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Abstract

In this work, we investigate Shannon’s and Rényi’s information measure rates for
finite-alphabet time-invariant Markov sources of arbitrary order and arbitrary initial
distributions, along with their application to hypothesis testing and source coding.
We also study, using information-spectrum techniques, Csiszar’s forward and reverse
cutoff rates for the hypothesis testing problem between general sources with memory
(including all non-ergodic or non-stationary sources) with arbitrary alphabet (count-

able or uncountable).

We first provide a computable expression for the Kullback-Leibler divergence rate,
lim, 00 ~D(p™||g"™), between two Markov sources described by the probability dis-
tributions p™ and ¢, respectively. We illustrate it numerically and examine its
rate of convergence. Similarly, we provide a formula for the Shannon entropy rate,
lim,, o %H (p™), of Markov sources and examine its rate of convergence. As an
application to hypothesis testing, we provide an alternative simple proof for Stein’s

Lemma for testing between stationary irreducible Markov sources.

We also address the existence and the computation of the Rényi a-divergence
rate, lim,_, o %Da(p(”)ﬂq(”)), between Markov sources, where o > 0 and o # 1. We
provide numerical examples and examine its rate of convergence. We also investigate
the limits of the Rényi divergence rate as « — 1 and as « | 0. Similarly, we provide

a formula for the Rényi entropy rate, lim,, %Ha (p™), of Markov sources. We also
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study its rate of convergence and its limits as & — 1 and as a | 0. As an application
to source coding, we present a generalization of Campbell’s variable-length source
coding theorem for discrete memoryless sources to Markov sources. This provides a
new operational characterization for the Rényi entropy rate. The main tools used
to obtain Shannon’s and Rényi’s information measure rates results are the theory of

non-negative matrices and Perron-Frobenius theory.

We next establish an operational characterization for the Rényi a-divergence rate,
by showing, using an information-spectrum approach, that the Csiszar forward -

cutoff rate for the hypothesis testing problem between general sources with memory

is given by the lim inf a-divergence rate with o = ﬁ The Csiszar forward [-cutoff

rate (8 < 0) for hypothesis testing is defined as the largest rate Ry > 0 such that for

all rates 0 < E < Ry, the best (i.e., smallest) probability of type 1 error of sample

nk

size-n tests with probability of type 2 error < e™™" is asymptotically vanishing as

e "PE-Ro) \We also demonstrate that, under some conditions on the large deviation

spectrum, the Csiszar reverse [-cutoff rate for the general hypothesis testing problem
is given by the lim sup a-divergence rate with a = ﬁ The Csiszar reverse [S-cutoff
rate (5 > 0) for hypothesis testing is defined as the smallest rate Ry > 0 such that for
all rates 0 < Ry < E, the best (i.e., largest) correct probability of type 1 of sample

"L is asymptotically vanishing as

size-n tests with probability of type 2 error < e
e "B(E-Ro) Fyrthermore, we investigate the important classes of discrete memoryless
sources and sources that satisfy the hypotheses of the Gértner-Ellis Theorem for

which the forward and reverse (-cutoff rates are computable. Finally, we conclude

with observations and remarks along with several possible directions for future work.
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Chapter 1

Introduction

The first subject of this thesis is the investigation of Shannon’s and Rényi’s informa-
tion measure rates for finite-alphabet time-invariant Markov sources, along with their
application to hypothesis testing and source coding. The second subject is the inves-
tigation of Csiszar’s cutoff rates for the hypothesis testing problem between general
sources with memory (not necessarily Markovian, stationary, ergodic, etc.). In this
chapter, we present the literature review of articles upon which our research is based.

We then specify the main contributions of the thesis and present its outline.

1.1 Literature Review

The concept of entropy as a measure of information of a random variable was first in-
troduced by Shannon in his celebrated 1948 paper [55]. He investigated the properties

of entropy and its applications to source coding in the context of discrete memoryless



sources (DMS). Since then, a considerable amount of research has focused on provid-
ing new measures of information and extending Shannon’s results for more general
sources (Markov, stationary, ergodic, etc.). A particular alternative measure to Shan-
non’s entropy that brought the attention of many researchers is the Rényi entropy
[52], Hu(p), or entropy of order cr. An operational characterization of Rényi’s entropy
in the context of source coding was first given by Campbell in [13]. He showed that,
for DMS, Rényi’s entropy plays a role analogous to the Shannon entropy in variable-
length source coding when the cost function in the coding problem is exponential
as opposed to linear. This occurs in many applications where the processing cost of
decoding is high or the buffer overflow due to long codewords is important. From
this work, a natural question arises: how can one generalize Shannon’s and Camp-
bell’s variable-length source coding theorems for DMS to more general sources with
memory, such as Markov sources. This led us to investigate Shannon’s entropy rate,
lim,, o0 %H(p(”)), and Rényi’s entropy rate, lim,, %Ha (p™), for Markov sources.
Previous work on the computation of Shannon’s entropy rate for stationary and irre-
ducible Markov sources may be found in [10], [18], [25]. In [25], the author showed the
existence of the Shannon entropy rate for arbitrary Markov sources (not necessarily
stationary, irreducible, etc.), but he did not provide the computational details.

The Rényi entropy and the Rényi entropy rate have revealed several operational
characterizations in the problem of fixed-length source coding [14, 20], variable-length
source coding [11, 34|, error exponent calculations [23], and other areas [1, 6, 8, 46].

Other important measures, primarily introduced in the hypothesis testing problem

between DMS, are the Kullback-Leibler divergence [40], D(pl||¢) and the Rényi diver-



gence [52], D,(p|lq), or the a-divergence. The application of the Kullback-Leibler
divergence can be found in many areas such as approximation of probability distribu-
tions [17], [38], signal processing [36], [37], [22], pattern recognition [9], [16], etc. In
[26], Gray proved that the Kullback-Leibler divergence rate, lim,, %D(p(”)Hq(”)),
exists between a stationary source p(™ and a Markov source ¢(™. This result can also
be found in [59, p. 27]. In [42], the authors noted that the Kullback-Leibler diver-
gence rate between ergodic Markov sources exits. Also, in [56], Shields presented two
examples for non-Markovian sources for which the Kullback-Leibler divergence rate

does not exist.

The Rényi divergence rate, lim,, %Da (p™||¢™), has played a significant role in
certain hypothesis testing questions [39, 44, 45]. In [44], [45], the author evaluated
the Rényi divergence rate between two Markov sources under the restriction that the

initial probabilities are strictly positive.

The S-cutoff rate concept, for source coding and hypothesis testing, was first
introduced in [20] for DMS. In [14], the authors generalized the source coding [-cutoff
rate for DMS to general sources (not necessarily stationary, ergodic, etc.) using an
information spectrum philosophy which was developed by Han and Verdu [27]. With
the aid of this method, Verdi and Han obtained a general formula for the capacity
of arbitrary single-user channels (not necessarily information stable, stationary, etc.)
without feedback [58]. In [30], Han addressed at length many information theoretic
problems using the information spectrum approach which is a very powerful tool that
applies to general sources (not necessarily Markovian, stationary, ergodic, etc.) and

general alphabets (countable or uncountable). Several results from this book were



recently published in the IEEE Transactions on Information Theory. In particular,
Han investigated in [28] the optimal exponent problem for the probability of decoding
error and correct decoding in fixed-length source coding. In [29], he studied the
hypothesis testing problem between general sources with memory. Specifically, he
examined the optimal exponent problem for the type 2 probability of testing error,
as well as the type 2 probability of correct testing subject to an exponential error

constraint on the type 1 probability of testing error.

1.2 Contributions

The contributions of this thesis (parts of which appeared in [3], [4], [47]-[51]) are as

follows:

e Computable expressions for the Kullback-Leibler divergence rate and for the
Shannon entropy rate for arbitrary finite-alphabet Markov sources along with

their rate of convergence.

e Computable expressions for the Rényi a-divergence rate and for the Rényi en-
tropy rate for arbitrary finite-alphabet Markov sources along with their rate of

convergence.

e Sufficient conditions under which the Rényi information measure rates for Markov
sources reduce to the Shannon information measure rates as & — 1 and the in-

terchangeability of limits between n and a as n — oo and as « | 0.



e Generalization of Campbell’s variable-length source coding theorem for DMS
to Markov sources which provides an operational characterization for the Rényi

entropy rate.

e A simple proof of Stein’s Lemma for hypothesis testing between stationary

irreducible Markov sources.

e A generalization of Csiszar’s forward and reverse (-cutoff rates for hypothesis
testing between DMS to general sources with memory of arbitrary alphabet.
This yields an operational characterization for the a-divergence rate. An ex-
amination of the important classes of DMS and Markov sources for which the

forward and reverse (S-cutoff rates are computable is also provided.

1.3 Thesis Overview

The thesis is organized in the following manner.

In Chapter 2, we present some useful properties and results from linear algebra,
specifically the theory of non-negative matrices and Perron-Frobenius theory. We also
present, some useful properties and results for discrete stochastic processes, specifically

discrete Markov chains.

In Chapter 3, we provide a computable expression for the Kullback-Leibler diver-
gence rate between time-invariant Markov sources with finite alphabet and arbitrary
initial distributions. The result is first proved for first-order Markov sources, and is

then extended for Markov sources of arbitrary order. We illustrate it numerically and



examine its rate of convergence. Similarly, we address the computation and the rate
of convergence for the Shannon entropy rate of Markov sources. Using the formula for
the Kullback-Leibler divergence rate, we provide a simple alternative proof of Stein’s

Lemma for testing between stationary irreducible Markov sources.

In Chapter 4, we generalize Nemetz’s result by establishing a formula for the
a-divergence rate between two time-invariant Markov sources with arbitrary initial
distributions and illustrate it numerically. The result is first proved for first-order
Markov sources, and is then extended for Markov sources of arbitrary order. We then
show that if the probability transition matrix P associated with the Markov source
under p{™ is absolutely continuous with respect to the probability transition matrix
() associated with the Markov source under ¢\ and if the initial distribution p under
p™ is absolutely continuous with respect to the initial distribution ¢ under ¢, then
the Rényi divergence rate reduces to the Kullback-Leibler divergence rate as o — 1.
We also show that the interchangeability of limits as n — co and as «a | 0 is always
valid. Furthermore, we address similar questions for the Rényi entropy rate. As an
application to source coding, we provide a new operational characterization for the
Rényi entropy rate by generalizing Campbell’s variable-length source coding theorem

for DMS to Markov sources.

In Chapter 5, we review relevant previous results by Han on the optimal asymp-
totic exponent of the probability of testing error. We then derive a general expression

for the forward S-cutoff rate for hypothesis testing between arbitrary sources. We

demonstrate that the liminf a-divergence rate, where av = ﬁ and [ < 0, provide the

expression for the forward [-cutoff rate. We also provide numerical examples based



on DMS using Cramer’s Theorem [12].

In Chapter 6, we review relevant previous definitions and results by Csiszar and
Han on the optimal asymptotic exponent of the probability of correct testing. Under
two conditions on the log likelihood ratio large deviation spectrum, p(R), we show
that the reverse [-cutoff rate is given by the limsup a-divergence rate, where a =
ﬁ and 0 < < [fuax, Where [Bhax is the largest § < 1 for which the limsup
ﬁ—divergence rate is finite. For fh.. < B < 1, we provide an upper bound on
the reverse cutoff rate. In particular, we examine finite-alphabet independent and
identically distributed (i.i.d.) observations and sources that satisfy the hypotheses
of the Gértner-Ellis Theorem [12]. We show that in these cases, the conditions on
p(R) are satisfied and that the reverse cutoff rate admits a simple form. We also
provide several numerical examples to illustrate our results. The main tools used in

obtaining the forward and reverse cutoff rates results are large deviation theory and

the information spectrum approach.

In Chapter 7, we conclude with a summary along with several directions for future

work.



Chapter 2

Preliminaries: Non-Negative
Matrices and Discrete Markov

Sources

2.1 Non-Negative Matrices and Perron-Frobenius

Theory

We begin with some useful definitions and important properties about determinants
that can be found in any text book in linear algebra such as [32]. Throughout,

A := (ai;) denotes an M x M square matrix.

Definition 2.1 A pair of numbers j; and j, in a permutation (jy, ja,. .., jn) form

an inversion if jp > j, while k& < p, that is, if a larger number in the permutation



precedes a smaller one. Each permutation j = (ji, 2, ..., jm) has a certain number
of inversions associated with it, denoted briefly by #(j). The permutation is called

odd or even according to whether the number ¢(j) is odd or even.

Definition 2.2 The determinant of A, denoted by det(A) or |A|, is defined as

|A| = Z(—l)t(j)aljlagjz T UM (21)

J

where j varies over all the M! permutations of 1,2,..., M.

Lemma 2.1 If B is obtained from A by multiplying one of its rows (or columns) by

a scalar k, then |B| = k|A|.

Lemma 2.2 If B is obtained by interchanging two rows (or columns) of A, then

|B| = —|Al.

Lemma 2.3 If B is obtained from A by adding the elements of its i-th row (or
column) to the corresponding elements of its j-th row (or column) multiplied by a

scalar «, then |B| = |A|.

Lemma 2.4 Suppose that the entries of A are functions of some parameter «. Let
|A|; be the determinant obtained from A by replacing the elements in the i-th row

by their derivatives with respect to o and leaving the other rows unchanged. Then

M

A=) 145,

1=1

where |A]|" is the derivative of |A| with respect to a.



Proof: If we differentiate (2.1), we get that

Al =D (=1 (ayj,a05, - - argjy,)'s
7

where j varies over all M! permutations of 1,2,..., M. By the product rule of deriva-

tives

I — I . . . , - . e . . I
(a1j,a2j, - - - Qprjy,) = Ay, Ay - - - Agjyy + Q1jy Ay - - - Qrjy, + 000+ Q1jy Qojy - Apgj, -

Therefore

|A|l _ Z(_l)t(j)alljla’2j2 S UMy, —+ Z(—l)t(j)aljlafzj2 C UMy
j J
44 Z(—l)t(j)aulam T a’leM'
J

Hence, we conclude that [A' =) |Al;. ]

Definition 2.3 A minor of order M — 1 of A is defined to be the determinant of a
submatrix of A obtained by deleting one row and one column. The minor obtained
by deleting the i-th row and the j-th column is denoted by L;;, (1 <4,j < M). The

cofactor A;; of an element a;; is given by: A;; = (—1)" L;;.

Lemma 2.5 The determinant of A can be computed as follows:
|A| = an A + @iz + - -+ aing Ain,

or similarly,

Al = aj Ay + agjAgj + - + ang Ay

10



Definition 2.4 A right eigenvector, b, corresponding to an eigenvalue A, is a nonzero

vector such that Ab = Ab. A left eigenvector, a, corresponding to A, is a nonzero vector

such that aA = Aa. Note that a is a row vector while b is a column vector.

Definition 2.5 A Jordan block Js(\) corresponding to an eigenvalue A of Aisa sx s

upper triangular matrix of the form

Definition 2.6 An M x M Jordan matriz J for A is of the form

Jnl ()‘1)

0
0
0
0

0

Jn2 ()‘2)

0

0
0
0
0

I, (Ar)

, ni+ne+...+n. =M,

where O denotes a zero matrix (i.e., all entries are zeros) with appropriate dimension.

Theorem 2.1 [32, p. 126] Let A\;, i = 1,...,r be the eigenvalues of A (not neces-

sarily distinct). There is an invertible matrix S such that

A=SJS %

11



The following limiting behavior result of A can be proved using its Jordan form.

Theorem 2.2 [32, p. 138] The matrix A™ converges to the zero matrix 0 as

m — oo iff the eigenvalues of A have modulus strictly less than 1.

Lemma 2.6 If all the eigenvalues of A have modulus strictly less than 1, then I — A

is invertible.

Proof: Note first that if ) is an eigenvalue of A, then 1 — )\ is an eigenvalue of [ — A.

Indeed, if Ab = \b, then
(A—I)b=Ab—Ib=Xb—b=(A—1)b.

Therefore, all the eigenvalues of I — A are non-zero. Hence, it is invertible since its
determinant is non-zero (the determinant is equal to the product of the eigenvalues

by simply considering the Jordan block form of A). ]

Definition 2.7 The algebraic multiplicity of an eigenvalue A is its multiplicity as a

root of the characteristic equation det(A — A\I) = 0, where I is the identity matrix.

Let us also recall some definitions and results about non-negative matrices and
Perron Frobenius theory. Most of what follows may be found in [54, Chapter 1], [24,

Chapter 4], and [32, Chapter 8|.

Definition 2.8 A Matrix or a vector is positive if all its components are positive and

non-negative if all its components are non-negative.

12



Throughout, unless otherwise stated, A denotes an M x M non-negative matrix

(A > 0) with elements a;;. The ij-th element of A™ is denoted by ag-n). We write

(m) (m)

¢ — jifa;;” > 0 for some positive integer m, and we write ¢ / j if a;;” = 0 for every

positive integer m.
Definition 2.9 Two indices i and j communicate (i <> j) if i — j and j — 0.

Definition 2.10 If 7 — j but 7 /4 ¢ for some index j, then the index ¢ is called
inessential. An index which leads to no index at all (this arises when A has a row of

zeros) is also called inessential.

Definition 2.11 An index 7 is essential if ¢ — j implies 7 <> 7, and there is at least

one j such that ¢+ — .

With these definitions, it is possible to partition the set of indices {1,2,..., M} into
disjoint sets, called classes. All essential indices (if any) can be subdivided into essen-
tial classes in such a way that all the indices belonging to one class communicate, but
cannot lead to an index outside the class. Moreover, all inessential indices (if any)
may be divided into two types of inessential classes: self-communicating classes and
non self-communicating classes. Each self-communicating inessential class contains
inessential indices which communicate with each other. A non self-communicating
inessential class is a singleton set whose element is an index which does not commu-

nicate with any index (including itself).

Definition 2.12 A matrix is irreducible if its indices form a single essential class;

i.e., if every index communicates with every other index.

13



Definition 2.13 The period of an index i, denoted d(i), is defined as the greatest
common divisor (ged) of those values of n for which agf”) > (. If the period is 1, the

index is apertodic, and if the period is 2 or more, the index is periodic.

Proposition 2.1 [54, p. 17] In a communicating class, all indices have the same

period.

Definition 2.14 An irreducible matrix is said to be periodic with period d, if the
period of any one (and so of each one) of its indices satisfies d > 1, and is said to be

aperiodic if d = 1.

Proposition 2.2 [54, p. 15] By renumbering the indices (i.e., by performing row

and column permutations), it is possible to put a non-negative matrix A in the canon-

tcal form
4 ... 0 0 ... 0 0]
0 0 0 0
0
0 ... 4, 0O ... 0 0
. At oo Apsn Apn ... O 0
0
Ag o Ag Ap ... A 0
Agpir - Agiin Agringr oo Agyy 0 L0
0
| An o Aw Awe o Ay A 0

14



where A;, i = 1,...,g, are irreducible square matrices (periodic in general), and in

each row i« = h + 1,..., ¢ at least one of the matrices A;;, Ajp2, ..., A;_1 is not zero.
The matrix A; for i = 1,..., h corresponds to the essential class C;; while the matrix
A; for i = h+1,...,g corresponds to the self-communicating inessential class C;.

The other diagonal block sub-matrices which correspond to non self-communicating

classes C;, 1 =g+ 1,...,[, are 1 X 1 zero matrices. In every row ¢ =g+ 1,...,[ any
of the matrices A;1,..., A;_1 may be zero.
Definition 2.15 A class C is reachable from another class C; where j =1,...,[ and

i=h+1,...,0if A; # 0, or if for some 4y, ..., 4., Ay, # 0,45, #0,...,4;,; #0,

where ¢ is at most [ — 1 (since there are [ classes).

Remark: c can be viewed as the number of steps needed to reach class C; starting
from class C;. Note that from the canonical form of A, the class C} is reachable from
class Cj if AEJC-) #* 0 for some ¢ = 1,...,l—1, where AZ(JC-) is the 77-th submatrix of A°.
Note also that no class can be reached from any of the classes C', ..., C} since they

are essential classes.
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Example: Consider the following non-negative matrix A along with its canonical

form A..
_1001000_ —1100000_
0011100 1000000
00100710 0011000
A=l1001000]|, 4=]001 1000
1100100 0010110
0010000 1001100
1010100 (1010100 ]|

The canonical form A, is obtained by permuting the first and third rows and columns
and the second and sixth rows and columns of A. Note that A. has 2 essential classes,
Cy ={1,2} and Cy = {3,4}, 1 inessential self-communicating class, C3 = {5,6}, and
1 inessential non self-communicating class, Cy = {7}. Also, note that the class C} is
not reachable from the class Cy (since C} and Cy are essential classes), however it is

reachable from C5 and C}.

Proposition 2.3 (Perron) [24, p. 115] If A is positive, then A has a real positive
eigenvalue A\ with algebraic multiplicity 1 that is greater than the magnitude of each
other eigenvalue. There is a positive left (right) eigenvector, a (b), corresponding to

A, where a is a row vector and b is a column vector.

The theory of non-negative matrices was initiated by Perron for positive matrices
and generalized later by Frobenius for irreducible matrices. The key idea is that if

A is irreducible, then (I + A)M~' > 0, where I is the identity matrix. The latter

16



inequality follows directly from the definition of an irreducible matrix. Indeed, if A

is irreducible, then for all i,7 = 1,..., M, ag-l) > 0, for some 1 <n <M —1.

Proposition 2.4 (Frobenius) [24, p. 115] If A is irreducible, then A has a real
positive eigenvalue A\ that is greater than or equal to the magnitude of each other
eigenvalue. There is a positive left (right) eigenvector, a (b), corresponding to A,

where a is a row vector and b is a column vector.

The proof relies on the fact that (7+A)”~! > 0 and the fact that if \ is an eigenvalue
of A, then 1+ )\ is an eigenvalue of I + A. Also, [ + A and A have exactly the same

eigenvectors.

Proposition 2.5 [32, p. 492] Suppose A is irreducible and let R;, i = 1,..., M
denote the sum of the i-th row. Also, let Ry, = max{R;,..., Ry} and Ry, =

min{ Ry, ..., Ry}. Then the largest positive real eigenvalue \ satisfies

Rmin S A S Rmax-

The following lemma follows by appropriately modifying the proof of the above propo-

sition.

17



Lemma 2.7 If Aisirreducible and the row sums are not all identical, then the largest

positive real eigenvalue \ satisfies,

Roin < A < Rpax.

Proof: Let A be the largest positive real eigenvalue of A with associated strictly
positive left eigenvector a, which exists by Proposition 2.4. Without loss of generality
a can be normalized, i.e., the sum of its components is equal to 1. Let 1* be the row

vector

1= (1,...,1).

Note that al = 1, where t denotes the transpose operation. We have aA = Aa. Hence

aAl = Aal = ). On the other hand

aAl = G(Rl,...,RM)t

< a(RmaX; SRR Rmax)t
M
- Z aiRma,x

1

- Rmax
Therefore A < Ryax. Similarly, we can show that A > R,;,. Finally we conclude that

Rmin <A< Rmax-

18



Proposition 2.6 Suppose A is irreducible. Let A be the largest positive real eigen-

(m) <

value with associated right positive eigenvector b. Then A™ < \"C' (i.e., a;;

A"¢;j), for allm =1,2, ..., where C = (w) is a matrix with identical entries

min; << bg

that are independent of m.

Proof: If Ab = Ab, then A™b = A\"b. We have that

A (121%85\46’6) > A

M
> ( min bk)Zaz(;-ﬂ)

1<k<M

> ( min b)a™
> (1§k§M k)5 s

foralli=1,...,M and j =1,..., M. Since b > 0, we obtain the desired result.

Proposition 2.7 [32, p. 508] If A is irreducible, then the largest positive real

eigenvalue has algebraic multiplicity 1.

Proof: Let B = A/\, where X is the largest positive real eigenvalue of A. By the
previous corollary, B™ is bounded above by C' for all m = 1,2,... Note that the
largest positive real eigenvalue of B is 1. The block corresponding to this eigenvalue
in the Jordan canonical form of B must have size 1 x 1, because otherwise, the entries
of this block diverge as m — oo which contradicts the fact that B™ is uniformly

bounded for all m =1,2,... -
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Proposition 2.8 [41, p. 371] The eigenvalues of a matrix are continuous functions

of the entries of the matrix.

This proposition follows from that fact that the roots of a polynomial are continuous
functions of its coefficients, and the fact that the eigenvalues are the roots of the

characteristic equation of the matrix.

Proposition 2.9 [32, p. 372] Let A(t) be an M x M matrix whose entries are
all differentiable functions at t = 0. Assume that A is an eigenvalue of A(0) = A
of algebraic multiplicity 1, and that A(f) is an eigenvalue of A(t), for small ¢, such
that A(0) = A. Let a (b) be the left (right) eigenvector corresponding to A, such that
ab = 1. Then

N () izo = aA'(t)]1_ob.

Proof: By the previous proposition, for all sufficiently small ¢ there is an eigenvalue
A(t) of A(t) such that A(0) = A. There is also a left (right) eigenvector a(t) (b(t))
corresponding to A(t) such that a(¢)b(t) = 1. If we differentiate this last normalization

condition, we obtain the identity

d'(H)b(t) + a(t)V(t) = 0. (2.2)

Since A(t)b(t) = A(t)b(t) for all small ¢, we also have the identity a(t)A(t)b(t) =

A(t)a(t)b(t) = A(t). If we differentiate this identity, we obtain

N(t) = d' () A1) + a(t) A (1)b(t) + a(t) ALV (£).
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But since A(t)b(t) = A(¢)b(t) and a(t)A(t) = A(t)a(t), we obtain via (2.2) that

N(t) = AXt){d ()b(t) + a(t)b' ()} + a(t)A'()b(t) = a(t)A'(t)b(t).

Thus

N (#)li=o = aA'()i=ob-

2.2 Discrete Markov Sources and Stochastic Ma-

trices

Most of the following can be found in [18, Chapter 4] and [24, Chapter 4].

Definition 2.16 A discrete stochastic process { X, X, ...} with finite-alphabet X =

{1,2,..., M} is said to be a Markov source of order k if, for n > k,

Pr{Xn = Z.n|)(nfl = Z.nfl;‘Xvan = in727 s 7X1 = Zl} =

PT{Xn = in|Xn—1 = in—l;Xn—2 = in—Z; cee ;Xn—k - in—k};
for all ¢1,...,7, € X.
Define {W,,} as the process obtained by k-step blocking the Markov source { X, }; i.e.,
A
Wn - (XTH Xn+]_, [N 7XTL+]€7]_)'
Then
PT{Wn = wn|Wn71 = Wp—1y---, Wy = wl} = Pr{Wn = wn|Wn71 = wnfl}a
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and hence, {W,,} is a first order Markov source with M* states. We herein consider

Markov sources of first order unless otherwise stated.

Definition 2.17 A stochastic process is said to be stationary if the joint distribution
of any subset of the sequence of random variables is invariant with respect to shifts

in time index, i.e.,
PT{X]_ == il,XQ == ig, ce 7Xn == Zn} = PT{XLH == i17X2+l = ig, C 7Xn+l == Zn};

for every time shift [ and for all 7y,...,7, € X.

Definition 2.18 A Markov source is said to be time-invariant if the conditional

probability does not depend on n, i.e., for n > 1,

Pr{X, =j|Xo_, =i} = Pr{X, = j|X, =i}, forall i,jeX.

If {X1,Xy,...} is a Markov source, then X, is called the state at time n. A time-
invariant Markov source is characterized by its initial state and a probability transition
matric P = (pi;), 1,5 € X, where p;; = Pr{X,4+1 = j|X,, = i}. From now on, we will

only deal with time-invariant Markov sources.

Definition 2.19 A distribution on the states such that the distribution at time n+1
is the same as the distribution at time n is called a stationary distribution and is

denoted by m = (71, ..., 7).
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Remark: For a finite-alphabet Markov source with probability transition matrix P,
its stationary distribution 7 always exists [24, p. 110] and can be obtained by solving
7P = m. Furthermore, the source is stationary if the distribution of its initial state

is given by 7.

Definition 2.20 A Markov chain is irreducible if its probability transition matrix P

is irreducible. It is ergodic if P is irreducible and aperiodic.

Definition 2.21 The entropy rate of a stochastic process { X, Xy, ...} is defined by

1
H(X) = lim —H(X}, Xs,...,X,)

n—oo N
when the limit exists.
Definition 2.22 We can also define a related quantity for entropy rate:
H'(X) = lim H(X,|X, 1, X, 9,..., X)),
n— o0

when the limit exists.

The two above quantities correspond to two different notions of entropy rate. The
first is the per symbol of the n random variables, and the second is the conditional

entropy of the last random variable given the past.

Proposition 2.10 [18, p. 64] For a stationary source, H(X') and H'(X) exist and

are equal.
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Proposition 2.11 [18, p. 66], [25, p. 68] Let {X;, Xy,...} be a Markov source
with stationary distribution 7 and transition matrix P. Then the entropy rate is
given by

H(X) = H(X5|X,) = - Z TiPij 108 pij,
ijEX

if the source is stationary. The same result also holds for irreducible (not necessarily

stationary) Markov sources.

Example: Finite-memory Polya contagion process: Consider the following source
{X1, X5, ...} which is generated according to the following urn scheme as described
in [2]: An urn initially contains 7" balls—R red and S black (I' = R+ S). At the j-th
draw, j=1,2,..., we select a ball from the urn and replace it with 1 + A balls of the
same color (A > 0); then, k draws later—after the (j + k)-th draw—we retrieve from
the urn A balls of the color picked at time j. Let p=R/T <1/2, 0 =1—p=S/T
and 0 = A/T. Then, the source {X;} corresponds to the outcomes of the draws from

the urn, where

¥ 1, if the i-th ball drawn is red
0, if the ¢-th ball drawn is black

It was shown in [2] that {X, Xy, ...} is a stationary ergodic Markov source of order

k with entropy rate given by

+ 120
H(X):H(Xk+1|Xk77X1):Z LZhb(f—"kd),
i=0 1

where
[ —o(p+30) T2 (o + 10)
1521+ md)

Li:

Y
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and

hy(a) :== —alogya — (1 — a)logy(1 — a)

is the binary entropy function.

Proposition 2.12 [26, p. 40| The Kullback-Leibler divergence rate between a sta-
tionary source p™, with stationary distribution 7, and a Markov source ¢, with

transition matrix @ = (g;;), is given by

: 1 n n
lim —D(p™|¢™) = —H,(X) — Z Tipij 10g qij,

n—oo N,
ijeX
where H,(X) is the entropy rate of the stationary source p™ which exists by Propo-

sition 2.10.

Let us recall some useful results from Perron-Frobenius theory in the context of
stochastic matrices. An immediate consequence of Propositions 2.4 and 2.5 is the

following result.

Corollary 2.1 Let P be the probability transition matrix for an irreducible Markov
source. Then A = 1 is an eigenvalue of P which is greater than or equal to the

magnitude of each other eigenvalue.

Proposition 2.13 [32, p. 524] Let P be the probability transition matrix for an
irreducible Markov source. Also, let a (b) be the left (right) eigenvector associated
with the largest positive real eigenvalue A = 1 such that ab = 1. Also, let L = ba.

Then

n

i 23 2P =L

=1
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Moreover, there exists a finite positive constant C' = C'(P) such that

n
DI I
n 4 n
=1 00
foralln =1,2,...and || || is the I, norm, where the [, norm of an M x M matrix

. A
A is defined by ||A||ec = maxi<; < |ag|.

Proof: We have that

n

1 — ,
= L —§ P—L)
+”i:1( )

= L+%(P—L)(I— (P—L)Y")I—(P—-L))™! (2.4)
= L+%(P—L)(I—P"+L)(I—(P—L))1, (2.5)

where (2.3) follows from the identity (P — L)™ = P™ — L for all m = 1,2, ... (which
can be shown by induction on m) and (2.4) follows from the fact that if B is a square
matrix such that I — B is invertible, then > 1" | B = B(I — B")(I — B)™!. It can be
shown that the matrix I — (P — L) is indeed invertible. The equality (2.5) follows
also from the identity (P — L)™ = P™ — L. The only part in (2.5) that depends on n
is the factor 1/n and the term P". But, by Proposition 2.6, P" is uniformly bounded

as n — co. Thus, + 3" | P’ converges to L, and the order of convergence is 1/n.
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Remark: The left eigenvector a is the unique stationary distribution 7 of P associ-

ated with the largest positive real eigenvalue A =1 and 0* = (1,...,1).

With the aid of the above proposition and Proposition 2.2, it can be shown that
for an arbitrary stochastic matrix P the Cesdro limit, lim,, % 2?21 P, exists and

is computable.

Proposition 2.14 [19, p. 129] Let P be the probability transition matrix for an
arbitrary Markov source with associated canonical form as in Proposition 2.2. Let a;
(b;) be the left (right) eigenvector of P; associated with A = 1 such that a;b; = 1, for

t=1,...,h. Let

Phi11 Prin
_Pl -
. 0 0 . P, Py,
Py Pyian
0 ... B
Py By,
Also, let
Pyp ... O ... ... 0
_blal -
o T N e 0 ... 0
Pyngr - Ppyg 0 ... 0
I 0 .. bha,h_
Ppyw .. By Pgpo ... 0
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We have the following:

1 o . D 0
lim — Y P'= ,
B (I-c)-'BD 0
where [ is the identity matrix.
Proof: We have that
A0
P" =
Bm

Note that
B(n) _ BAnfl + CB(nfl),

by simply equating the entries of the matrix P" with the entries of the matrix PP" L.

Therefore
> BO=BY A"'4+C> B,
=1 =1 =1

where B© := () and A° := I. Hence

%iB(“ = B%iA” +C%iB(“). (2.6)
1=1 1=1 1=1

By Proposition 2.13

1 e~

im — ) — b.q,

Y 5 > P! = bio
j=1

fori =1,...,h, where b; (a;) is the right (left) eigenvector corresponding to 1 which

is the largest positive real eigenvalue corresponding to all the stochastic matrices P;

such that a;b; = 1. It follows that

b1a1 0 0
1~
] _ J — — .
fm 2 #=P=) 0 = 0
]:
O O bhah
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If P,,i=h+1,...,g has all row sums identical, then by Proposition 2.5, its largest
positive real eigenvalue is less than 1. Otherwise, by Lemma 2.7, its largest positive
real eigenvalue is less than 1. Hence, all the eigenvalues of C' have modulus less than

1. Therefore C™ converges to the zero matrix 0, and hence

n—o0o0 1, “

1~
lim ~> "¢’ =0.
7j=1
Letting n — oo in (2.6), we conclude that
1= o
im — U — (1) !
JL‘EWZB = (I - C)'BD,

7=1

where I — C' is invertible by Lemma 2.6, and hence the desired result. =

Proposition 2.15 (Perron’s formula) [53, Section 5] Let Ao, A;,..., A\, be the
eigenvalues of A, with algebraic multiplicities mg, my, ..., m,, respectively. Define
(M) by

AN = A=A = (A= A)™,(\), t=0,....r,

such that ¢;(\) are polynomials of degree M — m; which differ from zero for A = \;.

Then, we have identically for all 7,7 =1,..., M and £k =1,2,3,...

® _ N\ 1 mi-1 )\kAij()\)]
.. = 7D T () ’
ij ; (my — 1)! A [ y(A) A=A

where A;;()) is the cofactor of the ij-th element of A/ — A. In this equation, D}~

denotes the derivative of order m; — 1 with respect to A, evaluated at A = \;.

Note that Perron’s formula permits to express an arbitrary element ag-c) of the matrix

AF in terms of the eigenvalues of A and the cofactors of the matrix \I — A.
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Lemma 2.8 [53, p. 10] Let A(\) = |\ — A|. Denote by A;;(\) the cofactor of the

ij-th element of the matrix A\I — A. [ is the M x M identity matrix. Then

dAN) &
I ;Azz()‘)

Proof: By applying Lemma 2.4 to the determinant A()\), the i-th row of A;(\)
consists of zeros except the i-th position which is 1. By Lemma 2.5, expanding each

A;()\) along this row yields the desired result. ]

Lemma 2.9 [53, p. 10] Suppose in addition to the previous lemma that A = 1 and

each row of A sums to 1. Then
Aj(1) = Ap(l) =--- = Ap(1),

forallt=1,2,..., M.

Proof: This statement follows by using the properties of determinants in Lemma

2.1, Lemma 2.2, and Lemma 2.3. O

Proposition 2.16 [53, p. 17] Let P be the probability transition matrix for an

ergodic Markov source. Then the stationary distribution 7 is given by

P;(1 .
Wizi() 1=1,..., M,

Zj ij(l) 7
where P;;(1) denotes the cofactor of the ¢j-th entry of the matrix I — P, and I is the

identity matrix.
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Proof: Applying Proposition 2.15 to P yields

k r k
W _ 1 mo—1 {)\ Pij()‘)] 1 me—1 {)\ Pij()\)]
py = ———D M A A + ——D —— , (2.7

i ey S s el N DR ey S eyl MRS
in which \g =1, A\y,..., A, are the eigenvalues of P and mgy, my, ..., m, their respec-

tive multiplicities, so that mg+m, +---+m, = M. The polynomials py(\), p1(A), ...,

pr(\) are defined by
PA) = (A =1)"py(\) = (A= X)™p(N), t=1,...,m,
where

po(1) # 0, pi(\) # 0, t=1,...,r

This relationship has a particular importance for the ergodic Markov chain associated
with P since Ay = 1 is a simple eigenvalue, i.e., mg = 1. In this case, (2.7) assumes

the form

p(k) _ P;;(1) + i %DTt—l [M} ) (2.8)

U (1) my —1)! pe(N)
By Lemma 2.9, P;;(1) = P;(1). Also, since P(A) = (A — 1)po()), then, P'(\) =

t=1

po(N) + (A = Dpp(N), and, P'(1) = po(1) £ 0.
But by Lemma 2.8 P'(\) = ). P;(\). Therefore, P'(1) =", P;(1) # 0.
For simplicity let

1 me—1 )\kPU ()\)

™ ey, & )

Clearly, Q;;:(k) represents a polynomial in & of degree not greater than (m, — 1), and

we can therefore write
me—1

Qupn(k) = Q"
h=0
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where the let) represent some specific numbers which do not depend on k. We

conclude that (2.8) can be written as

pz(f) =pi+ Z Qije(k)AL,

where
P Pi1)
PP TS, Py

The magnitude of all the remaining eigenvalues of P are less than unity. Since @Q;;:(k)

are polynomials of finite degree in k, it follows that

lim pl(f) =p;, t=12,..., M,
k—00

since

lim k" \F = 0.

k—o0

To show the above equality, it is sufficient to prove that

lim &"[A]F = 0. (2.9)

k—o0
We have the following two cases: if |[A\] = 0 then (2.9) is obvious. Otherwise, 0 <

|A] < 1. In this case,

lim log k™Al = lim (hlogk + klog|A|)
k—00 k—00

) log k
= kll)rgok < - +log|)\|>
= —00Q,

since limy,_,o0 2% = 0 by I’Hopital’s rule and log |A| < 0. Therefore, (2.9) also holds

in this case.

32



Chapter 3

Shannon’s Information Measure
Rates for Finite-Alphabet Markov

Sources

Let {X;, Xy,...} be a first-order time-invariant Markov source with finite-alphabet
X ={1,...,M}. Consider the following two different probability laws for this source.

Under the first law,
Pri{X;=1i}=1p; and Pr{Xyy =jlXs=1i}=p;y, 1,j€AX,
so that
P = Pri{Xi =i1,..., X0 = i} = DisPiris " *Pinrins s+ -+ in € X,

while under the second law the initial probabilities are ¢;, the transition proba-

bilities are ¢;;, and the n-tuple probabilities are ¢™. Let p = (p1,-..,pm) and
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¢ = (qi,...,qu) denote the initial distributions under p™ and ¢(™ respectively.

The Kullback-Leibler divergence [40] between two distributions p and ¢ defined

on X is given by

Dllg) =D pi log

1€EX

where the base of the logarithm is arbitrary. One natural direction for further studies

is the investigation of the Kullback-Leibler divergence rate

1
lim —D(p™||¢™)

n—oo 1

between two probability distributions p™ and ¢™ defined on X", where

(n) (jn
n pr\?
D(p™lg™) = > p™(i") log (")

e @)
for sources with memory. In [26], Gray proved that the Kullback-Leibler divergence
rate exists between a stationary source p™ and a time-invariant Markov source ¢(™
(Proposition 2.12). This result can also be found in [59, p. 27]. To the best of
our knowledge, this is the only result available in the literature about the existence
and the computation of the Kullback-Leibler divergence rate between sources with
memory. In the sequel, we provide a computable expression for the Kullback-Leibler
divergence rate between two arbitrary time-invariant finite alphabet Markov sources.
This expression, which is proved in a straightforward manner using results from the
theory of non-negative matrices and Perron-Frobenius theory, has a readily usable
form, making it appealing for various analytical studies and applications involving

the divergence between systems with memory.
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3.1 Kullback-Leibler Divergence Rate

3.1.1 First-Order Markov Sources

We first assume that the time-invariant Markov source {X;, Xy, ...} is of order one.
Later, we generalize the results for sources of arbitrary order k. Let p and ¢ be
the initial distributions with respect to p™ and ¢™ respectively. Also, let P and
() be the probability transition matrices with respect to p™ and ¢™ respectively.
Without loss of generality, we may assume that p and P are absolutely continuous
with respect to ¢ and @ respectively (i.e., ¢; = 0= p; =0 and ¢;; = 0= p;; =0, for
all 7,7 € X'), because otherwise the Kullback-Leibler divergence rate is infinite. We

have the following results.

Theorem 3.1 Suppose that the Markov source { X1, Xo, ...} is irreducible under p(™
and ¢™. Let

S(Xo| Xy =1) me log p”.

JEX

Then, the Kullback-Leibler divergence rate between p™ and ¢(™ is given by

1
lim —D(p™]|¢™ Zm (Xo| Xy = 1),

n—oo 1 gy
7

where m = (my,...,m)) is the unique stationary distribution of P.
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Proof: We have that

1 n n
—D(p™||g"™) =
n

%Z[p(Xl =) 44 (X = )|S(X| Xy =) +

icX
1 . X, =1
=Y p(X1=1)log %7
ieX A=
which can be also written as
1 (n)],,(n) 1 n—2
ED(p l¢g'"™) = gp(I+P+---+P 1% (3.1)
1 Di
— ; log —, 3.2
+ = ;p o8 (3.2)

where

VE=(S(Xo] X, =1),...,9(Xs| X, = M)).

Note that (3.2) approaches 0 as n — co. Hence, by Proposition 2.13, we obtain that

1
lim ~p(I+P+---+ P" )V =pLV,

n—oo 1

where

T T M
T T M
™ T2 ... TMpm
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Thus

T T ... Tpg
1 Ty T ... Ty
lim ~D(p™|¢™) = p Vv
nroo N Do : :
™ T ... TM
= ZWZS(X2|X1 = Z)
1EX

Theorem 3.2 Suppose that the Markov source {Xi, Xy,...} under p™ and ¢™ is
arbitrary® (not necessarily irreducible, stationary, etc.). Let the canonical form of P
be as in Proposition 2.2. Also, let B, D and C be as defined in Proposition 2.14.

Then, the Kullback-Leibler divergence rate between p™ and ¢(™ is given by

1 D 0
lim —D(p™)||¢™) = p v,
ren (I-c)'BD 0
where

VE= (S(Xa| X1 =1),..., S(Xo| Xy = M)),

and [ is the identity matrix with same dimensions as the matrix C'.

ISince p and P are absolutely continuous with respect to ¢ and Q respectively, it follows that p(™)
is absolutely continuous with respect to ¢(™. Hence, some restriction on their behavior is induced.
For instance, if P is irreducible, () must be irreducible. However, it is possible to have @) irreducible

and P reducible. So, in general, () and P do not necessarily have the same number of classes.
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Proof: As in the previous theorem, we have that

1 1 -
—DE™Ng™) = —p(I+ P+ PV (3:3)
1 Di
+— > pilog—. 3.4
2 o

Then, the desired result follows immediately from Proposition 2.14.

Theorem 3.3 The rate of convergence of the Kullback-Leibler divergence rate be-

tween arbitrary p™ and ¢™ is of the order 1 /n.

Proof: Clearly, the rate of convergence of (3.4) to 0 is of the order 1/n. In Proposition
2.13, it is proved that the rate of convergence of the Cesaro sum of an irreducible

stochastic matrix is of the order 1/n. On the other hand, if P is not irreducible,

let P, i = 1,...,h, be the sub-matrices corresponding to essential classes and let
P, i = h+1,...,g be the sub-matrices corresponding to inessential classes as in
Proposition 2.2. For ¢ =1,..., h, each P; is stochastic and irreducible; so its Cesaro-

sum is of the order 1/n by Proposition 2.13. Now, for i = h+1,...,g, every P, is

irreducible and hence, by Proposition 2.6, we have that
P"<\'G;, i=h+1,...,¢, (3.5)

where J; is the largest positive real eigenvalue of P;, and G; is a matrix with identical

entries that are independent of n. Therefore

1 e~ 1 e

- § P o< = § MG

n 4 T p 4 G
J=l1 J=1

1 )\1(1 —)\?)
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forvo = h+1,...,9. If P; has all row sums identical then )\; < 1 by Proposition
2.5 and the fact that P is stochastic. Otherwise, A; < 1 by Lemma 2.7. Hence, the
Ceséaro sum of Py, i = h+1,...,¢ is of the order 1/n. By considering the Cesaro sum
of the canonical form of P, we get that the rate of convergence of (3.3) is of the order
1/n. Therefore the rate of convergence of the Kullback-Leibler divergence rate is of

the order 1/n. ]

3.1.2 k-th Order Markov Sources

Now, suppose that the Markov source has an arbitrary order k. Define {W,} as the

process obtained by k-step blocking the Markov source {X,}; i.e.,
Wn = (Xn7 Xn+17 s 7Xn+k;71)-

Then {W,} is a first order Markov source with M* states. Let py, ,w, := Pr(W, =
Wp|Wy1 = wy1). Let p= (p1,...,pur) and ¢ = (q1,. .., qu+) denote the arbitrary
initial distributions of W, under p™ and ¢™ respectively. Also, let pi; and ¢;; denote
the transition probability that W, goes from index i to index j under p™ and ¢™

respectively, i, j = 1,..., M*. Then clearly D(p'™||¢™) can be written as

1 1 -
~DE™ ™) = —pU+ P+ PV
1 S p(Wr =)
— = 1 _—
T 2 WL =i)los gy

where
V= (S(Wo|Wy = 1),..., S(Wy|W, = M*)).
It follows directly that Theorems 3.2 and 3.3 also hold for a Markov source of arbitrary

order k.
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3.2 Shannon Entropy Rate

The existence and the computation of the Shannon entropy rate of an arbitrary time-
invariant finite-alphabet Markov source can be directly deduced from the existence
and the computation of the Kullback-Leibler divergence rate. Indeed, if ¢(™ is sta-

tionary memoryless with uniform marginal distribution, then
D(p™|l¢"™) = nlog M — H(p™).

Therefore

1 1
lim —D(p™||¢™) =log M — lim —H (p™). (3.6)

n—oo N n—oo N

We have the following corollaries.

Corollary 3.1 Suppose that the Markov source {X;, X,,...} under p™ is irre-

ducible. Let

N A
H(X5| X, =i) = — sz’j log pij.-

jex
Then, the Shannon entropy rate of p(® is given by
1
lim —H(p(")) = ZmH(X2|X1 = 1),

n—00 1 —
7

where m = (my,...,m)) is the unique stationary distribution of P.

Proof: Obtained directly by plugging ¢;; = 1/M in Theorem 3.1 and using (3.6).

40



Corollary 3.2 Let the canonical form of P be as in Proposition 2.2. Also, let B, D

and C be as defined in Proposition 2.14. Then, the Shannon entropy rate is given by

1 D 0
lim —H(p™) =p V,
e (I-c)'BD 0

where

Vi= (H(X,| Xy =1),..., H(X;|X; = M)),

and [ is the identity matrix with same dimensions as the matrix C'.

Proof: Note that P, i =1,2,... is a stochastic matrix?. Hence,
1 -1
lim =(I+ P+ +P" 1" = lim ——1'
n—o00 1 n—00 n
= 1t

which yields that

1
lim —( + P+ -+ P"?)

n—oo N,

is a stochastic matrix. Therefore,

D 0
(I-¢)'BD 0
is also a stochastic matrix. Hence,
log M log M
D 0
p : =p : = log M.
(1-¢)'BD 0
log M log M

2We have that P1! = 1!, where 1 = (1,...,1) and ¢ is the transpose operation. Using this fact

and the fact that P! = PP~ the result follows by mathematical induction on i.

41



Then, the corollary follows directly by plugging ¢;; = ﬁ in Theorem 3.2 and using

(3.6).

Corollary 3.3 The rate of convergence of the Shannon entropy rate of p™ is of the

order 1/n.

3.3 Numerical Examples

In this section, we use the natural logarithm for simplicity.

Example 1: Let P and () be two possible probability transition matrices for a first
order Markov source {X;, Xy,...} (not stationary and not irreducible) defined as

follows:

1/2 0 0 1/2 0 0 0

0

o

47 2/7 1/T 0 0
0 0 1/3 0 0 2/30
P=11/4 0 0 3/4 0 0 0|,

2/5 2/5 0 0 1/5 0 0

1/4 0 1/2 0 1/4 0 0
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and

1/3 0 0 2/3 0 0 0

0

e}

2/7 17 4/7 0

e}

0O 0 1/5 0 0 4/5 0
Q=11/66 0 0 56 0 0 0
/5 2/5 0 0 2/5 0 0

0 0 1 0 0 0 0

1/4 0 1/4 0 1/2 0 0

Let p = (3/7,0,1/7,0,1/7,2/7,0) and ¢ = (2/8,0,3/8,0, 1/8,2/8,0) be two possible
initial distributions under p™ and ¢(™, respectively. In canonical form, P and @ can

be rewritten as

1/32/3 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0

P=| 0 0 1/4 3/4 0 0 0|,

0 0 2/5 0 1/5 2/5 0

47 0 0 2/7T 1/T 0 0

1/2 0 1/4 0 1/4 0 0
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and

0O 0 1/32/3 0 0 0
=10 o0 1/6 56 0 0 0],
0O 0 1/5 0 2/5 2/5 0

2/7 0 0 1/7 4/7 0

o

1/4 0 1/4 0 1/2 0 0

simply by permuting the first and third rows and columns and the second and
sixth rows and columns. Note that P has 2 essential classes, 1 inessential self-
communicating class and 1 inessential non self-communicating class. Accordingly,
the initial distributions are rewritten as p = (1/7,2/7,3/7,0,1/7,0,0) and ¢ =
(3/8,2/8,2/8,0,1/8,0,0), after permuting the first and third indices and the second

and sixth indices. We obtain the following.

1 n n
n | ~D(p™|¢"™)

10 0.05323
20 0.03626
100 0.03415

By Theorem 3.2, the Kullback-Leibler divergence rate is equal to 0.032. Clearly, as
n gets large 2D(p™||g™) is closer to the Kullback-Leibler divergence rate. We also

obtain the following.
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n | LH(p™)

10 | 0.54366
50 | 0.50877
100 | 0.50442

By Corollary 3.2, the Shannon entropy rate is equal to 0.50008. Clearly, as n gets

large 1 H(p™) is closer to the Shannon entropy rate.

Example 2: Consider the Markov source {X;} of order 2 generated according a
variation of the Polya urn scheme as described in the example of Chapter 3. The

process {W,,} such that each random variable W), is a 2-step blocking of {Z,}, i.e.
W, = (Zna Zn+1)7

is a first order stationary ergodic Markov source with 4 states. The probability

transition matrix P of {W,,} is given by

T om0 0
poo | 00 O |
Gw ot 00

where p + o = 1. Suppose that the urn contains initially 3 red balls and 5 black
balls. Denote by p(™ the joint distribution of the source and P its transition matrix
if A = 1. Denote by ¢™ the joint distribution of the source and @ its transition

matrix if A = 2. In this case
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7/10 3/10 0 0 9/12 3/12 0 0
0 0 6/10 4/10 0 0 7/12 5/12
o /10 4/ o= /12 5/
6/10 4/10 0 0 7/12 5/12 0 0
0 0 5/10 5/10 0 0 5/12 7/12

The initial distributions under p™ and ¢ are respectively p = (30/72,15/72,15/72,

12/72) and ¢ = (35/80,15/80,15/80, 15/80). We obtain the following.

n | D™ |q™)

10 0.0046

20 0.00512

100 0.00519

By Theorem 3.1, the Kullback-Leibler divergence rate is equal to 0.005254. Clearly,
as n gets large %D(p(")“q(”)) is closer to the Kullback-Leibler divergence rate. We

also obtain the following.

n | LH(p™)

10 0.3887
50 0.5981
100 | 0.6243

By Corollary 3.1, the Shannon entropy rate is equal to 0.6505. Clearly, as n gets large

%H(p(’”) is closer to the Shannon entropy rate.
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Example 3: Suppose that the Markov source is of order 2 under p™ and ¢™ re-
spectively. Let {W;,Ws, ...} be the process obtained by 2-step blocking the Markov

source. Let P and @ be two possible transition matrices for {Wy, Ws, ...} defined as

follows: ~ .
1/3 2/3 0 0
0 0 1 0
P = ,
2/5 3/5 0 0
0 0 1/6 5/6
and ) i
3/4 1/4 0 0
0 0 1 0
Q:
7/8 1/8 0 0
0 0 2/3 1/3

Let p = (1/8,3/8,2/8,2/8) and ¢ = (1/7,2/7,3/7,1/7) denote two possible initial
distributions of W, under p™ and ¢(™ respectively. The set of indices {1, 2,3} forms
an essential class, while the singleton set {4} forms a self-communicating non-essential
class. Hence, P and () are not irreducible. Note also that both p(™ and ¢™ are not

stationary. We obtain the following.

n | LD(p™]q™)

10 0.2982
20 0.3253
100 0.3277
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By Theorem 3.2, the Kullback-Leibler divergence rate is equal to .3301. Clearly, as
n gets large 2D(p™||g™) is closer to the Kullback-Leibler divergence rate. We also

obtain the following.

n | LH(p™)

10 0.4618
50 0.4175
100 | 0.4116

By Corollary 3.2, the Shannon entropy rate is equal to 0.4057. Clearly, as n gets large

%H(p(”)) is closer to the Shannon entropy rate.

3.4 Hypothesis Testing Error Exponent

For Stationary Irreducible Markov Sources

Let us first recall the binary hypothesis testing problem. Consider a sequence of
random variables {X7,..., X, } which is generated according to some distribution
p™ under the null hypothesis H; and generated according to some other distribution
¢™ under an alternative hypothesis H,. The problem is to decide which hypothesis
is true based on a sequence of random observations in a finite set X. Let A, C A"
be an acceptance region for the null hypothesis. Then, two probabilities of error can

occur. The type-1 error probability is defined as

>

a, = p" (A5,
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where Af denotes the complement of A,; «, basically denotes the probability that

H, is chosen given that H; is true. The type-2 error probability is defined as

>

ﬁn = q(n) (An) )

which denotes the probability of choosing H; when Hs is true. In general, one wishes
to minimize both probabilities, but there is a trade-off. Another approach, is to min-
imize one of the probabilities of error subject to a constraint on the other probability

of error.

The best achievable error exponent for hypothesis testing has been thoroughly
studied for independent and identically distributed (i.i.d.) sources and Markov sources,
and the error exponents have been determined. The result for i.i.d. sources (known

as Stein’s Lemma) is given by the following theorem.

Proposition 3.1 (Stein’s Lemma) [18], [21]: Let {X}, X5,...} be anii.d. source
generated according to p™ under H; and according to ¢ under H, with respective
initial distributions p and ¢. Suppose that D(p||q) < oo. Let A,, C X™ be an accep-
tance region for H, and «, and [, denote the type-1 and type-2 error probabilities,

respectively. For e € (0,1), define

AN
£ = min )
ﬁn ApCX ™ <e ﬁn

Then

N I
lim ——log 5, = D(pll).

n—0o0
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The best achievable error exponent for testing between two irreducible Markov

sources is given by the following theorem:.

Proposition 3.2 [5]: Let { X7, X5, ...} be astationary and irreducible Markov source
generated according to p™ under H; and according to ¢ under H, with respective
initial distributions p and ¢ and respective probability transition matrices P and Q).

Suppose that p and P are absolutely continuous with respect to ¢ and @) respectively.

Then
€ pU
lim —— S log 5 = dSom Y opy log =
1eX JEX
where m = (71, ..., 7)) is the unique stationary distribution of P.

The proof involves large deviation theory. It mainly relies on Sanov’s Theorem [12]
for the type or empirical transition-count matriz of an arbitrary sample 2" € X"
of the source. The type of 2" is the probability distribution on X? giving mass
N(i,7,z")/n to (i,j) € X?, where N(i,j,2") denotes the number of transitions from
¢t to 7 in 2™ with the cyclic convention that x; follows z,. The 7j-th entry of the
empirical transition-count matrix is also given by N (i, j,2™)/n. Sanov’s Theorem can
be roughly described as follows. The probability of seeing sample sequences for which
the type is far from the true distribution decreases to zero exponentially in the sample
size. The decision region used in the proof is described as follows. Upon observing a
sample from the source, choose p™ as the true distribution iff the empirical transition-
count matrix of the sample is “close” to the probability transition matrix P. Recently,
in [15] the author generalizes Stein’s Lemma for testing between arbitrary sources

(not necessarily, Markov, stationary, ergodic, etc.) using an information spectrum
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approach. He obtained a lower bound and an upper bound to the error exponent which
are not necessarily computable in general. In the sequel, we provide an alternative

proof of the above proposition which follows along the same lines as in the proof of

(™)

Proposition 3.1. Let us first show that the normalized log-likelihood ratio + ~log 2 (X

converges to a limit with probability 1 under the null hypothesis.

Lemma 3.1 Let {X;, Xs,...,} be a Markov source that is stationary and irreducible
under both p™ and ¢™. Then

1 pij
Jlim log =3 ™) pij log =

1eX JjeEX
with probability 1 under p™, where m = (1, ..., 7)) is the unique stationary distri-

bution of P.

Proof: Note that the normalized log-likelihood ratio can be written as

——lo
00 I (Xl Xis)

L. p
In the limit, as n — oo, the first term approaches 0, and the second term which is

p(Xi|Xi—1)

the time average of log Fe Lo

approaches the statistical average with probability
1 under the probability distribution p™, by the ergodic theorem [10, p. 13]. The

statistical average of this quantity with respect to p™ is

p(Xi|Xi1)> p(l‘i|xi71)
E|log————-+= = p(z") log ———=
( Q(Xi|Xz'—1) x;n ( ) Q($i|$i—1)
p($i|$z’71)
= p(x;_1,x;) log ———=
:Ezzlyfcz ( 1 ) gq(xiui*l)
— 1 pl]
= 2 mD pylog
1eX JjeEX
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where the last equality follows by stationarity; hence we obtain the desired result.

|

Remark: By the previous lemma and Theorem 3.1, the following holds with proba-

bility 1 under p{™.

1 p(Xm) Ly m)
Dij
- Sn il
i€EX  jEX g
where m = (mq,...,my) is the unique stationary distribution of P. We now provide

a simple alternative proof for Proposition 3.2, which goes along the same lines as in

[18, p. 309).

Proof of Proposition 3.2: We first construct a sequence of acceptance regions

A, € X" such that oy, < € for n sufficiently large and

1
lim ——logf, =L,

n—oo M

where

A : 1 n n
L = lim —D(p™||¢™),

n—oo 1,

which exists by Theorem 3.1. Fix § > 0 and let

Ay = {x” eam ot < P MG 2"(“5)} :

Then p™(A,) — 1 as n — oo. This follows from the previous remark. Hence, for

§ = ¢ and sufficiently large n, a,, = p™(A¢) < e. By definition of A, we have that
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Similarly, it can be shown that

ﬁn > 27n(L+5)(1 . an)-

Hence,
1 1
—=logf, > L —6— —log(l — o),
n n
and
1 1
——logf, < L+6——log(l — ay).
n n
Thus

1
lim ——log 3, = L.

n—oo 1
We now prove that no other sequence of acceptance regions does better. Let B, C A"
be any other sequence of acceptance regions with type 1 error probability !, =
p™(B¢) < ¢, and type 2 error probability 8! = ¢ (B,). We will show that 3! >

2-7(L=9) where § > 0 is arbitrary. We have the following.
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€A, NBy

> Z p(n) (xn)an(lA»ﬁ)

e A, NBy

— 9—n(L+9) Z p(n)(xn)

e A,NBy
(1 -, — a;/)2fn(L+5),

v

where the last inequality follows from the union bound as follows:

> e = (4N B,)
e A,NBy,
= 1 p"(A5 U B
> 1 p™(Ag) - P (BY)

/
= 1l—-a,—a,.

Hence
]‘ ! ]‘ !
_logﬁn > —L—0+ —IOg(]. — Qp — an)a
n n

and since 0 > 0 is arbitrary,

1
lim ——log ), < L.
n

n—00
Thus, no sequence of sets B, has an exponent larger than L. Since the sequence A,
achieves the exponent L, A, is asymptotically optimal, and the best error exponent

is L.
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Remark: Our approach generalizes in a straightforward manner for stationary Markov
sources that contain one irreducible essential class C; and an arbitrary number of
inessential classes Cs, ..., C5. Such a Markov source is said to be indecomposable [7].
In this case, the stationary distribution is 7 = (7, 0,...,0), where 7 is the station-
ary distribution corresponding to € and the zeros correspond to inessential classes.

We have the following result.

Corollary 3.4 Let {X;, Xy, ...} be a stationary Markov source generated according
to p™ under H; and according to ¢ under H, with respective probability transition
matrices P and (). Suppose that the Markov source has one essential class C'; with j
indices and an arbitrary number of inessential classes Cs, ..., Cs. Also, suppose that
p and P are absolutely continuous with respect to ¢ and @ respectively. Then

lim —— S og 5 = dom ) pae log

1eCq keCh

where m = (my,...,m;) is the unique stationary distribution corresponding to Cj.
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Chapter 4

Rényi’s Information Measure
Rates for Finite-Alphabet

Markov Sources

Let {X;, Xy,...} be a first-order time-invariant Markov source with finite-alphabet
X ={1,...,M}. Consider the following two different probability laws for this source.

Under the first law,
Pr{X; =i} = pand Pr{Xyn =j|Xy=1i} =py, 1,j€X,
so that
P = Pri{Xy =i1,..., X0 = G0} = DisPiria " *Pinrins  i1s---»in € X,

while under the second law the initial probabilities are ¢;, the transition proba-

bilities are ¢;;, and the n-tuple probabilities are ¢™. Let p = (p1,-..,pm) and
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¢ = (qi,...,qu) denote the initial distributions under p™ and ¢(™ respectively.

The Rényi divergence [52] of order a between two distributions p and ¢ defined

on X is given by

. 1 ~asl—a

Da(pllg) = — log (sz q;" ) ,
icex

where 0 < v < 1. This definition can be extended to o > 1 if all §; > 0. The base of

the logarithm is arbitrary. Similarly, the Rényi entropy of order « for p is defined as

ia log (Zﬁ?‘) ,
ieX

where @ > 0 and @ # 1. As @ — 1, the Rényi divergence approaches the Kullback-

Ho(p) =

Leibler divergence (relative entropy) given by

D@ = b log -

ieX

and the Rényi entropy approaches the Shannon entropy. The above generalized in-
formation measures and their subsequent variations [57] were originally introduced
for the analysis of memoryless sources. One natural direction for further studies is

the investigation of the Rényi divergence rate

1
lim —D,(p™|lg™),

n—oo 1

where

Dalpllg™) = —— log ( > [p<“>(¢”>1a[q<n>(zn>]1-a> ,

inrexn
and of the Rényi entropy rate
1
lim —H,(p™),

n—oo 1
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where

Ho(p™) = i ~log ( > [p(”)(i”)]“> ,

mexn

for sources with memory, in particular Markov sources. Nemetz addressed these
problems in [44], where he evaluated the Rényi divergence rate lim,,_, 2D, (p™ | ¢™)
between two Markov sources characterized by p™ and ¢(™), respectively, under the
restriction that the initial probabilities p and ¢ are strictly positive (i.e., all p;'s and

¢;’s are strictly positive).

In this chapter, we provide a generalization of the Nemetz result by establishing
a computable expression for the Rényi divergence rate between Markov sources with
arbitrary initial distributions. We also investigate the questions of whether the Rényi
divergence rate reduces to the Kullback-Leibler divergence rate as ¢ — 1 and the
interchangeability of limits between n and o as n — oo and as a« — 0. We provide
sufficient (but not necessary) conditions on the underlying Markov source distribu-
tions p™ and ¢™ for which the interchangeability of limits as n — oo and as o — 1
is valid. We also give an example of non-interchangeability of limits as n — oo and
as @« — 1. We also show that the interchangeability of limits as n — oo and o — 0

always holds.

We next address the computation and the existence of the Rényi entropy rate
lim,, o0 %Ha(p(”)) for a Markov source with distribution p(™® and examine its limits
as « — 0 and as @ — 1. We also establish an operational characterization for
the Rényi entropy rate by extending the variable-length source coding theorem for

memoryless sources in [13] to Markov sources.
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4.1 Rényi Divergence Rate

4.1.1 First-order Markov Sources

We assume first that the Markov source {Xi, Xy,...} is of order one. Later, we
generalize the results for an arbitrary order k. The joint distributions of the random

variables (X7, ..., X,,) under p™ and ¢™ are given respectively by

P == Pr{Xi =i1,..., X0 = in} = DiPiris " * Pin_sins

and
¢ME") = PriX, =i, ..., Xp = in} = G, Giriy - iy, -
Let
Vin,a) = Y ™)™ ™).
inexn
Then
Vn,a) = poal Pttt i
where the sum is over 7y,...,7, € X. Define a new matrix R = (r;;) by
Tij :p%qilj*a, i,j=1,..., M.
Also, define two new 1 x M vectors s = (s1,...,sy) and 1 by

S; :pf‘qil’a, 1=(1,...,1).

Then clearly Do(p™||¢"™) can be written as

1

Da(p™ ™) = —

log sR™'1°, (4.1)
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where 1! denotes the transpose of the vector 1. Without loss of generality, we will
herein assume that there exists at least one i € {1,..., M} for which s; > 0, because
otherwise (i.e., if s; = 0 Vi), Dy (p™|]¢\™) is infinite. We also assume that 0 < « < 1;

we can allow the case of @ > 1 if ¢ > 0 and ) > 0. We obtain the following results.

Theorem 4.1 If the matrix R is irreducible, then the Rényi divergence rate between

p™ and ¢™ is given by

: 1 n n
lim =Dy (p™]|¢"™) = log A,
n—oo 1,

a—1
where A is the largest positive real eigenvalue of R, and 0 < o« < 1. Furthermore, the

same result holds for « > 1 if ¢ > 0 and @ > 0.

Proof: By Proposition 2.4, let A be the largest positive real eigenvalue of R with

associated positive right eigenvector b > 0. Then
R 'h = \""1b. (4.2)

Let R*" = (r""V) and b* = (b1, by, .., bar). Also, let by = minj<;<p(b;) and by =
maxlSiSM(bi). Thus 0 < by, < bz < bU Vi. Let R 11! = yt where Yy = (yl; .. ;yM)

Then, by (4.2)

M M
)\nilbi == ngyil)bj S Zriyil)b[] = bin, Vi = 1, ce ey M.
j=1 j=1

Similarly, it can be shown that \* 'b; > byy;, Vi = 1,..., M. Therefore

| =

igyz’

<
o )\nfl —

by, M (4.3)
br

S



Since sR*'1¢ = 3"V s;y;, it follows directly from (4.3) that

- 5;b; sR*11t - S;b;
13 < < [
bU - )\n—l - bL ’

or

1 Z s;b; 1 sRM11¢ 1 Z Sib;
—1 = ) < -1 — ) <=1 = . 4.4
n0g< by >_n0g< An—l >_n0g< br, ) (44)

Note that s;, b;, by, by, do not depend on n. Therefore, by (4.4),

1 nfllt
lim —log <L> =0,

n—o00 1N An—1

since it is upper and lower bounded by two quantities that approach 0 as n — oo.

Hence
; 1 n—14t : 1 n—1 . 1 sRr—11t
lim —log (sR 1 ) = lim —log\""" 4 lim —log | ———
n—o0 1N, n—oo N, n—oo 7, An—1
= logA,
and thus
lim lDa(p(")||(_1(”)) = lim ;log (sR™'1")
n—oo N n—oo n(a — 1)
= — log A.

|

Using the above theorem and the canonical form of R we prove the following general

result.
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Theorem 4.2 Let R;, 1 =1,..., g, be the irreducible matrices along the diagonal of
the canonical form of the matrix R as shown in Proposition 2.2. Write the vector s

as

§=1(51,-+,8h 8ht1,- 189, 8g11s -+, 51),

where the vector s; corresponds to I;, 7 = 1,...,g. The scalars s4,1, ..., s; correspond

to non self-communicating classes.

e Let \; be the largest positive real eigenvalue of Ry, for which the corresponding
vector s is different from the zero vector, £k = 1,...,¢g. Let A* be the maximum

over these A\¢’s. If 5, =0,Vk=1,...,g, then let A\* = 0.

e For each inessential class C; with corresponding vector §; 20, i =h+1,...,9¢
or corresponding scalar s; # 0, ¢ = g+1,...,(, let A; be the largest positive real
eigenvalue of R; if class C; is reachable from class C;. Let AT be the maximum
over these \;’s. If 5, = 0 and s; = 0 for every inessential class Cj, then let

A =0.

Let A = max{)\*, \T}. Then the Rényi divergence rate is given by

1 1
lim —D, (p™]|¢™) =

n—oo 1, O[—].

log A,

where 0 < a < 1. Furthermore, the same result holds for a > 1 if ¢ > 0 and @ > 0.

Proof: By Proposition 2.4, let )\; be the largest positive real eigenvalue of R; with

associated positive right eigenvector b; > 0,t=1,...,9. Let
bt - (l;l,...,l;h,i)h“,...,bg,O,...,O),
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where the zeros correspond to non self-communicating classes. By Proposition 2.2 we

have that
RFY .00 0 .0 R
0o ... 0 0 .0 . ... 0
0o ... Ryt 0 e 0 |
et R™Y ... RMY ORLY .0 |
(n—1) (n—1) (n—1) n—
Ry ... Ry Ry, ... R:FU . .00
n—1 n—1 n—1 n—1
R o RU) RS RMY 0 o0
n—1 n—1 n—1 n—1 n—1
Ry RV RGO RV R 0
Then

i1=h+1

9 9
SR = 3SR+ ) 5 (Rgf‘”z}l T Rg;:%_l)
1=1
l

+ s (RE{H)El ot Rl(;*”?)g) .
i=g+1

Rewrite the vector 1 as

=1y, I Ipgr, .o 1y, 1,000, 1),

where 1;,, ¢+ = 1,...,g correspond to essential and inessential self-communicating

classes and the 1’s correspond to non self-communicating classes.
Let R"~'1¢ = y' where

Y= (yla"'ayhazh+l+yh+17"'7zg+ygazg+17"'7zl)7

63



and

g = Ry i=1....9,
i—1
i o= Y RyYILY i=h+1,...,9, (4.5)
j=1
g
Z = > R "1v+-§:R”1 i=g+1,...,1
j=1 =g+1

Therefore
sRV 11t = Zslyl—l- Z 5,2 + Z 8i%. (4.6)

As in the proof of Theorem 4.1, since Ribi = )\ibi, we can write
R?_lgi = )\?_151' S bUgi; 1= ]_,...,g,

where by = maxi<;<4(by,) and by, is the largest component of bi,i=1,...,q. Simi-
larly,

R?_lgi = )\?_ll;i Z bLgi; Z = 1, ..y g,

where b, = mini<;<4(bz,) and by, is the smallest component of bi, i = 1,...,9.
Therefore
AP N
L y =1,...,q9.
bU y bL ) 2 ? 7g
Hence

A 9. LA
b_zsi)\? 'b; SZSiyi < b—ZSM? !
Ui=1 i=1 Lo

Therefore, by (4.6)

—Z AVLh; + Z 5% + Z s;2; < sR" 1!

i=h+1 1=g+1
g
1 = n 17
b_ E S AT + E $;%; + E SiZi,
i=1 1=h+1 i=g+1
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or

:Iv—‘
CI.N

i=g+1

1 g ! 1 Rr11t
— (Z SiZi+ Y 82)) < ~log <S/\T> (4.7)
i=h+1 i

(_z () e

and

1 SR 1 t g n—1 B 1 g l
o log ( = ) — log by - Z < ) b; + P Z 5iZ;i + Z 8iZ; ,  (4.8)
i=h+1 i=gt+1

where A is as defined in the statement of the theorem. Our goal is to show that

1 log( e — ) converges to 0 as n — o0o. Let us first examine its lower bound in

(4.7). We will provide a simpler lower bound which converges to 0 as n — co. We

have the following three cases.

1. A=X; and §5; # 0 for some ¢ = 1,...,¢. In this case
1 L. N\ 1 . l 1 1 s
=1 i=h+1 i=g+1

which clearly converges to 0 as n — oo.

2. A= )j forsome j =1,...,9 and 5; # 0 for some ¢ = h+1,..., g where the
class Cj is reachable from class C;. By equating the entries of R"~' and R"?R,
it follows directly that RE?_I) is equal to RE?_Z)R]- plus a weighted sum of non-
negative sub-matrices.! Hence RE?_I) > RE}Z_Z)R]-. By induction on n > 3, it
follows directly that RE}FU > RUR?’Q. Therefore

11 1 g B )\l nfll; 1
gog EZ:ZISZ<X> i+)\n— Zszzz—i- ZszZ

i=h+1 i=g+1

By 0 (n=1) _ pn=2) >
'For example, if R = ,then Ry =Ry, 'Ri + R} “Ro.

Ry1 Rp
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S 11 1
1 L i

> - log ()\n—lsiRij 1; (4.9)
1 L n—27t

where (4.9) follows from (4.5). Using similar technique as in Theorem 4.1, it

can be verified that the right-hand term of (4.10) converges to 0 as n — oo.

3. A= )jforsome j =1,...,gand s; # 0 for some ¢ = g+1, ..., where the class
Cj; is reachable from class C;. The proof for this case is similar to that of case

2.

Let us now examine the upper bound to %log (sﬁlilllt) in (4.8). By definition of A,

it is obvious that )‘y <1, foralli=1,...,gsuch that 5; # 0. Therefore

1 (sRY11Y\ 1 1< - 1 L
Elog (?) < glog (EZSz-bi—i- = (Z Sz + Z 8iZ; . (4.11)

=1 i=h+1 i=g+1
Note that
g [ g i—1 [ g
~ ~ ~ ~ n—1)3¢ n—1)3¢
E S;Z; + E SiZ; = E E SZ'RZ(J- )1] + E E siRl(j )1]
i=h+1 i=g+1 i=h+1 j=1 i=g+1 j=1
l i—1
(n—1)
+ D > sk
1=g+1 j=g+1

Our approach is to provide an upper bound to the bound in (4.11), simply by providing
an upper bound on RE;-Z_I), i=h+1,...,0,j=1,...,9g+1.1If RE?_I) # 0 for some

n, then class C; is reachable from class C; (it is enough to check for n = 2,...,1,

since the number of classes is [). From the block form of R, if Rg;kl) # 0, then it is a
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weighted sum involving products of powers of R; and R; (which are irreducible) and
possibly some other sub-matrices (which are irreducible) along the diagonal? of R. By
applying Proposition 2.6 to each of these irreducible sub-matrices if 5; # 0 or s; # 0

(since RE;-FU is multiplied by §; or s;), RE”fl) is upper bounded by linear combinations

J
of powers of the largest eigenvalues of the sub-matrices along the diagonal of R for
which s; #0,i=h+1,...,g, or for which the corresponding class is reachable from
class C;, 1t = g+ 1,...,[. For example, in the case of the R as given in the footnote,

Rgf_l) < A" 2D, where D > 0 and its entries are independent of n. We have the

following (here ¢ =1 =2 and h = 1).

1 1 G- 1 (& - .
ﬁlog Ezsibi + o1 5i%Z; + Z 5iZ;

i=1 i=h+1 i=g+1
2
1 1 ~ 1
= —log| — E 5:0; + 592
n & br, p— v -l ( 2 2)>
1 1 o 1
= “log|—Y &b+ SRy
s (3 sk 3 (a1
1 1 o 1
< Slog | — Y &b+ A2
- n & br — R -1 ( ) ’
2 : _ 1 0 (n=1) _ p(n-2) n—2 . . .
For example, if R = , then Ry 7 = Ry, "Ry + Ry~ "Ry;. By induction, using
Ry R
the previous recursive formula, and Proposition 2.6, it is straightforward that Rgffl) < A"2D,

where D > 0 and its entries are independent of n. Indeed, by Proposition 2.6, R’;_2 < A§_2D2,
and Ry < A1 Dy, where Dy, D; > 0 and their entries are independent of n. By induction, and by
definition of A, it follows that

RV < A2Dg 4+ A"2Ry

where D3 > 0 and its entries are independent of n. Note also that R»; has entries independent of

n. Hence, the desired result follows by taking D = D3 + Ra;.

67



where d = §2Dit1 is a positive constant. As n — 0o, the above limit is obviously 0.
Thus, the upper bound in (4.11) also converges to 0 as n — oo.

If R has three sub-matrices along the diagonal, then from the block form of R,
the matrix R:(,ff_l) is given recursively by the following formula. R:(ﬁ_l) = R:(,E_Q)Rl +
Réng)Rgl + R§_2R31. As in the previous example given in the footnote, by induction
and Proposition 2.6, it is straightforward to show that R:(,,Tl) < A"2Dy + A" 3D,
where Dy, D3 > 0 and their entries are independent of n. In this case, by a reasoning
similar to the previous example, it is straightforward to verify that

g !
G4+ Y sid
i=h+1 i=g+1
is upper bounded by

d2)\n—2 4 d3)\n—37

where dy, d3 are positive constants. Hence, the upper bound in (4.11) converges to 0
as n — 00. In general, using the fact that R = R" 'R, a simple induction yields
that

RS dp A" A dA,

forallt=h+1,...,l,7=1,...,9+ 1, where [ is the number of classes. Hence, the

expression
g

[

i=h+1 i=g+1

is upper bounded by

A" 7% 4 AT

where dy, ..., d; are positive constants. Hence, from (4.11), we obtain the following.
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l

1 sR" 11! 1 1 1 SN N
ﬁlog (?) ﬁlog b—ZSlbz‘i‘ )\n—l < SiZi + Z Si%;

i=h+1 i=g+1

IN

bLZ' - )\nfl
1< - 1 ds d,
= —1 — Sibi + — | do + — —
og bLZ:ZIS +)\<2+)\+ +)\z—2>>

where d is a positive constant. Hence

1 nfllt
lim — log (L> =0, (4.12)

n—00 1 An—1

since it is sandwiched between a lower bound (4.7) and an upper bound (4.8) that

converge to 0 as n — oo. Finally, by (4.1) and (4.12), we get that

.1 W (n 1
lim = Dgy(p™|¢"™) = ] log .

n—oo 7 o —

|

Observation 1: In [44], Nemetz showed that the Rényi divergence rate between two
time-invariant Markov sources with strictly positive initial distributions is given by
ﬁ log A, where X is the largest positive real eigenvalue of R. The key tools used
in establishing the Nemetz result [44] are Perron’s formula and Perron-Frobenius
theory for an arbitrary (not necessarily irreducible) non-negative matrix [32], [54].
The assumption that the initial distributions are strictly positive is essential, since as
mentioned by Nemetz, the a-divergence rate is not necessarily continuous at points

where the initial distributions vanish. In order to generalize the result for arbitrary
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initial distributions we used a different approach. We considered the canonical form of
the matrix R and then used Perron-Frobenius theory on each irreducible sub-matrix
along the diagonal of the canonical form instead of using Perron-Frobenius theory
on the whole matrix at once. Although, the proof seems quite involved, the idea is

very simple. As in Theorem 4.1, we employed a sandwich argument to show that the

1 | sR*11¢
J— O —_—
n g )\n—l

converges to 0 as n — oo by showing that a lower bound and an upper bound converge

expression

to 0. The lower bound convergence is derived along the same lines as in Theorem
4.1. The key idea in deriving the convergence of the upper bound is to provide upper
bounds to the sub-matrices off the diagonal of " ! which involve powers of positive
eigenvalues of the irreducible sub-matrices along the diagonal of R. This is shown
by induction with the aid of Proposition 2.6 applied to each of the irreducible sub-
matrices along the diagonal of R"~!. It is clear from our proof that no assumption of

positivity is required on the initial distributions.

Observation 2: Note that by Theorem 4.2, the Rényi divergence rate between
Markov sources with arbitrary initial distributions is not necessarily equal to ﬁ log 5\,
where ) is the largest positive real eigenvalue of R. However, if the initial distributions
are strictly positive, which implies directly that s > 0, then Theorem 4.2 reduces to
the Nemetz result. This follows directly from the fact that, in this case, A = \* =
max{\;}, £k =1,...,¢, and the fact that the determinant of a block lower triangular
matrix is equal to the product of the determinants of the sub-matrices along the

diagonal (thus the largest eigenvalue of this matrix is given by max{\s}).
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Theorem 4.3 The rate of convergence of the a-divergence rate between p™ and ¢™

is of the order 1/n.

Proof: Note first that if p and ¢ are irreducible, then by (4.4), the rate of
convergence of the a-divergence rate is clearly of the order 1/n since s;, b;, By, by, do
not depend on n. For arbitrary p™ and ¢(™ (not necessarily irreducible, stationary,
etc.), from the proof of Theorem 4.2, it follows directly that the rate of convergence

is also of the order 1/n.

4.1.2 k-th Order Markov Sources

Now, suppose that the Markov source has an arbitrary order k. Define {W,} as the

process obtained by k-step blocking the Markov source {X,}; i.e.,
A
Wn - (Xn; XTH—IJ s JXTZ-HC—I)-
Then
Pr(Wn = wn|Wn—1 = Wp-1y---, Wy = wl) - PT(Wn = wn|Wn—1 - wn—1)7

and {W,} is a first order Markov source with M* states. Let py, _,w, 2 Pr(W, =
Wy|Wy1 = wy,_1). We next write the joint distributions of {X,} in terms of the

conditional probabilities of {W,}. For n > k, V(n, «), as defined before, is given by

-«

_ a l-a o 11—« o
V(n’ CY) - 2 :p’wlqwl Py ws Qwyws - - 'pwn—kwn—k+1qwn—kwn—k+1’
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where the sum is over wi,ws,...,w,_ry1 € X*. For simplicity of notation, let
(p1,--., o) and (g, ..., qy+) denote the arbitrary initial distributions of W; un-

der p™ and ¢™ respectively. Also let pi; and ¢;; denote the transition probability

that W, goes from index i to index j under p(® and ¢™ respectively, i,j = 1,..., M*.
Define a new matrix R = (r;;) by

ryg =Py S =1, M~ (4.13)
Also, define two new 1 x M* vectors s = (s1,...,8y«) and 1 by

si=pig Y 1=(1,...,1).
Then clearly Dy (p™|¢™) can be written as

D, (p(n) ||q(n)) _

1
. logsR" 1!,

where 1! denotes the transpose of the vector 1. It follows directly that with the new
matrix R as defined in (4.13), all the previous results also hold for a Markov source

of arbitrary order.

4.1.3 Numerical Examples

In this section, we use the natural logarithm.

Example 1: Let P and () be two possible probability transition matrices for a first

order Markov source {Xj, Xy, ...} defined as follows:
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—1/4 34 0 0 0 _ —1/5 4/5 0 0 0 _

/3 2/3 0 0 0 1/6 5/6 0 0 0

P=1 0 o0 1/21/2 0 |, =] 0 0 1/4 3/4 0
0 0 1/5 4/5 0 0 0 1/2 1/2 0

0 1/6 1/2 0 1/3 0 1/2 1/3 0 1/6

Note that P and () are not irreducible. Indeed, P and () have two essential classes
and 1 inessential self-communicating class. Let the parameter v = 1/3. The largest
eigenvalues of the three sub-matrices along the diagonal of R are respectively: \; =
0.98676, Ay = 0.95937, and A3 = 0.20998. Let p = (0,0,3/4,1/4,0) and ¢ =
(0,0,1/3,2/3,0) be two possible initial distributions under p™ and ¢™ respectively.
It is straightforward to check that p(® and ¢ are not stationary. For these given
initial distributions, we get by Theorem 4.2 that A\* = Ay and AT = 0. Therefore,
the Rényi divergence rate is In(\y)/(a — 1) = 0.0622. Note that A is not the largest

eigenvalue of R. We also obtain the following.

n | £Da(p™1g™)

10 0.0686
50 0.0635
100 0.0628

1000 0.06227

2000 0.06224

3000 0.06223

Clearly, as n gets large %Da(p(n)“q(n)) is closer to the Rényi divergence rate. Note
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however that, in general, the function %Da(p(mﬂq(”)) is not monotonic in n. Sup-
pose that s has zero components on the first two classes. For example, let p =
(0,1/4,1/4,0,1/2) and ¢ = (1/4,0,0,1/4,1/2). In this case, \* = )3, and A\ =
max{A;, A2} (the first and second classes are reachable from the third). Therefore,

the Rényi divergence rate is In(\;)/(a— 1) = 0.0199. We also get the following.

n | D™ g™

10 0.1473
50 0.0570
100 0.0413

1000 0.02223

2000 0.02111

3000 0.02074

Clearly, as n gets large 2D, (p™|¢™) is closer to the Rényi divergence rate.

Suppose now that s has strictly positive components (as required in the Nemetz
result). For example, let p = (1/8,1/4,1/8,1/4,1/4) and ¢ = (1/10,3/10,2/10,2/10,
2/10). In this case, \* = AT = max{A;, Ao, A3} = A;. Therefore, the Rényi divergence
rate is In(A;)/(a — 1) = 0.01999. Note that A is the largest eigenvalue of R which is

expected since the components of s are strictly positive. We also get the following.

74



n | 3 Da(P™lg™)

10 0.0384
50 0.0343
100 0.0297

1000 0.02105

2000 0.02052

3000 0.02034

Clearly, as n gets large 1 Do (p(™|¢™) is closer to the Rényi divergence rate.

Example 2: Suppose that the Markov source is of order 2 under p(™ and ¢™ re-
spectively. Let {W;, W5, ...} be the process obtained by 2-step blocking the Markov

source. Let P and @ be two possible transition matrices for {Wy, Wy, ...} defined as

follows: ) i
1/4 3/4 0 0
0 0 1 0
P = ,
3/5 2/5 0 0
0 0 1/5 4/5
and ) i
2/3 1/3 0 0
0 0 1 0
Q =
7/8 1/8 0 0
0 0 5/6 1/6
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Note that both P and @) are not irreducible. The set of indices {1, 2,3} forms an
essential class, while the singleton set {4} forms an inessential self-communicating
class. Let the parameter o« = 0.5. The largest positive real eigenvalues of the two
sub-matrices along the diagonal of R are respectively: \; = 0.9467, A\, = 0.3651. Let
p=1(1/4,3/4,0,0) and ¢ = (1/5,4/5,0,0) denote two possible initial distributions of
W1 under p™ and ¢™ respectively. Note that p(™ and ¢(™ are not stationary. For
these given initial distributions, we get by Theorem 4.2 that \* = \; and AT = 0.
Therefore, the Rényi divergence rate is In(A)/(o — 1) = 0.1095. We also obtain the

following.

n | 7 Da(p™llg™)

10 0.0817
50 0.1039
100 0.1066

Clearly, as n gets large %Da (p™]|¢'™) is closer to the Rényi divergence rate.

Let us now suppose that p = (1/4,0,0,3/4) and ¢ = (1/3,0,0,2/3). For these
given initial distributions, we get by Theorem 4.2 that \* = A\; and AT = \;. There-
fore, the Rényi divergence rate is In(A;)/(a — 1) = 0.1095. We also obtain the

following.

n | D™ g™

10 0.1389
50 0.1153
100 0.1123
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Clearly, as n gets large %Da (p™||g™) is closer to the Rényi divergence rate.

4.2 Interchangeability of Limits

4.2.1 Limitasa — 1

We herein show that although the Rényi divergence reduces to the Kullback-Leibler
divergence as a« — 1, the Rényi divergence rate does not necessarily reduce to the
Kullback-Leibler divergence rate. Without loss of generality, we will herein deal with
first-order Markov sources since any k-th order Markov source can be converted to a

first-order Markov source by k-step blocking it. We first show the following lemma.

Lemma 4.1 Let A = (a;;) be an n x n matrix of rank n — 1 with the property that
Zj a;; = 0 for each i. Define ¢; to be the cofactor of a;; i.e., the determinant of
the matrix obtained from A by deleting the ¢-th row and the ¢-th column and let

c¢=(c1,¢2,...,¢,). Then ¢ is a non-zero vector and satisfies cA = 0.

Proof:

Step 1: First we prove that ¢ # 0. The first n — 1 columns of A are linearly
independent, because otherwise, the rank of A is less than or equal to n — 2 since the
sum of the columns of A is 0. Thus there is at least one non-zero determinant A of
size (n — 1) x (n — 1) which can be formed by deleting one row and the n-th column
of A which follows from the fact that the determinant of a matrix is 0 iff the columns

are linearly dependent. Let the deleted row be the k-th row. If £ =n, A = ¢, and so
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c# 0. If kK < n, add all the columns except the n-th column to the k-th column; this
does not change the value of the determinant A. Because Zj a;; = 0, the elements of
the k-th column are now —ay,, —asy,, ..., —t,,. Multiply the elements of this column
by —1 and move this column to the rightmost position. This yields a new determi-
nant with value £A because these operations affect only the sign of the determinant.
However, the new determinant is just ¢, so that once again, ¢ # 0. Thus at least one
of the cofactors ¢; is non-zero. Without loss of generality assume that ¢, # 0. Next

we prove that cA = 0.

Step 2: Consider the n — 1 equations

n
E aijxi:0 j € {1,2,...,”—1}. (414)
i=1
. . —1 .
Note that Y"1 | a;;z; = 0 is equivalent to Y 1| a;;jx; = —anjxy,. Since ¢, # 0, we can
use Cramer’s rule [41, p. 60] to solve these equations for xq,...,2,_1 in terms of z,
as follows:
Dy,
T = —Tp—, (4.15)
Cn
where
11 21 T ak—1,1 n1 Ak+1,1 T (p—1,1
ai2 a22 s Ak—1,2 an2 Ag41,2 ap—1,2
Dk == )
Aip—1 A2p—1 ' Qg—1pn—1 Qpnn-1 OGk+in-1 °°° Gp_1p—1

and the elements from the n-th column have replaced the elements of the k-th column.

If we add the other rows to the k-th row (note that the determinants are transposed
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here) and use the fact that > a;; = 0 we get a new k-th row
—Qip, —QA2py - - -5 —Qk—1n5; —Qnny, —Ak+1ns---5 ~Apn—-1n-

After moving the k-th row and the k-th column to the last row and column position
respectively, it follows that Dy = —c,. From (4.15), if we put =, = ¢,, then x; = ¢
for all k € {1,2,...,n}. Because }_;a;; = 0, any solution of (4.14) is a solution of

the same equation for j = n. Thus ¢ = (cq,. .., ¢,) satisfies cA = 0.

Remark: A direct consequence of the above lemma generalizes Proposition 2.16 from
ergodic Markov sources to irreducible Markov sources; this is achieved by setting
A = P — I, where P is stochastic irreducible, and I is the identity matrix with the

same dimension.

We next prove the following theorem.

Theorem 4.4 Given that o € (0,1), consider a Markov source {X;, X,...} with
two possible distributions p(™ and ¢™ on X™. Let P and @ be the probability
transition matrices associated with p(™® and ¢(™ respectively. Suppose that P and Q
are irreducible and that P is absolutely continuous with respect to ). Also, suppose

that p is absolutely continuous with respect to g. Then

1 1
im lim ~D,(p™[l¢™) = lim lim =D, (p™ [|¢™
lim lim —Da(p™[lg™) = lim lim —Da(p™lg™)
= E TiDij 108;@,
i %
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and therefore, the Rényi divergence rate reduces to the Kullback-Leibler divergence

rate as o 1 1.

Proof: Under the above assumptions, the matrix R (as defined in Subsection 4.1.1) is
irreducible. For convenience of notation denote the largest positive real eigenvalue of
R by A«, R). We know by Proposition 2.8 that each eigenvalue of R is a continuous
function of elements of R. Note that R — P as a 1 1, and the largest positive real

eigenvalue of the stochastic matrix P is 1. Hence

lim \(a, R) = 1.

atl

Let a denote an arbitrary base of the logarithm. Then, by 'Hopital’s rule, we find

that

. log Ao, R) 1 , a1 0o, R)
10%1 a—-1 lna)\ (LR) = Ina O (4.16)

a=1

which is well defined by Proposition 2.9 since the algebraic multiplicity of A(«, R)
is 1 (R is irreducible) by Proposition 2.7. The equation defining the largest positive

eigenvalue A(a, R) = A of R is

PRt — A PRan® - PRy
11—« a Jl—« « 11—«
31421 Phaldas " — A e Pom9ons
=0, (4.17)
« -« « -« L. « l-a )\
P19 Prralnro P9y

where M = |X|. By Lemma 2.4, differentiating this equation with respect to «, we
get that
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where D; is the determinant obtained from (4.17) by replacing the i-th row by

- Pi1 _ Dii _ Pim
(pf‘lqil1 “In==, .. ,pf‘iqili “In~" — XN(a),... ,p?MqilMa In ——).
qi1 qii qim

and leaving the other M — 1 rows unchanged. In this equation, A" denotes the deriva-
tive of A with respect to «. Note that if we add in D; all the other columns to the
i-th column, the value of the determinant remains unchanged. Therefore, for « =1

and hence A =1, D; is the determinant

pi1—1 ... 0 P1M
P21 0 Pour
0
pi*l,]_ e 0 . pif]_,M
paln®t o S(X[i) =N ... payInlRe
Piv11 - 0 cee o DitiM
0
where
S b
S(x[i) = 3 piyn 24
j=1 ij

A zero occurs in all the entries of the ¢-th column except for the i-th entry, since

Ejjvilplj = 1. We conclude that
D; = (S(X]i) = N (1))e, (4.19)

where ¢; is the M — 1 x M — 1 cofactor of p;; — 1 in the above determinant for the

case o« = 1, given by
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pu—1 ... Pri-1 N 2V}
P21 cee P2i-1 e Pom
G=1 picin .- Pictic1—1 ... picm
Pi+11 - Dit1,i—1 <o Divim
Pmr oo PMio1 oo Py — 1

After substituting (4.19) in (4.18) and solving for \'(1), we obtain by (4.16) that

. log Ao, R) 1, 1 — ,
| = N1L,R) = — S(X i), 4.20
cgrll a—1 Ina (1, R) lnaizzl7r (XT7) ( )
where
Ci
T =

Zj Cj'

Asat1l, R— P;let A= P — I. Since the stationary distribution of the irreducible
matrix R is unique, the rank of A is n — 1 because the nullity of A is 1 in this
case. Hence, the conditions in Lemma 4.1 are satisfied. Therefore, cA = 0, which is
equivalent to ¢P = c. Note that ¢ is the non-normalized stationary distribution of P
and (4.20) is just the Kullback-Leibler divergence rate between P and () by Theorem

3.1. O

For the case o € (1,00), we can obtain a similar result under the conditions that the
matrix ) and the initial distribution ¢ are positive. This is stated in the following

corollary (whose proof is identical to the proof of Theorem 4.4).
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Corollary 4.1 Given that « € (1,00), consider a Markov source { X7, Xy, ...} with
two possible distributions p(™ and ¢™ on X™. Let P and @ be the probability
transition matrices associated with p™ and ¢ respectively. If the matrix P is
irreducible, the matrix @ is positive, and the initial distribution ¢ with respect to ¢(™

is positive, then

1 1
lim lim =D.(»™l¢™) = 1lim lim =D.(p™ ¢
lim lim - Do(p™ll¢™) = lim lim =D (p™ ™)
p..
= E Wipijlogﬁa
i %

and therefore, the Rényi divergence rate reduces to the Kullback-Leibler divergence

rate as « | 1.

The following example illustrates that the Rényi divergence rate does not necessar-
ily reduce to the Kullback-Leibler divergence rate if the conditions of the previous

theorem are not satisfied.

Example: Given that oo € (0,1) U (1,00), let P and @ be the following:

_1/4 3/4 0_ _1/3 1/3 1/3_
P=13/4 1/4 0|, @=1]1/3 1/3 1/3
0 0 1 1/3 1/3 1/3

Suppose that p™ is stationary with stationary distribution (b/2,b/2,1 — b), where
0 < b < 1 is arbitrary. Also, suppose that the initial distribution ¢ is positive.
By Theorem 3.2, a simple computation yields that the Kullback-Leibler divergence
rate is given by log, 3 — 2b + (3b/4)log, 3, where the logarithm is to the base 2.

The eigenvalues of R are: \; = 1/(3'7%), Ay = 47%/(317%) +472/(3'72%)  and A3 =
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47 /(317*)—47%/(3'72*). Note that s > 0 and that, if 0 < @ < 1, max;<;<3{\;} = Aa.
By Theorem 4.2, the Rényi divergence rate is (o — 1)7'log, A». By I’'Hopital’s rule,

we get that limgg (v — 1)t logy Ay = (7/4) log, 3 — 2. Therefore

1
lim lim —D,(p™||¢™) = (7/4) log, 3 — 2.

atl n—oo N

On the other hand, if & > 1, max;<;<3{A\i} = A;. Therefore, the Rényi divergence

rate is given by (o — 1)7'log, A;. Clearly, lim,; (o — 1) 7' log, A; = log, 3. Hence
im lim D, (p)[|g®
lim lim —D,(p""||¢") = log, 3.

all n—oo n

Therefore, the interchangeability of limits is not valid since

1 1 1
lim lim =D, (p™||¢"™) < lim lim =Dy (p™|¢"™) < lim lim =D (p™]|¢™).
n

afl n—oo N n—oo a—1 all n—oon

4.2.2 Limit as a | 0

We obtain the following result.

Theorem 4.5 Let o € (0,1). Consider a Markov source {X;, Xy,...} with two
possible distributions p(™ and ¢™ on X™. Let P and ) be the probability transition

matrices on X associated with p(™ and ¢, respectively. Then

1 1
lim lim D, (p"]}¢®) = lim lim D, (p]|g™).

ald n—oo N n—oo al0 N

Proof: By Theorem 4.2, we have

| 1
lim —D,(p™ [|¢™) =

n—oo 1 Oé—].

log Ao, R).
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By Proposition 2.8, A(a, R) — A(0, R) as « | 0. Hence

1
lim lim —D,(p'™]|¢"™) = —log A(0, R).

al0 n—oo n

On the other hand

1 1
lim =D, (p™||¢™) = = logsY1?
lim — Do (p™|l¢™) = - logsY'1",

where § = lim, s and ¥ = lim, o R. Therefore by again applying Theorem 4.2 to Y
we get

1
lim lim — D, (p™]|¢™) = —log A\(0, R).

n—oo al0 N
Hence the interchangeability of limits is always valid between n and « as n — oo and

as a | 0. O

4.3 Rényi’s Entropy Rate

The existence and the computation of the Rényi entropy rate of a Markov source can
be deduced from the existence and the computation of the Rényi divergence rate.
Indeed, if ¢™ is stationary memoryless with uniform marginal distribution then for
any o > 0, v # 1,

Da(p(n)Hq(n)) =nlog M — Ha(p(n))-

Therefore

1 1
lim =Dy (p™]|¢"™) = log M — lim —H,(p'™). (4.21)

n—oo N n—oo 1
Hence, the existence and the computation of the Rényi entropy rate follows directly

from Theorem 4.1 if the Markov source is irreducible, and from Theorem 4.2 if the
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Markov source is arbitrary (not necessarily irreducible). Actually, lim,, %Ha (p™)
can be computed directly from Theorem 4.1 or from Theorem 4.2 by determining A
with R = (pg;) and s; = p{, and setting lim, %Ha(p(")) = ﬁ log A\. A formula
for the Rényi entropy rate was established earlier in [46] and [47], but only for the
particular case of ergodic Markov sources. We have the following corollaries. The
proof follows along the same lines as for the Rényi divergence rate or by using (4.21)

with ¢ stationary memoryless and uniformly distributed.

Corollary 4.2 If the Markov source under p'™ is irreducible, then the Rényi entropy

rate is given by

1 1
lim —H,(p™) = : log \,

n—oo 1 —

where A is the largest positive real eigenvalue of R, and 0 < «, av #£ 1.

Corollary 4.3 Let R;, © = 1,...,¢, be the irreducible matrices along the diagonal
of the canonical form of the matrix R as shown in Proposition 2.2. Write the vector
S as

$=1(51,-+,8h Shit1s- 389, Sgi1s---,5S1),
where the vector s; corresponds to R;, 7 = 1,...,g. The scalars sy,1, ..., s; correspond

to non self-communicating classes.

e Let \; be the largest positive real eigenvalue of Ry, for which the corresponding
vector Sy is different from the zero vector, k =1,...,g. Let \* be the maximum

over these A\;’s. If 5, =0,Vk =1,...,¢, then let \* = 0.
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e For each inessential class C; with corresponding vector s; 20, ¢t =h+1,...,9¢
or corresponding scalar s; # 0, ¢ = g+1,...,[, let A; be the largest positive real
eigenvalue of R; if class C; is reachable from class C;. Let AT be the maximum
over these A\;’s. If 5; = 0 and s; = 0 for every inessential class C;, then let

AP =0.

Let A = max{)\*, \T}. Then the Rényi entropy rate is given by

1 1
lim —H,(p™) = : log \,

n—oo T —

where 0 < o, o # 1.

Corollary 4.4 The rate of convergence of the Rényi entropy rate of p(™ is of the

order 1/n.

Although the Rényi entropy reduces to the Shannon entropy, the Rényi entropy
rate does not necessarily reduce to the Shannon entropy rate as &« — 1. From the re-
sults about the interchangeability of limits for the Rényi divergence rate as derived in
Section 4.2, it follows easily that the Rényi entropy rate always reduces to the Hartley
entropy rate as a | 0 (lim,, %Ho (p™)), and if the Markov source is irreducible, it

reduces to the Shannon entropy rate as o — 1. We have the following corollaries.

Corollary 4.5 Let a@ > 0, o # 1. Suppose that the Markov source under p™ is

irreducible. Then

1 1
lim lim —H,(p™) = lim lim —H,(p™)
a—ln—oo N n—o00 a—1 7,
= =) mpylogpy,
irj
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and therefore, the Rényi entropy rate reduces to the Shannon entropy rate as a — 1.

Corollary 4.6 Let & > 0, & # 1. Suppose that the Markov source under p™ is

arbitrary (not necessarily stationary, irreducible, etc.). Then

1 1
lim lim —H,(p™) = lim lim — H,(p'™).

alld n—oo n n—oo al0 N
Let us now illustrate the computation of the Rényi entropy rate by several exam-

ples. We use the natural logarithm.

Example 1: Let P be a possible probability transition matrix for {X;, Xs,...}

defined as follows:

1/4 3/4 0 0 0
/3 2/3 0 0 O
P=1 10 o0 1/2 1/2 0

0 0 1/5 4/5 0

0 1/6 1/2 0 1/3

Note that P is not irreducible. Indeed, P has two essential classes and 1 inessential
self-communicating class. Let the parameter « = 1/3. The largest eigenvalues of
the three sub-matrices along the diagonal of R are respectively: Ay = 1.55476, Ay =
1.54561, and A3 = 0.69336. Let p = (0,0,3/4,1/4,0) be a possible initial distribution
under p(™. It is straightforward to check that p(™ is not stationary. For this given
initial distribution, we get by Corollary 4.3 that \* = X\, and AT = 0. Therefore,
the Rényi entropy rate is In(\y)/(1 — a) = 0.6531. Note that Ay is not the largest

eigenvalue of R. We also obtain the following.
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n %Ha(p(m)

10 0.65368
20 0.65324
100 | 0.65319

Clearly, as n gets large %Ha(p(”)) is closer to the Rényi entropy rate. Note however
that, in general, the function %Ha (p(”)) is not monotonic in n. Suppose that s has
zero components on the first two classes, i.e., let p = (0,0,0,0,1). In this case,
M = A3, and AT = max{A;, Ao} (the first and second classes are reachable from the
third). Therefore, the Rényi entropy rate is In(\;)/(1 — a) = 0.66198. We also get

the following.

n | LH,(p™)
10 | 0.6618
50 | 0.6580
100 | 0.6578
200 | 0.6582
500 | 0.6596

Clearly, as n gets large %Ha (p(”)) is closer to the Rényi entropy rate.

Suppose now that s has strictly positive components (as required in the Nemetz
result). For example, let p = (1/8,1/4,1/8,1/4,1/4). In this case, \* = A =
max{Ai, Aa, A3} = A;. Therefore, the Rényi entropy rate is In(A;)/(1 — ) = 0.66198.
Note that A; is the largest eigenvalue of R which is expected since the components

of s are strictly positive. We also get the following.
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n | £Hy(p™)
10 | 0.7693
50 | 0.6800
100 | 0.6691

Clearly, as n gets large 1 H,(p™) is closer to the Rényi entropy rate.

Example 2: Suppose that the Markov source is of order 2 under p™ and ¢™ re-
spectively. Let {W;,Ws, ...} be the process obtained by 2-step blocking the Markov

source. Let P be a possible transition matrix for {Wy, Ws, ...} defined as follows:

1/4 3/4 0 0

0 0 1 0
P =

3/5 2/5 0 0

0 0 1/5 4/5

Note that P is not irreducible. The set of indices {1,2,3} forms an essential class,
while the singleton set {4} forms a self-communicating non-essential class. Let the
parameter « = 0.5. The largest positive real eigenvalues of the two sub-matrices
along the diagonal of R are respectively: A\ = 1.24037, Ay = 0.89442. Let p =
(1/4,3/4,0,0) denote a possible initial distribution of W; under p™. Note that p{™
is not stationary. For this given initial distribution, we get by Corollary 4.3 that
M =\, and AT = 0. Therefore, the Rényi entropy rate is In(\;)/(1 — «) = 0.4308.

We also obtain the following.
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n %Ha(p(n))

10 0.3951
20 0.4236
100 | 0.4272

Clearly, as n gets large 1 H,(p™) is closer to the Rényi entropy rate.

Let us now suppose that p = (1/4,0,0,3/4). For this given initial distribution,
we get by Corollary 4.3 that A* = A; and AT = ). Therefore, the Rényi entropy rate

is In(A1)/(1 — ) = 0.4308. We also obtain the following.

n %Ha(p(n))

10 0.4533
20 0.4359
100 | 0.4334

Clearly, as n gets large %Ha (p(”)) is closer to the Rényi entropy rate.

4.4 A Variable-Length Source Coding Theorem

Following [13], let the average code length of order t be defined by

1 tl;
100~ S, ("),

where 0 < t < 0o, and [; is the length of the codeword (or code sequence) for the i-th

source symbol. L(t) is an interesting measure of code length which implies that the
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cost of representing a source symbol varies exponentially with code length, as opposed

to Shannon’s expected code length measure

M
Zpili
i=1

in which the cost varies linearly with code length [13]. A simple calculation shows

1>

l

that L(t) reduces to [ when ¢ — 0; thus L(¢) can be regarded as a more general
measure. Furthermore, in many applications where the processing cost of decoding is
high or the buffer overflow due to long codewords is important, an exponential cost

function can be more appropriate than a linear cost function [11], [13].

Consider a source sequence s of length n that we wish to encode via a D-ary
uniquely decodable code. Let p(s) be the probability of s, and [(s) be the length of

the codeword for s. Then the average code length of order ¢ for the n-sequences is

Ly(t) = %lOgD (ZP(S)Dtl(s)> ;

where the summation extends over the M™ sequences s. In [13], Campbell demon-
strated the following variable-length source coding theorem for a DMS (discrete mem-
oryless source), in which the Rényi entropy (H,(p)) plays a role analogous to the
Shannon entropy when the cost function in the coding problem is exponential as

opposed to linear.

Proposition 4.1 [13] Let « = 1/(1 +t). By encoding sufficiently long sequences of
input symbols of a DMS, it is possible to make the average code length of order ¢ per
input symbol %Ln(t) as close to H,(p) as desired. Also, it is not possible to find a

uniquely decodable code whose average length of order ¢ is less than H,(p).
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We next establish an operational characterization for the Rényi entropy rate by

extending this theorem to Markov sources.

Theorem 4.6 Let = 1/(1 +t). There exists a uniquely decodable code for a
Markov source with an asymptotic average code length of order ¢ per input symbol

satisfying

1 1
lim —L,(t) = .

n—oo 1 —

log A,

where A denotes the positive eigenvalue of the matrix R = (p}) as defined in Corollary
4.3. Conversely, any uniquely decodable code for the source has an asymptotic average

code length of order ¢ per input symbol satisfying

1 1
lim —L,(t) > .

n—oo 1 —

log .

Proof: Let s be a sequence of input symbols of length n from the source. We can
consider such sequence as an element from the alphabet X. Proceeding exactly as
in the proof of [13, Theorem 1], we can similarly establish the existence of a uniquely

decodable code satisfying

1 1 1
“H,(p"™) < =L, (t) < =H,(p™) + =
CHo(p) = —La(t) < SHa(p™) +
From Corollary 4.3, we have
lim ~H,(p") = —— log A (4.22)
S e (prt) = o o log A .
Therefore
1 1
lim —L,(t) = log .
n—,oo 1, —
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This completes the proof of the forward part. By [13, Lemma 1], every uniquely
decodable code satisfies L, (t) > H,(p™). Hence, the proof of the converse part

follows directly from (4.22).

Ol
Remark: By Corollary 4.5, the above theorem does not necessarily reduce to the
Shannon lossless source coding theorem as o« — 1 and n — co. It reduces to the

Shannon coding theorem if for example the Markov source is irreducible.

Let us now illustrate numerically using a generalized Huffman code for the Markov
source that %Ha(p(”)) is close to the Rényi entropy rate and that %Ha (p™) is close
to +L,(t) for several values of n. Following [11], the Rényi redundancy of a code for

a source sequence of length n is defined as

1 1
pn = —Ly(t) — _Ha(p(n))-

3
3

In [33, Theorem 1’|, a simple generalization of Huffman’s algorithm which minimizes
pn, 1s given. In Huffman’s algorithm, each new node is assigned the weight p; + p;,
where p; and p; are the lowest weights on available nodes. In the generalized algo-
rithm, the new node is assigned the weight 2/(p; + p;). The base of the logarithm is

2, so the entropies are measured in bits.
Example: Let { X, Xy,...} be a binary first-order Markov source with initial distri-
bution (0.8,0.2) and probability transition matrix

0.4 0.6
P =

0.7 0.3
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Let v = 0.5, then ¢ = 1. The largest eigenvalue of R = (pf}) is found to be A = 1.396.
By Corollary 4.2, the Rényi entropy rate is equal to 0.963. Using the generalized

Huffman’s algorithm we get the following.

n %Ha(p(m) %Ln(t)

1 0.848 1.000

2 0.909 0.9705

3 0.927 0.945

The sets of codewords are (0,1), (0,10,110,111) and (10,000,001,010,110,111,0110,
0111) for n = 1,2 and 3 respectively. As n gets large, L H,(p™) is closer to the Rényi

entropy rate. Also, %Ln(t) is close to %Ha(p(m).
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Chapter 5

Csiszar’s Forward Cutoff Rate for
Hypothesis Testing Between

General Sources with Memory

In [20], Csiszar established the concept of forward [-cutoff rate for the hypothesis
testing problem based on independent and identically distributed (i.i.d.) observa-
tions. Given [ < 0, he defines the forward [S-cutoff rate as the number Ry > 0 that
provides the best possible lower bound in the form S(E — Ry) to the type 1 error
exponent function for hypothesis testing where 0 < E < Ry is the rate of exponen-
tial convergence to 0 of the type 2 error probability. He then demonstrated that
the forward S-cutoff rate is given by D;;q_p)(X||X), where D,(X||X) denotes the
a-divergence, o« > 0, a # 1. This result provides a new operational significance for

the a-divergence.
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The error exponent for the binary hypothesis testing problem has been thoroughly
studied for finite state i.i.d. sources and Markov chains. The results for i.i.d. sources
can be found in [21], [31], [35], and for irreducible Markov sources in [5], [43]. The error
exponent for testing between ergodic Markov sources with continuous state-space
under certain additional restrictions was established in [39]. In its full generality, i.e.,
for arbitrary sources (not necessarily, stationary, ergodic, etc.), the error exponent

was studied in [15], [29], [30].

In the sequel, we extend Csiszar’s result [20] by investigating the forward S-cutoff
rate for the hypothesis testing between two arbitrary sources. Our proof relies in part
on the formulas established in [29], and extensions of the techniques used in [14] to
generalize Csiszar’s results for arbitrary discrete sources with memory. Unlike [14]
where the source alphabet was assumed to be finite, we assume arbitrary (countable
or continuous) source alphabet. The techniques used in our proof are a mixture
of the techniques used in deriving the forward and reverse (-cutoff rates for source
coding [14]. However, some new techniques are also needed to obtain the result. We
demonstrate that the liminf a-divergence rate provides the expression for the forward

[B-cutoff rate.

5.1 Preliminaries

In this section, we briefly review previous results by Han [29] on the general ex-
pression for the Neyman-Pearson type 2 error subject to an exponential bound on

the type 1 error. Let us first define the general source as an infinite sequence
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X ={X"}>2, = {X" = (Xl(n), e ,X,(ln)> }OO of n-dimensional random variables X™
(n)

1
where each component random variable X;" (1 < i < n) takes values in an arbitrary
set X that we call the source alphabet. Given two arbitrary sources X = {X"}2,

and X = {X"}>, taking values in the same source alphabet { X"}

o 1, we may define

the general hypothesis testing problem with X = { X"}, as the null hypothesis and

X = {X"} | as the alternative hypothesis.

Let A, be any subset of X", n =1,2,... that we call the acceptance region of the

hypothesis test, and define
A n A Sn
pn = Pr{X" ¢ A,} and \,=Pr{X"e€A,}

where p,, A\, are called type 1 error probability and type 2 error probability, respec-

tively.

Definition 5.1 Fix r > 0. A rate F is called r-achievable if there exists a sequence

of acceptance regions A, such that!

1 1
liminf ——log u, > r and liminf——log\, > F.
n n

n—0o0 n—0o0

'Let (ay,) be a sequence in R U {—00, +00}. The limit inferior is given by

liminfa, = sup inf ag
n—o00 n>1 k>n
= lim inf ay.
n—oo k>n

Similarly, the limit superior is given by

limsupa, = inf supay
n—00 n>1 k>n
= lim supag.

n=00 p>n
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Definition 5.2 The supremum of all r-achievable rates is denoted by B.(r|X||X):
B.(r|X]|X) = sup{E > 0 : E is r-achievable},

and B, (r|X||X) = 0 if the above set is empty.

The dual of this function is defined as:
D.(E|X||X) 2 sup{r > 0 : E is r-achievable},

and D,(E|X]||X) = 0 if the above set is empty.

Proposition 5.1 [29] Fix r > 0. For the general hypothesis testing problem, we
have that

B.(rIX[X) = inf {R +n(R) : n(R) <},

where?

is the large deviation spectrum of the normalized log-likelihood ratio.

We herein assume that the source alphabet is countable. However, we will point
out the necessary modifications in the proofs for the case of a continuous alphabet.

The above proposition is the main tool for our key lemma in the following section.

2If the source alphabet X is (absolutely) continuous, then Py~ (X™) plays the role of the density

function fx»(X™).
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5.2 Hypothesis Testing Forward #-Cutoff Rate

Definition 5.3 Fix f < 0. Ry > 0 is a forward [-achievable rate for the general

hypothesis testing problem if
D.(EX|IX) > B(E — Ro)
for every E > 0, or equivalently,
BL(rXI%) 2 Ry + 5,

for every r > 0. The forward [S-cutoff rate is defined as the supremum of all forward

[-achievable rates, and is denoted by R(()f)(B|X||X).

Note that in the degenerate and uninteresting case where D, (E|X||X) is identically
0, we have that R(()f)(B|X||X) = 0. We herein assume that D,(FE|X||X) is not 0 for

all values of E. A graphical illustration of R(()f) (B|X||X) is presented in Figure 5.1.
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D.(E|X|IX)

B(E - R (81X X))

R (81X||1X) E

Figure 5.1: A graphical illustration of the forward S-cutoff rate, Réf)(B|X||X), for

testing between two arbitrary sources X and X.
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Before stating our main result, we first observe in the next lemma that the forward
p-cutoff rate R(()f )(B |X||X) is indeed the R-axis intercept of a support line of slope

% to the large deviation spectrum n(R).

Lemma 5.1 Fix < 0. The following conditions are equivalent.

(VR eR) n(R) (Ro — R) (5.1)

>—
=51
and

(Vr > 0) Bo(r|X||X) > Ry + %. (5.2)
Proof:
a) (5.1) = (5.2).
For any r > 0, we obtain by Proposition 5.1 that
(V6 > 0)(IRs with n(Rs) < 1) Be(r|X||X) + 3§ > Rs + n(R;).
Therefore

BE(T|X||X) > R5+77(R5)—(5
s

> R6_5+ﬁ(RO_R6) (5.3)
_ &} Rs
= i+ R 5

s Ry r
> _6+ﬁ—1R0_ﬁ_1+E (5.4)
= %+R0—6,

where (5.3) follows from (5.1), and (5.4) holds because

r > n(Rs) > (Ro — Ry).

B
51
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Since 6 can be made arbitrarily small, the proof of the forward part is completed.
b) (5.2) = (5.1).

(5.1) holds trivially for those R satisfying n(R) = oo. For any R € R with

n(R) < oo, let rs 2 n(R) + 6 for some 6 > 0. Then (by Proposition 5.1)
Bu(rsX|X) < R+ n(R).
Therefore

N(R) = Be(rs|X[IX) — R

T's

Ry+2—R (5.5)

nR) o
5 Tt

v

where (5.5) follows by (5.2). Thus,
54 )
> = (R, — .
77(R)_f8_1(R0 R)—l-ﬂ_l

Since ¢ can be made arbitrarily small, the proof of the converse part is completed.
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Theorem 5.1 (Forward [B-cutoff rate formula). Fix f < 0. For the general

hypothesis testing problem,

_ 1 _
RS (81X||1X) = liminf—D (X" X™),
n—oo N 1-3

where

ni|lyn A ]'
Do(X"|[X") & —

is the n-dimensional a-divergence”.

Proof: Note that n(R) > 0 for some* R € R.

1. Forward part: R(()f)(,3|X||X) > liminf,_, %Diﬁ (X™|X™). By the equivalence of

1
1—

conditions (5.1) and (5.2), it suffices to show that

(VR € R) 5(R) > % <lim inf LD (X" - R) |

n—oo N 1-3

Indeed, we have the following.

3If the source alphabet is (absolutely) continuous, i.e., it admits a density fx»(-), then the n-

dimensional a-divergence is given by

2

D" 2 o ([ U ()" ).

4If n(R) = 0 for all R € R, then
BL(XIIX) = jnt (R +n(R)n(R) < r} = inf {R} = oo,

contradicting that B, (r|X||X) is, by definition, an exponent and should be always non-negative.

104



Pxn (x™)

R} = Pr {e“ EPxn(X™) > e"tR} , fort >0

—1

IN

A
o
2
=
7
g
m
=
3

> [Pxn (@) [Psa (fv")]t> (5.6)

~ exp {—nt (%Dl_t(X”HX") - R) } ,

for 0 < t < 1, where (5.6) follows by Markov’s inequality. Therefore

1 -
n(R) > t<liminf—D1t(X”||X”)—R>

i
= ﬁf (hmmf D (X"|X") - R),forﬁém<0.

2. Converse part: R{(8X||X) < lim inf, o oD (XX,

The converse holds trivially if liminf,,_, 1D (X"||X") is infinite. Hence we
can assume that liminf, %D%(X"HX”) < K, where K is some constant. By

the equivalence of conditions (5.1) and (5.2), it suffices to show that for any 6 > 0

arbitrarily small, there exists R = R(d) € R such that

n(R) < -2 (3(5+11m1nf Lo (s - R).

ﬁ —1 n—o00
Consider the twisted distribution defined as:
®) (ny 2 [Pgn (2)] [Pxn (x™)]
) & e e
- exp{ [log B Ein; + Dlt(X"||X")] } Pxa(z"),  (5.7)

where t = 3/(5 — 1). Note that 0 < ¢t < 1. Let A be a set of positive integers such

that

1 n n n n
ne/\l/ll;ln*> ﬁDl/(l B) (X ||X )—hmlnf Dl/l B) (X ||X )
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and define

r2 sup{R € R : n)(R) > 0},

where

1 1 Py (a™
nY(R) 2 liminf ——logP(t,)L {x" e A" —log;M < R},

neNn—oo n n  Pgn(zm)

is the twisted large deviation spectrum of the normalized log-likelihood ratio with

parameter ¢, and 7 satisfies (cf. Lemmas 5.2 and 5.3 in Section 5.4) that

1 - 1 _
—c0o <7< lim =Dy ((X"|X") =liminf —D;_,(X"|X") < K.
n—oo T

neN,n—oco 1

We then note by definition of 7(-) and the finiteness property of 7 that for any

0 > 0, there exists € > 0 such that:

1 1 Pxn (2"
n(r —6) = liminf —Zlog P{) {x” e x": e (2"

—log——~=<7—-6p>ec>0.
neNn—oo N n e Psn(z™) =7 } ©

As a result,

Pxn (l'n)

PO e e XM ~log =2
X {x € n OgPXn(x")

> 7 — 6} >1— e for n € N sufficiently large.
On the other hand, define

FO(R) £ 1 'f_ll pw ] n Xn-ll PL(:UR)>
7 (R neAmosse n o8t Xt Y < n OgPXn(x”)_R

and
- 4. ()
7=inf{R e R: 7" (R) > 0}.
Then by noting that
log 2X &) _ gy Ly 0@
og ——— =D _ — —log ——=
EPen(an) Ot i % Pya(an)’
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we have:

and
_ 1 1 _
T o= = sup{R€R:0(R) >0} + ﬁDl,t(X”HX")
< DX (5.8
< K forn e N sufficiently large, (5.9)
where

o(R) £ L inf —- log Py {x" €am": 1ogP§n7§x; < R} :

(5.8) follows from Lemma 5.4 in Section 5.4, and (5.9) holds by definition of K. This
indicates the existence of £ > 0 such that 7 (K) > £, which immediately gives that

for n € NV sufficiently large,
Pxn (2™ -
P {x” e X" —lo & > K} < e

Therefore, for n € N sufficiently large,

> l—e ™ —e ™. (5.10)
A
Let I} = (7 — 9,b,), and

K —
Iy = [bk 1,br) for 2§k§Lé ’777——’_6—‘7

20
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where by, = (1 —0) +2ké for 1 < k < L, and by, 2 K. By (5.10), there exists

1 < k(n) < L such that

1. Pyxa(a™) 1 —ene _ g ne
PO lancxn: Zlog 22X L e [y b > 5.11
X {‘” n 08 P (gn) €k (2 (5.11)

for n € N sufficiently large. Then, by letting R; 2 lim SUD,, e o0 Dk(n) T 0, We
obtain that for n € N sufficiently large

P‘(n (.’L‘n)

Xn

<R > Pyn "e X" —log——-=6€ I ¢ -
= 1}— X { B P © ’“"}

However, for sufficiently large n € A/, we have that

Pxn{a"e X" — 10 ——= € Iy
¥ { ® Peaam) — ™

= > Pxn(2™)

{zneX" 1 log PX"EITL;EIH”)}

_ S G ) P (a") (5.12)
frereiom o)
> e*”t(*”kw%ﬁle—t(X"”X”)) Z PO (z")
feereiom o)
= e"”(_”k(ﬂ)—lJ’%Dl*t(Xn”Xﬂ))P)(é)1 [x” cX": ! log %Xn Ex”; € Ik(n)]
%n
> 1— e‘"Z— e‘”ge,nt(fbk(n),ﬁ%m_t(xn\|Xn))7 (5.13)

where (5.12) follows from (5.7), and (5.13) follows from (5.11). Consequently
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n—o0 n

1 1
n(R;) = liminf——log Pxn {x” € X" : —log
n

< - W " nZlog L <
< Jlminf = Hlog Py {‘” e e Ty S Rl}
1 _
<t <— limsup by(n)—1 + liminf —Dl_t(X”HX”)
neN ,n—oo neN n—oo N
<t <— limsup bg(n) +2(5+11m1nf D1 t(X"||X”)>
neN n—oo
=t <3(5 + lim inf—Dl_t(X”H)_(”) — R1> .
n—,oo 1
Since 0 can be made arbitrarily small, the proof is completed. =
Observations:

A. While the proof of the forward part is straightforward, the proof of the converse
part is considerably more complex. The objective of the converse part is to demon-
strate that if liminf, . +D;_,(X™||X™) is slightly shifted to the right (by a factor
of 30), then there exists a coordinate R such that a straight line of slope 8/(1 — f)

given by

B

y—ﬂ_1 (35+l1m1nf Dy_y(X™|X™) — R>

lies above the curve of n(R) at R = R, thus violating its status of support line for
n(R).
This proof is established by observing that the desired coordinate R lies in a small

neighborhood of 7, where 7 is the smallest point for which n(R) vanishes. A key
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point is to choose the twisted parameter ¢ to be equal to 5/(f — 1) which is the
negative slope of the support line to n(R). We graphically illustrate this observation
(based on a true example) in Figure 5.2. The computational details are described in

Example 1 (cf. Section 5.3).

B. Note also that the proof holds if the alphabet is countable or continuous as opposed
to the source coding cutoff rate [14] where the finiteness property of the alphabet is
necessary. The modifications in the proof for the continuous case are clear. Simply,
replace the probability mass function by the probability density function and the
summation by integration. We graphically illustrate this observation (based on a true
example involving memoryless Gaussian sources) in Figure 5.3. The computational

details are described in Example 2 (cf. Section 5.3).

C. The proof of the hypothesis testing cutoff rate is more involved than the proof of
the source coding cutoff rate given in [14]. The main difficulty arises from the formula
in Theorem 5.1 where the infimum for R is taken over the entire real line contrary to
Theorem 1 in [14] for source coding where R ranges from 0 to co. This requires us
to deal separately with the degenerate case 7 = —oo (cf. Lemma 5.3 in Section 5.4).
Also, the technique used to prove the forward cutoff rate for hypothesis testing relies
on the proofs of both the source coding forward and reverse cutoff rates, but in major

parts though similar to the reverse source coding cutoff rate.
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D. If the sources X and X are arbitrary (not necessarily stationary, irreducible)
Markov sources of arbitrary order, then we know from Chapter 4 that the a-divergence
rate exists and can be computed. Thus in this case, the forward [-cutoff rate for test-
ing between Markov sources can be obtained. Also, from the definition of D, (E|X||X),

it follows directly that for all £ > 0,

D.(EX|X) > sup |B(E — R (81X||X))| .

B<0
Note that this convex lower bound is computable for the entire class of Markov sources,
while D, (E|X]|X) is not necessarily computable in general (it is computable for ir-
reducible Markov sources [5], [43], see Figure 5.4). We graphically illustrate this
observation for testing between irreducible Markov sources in Figure 5.4 and arbi-
trary Markov sources (not necessarily stationary, irreducible) in Figure 5.5. The

computational details are described in Examples 3 and 4 (cf. Section 5.3).
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Dyja-p) (X1 X)

.
~—

T loa(3/2) T 0  DX|X) h

Figure 5.2: Functions n(R), n¥(R) and (8/(8—1)) [lim inf,, 00 %D% (X" X™) - R
for testing between two binary memoryless sources X = {X;}%°, and X = {X;}%,
under the distributions (1/2,1/2) and (1/4,3/4) respectively, and with § = —7.

When R < —1log(3/2), n(R) = n(R) = co.
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Figure 5.3: Functions n(R), n(R) and (8/(3—1)) [liminf, %Dﬁ (X" X™) — R]
for testing between two memoryless sources X = {X;}2, and X = {X;}2°, under the

Gaussian distributions N (v, 1) and N(—v, 1) respectively, and with g = —0.5.
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0 RY (81X X) E

Figure 5.4: Convex lower bound for testing between irreducible Markov sources. Each
line of slope (3 intersects the E-axis at R[()f>(B|X||X). Proceeding from left to right,

the values of f are: —5, -3, -2,—-4/3, —1,-2/3,—1/2, —2/5.
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0 RY (81X X) E

Figure 5.5: Convex lower bound for testing between arbitrary Markov sources. Each
line of slope (3 intersects the E-axis at R[()f>(B|X||X). Proceeding from left to right,

the values of § are: —5,-3,-2,—-1,-2/3,—-1/2,-2/5, —1/6.
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5.3 Numerical Examples
Throughout this section, the natural logarithm is used.

Example 1 Finite-alphabet memoryless sources: Consider the binary hypothesis test-
ing between two memoryless sources X = {X;}°, and X = {X;}%°, under the

distributions (1/2,1/2) and (1/4,3/4) respectively. Then the log-likelihood ratio

Z = log }}Z; 88 has the following distribution:

Pr{Z =log(2)} =1— Pr{Z =log(2/3)} = 1/2.

Let Mz(#) denote the moment generating function of the random variable Z. By

Cramer’s Theorem® [12, p. 9], we get that

°Let {Y1,Y>,...} be an i.i.d. sequence of random variables. Suppose that the expected value of

Y1, E[Y1], exists and is finite. Consider the function

I(y) 2 supl6y — log M(9)]

where M (6) 2 E{exp[fY1]} is the moment generating function of Y;. The function I(y) is known
as the large deviation rate function. A simple version of Cramer’s Theorem is as follows. Assume

that M (#) < oo for all §. For a > E[Y1],

1 1
lim inf - log Pr{S, < a} = limsup - log Pr{S, <a} =0

n—roo n—o0o

where S, 2 % is the sample average. This follows directly from the law of large numbers.

For a < E[Y1],

1 1
lim inf —— log Pr{S,, < a} = limsup ——log Pr{S,, < a} = I(a).
n n—00 n

n—oo
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AE(—o0,R]
I;(R), R < E[Z]=log(2)—log(3)/2;

0, otherwise,

where E[Z] denotes the expectation of the random variable Z and

Iz(A) = sup (OX —log M(0))
= {Zgﬂg (0X — (0 — 1) log(2) — log(1 +37%))
~ log(log(3/2) + A) — log(log(2) — A)
= e (A —log(2)) + log(2)
log(2) — A
log(3/2) + A

—log(1 + )

_ log(log(3/2) +1(A))g(—3)log(1og(2) - ) L 1(155 §)2) os(log(3/2) < )
+iZ§g; log(log(2) — A) + log(2) — log(log(3)).
Consequently,
| oo R < —log(3/2)
o5(2) R =~ log(3/2)

log(log(3/2)+R)flog(log(Q)fR)R
log(3)

n(R) = +2682) 160(10g(3/2) + R)

log(3)

+e2 log(log(2) — R)

+log(2) — log(log(3)), —log(3/2) < R < log(2) —log(3)/2

0, otherwise.
\

Let R’ be the rate at which the line of slope /(1 — /) is tangent to n(R). We have
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that 7'(R)|r=r = B/(1 — ). Note that

W(R) = R( ! P >+log(3/2) L

log3 \ R+ log(3/2) log2—R log3 R +log(3/2)
1 log 2 1
—— (log(log(3/2) + R) — log(log2 — R)) —
+log3(0g(0g( /2) + R) — log(log ) log3log2 _ R
1 R+log(3/2)
~ log3 log2—R

Hence
1 R +log(3/2) o]

log3 log2—-R  1-p’

which yields
R =log2 —log —.
1+31-¢
By straightforward calculations we get that
, 1 B B
n(R)={1————=|log377 +log2 — log (1 +31*ﬂ> :
1+ 377
Thus, the forward cutoff rate Réf>(B|X||X), which is the R-axis intercept of the line
of slope /(1 — f3), is given by
_ B—1
RS BIXIX) = = n(R) + R
26 — 1 -1
g g

= log2 —
On the other hand, the a-divergence between X and X is given by

DL(X|X) = g ((3) 5 G @))

1
= — ((a —2)log2 + log(1 + 3'7%)),

B
log (1 + 31—3) — log 3.

which yields

. 28-1 p—1
Dﬁ(XHX): 3 log2 — 3

log (1 + 3%> — log 3.
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Note that the forward cutoff rate R(()f)(B|X||X) and the liminf a-divergence rate
(which is equal to the a-divergence since the sources are DMS) of order a = 1/(1—f3)
are equal as expected from Theorem 5.1. Let us now derive 7 in order to check that
7 = R'. First, we need to compute ¥ (R). The set A is equal to the set of natural
numbers in this case. Note that the distribution of the random variable Z®) under

the twisted distribution with parameter 0 < ¢ < 1 is given by
POL{Z =log2} =1/(1+3") and PY{Z =1log(2/3)} =3'/(1 + 3.
By Cramer’s theorem [12, p. 9], we get that

fO(R) = inf I,0()\)

AE(—o0,R]

L), R < Bpol2) = 125 +log(2/3) s

0, otherwise,

where Ep[Z®] denotes the expectation of the random variable Z® under the twisted

distribution and

Ig)()\) = sup (9)\—logMg)(9))

eR

= sup (60X — 0log(2) — log(1 + 3""%) + log(1 + 3"))
f<R

= {t + 10;3 [log(A + log(3/2)) — log(log 2 — )\)]} (A —log2)

log2 — A
A—log2+1log3) "

+log(1 + 3") — log (1 +
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Finally, we get that

;

00, R < —1log(3/2)
log(1 +3), R=—log(3/2)
t(R —log?2)

log(log(3/2)+ R)—log(log(2)—R)
+ lo R

nD(R) = o &(3)
+ e log(log(3/2) + R)
)

-l-}gig) log(log(2) — R)

+1log(1 + 3") —log(log(3)), —log(3/2) < R < 122 +log(2/3):25

0, otherwise.

Therefore
t

3
log(2/3) ——

log 2
1+ 3t

T =

It is easy to check that indeed we have 7 = R’ when the twisted parameter ¢ is chosen

to be 8/(5 — 1). This example is illustrated in Figure 5.2 for f = —7.

Example 2 Continuous alphabet memoryless sources: Consider the hypothesis test-
ing problem between two memoryless sources X = {X;}2°, and X = {X,}%°, under
the Gaussian distributions N (v, 1) and N(—wv, 1) respectively. It is easy to check that
the log-likelihood ratio Z is Gaussian distributed with mean 2? and variance 412,

2020420202 . S

which gives that the moment generating function of Z is E[e??] = e 0,

I7(X\) = supyer(0X — 2070 — 2020%) = (A — 2v%)?/(8v?). By Cramer’s theorem, we get

that

1 2\2 2
(R —20%)% R<2v
n(R) =
0, otherwise.
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Let R’ be the rate at which the line of slope 5/(1 — /) is tangent to n(R). We have

that 1'(R)|r=r = /(1 — ). Note that

Hence

which yields

1
W(R) = -5 (R —2?)
Lo s
E(R - 27/2) = ﬁ’
R' = 2V21 i_ g
N
=gy

Thus, the forward cutoff rate R0 (B|X||X) which is the R-axis intercept of the line

of slope /(1 — f3), is given by

RPEXI%) = 2o lymy+ R

1
1-8

= 2/

On the other hand, the a-divergence between X and X is given by

Do (X]1X)

Lo Z—l(l a)(z+v)?
e 2% dz
\/_
1 1 2
loge 2( —(2av— 1/)2)/ 675(227(200/71/) )dl'
-1 V2

IOg 67%(1/27(2041/71/)2)
a—1
207

121



which yields

_ 1
_ 92 i
D (X]|X) =2 5

Note that the forward cutoff rate R(()f)(B|X||X) and the liminf a-divergence rate

(which is equal to the a-divergence since the sources are DMS) of order a = 1/(1—f3)

are equal as expected from Theorem 5.1.

Now, let us compute n(t)(R). The set N in this case is equal to the set of natural

numbers. For some normalization constant C,

P)((tzb(x”) = C-exp{—%Z(xiﬂLl/f}exp{—% (xi—y)z}

i=1 i=1

DO | —

= C-exp {_ Z[t(xi + )+ (1 —t)(x; — V)Z]}

1
= C.exp{_

which is a Gaussian distribution with mean (1 — 2¢)v and unit variance. Similarly,

(NN
[]=

(x7 4+ 2(2t — V)va; + V2)} ,
1

by invoking Cramer’s theorem, we get that,

L (R+ (2t — 1)20%)?%, R < (1—2t)2°
(t) . 82 )
" (R) =

0, otherwise.

Hence, 7 = (1 — 2¢)2v2. It is straightforward to check that 7 = R’ when the twisted
parameter ¢ is chosen to be /(8 — 1). This example is depicted in Figure 5.3 for

B=—05.
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Example 3 Irreducible finite-alphabet Markov sources: Suppose that X and X are
two irreducible Markov sources with arbitrary initial distributions and probability

transition matrices P and () defined as follows:

o 1/3 2/3 0. 1/5 4/5

1/4 3/4 5/6 1/6

Define a new matrix R = (r;;) by
T’ij = p%’qilj_aa ZJ.] = 07 1.

By Theorem 4.1, the a-divergence rate between X and X exists and is given by

1 - 1
lim —D,(X"||X") = ] log A,

n—oo 1, o —

where A is the largest positive real eigenvalue of R. Hence the computation of the
convex lower bound for D, (E|X]|X) is easily obtained as shown in Figure 5.4 for the
values f = —5,-3,—-2,—-4/3,—1, —2/3, —1/2,—-2/5 (proceeding from left to right),

where a = ﬁ Note that in this case the bound is tight [5], [43].

Example 4 Arbitrary finite-alphabet Markov sources: Suppose that X and X are two
arbitrary Markov sources with arbitrary initial distributions and probability transition

matrices P and (Q defined as follows:
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1/2 1/2 0 0 0 1/5 4/5 0 0 0
1/4 3/4 0 0 0 2/3 1/3 0 0 0
P= 0o o0 3525 0 |, Q= 0 o0 1/21/2 0
0 1/6 5/6 0 0 0 1/6 5/6 0 0
1/4 0 1/4 0 1/2 /8 0 1/2 0 3/8

Define a new matrix R = (r;;) by
’rij :p%qiljiaa Z:] - 071727374'

By Theorem 4.2, the a-divergence rate between X and X can be computed. Hence,
the convex lower bound for D (E|X||X) can be easily derived as shown in Figure 5.5

for the values 8 = —5, -3, —2,—1,-2/3,-1/2,-2/5,—1/6 (proceeding from left to

right), where o = ﬁ

5.4 Properties of 7 and o(R)

Lemma 5.2 For 0 <t <1,

1 _
7 2 sup{R:n(R) > 0} < liminf =Dy (X" X").

Proof: For any v > 0,
1 _
PY) {x” € X" “log =2 S liminf —D,_(X"|| X") + 21/}
n—oo N

1 _
< pY {x” € X" s —log s > Dy (X|X") + y}



for sufficiently large n € A/. But

e X" log Porla n;
(
a

e X" (log X
Pxn

e X" llog ( ) —yt} (5.14)

{
{

= pY {x” caA”: % <10g X"E n; +D1t(X"||X")> < —z/t}
{

< efnl/t

— Y

where (5.14) follows from (5.7). Thus for sufficiently large n € N,

PXn (.’En)

: : 1 ni|lyn —nv
ﬁ logm S llg](.)g.fﬁD]_,t(X ||X ) + 21/} Z ]. — € t,

pl) {x" ex”

which implies

1 _
n® (lim inf =Dy (X"|X™) + 2v
n—oo N

N——

lo
& Py (a7)

1 ~
< liminf —D; (X"||X") + 2v
n—oo N

——

1
= liminf ——logP(t,)L {x" e X"

neN,n—o0 1N

SEES

< limsup 1 log (1 —e ™) =0.

neN,n—oo T

Consequently,
(t) S 1 ni|yn
sup {R: n"”(R) > 0} < hggg}fﬁDl_t(X |X™) + 2.

The proof is completed by noting that v can be made arbitrarily small.
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Lemma 5.3 For 0 < ¢ < 1, if liminf, ,o +D; (X"||X") < K, then

7 2 supi{R: " (R) > 0} > —cc.

Proof: By (5.7), we get that

n (™)

Hence,

Pl e e xm: Zlog "L <R
¥ { R e

P

< etlet(XnHXn)e(l_t)”RPXn e X" 1 log Dxnl@”) (=") <R
n  Pxa(am) —

< etlet(XnHXn)e(l_t)nR

— Y

which implies that

1 _
n®(R) > —t limsup —D;_(X"[|X"™) — (1 —t)R.

neN ,n—oo

Therefore,

t 1 -
T > 1 limsup —D;_,(X"]|X™).

—lneNn—oo T
This shows that 7 = —oo implies that
. 1 S : 1 S .1 -
limsup =Dy (X"||X") = lim —D; (X"||X")=liminf—D; ,(X"||X") = o0,
n n—oo 1

neN ,n—oo Tt neN ,n—o00

contradicting the assumption that liminf, . (1/n)D; (X" X") < K.
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Lemma 5.4 We have the following:

sup{ReR:0(R) >0} >0.

Proof: For any v > 0,

1 P(t) (.T")
PO Lo e Xt Zlog XL < —

— P)((t% {x” ex": Pgi (™) < e ™ Pxn (37”)}
< e ™Pyn {x” e X" : PO (a") < e ™ Pyn (x”)}

—nv
< e

which implies o(—v) > v. Hence, the lemma holds.
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Chapter 6

Csiszar’s Reverse Cutoff Rate for
Hypothesis Testing Between

General Sources with Memory

In [20], Csiszar established the concept of reverse [-cutoff rate for the hypothesis
testing problem based on i.i.d. observations. Given > 0, he defines the reverse (-
cutoff rate as the number Ry > 0 that provides the best possible lower bound in the
form S(E — Ryp) to the type 1 correct exponent (or reliability) function for hypothesis
testing where 0 < Ry < E is the rate of exponential convergence to 0 of the type
2 error probability. He then demonstrated that the reverse -cutoff rate is given by
D1 j1-p)(X||X), where D,(X||X) denotes the a-divergence, a > 0, @ # 1. This result

provides a new operational significance for the a-divergence.

In this chapter, we extend Csiszar’s result [20] by investigating the reverse (-
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cutoff rate for hypothesis testing between two arbitrary sources. Our proof relies in
part on the formulas established in [29], and extensions of the techniques used in [14]
to generalize Csiszar’s source coding result for arbitrary discrete sources. Unlike [14]
where the source alphabet was assumed to be finite, we assume arbitrary (countable or
continuous) source alphabet. We show that if the log-likelihood ratio large deviation
spectrum p(R) is convex and if there exists an R € R such that p(R) + R = 0, then
the limsup a-divergence rate with @ = ﬁ provides the expression for the reverse
[-cutoff rate for 0 < 8 < Bmax, Where SBhax is the largest f < 1 for which the lim sup
ﬁ—divergence rate is finite. For 1 > (8 > [h.x, we only provide an upper bound
on the reverse cutoff rate. However, our result does reduce to Csiszar’s result for
finite-alphabet i.i.d. observations for 0 < $ < 1. In the following section, relevant
previous results by Han on the probability of correct testing are briefly reviewed and

the problem setup is presented.

6.1 Preliminaries and Problem Formulation

Define the general source [29] as an infinite sequence X = { X"} | 2 {X” = (Xl(”),
. X,(In)) }:O_l of n-dimensional random variables X" where each component random

variable Xi(”) (1 < i < n) takes values in an arbitrary set X' that we call the source

alphabet. Given two arbitrary sources X = {X"}* and X = {X"}2, taking

values in the same source alphabet {X"}> . we may define the general hypothesis

’n:17

testing problem with X = {X"}%_ as the null hypothesis and X = {X"}2, as the

alternative hypothesis.
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Let A, be any subset of X™ n =1,2,... that we call the acceptance region of the

hypothesis test, and define
A n A v 7
pn = Pr{X"¢ A,} and X\, =Pr{X" e A,}

where p,, A\, are called type 1 error probability and type 2 error probability, respec-

tively.

In [20], Csiszér investigated the hypothesis testing problem between i.i.d. observa-
tions by considering the g-cutoff rate for the exponent of the best correct probability
of type 1 with exponential constraint on the probability of type 2 error. More formally,

he used the following definitions.

Definition 6.1 Fix £ > 0. A rate r is called E-unachievable if there exists a se-

quence of acceptance regions A,, such that

1 1
limsup ——log(l — p,) <7 and liminf——1logA, > E.

n—00 n n—00 n

Definition 6.2 The infimum of all E-unachievable rates is defined as:
D (E|X||X) 2 inf{r > 0 : r is E-unachievable},

and D?(E|X||X) = 0 if the above set is empty.

For 0 < r < D;(FE|X||X), every acceptable region A, with lim inf, ., —% log A, >

E satisfies p, > 1 — e™"" for n infinitely often.
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Definition 6.3 Fix § > 0. Ry > 0 is a reverse [-achievable rate for the general

hypothesis testing problem if
D;(E|X|X) > B(E — Ro)

for every E > 0. The reverse [-cutoff rate is defined as the infimum of all reverse

B-achievable rates, and is denoted by R (5]X[|X).

However, in [29], Han investigated the general hypothesis testing problem between
arbitrary sources with memory by considering the exponent of the best correct prob-
ability of type 2 with exponential constraint on the probability of type 1 error. More

formally, he used the following definitions.

Definition 6.4 [29] Fix r > 0. A rate E is called r-unachievable if there exists a

sequence of acceptance regions A,, such that

1 1
liminf ——log y,, > r and limsup——log(l — \,) < E.
n

n—00 n—00 n

Definition 6.5 [29] The infimum of all r-unachievable rates is denoted by B} (r|X||X):
B (r|X||X) 2 inf{E > 0 : E is r-unachievable},

and B} (r|X||X) = 0 if the above set is empty.

Proposition 6.1 [29] Fix r > 0. For the general hypothesis testing problem, we
have that

By (r[X[IX) = inf {R+ p(R) + [r — p(R)]"},
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where
1 1 Pxn(x™
5(R) 2 lim —=log Py« 4 2" € X™ —1ogM <Ry},
nooo M n Pgn(z")

and [z]* = max{x, 0}, provided the limit defining p(R) exists, and for any M > 0,

there exists K > 0 such that

]_ 1 P_n "
liminf —= log Pgn ¢ 2™ € X" : —logw
n—00 n n PX"(xn)

> K } > M.

Remark 1: Note that Csiszar’s and Han’s definitions seem different at first glance.
In our investigation, we realized that in order to establish our results on the reverse
cutoff rate for general sources with memory, a formula for the reliability function of
the type 1 probability of correct decoding, D} (E|X]|X), is needed. However, in [29],
Han provided a formula for the reliability function of the type 2 probability of correct
decoding, B?(r|X||X). This turned out to be an obstacle, since we were not able to
derive the reverse cutoff rate formula by directly using the formula for B (r|X|[|X).
To overcome this obstacle, we observed that if we interchange the role of the null and
alternative hypotheses distributions (i.e., X <+ X), and also r with E (i.e., r ++ E)

in Han’s definitions (Definitions 6.4 and 6.5), then a formula for D?(E|X||X) can be

readily obtained from Han’s result. More specifically, we have the following.

Definition 6.6 Fix £ > 0. A rate r is called E-unachievable if there exists a se-
quence of acceptance regions A/, = A¢ (complement of A,,) such that

o 1 . 1

liminf ——log A, > E and limsup——log(l — p,) <r,

n—o0 n n—00 n

where
A =Pr{X" g A} =Pr{X" € A,} and pu,=Pr{X"e A }=Pr{X"¢A,}
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Definition 6.7 The infimum of all E-unachievable rates is given by
B:(E|X||X) = inf{r > 0 : r is E-unachievable},

and B (E|X]|X) = 0 if the above set is empty.
With Definitions 6.6 and 6.7, Proposition 6.1 becomes as follows.

Proposition 6.2 For any F > 0,
B (E|X|[X) = inf {R+ p(R) + [E - p(R)]"},

where

1 ]_ P_n "
p(R) 2 lim ——log Pxn {:c” e X" —logM < R},

n—00 1 n° Pxn(am)
provided the limit defining p(R) exists, and for any M > 0, there exists K > 0 such
that
liminf—llogPXn {x" S - llogPL(xn) > K} > M.
n—soo n  Pga(am)
Remark 2: We can now clearly observe that Definitions 6.6 and 6.1 are identical.
This indicates that Han’s B} (E|X||X) is in fact Csiszdr’s D?(E|X||X). Hence, using

Definitions 6.1 and 6.2, Proposition 6.2 should be as follows.
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Proposition 6.3 For any E > 0,
D(EX||R) = inf {R+ p(R) + [~ p(R)]}

where

]_ ]_ Pin n
p(R) = lim ——log Pgn x”EX”:—logMSR ,
n—oo N n Pxn(z")

provided the limit defining p(R) exists, and for any M > 0, there exists K > 0 such

that

1 1 Pxn (2"
lim inf —— log Pxn q 2" € &A™ : —logM > K> M. (6.1)
n—soo M n  Pxa(am)

The above proposition is a key ingredient for our main results in the following

section.

6.2 Hypothesis Testing Reverse 3-Cutoff Rate

For clarity of presentation, we herein restate the definition of the reverse S-cutoff rate

(which was already given in Definition 6.3).

Definition 6.8 Fix § > 0. Ry > 0 is a reverse [-achievable rate for the general

hypothesis testing problem if
D;(E[X[X) > B(E — R)

for every E > 0. The reverse [-cutoff rate is defined as the infimum of all reverse

B-achievable rates, and is denoted by R (5]X[|X).
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In the degenerate case where D?(E|X||X) = 0, we have that R(()r>(ﬁ|X||X) = 00.
We herein assume that D?(E|X||X) is not identically 0 for all values of E and that the
conditions of Proposition 6.3 are satisfied. A graphical illustration of R(()r>([3|X||)_() is

given in Figure 6.1.

D;(E[X|X)

B(E - R (B1X[|1X))

Ry (B1X|X) E

Figure 6.1: A graphical illustration of the reverse [S-cutoff rate, R[()r)(ﬁ|X||)_(), for

testing between two arbitrary sources X and X.
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We first show the following lemmas, which will provide us the key mechanism to

establish our reverse cutoff rate result.

Lemma 6.1 For all £ > 0, we have that

D EIX||IX) < E+inf{R e R: p(R) < E}.

Proof: We have the following.

Di}(EIX[X) = inf {R+p(R)+[E —p(R)]"} (by Proposition 6.3)

RER
= i inf {R+F inf {R R
winf inf (R +E), it (R4 p(r) )
o
N p(}%l)liE{R—i_E}

= E+inf{ReR:p(R) < E}.
]

Lemma 6.2 Assume that p(R) is convex, and also assume that there exists an R

such that R + p(R) = 0. Then for those E satisfying D?(E|X||X) > 0,

Di(E|X||X) = E+inf{R € R : p(R) < E}.

Proof: Since p(R) is decreasing by definition and it is assumed to be convex, then
it is continuous and strictly decreasing. Let R* be the smallest one that satisfies

R+ p(R) = 0. Then for E < p(R*),

Di}(EIX[X) = inf {R+p(R)+[E —p(R)]"} (by Proposition 6.3)

ReR

< R+ p(RY) +[E = p(R)]" =0.
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Hence, the set of values of E such that D?(E|X||X) > 0 does not include E < p(R*).
Now as p(R) is assumed convex, its slope is strictly increasing, which implies that
the slope of p(R) is less than —1 for R < R*. This immediately gives that the slope
of the function R + p(R) is negative for R < R*. Consequently, for any E > p(R")

(which corresponds to R < R* since p(R) is strictly decreasing),

o BE (R (R} = (R p(R) ey s

_ 1 —
= (B)+E= if {l+E},

where

p~Y(E) £ inf{a: p(a) < B},

is the quantile or inverse of p(-). Thus,

DUEXIK) = inf {R+ p(R) + [E— p(R)]*}

ReR
= min {p(}{r)liE{R + E}, p(}{r)liE{R + p(R)}}
= inf E

p(}‘ir)léE{R N }

= E+inf{ReR:p(R) < E}.

O

It is important to note that the above lemma does not necessarily hold in general,;

this is illustrated in the following example for the case where p(R) is not convex.
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Example 1: Let
0, R > 2;

—tR+1, —2<R<2
p(R) =4 —2R—2, —4<R< -2

—sR+4, -6 <R < —4;

“R+1, R< -6,

\

which is continuous and decreasing but not convex. Hence,

(

0, R > 2;

sR+1, —2<R<2
R+p(R)={ —R—2, —4<R< -2
TR+4, —6<R<—4

1, R < —6,

Then indeed,

D} (E|X||X) = min{p inf [R+ EJ, ir)1£E[R+p(R)]}

(R)<E p(R
0, 0<E<2
= inf {R+pR)}={ lp_ :
m%w{'+M)} lE—1, 2< E<4
1, E >4,

and

“E+42 0<E<2
lE—1, 2<E<6
E+inf{R:p(R) < E} =
—-E+8 6<ELT,

1, E>T.
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Lemma 6.3 Fix t < 0. Also, assume that p(R) is convex, and suppose that there

exists an R such that R+ p(R) = 0. The following two conditions are equivalent.
(VReR) p(R)>-R(1—1t)+1tRy (6.2)

and

¥ E>0) DEX|X)> t_%(E _Ry). (6.3)

Proof:

a) (6.2)=(6.3). By Lemma 6.2, for those F satisfying D!(E|X|[|X) > 0, we have

that

D}EIX||X) = E+inf{ReR:p(R) < E}
> E+inf{ReR:—-R(1—-t)+tRy < E}
t

= ;1 (E— ),

where the inequality follows from (6.2). This implies that
inf{E > 0: D(E|X||X) > 0} < Ro.

Hence, for these E satisfying D*(E|X||X) = 0, the claim also holds since D?(E|X||X)
is increasing.
b) (6.3)=(6.2). By Lemma 6.1 and (6.3), for £ > 0, we have that

t 1 t
inf{ReR:p(R)<FE}>—(FE—Ry) — F =
inf{R € R: p(R) < E} 2 ———(F~ Ro) = F = —F — ——

|
&

|
B

Thus




since p(-) is strictly decreasing. Letting

or

E=—R(1—1t)+tRy,

the above inequality can be rewritten as

p(R) > —R(1 —t) + tRy,

where R € R. 0

We next employ Lemma 6.3 to show our main result regarding the reverse cutoff

rate.
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Theorem 6.1 (Reverse B-cutoff rate formula). Assume that p(R) is convex, and
suppose that there exists an R such that R + p(R) = 0. For the general hypothesis

testing problem,

r S ) 1 _
R(() )([3|X||X) < limsup —Dy/q-g) (X"||X") for 0 < 3 <1,

n—oo 1

and

T Y : ]‘ ni| vn
R (B1X]1X) > lim sup =Dy (X"[[X")  for 0 < 8 < B,

n—oo I

where

1 _
Bax = SUp {[3 € (0,1) : limsup —Dy ) (X" X™) < oo for every 0 < v < 5} ;

n—oo 1

and

Da(X" X" 2 log( > [Pxn(w”)]“[PXn(fr")]“‘)

a—1
zneXxn

is the n-dimensional Rényi a-divergence. Note that from the above two inequalities,

R(()T)(ﬁ|X||X) is indeed equal to the limsup ﬁ—divergence rate for 0 < 8 < Bax-

Proof:!

1. Forward part: R\ (81X||X) < limsup,_, LDy -p) (X™||X™) for 0 < B < 1.

By the equivalence of conditions (6.2) and (6.3), it suffices to show that

1 _
(VR eR) p(R) > —R(1 —t)+t-limsup —D;_,(X"]| X").

n—oo 1

'For the proof of the continuous alphabet case, the same remark given in Observation B (cf.

Section 5.2) applies.
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Consider the twisted distribution defined as:

>

[P (a")]'[Pxr (z)]*
2 anean [Px (87) ] [Pxn (7))

= exp{(t—l)l g%wm t(X”||X”)}P (2™, (6.4)

Then for ¢t < 0,

Pgn {x e X" llg%gxngﬁl%}
= > Pgn (")

{x"eX" Llog 5 Xn(z R}

n(@™) =

= Z exp{(l —t) logM —tDl—t(Xn”Xn)}P)((tzb(xn)

n PXn x™
{a:"EX”:%log ﬁizg:n;SR} ( )

< exp {nR(1 —t) — tDy_,(X"|X™)} > PY (2
{anern:diog X"Ezn)_R}

< exp{nR(1 —1t) —tD;_(X"|X™)}.

1 1 Pgn(a"
p(R) = liminf——log Pxn 2" € &A™ : logM <R

1
> —R(1—t)+t-limsup— D1 H(X™|X™)
n—00

1 t
= R(l—t)—i—t hmsup Dl/(l ﬁ(Xn“Xn) f()r ﬁét—

n—00 - ]-

€ (0,1).

2. Converse part: R (8|X||X) > limsup,, . LDy /- (X™| X™) for 0 < B < Bimax-

By the equivalence of (6.2) and (6.3), it suffices to show the existence of R for any

¢ > 0 such that

p(R) < —R(1—1t)+t (hm sup 1D1 (XX + u ; ) 35) :

n— 00
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where t = /(8 — 1) < 0. Let NV be a set of positive integers such that

1 1
hm —D1 J(X™|X™) = limsup — D1 (X7 X™)

and define

AZsup{R eR: p(R) >0},

where

O(R) 2 liminf — log P no Lo Dxe(@)
P (R) ng{fnigf;o nloan{x eX logpxn( )_R ,

is the twisted large deviation spectrum of the normalized log-likelihood ratio with
parameter ¢. It can be shown that A satisfies —oo < A <0 (cf. Lemmas 6.4 and 6.5
in Section 6.3). We then note by definition of p¥)(-) and the finiteness property of
that for any 0 > 0, there exists € > 0 such that

Pgn ()

O(X—6) = liminf ——logP(zL {x” cx": logpi()
X’rl-

neN ,n—oo

§)\—5} >e> 0.
As a result,

P n
P)(fi {x” e X" logTEx; >\ — 5} >1—¢e " for n € N sufficiently large.

On the other hand, define

]_ P_n "
(02 it s 2 {7 Don T >

and
A2inf{ReR: p"(R) > 0}.
Then by noting that

Pga(a™) _oo1 fﬁz(xn)

log ———= = —D;_(X"||X") + 1
0g PXn(JIn) 1 t( || ) 0g
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we have:
t _
P(R) =0 (tR + gDl_t(X"||X")> :

where
A (t)

1 1. Pya(z™)
2 liminf —=1logPY dam e x" . Zlog X7 ) <
o(F) = lminf —log {x R e )—R}’

and

>~

1 1 o
= sup{R€R:0(R) >0} — ED1—t(Xn||Xn)

< 0, (6.5)

where (6.5) follows from Lemma 5.4 in Section 5.4, and the non-negativity [20] of
the Rényi divergence D; (X™||X™). This indicates the existence of € > 0 such that

pM(8) > € which immediately gives that for n € N sufficiently large,

szn(ff")

1

> 5} <e "
Therefore, for n € N sufficiently large,

Py (2"
P)‘fi{x”exn-5>—1gﬂ>A 5}

Pgn(z™)
> P)(f%{xne.)\f' log (n)>)\ 5}
Py (a")
Pxn(x )
) {x" e X" 10 X 6}
¥ ® Pro(en) =
> 1—e " —e " (6.6)

Let I, 2 (A — 6,b,), and?

2Note that when A < 0, L > 2; so the definition is well-established. However, in case A = 0, we

just take L =1, and I; = (-4,0).
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20 — A
Ik [bk l,bk)f0r2<k<L—’V 25 —‘,

where b, 2 (A—0) 4+ 2kd for 1 < k < L, and by, 2 5. By (6.6), there exists

1 < k(n) < L such that

1 P‘n n 1 — e "€ — —nE
P)(f,)L {x" eax" logM € Ik(n)} > ‘ ‘ , (6.7)
Pxn(z™)

for n € N sufficiently large. Then, by letting R, 2 lim SUPp A oo Dk(n) + 0, We
obtain that for n € N sufficiently large,

1 Pgn (z™
Pxn{x”eX”- X (")

—log—=——=<<Ryp>Pxnqa" € X": —log——= € I ¢ -
o ) < 0 2 Pae {2 €0 Duon P € |

However, for sufficiently large n € A/, we have that:

P 2" e X" —1 76[

_ n(c"
_ n||xny (1—t)lo Px .
_ Z e~ tD1-t (X" X) (1) log 5 (I)P()( 0
{I”EX":%IOg%EIk(n)}
e_tlet(Xn”Xn)e(l_t)nbk(n)—l § P)((tz/. (xn)
Pygn(z™)
{w”EX":%logPini(zn)EIk(n)}
n
xn (")
€ Ik(n)}

) 1
D1 (X" [|X") (1=t)nby(ny 1 pO) J om0 gom o Z oo XM )
e ¢ X n % Py (z™)

Y

__ ,—ne __ ,—NE _
1= e = ™™ by (1% (L tnbyayor
L

Y
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Consequently,

1 1 Pgun(x™
p(Ry) = liminf——log Pgn {x” € X" Zlog—= (z") <R
n—00 n n PXn J,‘n)
- nlelj{/nnlgfn;o lOgPX {:r € nlOg Pyn(z™) — Rl}
1 _
< tlimsup =Dy (X"||X") — (1 —t) limsup by
neN ,n—oo neN ,n—oo
1
< tlimsup — D1 H(XIX™) = (1 —¢) limsup by + 26(1 — ¢)
n—»00 neN ,n—oo
1
= tlimsup— D1 (XX — (1= t)Ry +35(1 —1).
n—00
Since 0 can be made arbitrarily small, the proof is completed. ]

We observe that the conditions given in the above theorem are not necessary for
the expression of the reverse [-cutoff rate to be given by the lim sup I——dlvergence

rate. This is illustrated in the following example, where we show that p(R) is not

convex while

1
( 1X[|X) = lim sup — D1/(1 g (XM|X™) for0< B <1.

n—0o0

Example 2: Let Pgn(a,) = 1 — e™" and Pga(b,) = e 2", where a,, # b, and
ap, by, € X™. Also, let Pxn(a,) =1 — e “ and Pxn(b,) = e ", where 0 < ¢ < 2.
Then, the log-likelihood ratio, Z,,, is given by

1—e?
IOg —cn’
Py (X™) 1—e

—log X ) o
& Pyn (X7)

with probability (in Pg.) 1 —e™2"
Ly

—(2—=¢)n,  with probability (in Pg.) e 2",
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which implies that

0, forR>0
: 1 1
p(R) = lim ——IOgPr{EZnSR}={ 2, for —(2-¢)<R<0

oo, for R < —(2—¢).

\

Note that p(R) in not convex but R + p(R) = 0 for R = 0. Note also that Han’s

condition (6.1) is satisfied since Pxa(-) and Pgn(-) are absolutely continuous with

respect to each other. Let us first compute the a-divergence rate between X" and

X", where o« > 1. The normalized n-dimensional a-divergence is given by

1 - 1
~D, XX = 1 1 — e M) (] — ¢ 2m)l-@ —cno ,—2n(l—a) )
EDAXPIXT) = o (1 e (1 e e ]

We have the following three cases.

. ca+2 —2a > 0. Note that e “® and e 2" approach 0 as n — oo and that

—cna,—2n(l—a)

e e —n(ca+2—2a

=e ), which also approaches 0 as n — oco. Hence, the
a-divergence rate is equal to 0 since the argument of the logarithm — 1 as

n — OQ.

. ca+2—2a < 0. In this case, since e~™(€@+2=20) 4 55 as n — 00, the argument
of the logarithm, for large n, is dominated by e ™(¢®+2-2¢)  Hence
1 — 2—2
lim LD, (X" X" = fim — et 2= 20)
n—oo 1 n—00 n(a — 1)
o+ 2 -2
N -«

. ca+ 2 —2a = 0. Clearly, the a-divergence rate is equal to 0 in this case.
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Let us now compute the reverse S-cutoff rate. First, we need to compute D (E|X]|X)

using Proposition 6.3. We have the following cases.

o I > 2. We have that

R+ FE, for R>0
R+pR)+[E-p(R)]" = ¢ R+E, for —(2—¢)<R<0

00, for R < —(2—c¢).

Hence

D(EIX|IX) = inf {R+p(R)+[E - p(R)]"}

ReR

= F—-2+c.

o 0 <c< FE <2. In this case

R+ FE, for R>0
R+p(R)+[E-pR)]" = ¢ R+2, for —(2—¢)<R<0

00, for R < —(2—c¢).

Hence, D} (E|X||X) = c.
e 0 < F <c. In this case

R+FE, for R>0

R+ p(R)+[E - p(R)]" = R+2, for —(2—¢)<R<0

00, for R < —(2—c¢).

Hence, D} (E|X]||X) = E.
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The reverse [-cutoff rate is the E-axis intercept of the line of slope 3 passing by
the point (2,¢) as illustrated in Figure 6.2. By straightforward calculation, we get
that

. - c
By (BIX) = =5 + 2
For a = 1/(1 — [3), we get that

ca+ 2 — 2
11—«

B (B1X]1X) =
Since, by definition, Rér)(B|X||X) > 0, it is straightforward to check that
r Y 3 1 ni|vn
R (BX|[X) = limsup ~Dy1) (X" X") for0< 8 <1,
n—r00

Note that for this example, since the a-divergence rate is always finite , it follows

directly that Spac = 1.
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D;(EX[IX)

cT -
5 (8- R (31XIX))
0 RYEIXIX) ¢ ) p

Figure 6.2: Reliability function of the type 1 probability of correct decoding for testing

between the two sources Pxn(-) and Pg.(-) as given in Example 1.
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We next show that in the case of i.i.d. finite-alphabet observations, our result in
Theorem 6.1 reduces to Csiszar’s result [20]; i.e., the reverse S-cutoff rate is given by

the Rényi divergence with parameter ﬁ, for 0 < B < 1.

Corollary 6.1 For the hypothesis testing problem between two finite-alphabet mem-

oryless sources X = {X;}2°, and X = {X;}2°,, we have that

RY(BIX|IX) = Dij_p (X||X) for0<pg<1.

Proof: By Cramer’s theorem [12, p. 9], we get that

p(R) = inf 1Iz(s)

s€(—o0,R]
Iz(R), R < EPX[Z]

0, otherwise,

where Ep_[Z] denotes the expectation of the log-likelihood ratio Z = log ggg with

respect to Pg, and

Iz(s) = sup (0s — log Mz(0))

eR

where My(0) = Ep_[exp{0Z}] is the moment generating function of the random
variable Z. Clearly, p(R) is convex [12, p. 9], and it is infinite® when R < logm,

where

mémin{g“jgg,xeﬂ’}.

3Indeed, let R = logm — §, for some positive constant . Then

m?

x, Pro) 8]

which diverges to +o0o when 8 — —oo, since the last term converges to a constant.

OR —log My (6) = —06 + log
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Let us now prove that there exists an R such that p(R) + R = 0. If we differentiate
(R — log M4(0)) with respect to 6, and set the result to 0, we get that

_My0) »

"=,

f(0). (6.8)

By Schwarz inequality, it is straightforward to verify that the function f(#) is strictly
increasing®. Hence, f~! exists and is differentiable (f’(#) > 0, for all § € R). Note
that

f(0)el 2 [log m, log M],

where

Mémax{iig,xex}.

Note also that Ep_[Z] < log M. Therefore, for every R € [logm, Ep_[Z]], there exists

a unique # which satisfies equation (6.8). Hence,
p(R) = [THR)R —log Mz(f~!(R)),

which yields that p(R) is differentiable. Since p(R) is infinite when R < logm and

is equal to 0 for R > E[Z], the set of slopes of tangent lines to p(R) is between —oo

4We have that

v (T 9 ata
X, Pr@) [5E)] 1os 5

0
5, Pelo) [5c0]’

and hence

N

| (s 221)° 5, P [26]” — (0, P[] o i)
(£ Pete [t ]0>2

By Schwarz inequality, f'(6) > 0 with equality iff Pg(x) = ¢Px(x) for all x € X where ¢ is some

X, Pe(o) [
') =

—

]

positive constant. Thus, f'(#) > 0, since in the hypothesis testing problem it is assumed that the

sources are different.
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and 0. Hence, there exists a tangent line with slope —1 to p(R). Let R* be the point

where the line of slope —1 is tangent to p(R). By definition

p(R*) = sup (0R" — log Mz(#)) .

feR

If this supremum is achieved by some 6* # —1, it would contradict the fact that
OR* —log Mz(0) is a lower bound for p(R*) for each # (any line with slope different of

—1 passing through the point (R*, p(R*)) cannot be a lower bound to p(R*)). Hence
p(R*) = —R" — log Mz (0)],-_, -

But My(f) =1 for § = —1, hence p(R*) = —R*. Hence, there exists an R such that

R+ p(R) = 0. Finally, we show that [, = 1. Note first that

1 - _
lim sup — D, (X"||X") = D (X ||X).

nooo 1
If Bnax < 1, then there exists some « > 1 such that D,(X||X) = oo. Since the
alphabet X is finite, this implies that prg“((x)p}(_"‘(x) is infinite. Hence, there
exists at least an v € X such that Px(z) # 0 and Px(x) = 0. But this certainly
violates Han’s condition (6.1) in Theorem 6.3. Hence fpn.c = 1 and the corollary is

proved.

O

We finally present a class of sources with memory for which the reverse S-cutoff

rate is given by the Rényi ﬁ—divergence rate for all 0 < g < 1.
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Corollary 6.2 Consider the hypothesis testing problem between finite-alphabet sources

with memory such that the log-likelihood ratio process {Z,,}, where Z,, = log 22%;{:;,

satisfies both hypotheses of the Géartner-Ellis Theorem [12, p. 15]:

e 9(0) 2 lim,_,u L, (0) exists for all f € R,

e ¢ is differentiable on d,, where d,, 2 {0 :¢(0) < oo},

where ¢,,(6) 2 log Ep,, [exp(0Z,)]. Also, suppose that £¢,(0) converges uniformly in

n to ¢(#). Then the reverse [-cutoff rate satisfies

r X ; 1 ni vn
R (BIXIX) = lim —Dijap)(X"|X") for 0< 8 < 1.

Proof: To prove the result, we need to show that for sources satisfying the Gartner-
Ellis Theorem, the Rényi divergence rate exists, that the conditions of Theorem
6.1 hold and that S,.x = 1. First, the Rényi divergence rate exists from the first

hypothesis of the Gartner-Ellis Theorem and the fact that

—_

il Sn _1—,31 1
LD (01N =2 6, (1)

Next, by the Gartner-Ellis Theorem, we have that

p(R) = sup {0k — ¢(0)}.

eR

Clearly, p(R) is convex in R. Let us show that there exists an R such that R+ p(R) =

0. In order to employ the previous corollary, we let

pn(R) £ sup {9R - %%(9)} :

feR
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forn = 1,2,.... Along the same lines as in the previous corollary, it can be shown
that there exists an R} such that R} + p,(R;) =0, n =1,2,... On the other hand,
|9(0) — ~pn(0)| < &, for n sufficiently large, where &, > 0 is independent of 6 by
the uniform convergence assumption, and converges to 0 as n — oo for all § € R.
Therefore

|Pn(R) = p(R)| < supdy = 0, (6.9)

feR

for all R € R. In particular, (6.9) holds for R = R;:

|on(By) = p(By)] < 0.
But p,(R}) + R =0, therefore |p(R) + R}| < 0,,. Define

R* £1lim sup R;.

n—o0

We conclude that p(R*) + R* = 0. Finally, the fact that fp.x = 1 follows directly

from the first hypothesis of the Gartner-Ellis Theorem.

Numerical Examples: We briefly present two examples of memoryless sources

where we explicitly verify the existence of R such that R+ p(R) = 0.

Example 3: Finite-alphabet memoryless sources: Consider Example 1 in Section 5.3
where X and X are interchanged. Note that p(R) is equal to n(R) in this case. It is

straightforward to check that R 4+ p(R) = 0 for R approximately —0.13.

Example 4: Continuous alphabet memoryless sources: Consider Example 2 in Sec-

tion 5.3 where X and X are interchanged. Note that p(R) is equal to n(R) in this
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case. By straightforward calculation we get that R+ p(R) = 0 for R = —2v/%.

6.3 Properties of A
Lemma 6.4 Fort <0, A <0.

Proof: Observe that for R > 0,

POz ex: Zlog=2" L > R

X {x n 8 Pxn(xm)

< e mRU-DHD (XX p L on o g llog Pgn (2) SR
- n° Pxn(xm)

< g nRO-)HDI(X"|X7)

< e—nR(l—t)

Y

where the last inequality follows from the non-negativity of D; ,(X"||X™). This

implies that for R > 0,
1
pPP(R) < liminf —=log (1- e’"R(l’t)) =0,

T neNnp—oco N

which immediately implies that A < 0. =
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Lemma 6.5 For 0 >t > Buax/(Bmax — 1), A > —00.

Proof: If A = —oco, then p (R) = 0 for every R € R. Hence, by choosing any § > 0

satisfying t > t — 0 > fuax/(Bmax — 1), we have:

]_ P_n "
P)((tzb {x” eX": —logM < R}

n° Pxa(am) —

< D1t (XMX™)=(t=8) D1 () (X" | X ™) +0n R P(t;d) e X" llog Pgn(z") <R
X n° Pxn(z") —

—(t=0)D1_(1—s5) (X[ X™)+6nR
)

IN

e
which implies that

1 _
0=p"(R) > (t—6) limsup —D;_q_s(X"[|X") - OR.

neN ,n—oo

This indicates that

1 ) 1 ] 5
limsup =D 5 (X"[|X") > limsup —Dy__5(X"[|X") > mR for every R € R,

n—oo T neN n—oo 1

or equivalently,

. 1 n|lyvn
lim sup —Dy_—5) (X" || X") = o0,

n—oo I

which contradicts the assumption on S ax. =

157



Chapter 7

Conclusion and Future Work

7.1 Summary

This thesis consists of two major parts.

In the first part, we studied Shannon’s and Rényi’s measure rates for finite-
alphabet time-invariant Markov sources of arbitrary order and arbitrary initial dis-
tributions. We obtained computable expressions for the Kullback-Leibler divergence
rate and the a-divergence rate between Markov sources. We also showed that their
rate of convergence is of the order 1/n. We also provided sufficient conditions un-
der which the a-divergence rate reduces to the Kullback-Leibler divergence rate as
n — oo and o — 1. We obtained similar results for the Shannon entropy rate and
the Rényi entropy rate. The main tools used in obtaining these results are the theory
of non-negative matrices and Perron-Frobenius theory. As an application to hypoth-

esis testing, we provided a simple proof of Stein’s Lemma for irreducible stationary
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Markov sources which goes along the same lines as in the i.i.d. case. As an application
to source coding, we generalized Campbell’s variable-length source coding theorem

for i.i.d. sources to Markov sources.

In the second part, we examined the forward and reverse [-cutoff rates for the
hypothesis testing problem between arbitrary sources with memory (not necessarily
Markovian, ergodic, stationary, etc.) of arbitrary alphabet (countable or uncount-
able). We showed that the forward fg-cutoff rate is given by the liminf a-divergence
rate, where a = ﬁ and # < 0. Under two conditions on the log likelihood ratio
large deviation spectrum, p(R), we showed that the reverse S-cutoff rate is given by
the lim sup a-divergence rate, where o = ﬁ and 0 < < Buax. For fuae < B <1,
we provided an upper bound on the reverse cutoff rate. In particular, we examined
i.i.d. observations and sources that satisfy the hypotheses of the Gartner-Ellis The-
orem. We showed that in these cases, the conditions on p(R) are satisfied and that
the reverse cutoff rate admits a simple form. We also provided several numerical ex-
amples to illustrate our forward and reverse cutoff rate results. The main tools used

in obtaining these results are large deviation theory and the information spectrum

approach.

7.2 Future Work

One possible direction for future work is the investigation of Shannon’s and Rényi’s
information measure rates for general sources with memory (not necessarily Marko-

vian), including hidden Markov sources. For instance, to the best of our knowledge,
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it is not known whether the Rényi entropy rate for finite-alphabet stationary ergodic
sources exists or not. Further investigation of the reverse cutoff rate is also of interest.
One aim is to investigate if the reverse J-cutoff rate result of Theorem 6.1 holds with-
out any restriction on p(R). Another direction is to study Csiszar’s channel coding
cutoff rates [20] for arbitrary discrete channels with memory using our information

spectrum techniques.
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