the detected lines using the proposed algorithm and using

the Hough transform.

• The input image is a gray scale box. We first apply an edge detector to extract the

edge pixels. Figure 6.6 shows the box and the extracted edges. The bandwidth h for

the mean shift algorithm is 5, and for each pixel we compute its 20 nearest neighbors.

The local peaks in the Hough space and the modes with the highest number of the
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Original image Extracted edges

Figure 6.4: The left image is the original image and the right image shows the extracted
edges.

The proposed algorithm Hough Transform

Figure 6.5: The left image shows the detected line using the proposed algorithm and the
right image shows the detected lines using the Hough transform.
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Table 6.4: The total number of votes for the bins with the highest votes and the total number
of the attracted points by the most attractive modes.

Mode/Bin 1 2 3 4 5 6 7 8 9 10 11 12
The proposed algorithm 2479 1831 1689 1462 1310 684 597 540 210 150 137 132
The Hough Transform 84 82 74 61 55 47 38 34 30 28 27 26

attracted points are shown in Table 6.4. From Table 6.4, we observe that the number

of straight lines in the image should be eight. Figure 6.7 compares the first 9 detected

lines using the proposed algorithm and the Hough transform. The proposed algorithm

has found all the straight lines successfully, but the Hough transform has missed one

of the lines.

Figure 6.6: The image on the left shows the original gray scale image and the image on the
right side shows the extracted edges.

107



The proposed algorithm Hough Transform

Figure 6.7: The left figure shows the detected straight lines using the proposed technique
and the right figure shows the detected lines using the Hough transform.

6.2 Noisy Source Vector Quantization via SCMS Algorithm

6.2.1 Introduction

Vector quantization is an important building block used in lossy data compression. A vector

quantizer encodes (maps) vectors from a multidimensional input space into a finite subset

of the space, called the codebook. The design of quantizers has been extensively studied. A

classical result shows that an optimal quantizer of a given codebook size has to satisfy the

Lloyd-Max conditions [88][90]. This gives rise to the Lloyd-Max algorithm, an iterative

method for scalar quantizer design that alternates between optimizing the codebook and the

partition induced by the codebook. The generalized version of the Lloyd-Max algorithm,

known as the LBG algorithm, is used to design (locally) optimal vector quantizers [85][53].

The classical problem of optimal vector quantization assumes that the source is available

noise free to the quantizer. However, in some situations the source output may be corrupted
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by noise due to, e.g., measurement errors [102]. In this case, only a noisy version of the

source is available for the quantization, and the quantizer’s goal is then to minimize the

expected distortion between the clean (unobserved) source and the output of the quantizer.

Some practical examples where this model may apply are pilot’s speech in the presence of

aircraft noise, digital signal processing at transmitter or receiver that introduce quantization

and round-off errors, satellite images affected by measurement error, or speech signal for a

mobile phone in a noisy environment.

The theory of noisy source coding was first investigated by Dobrushin and Tsybakov

[32] who analyzed the optimal rate-distortion performance. The structure of the optimal

noisy source quantizer under the mean square distortion was studied by Fine [40], Sakrison

[106], and Wolf and Ziv [126]. It has been shown that for the mean square distortion an

optimal noisy source quantization system can be decomposed into an optimum estimator

followed by an optimum source coder operating on the estimator output [126]. Some prop-

erties of an optimum noisy source quantizer, and its relations with the optimal estimator for

the general problem, are derived by Ayanoglu [2]. By appropriately modifying the given

distortion measure, Ephraim and Gray [38] showed the noisy source quantization problem

becomes a standard quantization problem for the noisy source using the modified distor-

tion measure. The problem of empirical vector quantizer design for noisy sources has been

investigated by Linder, Lugosi, and Zeger[87]. The classical results imply that in order to

minimize the mean square distortion with respect to the clean data, one needs to quantize

the conditional expectation of the clean data given the noisy data. Thus, we need to find a

good approximation, in the minimum mean square error (MMSE) sense, of the clean data

from the observed noisy data. In practical situations where the statistics of the data and

noise are unknown, the clean data can be estimated by applying nonparametric techniques,
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such as kernel regression [92], based on training data. However, in practice training data

from the clean source may not be available and the designer of the quantizer only has access

to the noisy observations.

6.2.2 Vector quantization

A fixed rate N -level vector quantizer Q : RD → C is a mapping from the D-dimensional

Euclidean space RD into a finite set C = {c1, . . . , cN} of N distinct points in RD. The set

C is called the codebook and the elements of C are called the codevectors. Every N point

vector quantizer Q partitions RD into N regions or cells, Ri, i = 1, . . . , N [46]. The ith

quantizer cell is given by Ri = {x : Q(x) = ci}, i = 1, . . . , N . From the definition of the

quantizer cells, it follows that

N⋃
i=1

Ri = RD and Ri ∩Rj = ∅ if i 6= j.

The performance of a fixed rate quantizer in approximating the input vector is measured

using a non-negative function d : Rk × Rk → [0,∞) called the distortion measure. The

quantity d(x, Q(x)) measures the reconstruction error in representing x by Q(x). There

are different criteria to measure the distortion, including the squared error distance, the rth

power distortion, and the weighted squared error. For a D-dimensional random vector X

the overall distortion D of a quantizer Q is the expected value of the reconstruction error
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and is given by

D = Ed(X, Q(X))

=

∫
RD
d(x, Q(x))f(x)dx ifX has pdff.

The most common and tractable distortion measure is the mean square error (MSE) dis-

tortion,i.e., D = E‖X − Q(X)‖2. An N -level quantizer Q is called the nearest neighbor

vector quantizer if for all x ∈ RD, Q(x) = arg minci∈C d(x, ci). Among all N -points

vector quantizers, the optimal vector quantizer Q∗ is defined as follows

Definition 6.1. Let QN denote the family of all D-dimensional N-level quantizers. Q∗ ∈

QN is an optimal quantizer for sourceX if

Ed(X, Q∗(X)) = min
Q∈QN

Ed(X, Q(X)).

The optimal quantizer Q∗ depends on the distribution of X and the distortion measure

d and is not necessarily unique. We have the following necessary conditions for optimality

[86]

(a) Nearest neighbor condition (NNC): Any nearest neighbor quantizer has minimum dis-

tortion among all N -level vector quantizers with the same codebook.

(b) Centroid condition (CC): Consider allN -level vector quantizers with given cellsRi, i =

1, . . . , RN . Among these, the quantizer Q with output points

ci = arg min
c∈RD

E
[
d(X, c)|X ∈ Ri)

]
, i = 1, . . . , N.

has minimum distortion.
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The CC and the NNC are necessary but not sufficient conditions for the optimality of an

N -level vector quantizer.

6.2.3 Nosiy source vector quantization

Let X and Y be jointly distributed k-dimensional random vectors with X representing

the clean source and Y representing the noisy version of X . The problem of noisy source

vector quantization is to approximate the clean data X with the lowest distortion based on

quantizing its noisy version Y at a given fixed rate. Formally, our encoder is a member

of the set of all N -level quantizers QN on Rk. Assuming that E‖X‖2 is finite, the noisy

source quantization problem is to find Q∗ ∈ QN with minimum distortion

E‖X −Q∗(Y )‖2 = min
Q∈QN

E‖X −Q(Y )‖2. (6.2)

It has been shown that the structure of an optimal N -level quantizer Q∗ can be obtained

via a useful decomposition [106][126]. The following summarizes these results.

Proposition 6.1. Let m(y) = E[X|Y = y]. Then an optimal quantizer Q∗ is given by

Q∗(y) = Q̂(m(y)), where Q̂ ∈ QN is an MSE optimum N -level quantizer for m(Y ), i.e.,

Q̂ = arg minQ∈QN E‖m(Y ) − Q(m(Y ))‖2. Furthermore, minQ∈QN E‖X − Q(Y )‖2 =

E‖X −m(Y )‖2 + minQ∈QN E‖m(Y )−Q(m(Y ))‖2.
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Proof. Let Q ∈ QN be an arbitrary N -level quantizer. Then

E[‖X −Q(Y )‖2|Y ] = E[‖X −m(Y )|Y ‖2]

+ ‖m(Y )−Q(Y )‖2

+ 2E[(X −m(Y ))T |Y ](m(Y )−Q(Y ))

= E[‖X −m(Y )‖2|Y ]

+ ‖m(Y )−Q(Y )‖2,

where the inner product term disappears after taking iterated expectations, first conditioned

on Y . Since the first term of the last expression does not depend onQ, in order to minimize

E[‖X − Q(Y )‖2] = E(E[‖X − Q(Y )‖2|Y ]), we have to find Q ∈ QN that minimizes

E[‖m(Y )−Q(Y )‖2]. Now suppose {c1, . . . , cN} are the codewords of Q and let Q(y) =

cj . Then,

‖m(y)−Q(y)‖2 = ‖m(y)− cj‖2

≥ min
1≤i≤N

‖m(y)− ci‖2,

which shows that

E[‖m(Y )−Q(Y )‖2] ≥ E[ min
1≤i≤N

‖m(Y )− ci‖2].

This means that given Y = y, the optimum encoding rule is to form a nearest neighbor

quantizer using the codepoints of Q and encode m(y) optimally with this quantizer. It then

follows that if Q̂ denotes the optimum N -level (nearest neighbor) quantizer minimizing
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E‖m(Y )− Q̂(m(Y ))‖2, then

min
Q∈QN

E[‖m(Y )−Q(Y )‖2] = E[‖m(Y )− Q̂(m(Y ))‖2]

and Q∗ defined by Q∗(Y ) = Q̂(m(Y )) is the optimum noisy source quantizer such that

min
Q∈QN

E[‖X −Q(Y )‖2] = E[‖X −Q∗(Y )‖2]

= E[‖X −m(Y )‖2]

+ E[‖m(Y )− Q̂(m(Y ))‖2],

as claimed. �

Thus, in order to minimize the distortion, one needs to find a good approximation of the

clean dataX based on the observed noisy dataY . In practical situations where the statistics

of the data and noise are unknown, the clean data can be estimated using nonparametric

techniques, such as kernel regression, based on training data. If a set of training data

{xi,yi}i=1...,n is available in advance, the conditional expectation m(y) = E[X|Y = y]

ofX given Y can be estimated using the kernel regression method as

m̂(y) =

∑n
i=1 xiKh(y − yi)∑n
i=1Kh(y − yi)

, (6.3)

where Kh : Rk → [0,∞) is an integrable kernel function with bandwidth h. In this paper

we assume that the designer of the quantizer only has access to the noisy observations and

training data from the clean source are not available.
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6.2.4 Applying the SCMS algorithm

Since very little is known theoretically about the performance of the SCMS algorithm, we

will use numerical examples to assess how well the SCMS algorithm approximates the

clean data for the purposes of quantization. We compare the performance of the obtained

system with that of a system using the kernel regression method trained on a data set con-

sisting of pairs of clean and noisy data samples. In particular, in two different scenarios we

compare the mean square distortion that results from quantizing the output of the SCMS

algorithm with the near-optimal distortion resulting from quantizing the estimated clean

data using the kernel regression method. We note that the kernel regression method is

asymptotically optimal in the limit of large training set sizes.

6.2.5 Quantization of a noisy line

We examine the performance of the SCMS algorithm as a preprocessing step for noisy

vector quantization on a straight line in R2. In the design stage, we uniformly select 500

samples from the straight line of length 4 and perturb them by additive, independent zero-

mean bivariate Gaussian noise with per component variance 0.4. These points are fed

the SCMS algorithm and the resulting 500 output points are then used as a training set

to design a vector quantizer using the LBG algorithm. For testing, we select another 500

samples from the straight line and perturb them by noise, the noisy data is then fed to the

SCMS algorithm, and the output of the algorithm is quantized using the designed vector

quantizer. Fig. 6.8 shows the performance of the SCMS algorithm to estimate the clean

data. In Fig. 6.8, the black points are the noisy observations and the blue points are outputs
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of the SCMS algorithm. It can be observed from Fig. 6.8 that the outputs of the SCMS

algorithm lie close to the straight line. The red points represent the codewords computed

by the LBG vector quantization algorithm. As expected, the codewords are distributed

uniformly on the straight line. We vary the number of codewords and run the simulations

for quantizers of codebook size 1, 2, 4, 8, 16, and 32. Fig. 6.9 shows the output points

of the SCMS algorithm and the computed codewords for each choice of the codebook

size. The blue points in Fig. 6.9 represent the output points of the SCMS algorithm and

the red points represent the codewords computed by the LBG algorithm. To compare the

performance of the SCMS approach with the theoretical optimum, we generate 500 pairs

of clean and noisy data points to train a kernel regression function in order to estimate the

conditional expectation of the clean data given the noisy version. Another 500 noisy data

points are then generated and fed to the kernel regression method and the output is used to

train a vector quantizer using the LBG method. In the testing phase, another 500 noisy data

points are generated and fed to the kernel regression estimator, and the output is quantized

using the vector quantizer obtained in the training phase. Table 6.5 compares the mean

square distortions resulting from the quantization of the estimated clean data using the

kernel regression method and the output of the SCMS algorithm, respectively, as a function

of the number of codevectors (ranging from 2 to 128). Although the SCMS algorithm

does not have access to clean data, the simulation results indicate that the resulting mean

square distortion is close to that achieved by the near-optimal scheme where the clean data

estimates are obtained using the kernel regression method.
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Figure 6.8: Quantization of a noisy line. The black points represent the noisy observations.
The noisy data is fed to the SCMS algorithm, and the SCMS algorithm generates the blue
points as an estimate of the clean data. The blue points are used for vector quantization
using the LBG algorithm. The red points are the output of the LBG vector quantization
algorithm.

6.2.6 Quantization of a noisy circle

The simulation setup is similar to that of a noisy line, but now we consider the uniform dis-

tribution on the unit circle as the clean source and the additive bivariate zero-mean Gaus-

sian noise has per sample variance 0.3. For training and testing, two sets of 1024 noisy data
1Strictly speaking, this distortion is only near the theoretical optimum since the kernel estimate converges

to the desired conditional expectation only in the limit of large training set sizes. Also the LBG algorithm is
not guaranteed to produce globally optimal quantizers.
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Table 6.5: Quantization of a noisy line. The mean square distortion resulting from the
quantization of the output of the SCMS algorithm and the (near) optimal mean square
distortion for different number of codebook sizes ranging from 2 to 128 for the noisy line.

Number of the codevectors 2 4 8 16 32 64 128
Optimal distortion 1 0.4986 0.2507 0.1287 0.0639 0.0330 0.0172 0.0081
SCMS algorithm 0.5001 0.2683 0.1477 0.0731 0.0415 0.0271 0.0135

Table 6.6: Quantization of a noisy circle. The mean square distortion resulting from the
quantization of the output of the SCMS algorithm and the (near) optimal mean square
distortion for different number of codebook sizes ranging from 2 to 128 for the noisy circle.

Number of the codevectors 2 4 8 16 32 64 128
Optimal distortion 1 0.7271 0.3858 0.2016 0.1064 0.0595 0.0367 0.0294
SCMS algorithm 0.7274 0.3945 0.2120 0.1220 0.071 0.0498 0.0379

points are generated for the SCMS approach and 1024 pairs of clean and noisy data points

are generated for the kernel regression approach. Fig. 6.10 shows the performance of the

SCMS algorithm to estimate the clean data on the circle. The black points represent the

clean data, the blue points are the outputs of the SCMS algorithm, and the red points rep-

resent the codewords computed by the LBG algorithm. It can be observed in Fig. 6.10 that

the codewords are nearly uniformly distributed. Fig. 6.11 shows the output of the SCMS

algorithm and the computed codewords for simulations with quantizer codebook sizes 1,

2, 4, 8, 16, and 32. Table 6.6 compares the mean square distortions for the quantization of

the SCMS estimates and that of the kernel regression method, respectively, as the number

of the codevectors ranges from 2 to 128. The measurements indicate that the mean square

distortion achieved by the quantization of the output of the SCMS algorithm is close to the

near-optimum mean square distortion obtained by the quantization of the estimates using

the kernel regression method.
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Figure 6.9: Quantization of a noisy line. The blue points represent the output of the SCMS
algorithm applied to the points from the noisy line, and the red points are the codewords
generated by the LBG vector quantization algorithm.
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Figure 6.10: Quantization of a noisy circle. Applying the SCMS algorithm on the noisy
data in order to estimate the clean data. The estimated clean data is used for the vector
quantization. The black points represent the clean data, the blue points represent the output
of the SCMS algorithm, and the red points are the codewords generated by the LBG vector
quantization algorithm.
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Figure 6.11: Quantization of a noisy circle. The blue points represent the output of the
SCMS algorithm applied to the points from the noisy circle, and the red points are the
codewords generated by the LBG vector quantization algorithm.
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6.3 Character Skeletonization

6.3.1 Introduction

Skeletonization, also called thinning or medial axis transformation [4], is the process of

extracting a region based shape to represent the general form of an object in two or three-

dimensional space. In other words, the skeletonization process tries to find a medial repre-

sentation of a digital object that is equidistant to its boundaries. The skeletonized object,

called the skeleton, is a collection of thin arcs and curves that requires less pixels (vox-

els in three-dimensional space) to be represented, while the underlying shape can still be

recognized with the human’s perception. Skeletonization is an important preprocessing

technique that has been used in numerous applications in machine learning [45], image

segmentation [129], statistical pattern recognition [3], and data compression [51].

The concept of skeletonization was introduced by Blum [8], who used an intuitive

model of fire propagation on a grass field, where the field has the form of the given shape.

Intuitively, if one sets fire at all points on the shape’s contour, assuming the fire is prop-

agating within the shape at a uniform speed, then a point is on the medial axis if two or

more firefronts meet at that point. Based on this observation, Blum introduced medial axis

transform (MAT) to find the skeleton of a shape. The MAT computes the closest boundary

points for each point in an object. An inner point is on the skeleton if it has at least two

closest boundary points. Fig. 6.12 shows skeletonization of a rectangle based on the defi-

nition given by Blum [97]. Since Blum’s work, different definitions and techniques for the

skeletonization of an object have been proposed (for example, see [112][105][72] among

others).
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Figure 6.12: The green points are three randomly selected inner points, and the red points
represent the closest boundary points. The skeleton is marked by thick black line segments.
From the definition given by Blum, both points A and B are skeletal since they have two
closest points on the boundary. But point C does not belong to the skeleton [97].

Skeletonization was initially used to find medial representation of two-dimensional dig-

ital objects. In such instances, the pixels on the border of the object are transformed to

background pixels until a medial representation of the object is obtained. Later, skele-

tonization was extended to three-dimensional objects. Similar to the approach used with

two-dimensional objects, the object voxels on the border are considered as background

voxels until a skeletonized representation of the object is obtained [4]. Skeletons represent

the underlying structure of digital objects and provide knowledge about how components

are connected together to form the whole object [65]. In this section, we are dealing with

2-dimensional skeletonization and propose a weighted version of the SCMS algorithm to

find the medial axis for objects in digital images. We test the proposed algorithm on the

skeletonizaion of hand-written numbers, which is an important problem in image process-

ing.
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6.3.2 Weighted SCMS algorithm

A practical application of skeletonizaion is the reduction of computational complexity in

character recognition. It is found that the recognition of the medial representation of a

character requires less processing time compared to processing the raw image [72][30].

For example ZIP codes on envelopes from U.S. postal mail have five digits. Each ZIP code

is segmented into five digits. The segmented small images are 16 × 16 gray scale images

such that each pixel takes an integer value from 0 to 255. The task is to recognize each digit

from a 16× 16 matrix of pixel intensities in order to find the address automatically [58]. A

neural network, as a nonlinear classification technique, can receive each digital image and

predict the digit [77][99]. Feeding a neural network with a 162-dimensional vector greatly

increases the computational cost. On the other hand, finding a medial representation of

each digit and using it to train the neural network significantly reduces the processing time.

In this section we slightly modify the SCMS algorithm in order to use it effectively for

skeletonization. Specifically, we define a weight factor for each term in the summation of

kernel functions at each iteration. The weighted SCMS algorithm is based on the following

three observations in gray scale images

• Pixels at the background make no contribution to finding the medial axis.

• Pixels at the edge of an object with low intensity make limited contribution to finding

the medial axis.

• Pixels at the center of an object with high intensity play the main role of finding the

medial axis.

Based on the above three observations, we assign a weight 0 ≤ w ≤ 1 to each pixel.

The weight w can be simply computed by dividing each pixel’s intensity by the highest
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available intensity in the image. Let i(p) represent the intensity of an arbitrary pixel p; then

the weighted SCMS algorithm can be summarized as follows

1. Consider an m × n gray scale image I as a two-dimensional surface and assign a

two-dimensional vector xk, k = 1, 2, . . . ,mn to each pixel pij, i = 1, . . . ,m, j =

1, . . . , n. The two-dimensional vector xk consists of the x and y coordinates of each

pixel.

2. Set ε > 0, j = 1, and initialize the SCMS algorithm to an arbitrary point y1.

3. Compute imax as the highest intensity among all the pixels, i.e., imax = maxi∈I i(p).

4. Assign a weight w to each pixel p by w = i(p)/imax.

5. Evaluate the weighted mean shift vector as follows

mh,g(yj) =

∑mn
k=1wkxkg

(
‖yj−xk

h
‖2
)∑nm

k=1 g
(
‖yj−xk

h
‖2
) (6.4)

6. Evaluate the gradient, the Hessian matrix, and the local inverse covariance matrix

Σ̂
−1

given in (3.7) at yj . Perform the eigendecomposition of Σ̂
−1
j = Σ̂

−1
(yj) and

find its eigenvalues and eigenvectors.

7. Let V j = [v1, . . . ,vD−d] be the D × (D − d) matrix whose columns are the D − d

orthonormal eigenvectors corresponding to the D − d largest eigenvalues of Σ̂
−1
j .

8. Compute yj+1 = V jV
T
jm(yj) + yj .

9. Stop if ‖yj+1 − yj‖ < ε; otherwise increment j by 1 and go to step 5.
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Note that instead of the local inverse covariance matrix in step (6), we can use the three

new matrices introduced in 4.7.

There are several other approaches for skeletonization (see [7][24][112][79][72] among

others). The main advantage of the proposed method is its easy and straightforward im-

plementation for real world applications. In contrast to the most other techniques, it does

not require any pre or post processing in order to improve the output. The only parameter

that needs to be set in advance is the bandwidth h. Furthermore, the smoothness of the

generated curves is inherited from the smoothness of the underlying pdf or its estimate.

6.3.3 Simulation results

For the simulations in this section, we used the MNIST handwritten digits database [81]1.

The MNIST database contains real world data and has been extensively used to test the

performance of different techniques and algorithms. Each digit is centered in a 28×28 gray

scale image. Fig. 6.13 shows a sample image for each digit from the MNIST data base.

We arbitrarily chose 5 samples for each handwritten digit and applied the weighted SCMS

algorithm to find the medial axis. Fig. 6.14 shows the selected digits and the output of the

weighted SCMS algorithm for digits 0, 1, 2, 3, and 4. Fig. 6.15 shows the performance of

the proposed algorithm to find the medial axis for digits 5 to 9. In all the simulations the

kernel function is Gaussian with the bandwidth h = 1 and the stopping criteria is ε = 0.05.

1The MNIST database can be accessed for free using http://yann.lecun.com/exdb/mnist
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Figure 6.13: Sample images for different digits from the MNIST database.

Figure 6.14: Skeletonization of handwritten digits using the weighted SCMS algorithm-
numbers 0, 1, 2, 3, and 4.

Figure 6.15: Skeletonization of handwritten digits using the weighted SCMS algorithm-
numbers 5, 6, 7, 8, and 9.
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6.4 Noisy kernel regression

LetX ∈ RD denote a real valued random variable and Y ∈ R denote a real valued random

output variable, with joint density f(X, Y ). We are interested in finding a relation between

X and Y to predict Y given the values ofX . In this case, the random variableX is called

the explanatory variable and Y is called the response. Suppose the relationship betweenX

and Y can be modeled by Y = m(X) + ε, where ε is a zero mean random variable with

variance σ2. The expected prediction error is defined by [58]

C = E(Y −m(X)2) =

∫
(y −m(x))2f(x, y)dxdy

E(E[(Y −m(X))2|X]). (6.5)

It is well-known that the choice m(x) = E(Y |X = x) minimizes C. Therefore, the best

prediction of Y at any pointX = x is given by the conditional expectation of Y givenX ,

which is called the regression function [58].

Now suppose that pairs of input data (xi, yi), i = 1, . . . , n are given, where yi is the

response for the ith observation xi. Since the density functions are not available, the condi-

tional expectation m(x) can be estimated by replacing the density functions by the kernel

density estimates as follows [119][55]

m(x) ≈ m̂(x) =

∫
y

∑n
i=1

1
nhD+1K1(‖x−xih

‖2)K2(‖y−yih
‖2)∑n

i=1
1

nhD
K1(‖x−xih

‖2)
dy

=

∑n
i=1K1(‖x−xih

‖2)
∫
y 1
h
K2(‖y−yih

‖2)dy∑n
i=1K1(‖x−xih

‖2)

=

∑n
i=1 yiK1(‖x−xih

‖2)∑n
i=1K1(‖x−xih

‖2)
, (6.6)
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where h is the bandwidth and K1 and K2 are the kernel functions that are used for density

estimates. The above estimate is called Nadaraya-Watson kernel regression [92].

In practice, there are situations where only a few elements of the explanatory variable

X are strongly related to Y and the rest of the elements do not have a significant effect on

the response. In other words, for an explanatory variable x = [x1,x2, . . . ,xD], some xis

have no actual structural effect on the response and simply serve as noise which masks or

weakens those elements that do have real explanatory value. Correctly removing the ex-

traneus elements reduces the dimensionality of the explanatory variables and the computa-

tional cost. Therefore, it is often desirable to determine a small number of the elements that

exhibit the strongest relationship to the responses. The process of selecting a subset of rel-

evant features to use in model construction is called feature selection or variable selection.

When the unwanted predictors are allowed to remain in the model, the predictive accuracy

of the regression model suffers because we are in part fitting a relationship between the

response and noise, which masks the predictive power of the predictors that actually have

predictive power. On the other hand, it may be that the mean response has a functional

relationship to all the predictors, but the predictor vectors are all on or near an underlying

smooth manifold. For example, suppose there are ten predictors but the ten-dimensional

predictor vectors all fall on some circle. Then we can replace the ten-dimensional predictor

vectors with a two-dimensional representation, or just two “features”.

Our goal in applying a constrained mean shift algorithm to the high dimensional pre-

dictor vectors is to find a principal surface of suitably low dimension d that is close to the

original predictors in some metric, for example in an L2 sense. The output of the con-

strained mean shift algorithm will be the projections of the original predictor vectors onto

this principal surface. However, the output points are still vectors of the same dimension as
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the original input vectors. We thus will next need to find a d-dimensional representation of

the projected points. These would be the d candidate features selected in our approach, and

we replace the original regression model that hadD predictors with a regression model that

had the d selected features as the predictors. In our simulations, for simplicity we assume

that the intrinsic dimensionality of the observed data is known in advance. The intrinsic

dimensionality estimation is still an active research area and several different techniques

are proposed to estimate it [82][100][71].

Furthermore, during the measurement or transmitting the data, the explanatory variables

may corrupted by noise. In this case using the kernel regression formula in (6.6) with noisy

explanatory variable may not generate an accurate estimate of the response. Applying the

SCMS algorithm as a pre-processing step can be considered as a denoising step.

Let d denote the intrinsic dimensionality of the D-dimensional noisy observed data.

The proposed technique for the kernel regression with noisy explanatory variables is as

follows

• Apply the SCMS algorithm on the noisy explanatory variables (the projection step is

done using D − d appropriate eigenvectors).

• Apply one of the nonlinear dimensionality reduction techniques to find a d-dimensional

representation of the output of the SCMS algorithm.

• Use the kernel regression technique in (6.6) to find the relation between the response

and the explanatory variables.
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6.4.1 Simulation results

We assume that 1000 samples of four-dimensional data, x = [x1, x2, x3, x4], as explanatory

variables are available. The response y is related to x by y = x21 + x32. The first two

elements of x are selected uniformly from a two-dimensional spiral and then corrupted

by adding independent Gaussian noise with independent components having zero mean

and variance one. The last two elements of each explanatory variable are just independent

zero mean Gaussian with variance four. The bandwidth h for the SCMS algorithm is 2

and the stopping threshold is set to be 0.05. The output of the SCMS algorithm is given

to the LLE algorithm in order to find the one-dimensional representation of the observed

data. The number of the nearest neighbors in LLE algorithm is set to be 24. The kernel

regression function in (6.6) is trained using the one-dimensional data and the response y

with the bandwidth equal to 0.4. To show the effectiveness of the SCMS algorithm, we

repeat the same procedure for the clean and noisy explanatory variable without applying

the SCMS algorithm. Fig. 6.16 shows the kernel regression function trained using three

above scenarios. It is clear from fig. 6.16 that applying the SCMS algorithm before LLE

algorithm and kernel regression helps to find an accurate estimate of the response.

We repeat the simulation with a previous setup and this time assume that y = x21 + x2.

The bandwidth h and the stopping threshold are chosen as before. Fig. 6.17 compares

the kernel regression function computed under three scenarios. It can be observed from

Fig. 6.17 that we obtain a more accurate kernel regression function by applying the SCMS

algorithm to the noisy explanatory variables.
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Figure 6.16: The blue stars represent the kernel regression function when it is trained using
the output of the SCMS algorithm. The red triangles represent the kernel regression func-
tion when it is trained using the clean data and green triangles show the kernel regression
function when it is trained using the noisy data. The response y is given by y = x21 + x32.
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Figure 6.17: The blue stars represent the kernel regression function when it is trained using
the output of the SCMS algorithm. The red triangles represent the kernel regression func-
tion when it is trained using the clean data and green triangles show the kernel regression
function when it is trained using the noisy data. The response y is given by y = x21 + x2.
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Chapter 7

Summary and future work

7.1 Summary

In this thesis, we studied the theoretical properties of some mean shift type algorithms. We

also proposed some new applications for the MS and SCMS algorithms. The contributions

of this thesis are summarized as follows.

• We proved that the MS algorithm with isolated stationary points generates a con-

vergent sequence. We also provided a sufficient condition for the MS algorithm

with the Gaussian kernel to have isolated stationary points. We also studied spe-

cial one-dimensional case and showed that in this case the MS algorithm generates

a monotone and convergent sequence with both analytic and non-analytic kernels.

Furthermore, we proposed a slightly modified version of the MS algorithm in order

to guarantee the convergence of the generated mode estimate sequence.

• We studied the SCMS algorithm in order to find principal curves and proved some
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convergence results indicating that it inherits some of the important convergence

properties of the MS algorithm. Specifically, we proved the monotonicity and con-

vergence of the density estimate along the sequence generated by the SCMS algo-

rithm. Then, we showed that the distance between consecutive points of the output

sequence converges to zero, as does the projection of the gradient vector onto the

subspace spanned by the D − d largest eigenvectors of the local covariance matrix.

The last two properties provide theoretical guarantees for the stopping criteria.

• We proposed three variations of the SCMS algorithm by modifying the projection

step. Through the simulation we showed that with a finite data set, two of the pro-

posed variations reduce the running time significantly.

• We proposed an adaptive version of the SCMS algorithm for situations in which the

whole data set is not available in advance. In this case, the proposed SCMS algorithm

observes the input data one by one and modifies the output sequence based on the

new incoming data. In other words, the proposed algorithm considers the effect of

new samples and makes necessary changes on output without running the algorithm

on the whole data set.

• We used the SCMS algorithm as a pre-processing step before two well-known non-

linear dimensionality reduction techniques, ISOMAP and LLE, in order to improve

the performance of these techniques for finding the low-dimensional representation

of data in the presence of noise.

• We showed that the MS algorithm can be used to accurately find straight lines in

digital images. We compared the performance of the proposed technique for finding

the straight lines in a digital image with the Hough transform.
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• We investigated the application of the SCMS algorithm to the problem of the noisy

source vector quantization, where the clean source need to be estimated from its

noisy observations before quantizing with an optimal vector quantizer. We proposed

to use the output of SCMS algorithm as an estimate for the conditional expectation

of the clean data given the noisy data.

• We showed how the SCMS algorithm can be used to improve the performance of the

kernel regression technique when the explanatory variables are corrupted by noise.

We also showed that the SCMS algorithm can be applied to find the most effective

parameters to predict the output function using the kernel regression technique.

• We proposed a weighted version of the SCMS algorithm and used it to find a medial

representation of a digital object.
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7.2 Future work

We showed that the MS algorithm with isolated stationary points generates a convergent

sequence. The proposed sufficient condition to have isolated stationary points may not

be useful in real world applications. Unfortunately, a general and useful condition that

leads to a set of isolated stationary points of the estimated pdf for commonly used kernels

(such as Gaussian kernel) still seems to be missing in the literature. Finding the number of

modes of a pdf estimate using the Gaussian kernel is still an open problem and needs to be

investigated.

Extensive simulation results on artificial data demonstrated the ability of the SCMS al-

gorithm to approximate the underlying principal curve/surface. However, the convergence

of the sequence generated by the SCMS algorithm has not been proved yet, let alone its

convergence to a point on the principal curve/surface. Therefore, as the first step the con-

vergence of the procedure needs to be shown. Then if the convergence of SCMS algorithm

is proved, it must to be shown that output points lie on or near to the underlying manifold.

The study of the optimality of the SCMS algorithm (i.e., its convergence to a principal-

curve/surface) seems to necessitate a more careful examination of the definition of locally

defined principal curves and surfaces. In particular, it is likely that existence issues should

be resolved and differential geometric properties studied before optimality issues can be

addressed.

137



Bibliography

[1] S. Avidan. Ensemble tracking. IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, 29(2):261–271, 2007.

[2] E. Ayanoglu. On optimal quantization of noisy sources. IEEE Trans. Inform. Theory,

36(6):1450–1452, Nov. 1990.

[3] X. Bai, X. Yang, D. Yu, and L. J. Latecki. Skeleton-based shape classification using

path similarity. International Journal of Pattern Recognition, 22(2):733–746, 2008.

[4] G. S. Baja. Skeletonization of digital objects. In 11th Iberoamerican Congress in

Pattern Recognition, volume 24, pages 1–13, Cancun, Mexico, Nov. 2006.

[5] D. H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern

Recognition, 13:111–122, Sep. 1987.

[6] J. D. Banfield and A. E. Raftery. Ice floe identification in satellite images using math-

ematical morphology and clustering about principal curves. Journal of the American

Statistical Association, 87(417):7–16, 1992.

[7] G. Biau and A. Fischer. Parameter selection for principal curves. IEEE Trans. on

Information Theory, 58:1924–1939, 2012.

138



[8] H. Blum. Models for the Perception of Speech and Visual Form, chapter A transfor-

mation for extracting new descriptors of shape, pages 362–380. MIT Press, 1967.

[9] R. A. Boyles. On the convergence of the EM algorithm. Journal of the Royal

Statistical Society: Series B, 45:47–50, 1983.

[10] J. Canny. A computational approach to edge detection. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 8:679–698, Nov. 1986.
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