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Abstrat

In this work, we investigate Shannon's and R�enyi's information measure rates for

�nite-alphabet time-invariant Markov soures of arbitrary order and arbitrary initial

distributions, along with their appliation to hypothesis testing and soure oding.

We also study, using information-spetrum tehniques, Csisz�ar's forward and reverse

uto� rates for the hypothesis testing problem between general soures with memory

(inluding all non-ergodi or non-stationary soures) with arbitrary alphabet (ount-

able or unountable).

We �rst provide a omputable expression for the Kullbak-Leibler divergene rate,

lim

n!1

1

n

D(p

(n)

kq

(n)

), between two Markov soures desribed by the probability dis-

tributions p

(n)

and q

(n)

, respetively. We illustrate it numerially and examine its

rate of onvergene. Similarly, we provide a formula for the Shannon entropy rate,

lim

n!1

1

n

H(p

(n)

), of Markov soures and examine its rate of onvergene. As an

appliation to hypothesis testing, we provide an alternative simple proof for Stein's

Lemma for testing between stationary irreduible Markov soures.

We also address the existene and the omputation of the R�enyi �-divergene

rate, lim

n!1

1

n

D

�

(p

(n)

kq

(n)

), between Markov soures, where � > 0 and � 6= 1. We

provide numerial examples and examine its rate of onvergene. We also investigate

the limits of the R�enyi divergene rate as �! 1 and as � # 0. Similarly, we provide

a formula for the R�enyi entropy rate, lim

n!1

1

n

H

�

(p

(n)

), of Markov soures. We also
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study its rate of onvergene and its limits as �! 1 and as � # 0. As an appliation

to soure oding, we present a generalization of Campbell's variable-length soure

oding theorem for disrete memoryless soures to Markov soures. This provides a

new operational haraterization for the R�enyi entropy rate. The main tools used

to obtain Shannon's and R�enyi's information measure rates results are the theory of

non-negative matries and Perron-Frobenius theory.

We next establish an operational haraterization for the R�enyi �-divergene rate,

by showing, using an information-spetrum approah, that the Csisz�ar forward �-

uto� rate for the hypothesis testing problem between general soures with memory

is given by the lim inf �-divergene rate with � =

1

1��

. The Csisz�ar forward �-uto�

rate (� < 0) for hypothesis testing is de�ned as the largest rate R

0

� 0 suh that for

all rates 0 < E < R

0

, the best (i.e., smallest) probability of type 1 error of sample

size-n tests with probability of type 2 error � e

�nE

is asymptotially vanishing as

e

�n�(E�R

0

)

. We also demonstrate that, under some onditions on the large deviation

spetrum, the Csisz�ar reverse �-uto� rate for the general hypothesis testing problem

is given by the lim sup �-divergene rate with � =

1

1��

. The Csisz�ar reverse �-uto�

rate (� > 0) for hypothesis testing is de�ned as the smallest rate R

0

� 0 suh that for

all rates 0 < R

0

< E, the best (i.e., largest) orret probability of type 1 of sample

size-n tests with probability of type 2 error � e

�nE

is asymptotially vanishing as

e

�n�(E�R

0

)

. Furthermore, we investigate the important lasses of disrete memoryless

soures and soures that satisfy the hypotheses of the G�artner-Ellis Theorem for

whih the forward and reverse �-uto� rates are omputable. Finally, we onlude

with observations and remarks along with several possible diretions for future work.
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Chapter 1

Introdution

The �rst subjet of this thesis is the investigation of Shannon's and R�enyi's informa-

tion measure rates for �nite-alphabet time-invariant Markov soures, along with their

appliation to hypothesis testing and soure oding. The seond subjet is the inves-

tigation of Csisz�ar's uto� rates for the hypothesis testing problem between general

soures with memory (not neessarily Markovian, stationary, ergodi, et.). In this

hapter, we present the literature review of artiles upon whih our researh is based.

We then speify the main ontributions of the thesis and present its outline.

1.1 Literature Review

The onept of entropy as a measure of information of a random variable was �rst in-

trodued by Shannon in his elebrated 1948 paper [55℄. He investigated the properties

of entropy and its appliations to soure oding in the ontext of disrete memoryless
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soures (DMS). Sine then, a onsiderable amount of researh has foused on provid-

ing new measures of information and extending Shannon's results for more general

soures (Markov, stationary, ergodi, et.). A partiular alternative measure to Shan-

non's entropy that brought the attention of many researhers is the R�enyi entropy

[52℄, H

�

(p), or entropy of order �. An operational haraterization of R�enyi's entropy

in the ontext of soure oding was �rst given by Campbell in [13℄. He showed that,

for DMS, R�enyi's entropy plays a role analogous to the Shannon entropy in variable-

length soure oding when the ost funtion in the oding problem is exponential

as opposed to linear. This ours in many appliations where the proessing ost of

deoding is high or the bu�er overow due to long odewords is important. From

this work, a natural question arises: how an one generalize Shannon's and Camp-

bell's variable-length soure oding theorems for DMS to more general soures with

memory, suh as Markov soures. This led us to investigate Shannon's entropy rate,

lim

n!1

1

n

H(p

(n)

), and R�enyi's entropy rate, lim

n!1

1

n

H

�

(p

(n)

), for Markov soures.

Previous work on the omputation of Shannon's entropy rate for stationary and irre-

duible Markov soures may be found in [10℄, [18℄, [25℄. In [25℄, the author showed the

existene of the Shannon entropy rate for arbitrary Markov soures (not neessarily

stationary, irreduible, et.), but he did not provide the omputational details.

The R�enyi entropy and the R�enyi entropy rate have revealed several operational

haraterizations in the problem of �xed-length soure oding [14, 20℄, variable-length

soure oding [11, 34℄, error exponent alulations [23℄, and other areas [1, 6, 8, 46℄.

Other important measures, primarily introdued in the hypothesis testing problem

between DMS, are the Kullbak-Leibler divergene [40℄, D(pkq) and the R�enyi diver-

2



gene [52℄, D

�

(pkq), or the �-divergene. The appliation of the Kullbak-Leibler

divergene an be found in many areas suh as approximation of probability distribu-

tions [17℄, [38℄, signal proessing [36℄, [37℄, [22℄, pattern reognition [9℄, [16℄, et. In

[26℄, Gray proved that the Kullbak-Leibler divergene rate, lim

n!1

1

n

D(p

(n)

kq

(n)

),

exists between a stationary soure p

(n)

and a Markov soure q

(n)

. This result an also

be found in [59, p. 27℄. In [42℄, the authors noted that the Kullbak-Leibler diver-

gene rate between ergodi Markov soures exits. Also, in [56℄, Shields presented two

examples for non-Markovian soures for whih the Kullbak-Leibler divergene rate

does not exist.

The R�enyi divergene rate, lim

n!1

1

n

D

�

(p

(n)

kq

(n)

), has played a signi�ant role in

ertain hypothesis testing questions [39, 44, 45℄. In [44℄, [45℄, the author evaluated

the R�enyi divergene rate between two Markov soures under the restrition that the

initial probabilities are stritly positive.

The �-uto� rate onept, for soure oding and hypothesis testing, was �rst

introdued in [20℄ for DMS. In [14℄, the authors generalized the soure oding �-uto�

rate for DMS to general soures (not neessarily stationary, ergodi, et.) using an

information spetrum philosophy whih was developed by Han and Verd�u [27℄. With

the aid of this method, Verd�u and Han obtained a general formula for the apaity

of arbitrary single-user hannels (not neessarily information stable, stationary, et.)

without feedbak [58℄. In [30℄, Han addressed at length many information theoreti

problems using the information spetrum approah whih is a very powerful tool that

applies to general soures (not neessarily Markovian, stationary, ergodi, et.) and

general alphabets (ountable or unountable). Several results from this book were

3



reently published in the IEEE Transations on Information Theory. In partiular,

Han investigated in [28℄ the optimal exponent problem for the probability of deoding

error and orret deoding in �xed-length soure oding. In [29℄, he studied the

hypothesis testing problem between general soures with memory. Spei�ally, he

examined the optimal exponent problem for the type 2 probability of testing error,

as well as the type 2 probability of orret testing subjet to an exponential error

onstraint on the type 1 probability of testing error.

1.2 Contributions

The ontributions of this thesis (parts of whih appeared in [3℄, [4℄, [47℄{[51℄) are as

follows:

� Computable expressions for the Kullbak-Leibler divergene rate and for the

Shannon entropy rate for arbitrary �nite-alphabet Markov soures along with

their rate of onvergene.

� Computable expressions for the R�enyi �-divergene rate and for the R�enyi en-

tropy rate for arbitrary �nite-alphabet Markov soures along with their rate of

onvergene.

� SuÆient onditions under whih the R�enyi informationmeasure rates for Markov

soures redue to the Shannon information measure rates as �! 1 and the in-

terhangeability of limits between n and � as n!1 and as � # 0.

4



� Generalization of Campbell's variable-length soure oding theorem for DMS

to Markov soures whih provides an operational haraterization for the R�enyi

entropy rate.

� A simple proof of Stein's Lemma for hypothesis testing between stationary

irreduible Markov soures.

� A generalization of Csisz�ar's forward and reverse �-uto� rates for hypothesis

testing between DMS to general soures with memory of arbitrary alphabet.

This yields an operational haraterization for the �-divergene rate. An ex-

amination of the important lasses of DMS and Markov soures for whih the

forward and reverse �-uto� rates are omputable is also provided.

1.3 Thesis Overview

The thesis is organized in the following manner.

In Chapter 2, we present some useful properties and results from linear algebra,

spei�ally the theory of non-negative matries and Perron-Frobenius theory. We also

present some useful properties and results for disrete stohasti proesses, spei�ally

disrete Markov hains.

In Chapter 3, we provide a omputable expression for the Kullbak-Leibler diver-

gene rate between time-invariant Markov soures with �nite alphabet and arbitrary

initial distributions. The result is �rst proved for �rst-order Markov soures, and is

then extended for Markov soures of arbitrary order. We illustrate it numerially and

5



examine its rate of onvergene. Similarly, we address the omputation and the rate

of onvergene for the Shannon entropy rate of Markov soures. Using the formula for

the Kullbak-Leibler divergene rate, we provide a simple alternative proof of Stein's

Lemma for testing between stationary irreduible Markov soures.

In Chapter 4, we generalize Nemetz's result by establishing a formula for the

�-divergene rate between two time-invariant Markov soures with arbitrary initial

distributions and illustrate it numerially. The result is �rst proved for �rst-order

Markov soures, and is then extended for Markov soures of arbitrary order. We then

show that if the probability transition matrix P assoiated with the Markov soure

under p

(n)

is absolutely ontinuous with respet to the probability transition matrix

Q assoiated with the Markov soure under q

(n)

and if the initial distribution p under

p

(n)

is absolutely ontinuous with respet to the initial distribution q under q

(n)

, then

the R�enyi divergene rate redues to the Kullbak-Leibler divergene rate as �! 1.

We also show that the interhangeability of limits as n !1 and as � # 0 is always

valid. Furthermore, we address similar questions for the R�enyi entropy rate. As an

appliation to soure oding, we provide a new operational haraterization for the

R�enyi entropy rate by generalizing Campbell's variable-length soure oding theorem

for DMS to Markov soures.

In Chapter 5, we review relevant previous results by Han on the optimal asymp-

toti exponent of the probability of testing error. We then derive a general expression

for the forward �-uto� rate for hypothesis testing between arbitrary soures. We

demonstrate that the liminf �-divergene rate, where � =

1

1��

and � < 0, provide the

expression for the forward �-uto� rate. We also provide numerial examples based

6



on DMS using Cramer's Theorem [12℄.

In Chapter 6, we review relevant previous de�nitions and results by Csisz�ar and

Han on the optimal asymptoti exponent of the probability of orret testing. Under

two onditions on the log likelihood ratio large deviation spetrum, �(R), we show

that the reverse �-uto� rate is given by the lim sup �-divergene rate, where � =

1

1��

and 0 < � < �

max

, where �

max

is the largest � < 1 for whih the lim sup

1

1��

-divergene rate is �nite. For �

max

� � < 1, we provide an upper bound on

the reverse uto� rate. In partiular, we examine �nite-alphabet independent and

identially distributed (i.i.d.) observations and soures that satisfy the hypotheses

of the G�artner-Ellis Theorem [12℄. We show that in these ases, the onditions on

�(R) are satis�ed and that the reverse uto� rate admits a simple form. We also

provide several numerial examples to illustrate our results. The main tools used in

obtaining the forward and reverse uto� rates results are large deviation theory and

the information spetrum approah.

In Chapter 7, we onlude with a summary along with several diretions for future

work.

7



Chapter 2

Preliminaries: Non-Negative

Matries and Disrete Markov

Soures

2.1 Non-Negative Matries and Perron-Frobenius

Theory

We begin with some useful de�nitions and important properties about determinants

that an be found in any text book in linear algebra suh as [32℄. Throughout,

A := (a

ij

) denotes an M �M square matrix.

De�nition 2.1 A pair of numbers j

k

and j

p

in a permutation (j

1

; j

2

; : : : ; j

M

) form

an inversion if j

k

> j

p

while k < p, that is, if a larger number in the permutation

8



preedes a smaller one. Eah permutation j = (j

1

; j

2

; : : : ; j

M

) has a ertain number

of inversions assoiated with it, denoted briey by t(j). The permutation is alled

odd or even aording to whether the number t(j) is odd or even.

De�nition 2.2 The determinant of A, denoted by det(A) or jAj, is de�ned as

jAj =

X

j

(�1)

t(j)

a

1j

1

a

2j

2

� � �a

Mj

M

; (2.1)

where j varies over all the M ! permutations of 1; 2; : : : ;M .

Lemma 2.1 If B is obtained from A by multiplying one of its rows (or olumns) by

a salar k, then jBj = kjAj.

Lemma 2.2 If B is obtained by interhanging two rows (or olumns) of A, then

jBj = �jAj.

Lemma 2.3 If B is obtained from A by adding the elements of its i-th row (or

olumn) to the orresponding elements of its j-th row (or olumn) multiplied by a

salar �, then jBj = jAj.

Lemma 2.4 Suppose that the entries of A are funtions of some parameter �. Let

jAj

i

be the determinant obtained from A by replaing the elements in the i-th row

by their derivatives with respet to � and leaving the other rows unhanged. Then

jAj

0

=

M

X

i=1

jAj

i

;

where jAj

0

is the derivative of jAj with respet to �.

9



Proof: If we di�erentiate (2.1), we get that

jAj

0

=

X

i

(�1)

t(j)

(a

1j

1

a

2j

2

: : : a

Mj

M

)

0

;

where j varies over allM ! permutations of 1; 2; : : : ;M . By the produt rule of deriva-

tives

(a

1j

1

a

2j

2

: : : a

Mj

M

)

0

= a

0

1j

1

a

2j

2

: : : a

Mj

M

+ a

1j

1

a

0

2j

2

: : : a

Mj

M

+ � � �+ a

1j

1

a

2j

2

: : : a

0

Mj

M

:

Therefore

jAj

0

=

X

j

(�1)

t(j)

a

0

1j

1

a

2j

2

� � �a

Mj

M

+

X

j

(�1)

t(j)

a

1j

1

a

0

2j

2

� � �a

Mj

M

+ � � �+

X

j

(�1)

t(j)

a

1j

1

a

2j

2

� � �a

0

Mj

M

:

Hene, we onlude that jAj

0

=

P

i

jAj

i

:

De�nition 2.3 A minor of order M � 1 of A is de�ned to be the determinant of a

submatrix of A obtained by deleting one row and one olumn. The minor obtained

by deleting the i-th row and the j-th olumn is denoted by L

ij

, (1 � i; j �M). The

ofator A

ij

of an element a

ij

is given by: A

ij

= (�1)

i+j

L

ij

.

Lemma 2.5 The determinant of A an be omputed as follows:

jAj = a

i1

A

i1

+ a

i2

A

i2

+ � � �+ a

iM

A

iM

;

or similarly,

jAj = a

1j

A

1j

+ a

2j

A

2j

+ � � �+ a

Mj

A

Mj

:

10



De�nition 2.4 A right eigenvetor, b, orresponding to an eigenvalue �, is a nonzero

vetor suh that Ab = �b. A left eigenvetor, a, orresponding to �, is a nonzero vetor

suh that aA = �a. Note that a is a row vetor while b is a olumn vetor.

De�nition 2.5 A Jordan blok J

s

(�) orresponding to an eigenvalue � of A is a s�s

upper triangular matrix of the form

J

s

(�) =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

� 1 0 : : : 0

0 � 1 : : : 0

0 : : : : : : : : : 0

0 : : : : : : � 1

0 : : : : : : : : : �

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

De�nition 2.6 An M �M Jordan matrix J for A is of the form

J =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

J

n

1

(�

1

) 0 : : : : : : 0

0 J

n

2

(�

2

) 0 : : : 0

0 : : : : : : : : : 0

0 : : : : : : : : : 0

0 : : : : : : : : : J

n

r

(�

r

)

3

7

7

7

7

7

7

7

7

7

7

7

7

5

; n

1

+ n

2

+ : : :+ n

r

=M;

where 0 denotes a zero matrix (i.e., all entries are zeros) with appropriate dimension.

Theorem 2.1 [32, p. 126℄ Let �

i

, i = 1; : : : ; r be the eigenvalues of A (not nees-

sarily distint). There is an invertible matrix S suh that

A = SJS

�1

:

11



The following limiting behavior result of A an be proved using its Jordan form.

Theorem 2.2 [32, p. 138℄ The matrix A

m

onverges to the zero matrix 0 as

m!1 i� the eigenvalues of A have modulus stritly less than 1.

Lemma 2.6 If all the eigenvalues of A have modulus stritly less than 1, then I �A

is invertible.

Proof: Note �rst that if � is an eigenvalue of A, then 1�� is an eigenvalue of I�A.

Indeed, if Ab = �b, then

(A� I)b = Ab� Ib = �b� b = (�� 1)b:

Therefore, all the eigenvalues of I � A are non-zero. Hene, it is invertible sine its

determinant is non-zero (the determinant is equal to the produt of the eigenvalues

by simply onsidering the Jordan blok form of A).

De�nition 2.7 The algebrai multipliity of an eigenvalue � is its multipliity as a

root of the harateristi equation det(A� �I) = 0, where I is the identity matrix.

Let us also reall some de�nitions and results about non-negative matries and

Perron Frobenius theory. Most of what follows may be found in [54, Chapter 1℄, [24,

Chapter 4℄, and [32, Chapter 8℄.

De�nition 2.8 A Matrix or a vetor is positive if all its omponents are positive and

non-negative if all its omponents are non-negative.

12



Throughout, unless otherwise stated, A denotes an M � M non-negative matrix

(A � 0) with elements a

ij

. The ij-th element of A

m

is denoted by a

(m)

ij

. We write

i! j if a

(m)

ij

> 0 for some positive integer m, and we write i 6! j if a

(m)

ij

= 0 for every

positive integer m.

De�nition 2.9 Two indies i and j ommuniate (i$ j) if i! j and j ! i.

De�nition 2.10 If i ! j but j 6! i for some index j, then the index i is alled

inessential. An index whih leads to no index at all (this arises when A has a row of

zeros) is also alled inessential.

De�nition 2.11 An index i is essential if i! j implies i $ j, and there is at least

one j suh that i! j.

With these de�nitions, it is possible to partition the set of indies f1; 2; : : : ;Mg into

disjoint sets, alled lasses. All essential indies (if any) an be subdivided into essen-

tial lasses in suh a way that all the indies belonging to one lass ommuniate, but

annot lead to an index outside the lass. Moreover, all inessential indies (if any)

may be divided into two types of inessential lasses: self-ommuniating lasses and

non self-ommuniating lasses. Eah self-ommuniating inessential lass ontains

inessential indies whih ommuniate with eah other. A non self-ommuniating

inessential lass is a singleton set whose element is an index whih does not ommu-

niate with any index (inluding itself).

De�nition 2.12 A matrix is irreduible if its indies form a single essential lass;

i.e., if every index ommuniates with every other index.

13



De�nition 2.13 The period of an index i, denoted d(i), is de�ned as the greatest

ommon divisor (gd) of those values of n for whih a

(n)

ii

> 0. If the period is 1, the

index is aperiodi, and if the period is 2 or more, the index is periodi.

Proposition 2.1 [54, p. 17℄ In a ommuniating lass, all indies have the same

period.

De�nition 2.14 An irreduible matrix is said to be periodi with period d, if the

period of any one (and so of eah one) of its indies satis�es d > 1, and is said to be

aperiodi if d = 1.

Proposition 2.2 [54, p. 15℄ By renumbering the indies (i.e., by performing row

and olumn permutations), it is possible to put a non-negative matrix A in the anon-

ial form

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

A

1

: : : 0 0 : : : 0 : : : : : : 0

0 : : : 0 0 : : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

0 : : : A

h

0 : : : 0 : : : : : : 0

A

h+11

: : : A

h+1h

A

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

A

g1

: : : A

gh

A

gh+1

: : : A

g

: : : : : : 0

A

g+11

: : : A

g+1h

A

g+1h+1

: : : A

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

A

l1

: : : A

lh

A

lh+1

: : : A

lg

A

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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where A

i

, i = 1; : : : ; g, are irreduible square matries (periodi in general), and in

eah row i = h + 1; : : : ; g at least one of the matries A

i1

; A

i2

; : : : ; A

ii�1

is not zero.

The matrix A

i

for i = 1; : : : ; h orresponds to the essential lass C

i

; while the matrix

A

i

for i = h + 1; : : : ; g orresponds to the self-ommuniating inessential lass C

i

.

The other diagonal blok sub-matries whih orrespond to non self-ommuniating

lasses C

i

, i = g + 1; : : : ; l, are 1� 1 zero matries. In every row i = g + 1; : : : ; l any

of the matries A

i1

; : : : ; A

ii�1

may be zero.

De�nition 2.15 A lass C

j

is reahable from another lass C

i

where j = 1; : : : ; l and

i = h + 1; : : : ; l if A

ij

6= 0, or if for some i

1

; : : : ; i



, A

ii

1

6= 0,A

i

1

i

2

6= 0,. . . ,A

i



;j

6= 0,

where  is at most l � 1 (sine there are l lasses).

Remark:  an be viewed as the number of steps needed to reah lass C

j

starting

from lass C

i

. Note that from the anonial form of A, the lass C

j

is reahable from

lass C

i

if A

()

ij

6= 0 for some  = 1; : : : ; l� 1, where A

()

ij

is the ij-th submatrix of A



.

Note also that no lass an be reahed from any of the lasses C

1

; : : : ; C

h

sine they

are essential lasses.
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Example: Consider the following non-negative matrix A along with its anonial

form A



.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 1 0 0 0

0 0 1 1 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 0

1 1 0 0 1 0 0

0 0 1 0 0 0 0

1 0 1 0 1 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; A



=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 1 0 1 1 0

1 0 0 1 1 0 0

1 0 1 0 1 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

The anonial form A



is obtained by permuting the �rst and third rows and olumns

and the seond and sixth rows and olumns of A. Note that A



has 2 essential lasses,

C

1

= f1; 2g and C

2

= f3; 4g, 1 inessential self-ommuniating lass, C

3

= f5; 6g, and

1 inessential non self-ommuniating lass, C

4

= f7g. Also, note that the lass C

1

is

not reahable from the lass C

2

(sine C

1

and C

2

are essential lasses), however it is

reahable from C

3

and C

4

.

Proposition 2.3 (Perron) [24, p. 115℄ If A is positive, then A has a real positive

eigenvalue � with algebrai multipliity 1 that is greater than the magnitude of eah

other eigenvalue. There is a positive left (right) eigenvetor, a (b), orresponding to

�, where a is a row vetor and b is a olumn vetor.

The theory of non-negative matries was initiated by Perron for positive matries

and generalized later by Frobenius for irreduible matries. The key idea is that if

A is irreduible, then (I + A)

M�1

> 0, where I is the identity matrix. The latter

16



inequality follows diretly from the de�nition of an irreduible matrix. Indeed, if A

is irreduible, then for all i; j = 1; : : : ;M , a

(n)

ij

> 0, for some 1 � n � M � 1.

Proposition 2.4 (Frobenius) [24, p. 115℄ If A is irreduible, then A has a real

positive eigenvalue � that is greater than or equal to the magnitude of eah other

eigenvalue. There is a positive left (right) eigenvetor, a (b), orresponding to �,

where a is a row vetor and b is a olumn vetor.

The proof relies on the fat that (I+A)

M�1

> 0 and the fat that if � is an eigenvalue

of A, then 1 + � is an eigenvalue of I +A. Also, I +A and A have exatly the same

eigenvetors.

Proposition 2.5 [32, p. 492℄ Suppose A is irreduible and let R

i

, i = 1; : : : ;M

denote the sum of the i-th row. Also, let R

max

= maxfR

1

; : : : ; R

M

g and R

min

=

minfR

1

; : : : ; R

M

g. Then the largest positive real eigenvalue � satis�es

R

min

� � � R

max

:

The following lemma follows by appropriately modifying the proof of the above propo-

sition.

17



Lemma 2.7 If A is irreduible and the row sums are not all idential, then the largest

positive real eigenvalue � satis�es,

R

min

< � < R

max

:

Proof: Let � be the largest positive real eigenvalue of A with assoiated stritly

positive left eigenvetor a, whih exists by Proposition 2.4. Without loss of generality

a an be normalized, i.e., the sum of its omponents is equal to 1. Let 1

t

be the row

vetor

1

t

= (1; : : : ; 1):

Note that a1 = 1, where t denotes the transpose operation. We have aA = �a. Hene

aA1 = �a1 = �. On the other hand

aA1 = a(R

1

; : : : ; R

M

)

t

< a(R

max

; : : : ; R

max

)

t

=

M

X

i=1

a

i

R

max

= R

max

Therefore � < R

max

. Similarly, we an show that � > R

min

. Finally we onlude that

R

min

< � < R

max

:

18



Proposition 2.6 Suppose A is irreduible. Let � be the largest positive real eigen-

value with assoiated right positive eigenvetor b. Then A

m

� �

m

C (i.e., a

(m)

ij

�

�

m



ij

), for all m = 1; 2; : : :, where C = (

max

1�k�M

b

k

min

1�k�M

b

k

) is a matrix with idential entries

that are independent of m.

Proof: If Ab = �b, then A

m

b = �

m

b. We have that

�

m

( max

1�k�M

b

k

) � �

m

b

i

=

M

X

j=1

a

(m)

ij

b

j

� ( min

1�k�M

b

k

)

M

X

j=1

a

(m)

ij

� ( min

1�k�M

b

k

)a

(m)

ij

;

for all i = 1; : : : ;M and j = 1; : : : ;M . Sine b > 0, we obtain the desired result.

Proposition 2.7 [32, p. 508℄ If A is irreduible, then the largest positive real

eigenvalue has algebrai multipliity 1.

Proof: Let B = A=�, where � is the largest positive real eigenvalue of A. By the

previous orollary, B

m

is bounded above by C for all m = 1; 2; : : : Note that the

largest positive real eigenvalue of B is 1. The blok orresponding to this eigenvalue

in the Jordan anonial form of B must have size 1�1, beause otherwise, the entries

of this blok diverge as m ! 1 whih ontradits the fat that B

m

is uniformly

bounded for all m = 1; 2; : : :
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Proposition 2.8 [41, p. 371℄ The eigenvalues of a matrix are ontinuous funtions

of the entries of the matrix.

This proposition follows from that fat that the roots of a polynomial are ontinuous

funtions of its oeÆients, and the fat that the eigenvalues are the roots of the

harateristi equation of the matrix.

Proposition 2.9 [32, p. 372℄ Let A(t) be an M � M matrix whose entries are

all di�erentiable funtions at t = 0. Assume that � is an eigenvalue of A(0) = A

of algebrai multipliity 1, and that �(t) is an eigenvalue of A(t), for small t, suh

that �(0) = �. Let a (b) be the left (right) eigenvetor orresponding to �, suh that

ab = 1. Then

�

0

(t)j

t=0

= aA

0

(t)j

t=0

b:

Proof: By the previous proposition, for all suÆiently small t there is an eigenvalue

�(t) of A(t) suh that �(0) = �. There is also a left (right) eigenvetor a(t) (b(t))

orresponding to �(t) suh that a(t)b(t) = 1. If we di�erentiate this last normalization

ondition, we obtain the identity

a

0

(t)b(t) + a(t)b

0

(t) = 0: (2.2)

Sine A(t)b(t) = �(t)b(t) for all small t, we also have the identity a(t)A(t)b(t) =

�(t)a(t)b(t) = �(t). If we di�erentiate this identity, we obtain

�

0

(t) = a

0

(t)A(t)b(t) + a(t)A

0

(t)b(t) + a(t)A(t)b

0

(t):
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But sine A(t)b(t) = �(t)b(t) and a(t)A(t) = �(t)a(t), we obtain via (2.2) that

�

0

(t) = �(t)fa

0

(t)b(t) + a(t)b

0

(t)g+ a(t)A

0

(t)b(t) = a(t)A

0

(t)b(t):

Thus

�

0

(t)j

t=0

= aA

0

(t)j

t=0

b:

2.2 Disrete Markov Soures and Stohasti Ma-

tries

Most of the following an be found in [18, Chapter 4℄ and [24, Chapter 4℄.

De�nition 2.16 A disrete stohasti proess fX

1

; X

2

; : : :g with �nite-alphabet X =

f1; 2; : : : ;Mg is said to be a Markov soure of order k if, for n > k,

PrfX

n

= i

n

jX

n�1

= i

n�1

; X

n�2

= i

n�2

; : : : ; X

1

= i

1

g =

PrfX

n

= i

n

jX

n�1

= i

n�1

; X

n�2

= i

n�2

; : : : ; X

n�k

= i

n�k

g;

for all i

1

; : : : ; i

n

2 X .

De�ne fW

n

g as the proess obtained by k-step bloking the Markov soure fX

n

g; i.e.,

W

n

4

= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then

PrfW

n

= w

n

jW

n�1

= w

n�1

; : : : ;W

1

= w

1

g = PrfW

n

= w

n

jW

n�1

= w

n�1

g;
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and hene, fW

n

g is a �rst order Markov soure with M

k

states. We herein onsider

Markov soures of �rst order unless otherwise stated.

De�nition 2.17 A stohasti proess is said to be stationary if the joint distribution

of any subset of the sequene of random variables is invariant with respet to shifts

in time index, i.e.,

PrfX

1

= i

1

; X

2

= i

2

; : : : ; X

n

= i

n

g = PrfX

1+l

= i

1

; X

2+l

= i

2

; : : : ; X

n+l

= i

n

g;

for every time shift l and for all i

1

; : : : ; i

n

2 X .

De�nition 2.18 A Markov soure is said to be time-invariant if the onditional

probability does not depend on n, i.e., for n > 1,

PrfX

n

= jjX

n�1

= ig = PrfX

2

= jjX

1

= ig; for all i; j 2 X :

If fX

1

; X

2

; : : :g is a Markov soure, then X

n

is alled the state at time n. A time-

invariant Markov soure is haraterized by its initial state and a probability transition

matrix P = (p

ij

), i; j 2 X , where p

ij

= PrfX

n+1

= jjX

n

= ig. From now on, we will

only deal with time-invariant Markov soures.

De�nition 2.19 A distribution on the states suh that the distribution at time n+1

is the same as the distribution at time n is alled a stationary distribution and is

denoted by � = (�

1

; : : : ; �

M

).
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Remark: For a �nite-alphabet Markov soure with probability transition matrix P ,

its stationary distribution � always exists [24, p. 110℄ and an be obtained by solving

�P = �. Furthermore, the soure is stationary if the distribution of its initial state

is given by �.

De�nition 2.20 A Markov hain is irreduible if its probability transition matrix P

is irreduible. It is ergodi if P is irreduible and aperiodi.

De�nition 2.21 The entropy rate of a stohasti proess fX

1

; X

2

; : : :g is de�ned by

H(X ) = lim

n!1

1

n

H(X

1

; X

2

; : : : ; X

n

)

when the limit exists.

De�nition 2.22 We an also de�ne a related quantity for entropy rate:

H

0

(X ) = lim

n!1

H(X

n

jX

n�1

; X

n�2

; : : : ; X

1

);

when the limit exists.

The two above quantities orrespond to two di�erent notions of entropy rate. The

�rst is the per symbol of the n random variables, and the seond is the onditional

entropy of the last random variable given the past.

Proposition 2.10 [18, p. 64℄ For a stationary soure, H(X ) and H

0

(X ) exist and

are equal.
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Proposition 2.11 [18, p. 66℄, [25, p. 68℄ Let fX

1

; X

2

; : : :g be a Markov soure

with stationary distribution � and transition matrix P . Then the entropy rate is

given by

H(X ) = H(X

2

jX

1

) = �

X

i;j2X

�

i

p

ij

log p

ij

;

if the soure is stationary. The same result also holds for irreduible (not neessarily

stationary) Markov soures.

Example: Finite-memory Polya ontagion proess: Consider the following soure

fX

1

; X

2

; : : :g whih is generated aording to the following urn sheme as desribed

in [2℄: An urn initially ontains T balls{R red and S blak (T = R+ S). At the j-th

draw, j=1,2,. . . , we selet a ball from the urn and replae it with 1 +4 balls of the

same olor (4 > 0); then, k draws later{after the (j + k)-th draw{we retrieve from

the urn 4 balls of the olor piked at time j. Let � = R=T < 1=2, � = 1� � = S=T

and Æ = 4=T . Then, the soure fX

i

g orresponds to the outomes of the draws from

the urn, where

X

i

=

8

>

<

>

:

1; if the i-th ball drawn is red

0; if the i-th ball drawn is blak

It was shown in [2℄ that fX

1

; X

2

; : : :g is a stationary ergodi Markov soure of order

k with entropy rate given by

H(X ) = H(X

k+1

jX

k

; : : : ; X

1

) =

k

X

i=0

0

B

�

k

i

1

C

A

L

i

h

b

�

� + iÆ

1 + kÆ

�

;

where

L

i

=

Q

i�1

j=0

(�+ jÆ)

Q

k�i�1

l=0

(� + lÆ)

Q

k�1

m=1

(1 +mÆ)

;
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and

h

b

(a) := �a log

2

a� (1� a) log

2

(1� a)

is the binary entropy funtion.

Proposition 2.12 [26, p. 40℄ The Kullbak-Leibler divergene rate between a sta-

tionary soure p

(n)

, with stationary distribution �, and a Markov soure q

(n)

, with

transition matrix Q = (q

ij

), is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) = �H

p

(X )�

X

i;j2X

�

i

p

ij

log q

ij

;

where H

p

(X ) is the entropy rate of the stationary soure p

(n)

whih exists by Propo-

sition 2.10.

Let us reall some useful results from Perron-Frobenius theory in the ontext of

stohasti matries. An immediate onsequene of Propositions 2.4 and 2.5 is the

following result.

Corollary 2.1 Let P be the probability transition matrix for an irreduible Markov

soure. Then � = 1 is an eigenvalue of P whih is greater than or equal to the

magnitude of eah other eigenvalue.

Proposition 2.13 [32, p. 524℄ Let P be the probability transition matrix for an

irreduible Markov soure. Also, let a (b) be the left (right) eigenvetor assoiated

with the largest positive real eigenvalue � = 1 suh that ab = 1. Also, let L = ba.

Then

lim

n!1

1

n

n

X

i=1

P

i

= L:
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Moreover, there exists a �nite positive onstant C = C(P ) suh that











1

n

n

X

i=1

P

i

� L











1

�

C

n

;

for all n = 1; 2; : : : and k � k

1

is the l

1

norm, where the l

1

norm of an M �M matrix

A is de�ned by kAk

1

4

= max

1�i;j�M

ja

ij

j.

Proof: We have that

1

n

n

X

i=1

P

i

=

1

n

n

X

i=1

[(P � L)

i

+ L℄ (2.3)

= L+

1

n

n

X

i=1

(P � L)

i

= L+

1

n

(P � L)(I � (P � L)

n

)(I � (P � L))

�1

(2.4)

= L+

1

n

(P � L)(I � P

n

+ L)(I � (P � L))

�1

; (2.5)

where (2.3) follows from the identity (P � L)

m

= P

m

� L for all m = 1; 2; : : : (whih

an be shown by indution on m) and (2.4) follows from the fat that if B is a square

matrix suh that I �B is invertible, then

P

n

i=1

B

i

= B(I �B

n

)(I �B)

�1

. It an be

shown that the matrix I � (P � L) is indeed invertible. The equality (2.5) follows

also from the identity (P �L)

m

= P

m

�L. The only part in (2.5) that depends on n

is the fator 1=n and the term P

n

. But, by Proposition 2.6, P

n

is uniformly bounded

as n!1. Thus,

1

n

P

n

i=1

P

i

onverges to L, and the order of onvergene is 1=n.
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Remark: The left eigenvetor a is the unique stationary distribution � of P assoi-

ated with the largest positive real eigenvalue � = 1 and b

t

= (1; : : : ; 1).

With the aid of the above proposition and Proposition 2.2, it an be shown that

for an arbitrary stohasti matrix P the Ces�aro limit, lim

n!1

1

n

P

n

i=1

P

i

, exists and

is omputable.

Proposition 2.14 [19, p. 129℄ Let P be the probability transition matrix for an

arbitrary Markov soure with assoiated anonial form as in Proposition 2.2. Let a

i

(b

i

) be the left (right) eigenvetor of P

i

assoiated with � = 1 suh that a

i

b

i

= 1, for

i = 1; : : : ; h. Let

A =

2

6

6

6

6

6

6

6

6

4

P

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : P

h

3

7

7

7

7

7

7

7

7

5

; B =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P

h+11

: : : P

h+1h

: : : : : : : : :

P

g1

: : : P

gh

P

g+11

: : : P

g+1h

: : : : : : : : :

P

l1

: : : P

lh

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Also, let

C =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : :

P

gh+1

: : : P

g

: : : : : : 0

P

g+1h+1

: : : P

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : :

P

lh+1

: : : P

lg

P

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; D =

2

6

6

6

6

6

6

6

6

4

b

1

a

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : b

h

a

h

3

7

7

7

7

7

7

7

7

5

:
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We have the following:

lim

n!1

1

n

n

X

i=1

P

i

=

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

;

where I is the identity matrix.

Proof: We have that

P

n

=

2

6

4

A

n

0

B

(n)

C

n

3

7

5

:

Note that

B

(n)

= BA

n�1

+ CB

(n�1)

;

by simply equating the entries of the matrix P

n

with the entries of the matrix PP

n�1

.

Therefore

n

X

i=1

B

(i)

= B

n

X

i=1

A

i�1

+ C

n

X

i=1

B

(i�1)

;

where B

(0)

:= 0 and A

0

:= I. Hene

1

n

n

X

i=1

B

(i)

= B

1

n

n

X

i=1

A

i�1

+ C

1

n

n

X

i=1

B

(i�1)

: (2.6)

By Proposition 2.13

lim

n!1

1

n

n

X

j=1

P

j

i

= b

i

a

i

;

for i = 1; : : : ; h, where b

i

(a

i

) is the right (left) eigenvetor orresponding to 1 whih

is the largest positive real eigenvalue orresponding to all the stohasti matries P

i

suh that a

i

b

i

= 1. It follows that

lim

n!1

1

n

n

X

j=1

A

j

= D =

2

6

6

6

6

6

4

b

1

a

1

0 0

0

.

.

.

0

0 0 b

h

a

h

3

7

7

7

7

7

5

:
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If P

i

, i = h + 1; : : : ; g has all row sums idential, then by Proposition 2.5, its largest

positive real eigenvalue is less than 1. Otherwise, by Lemma 2.7, its largest positive

real eigenvalue is less than 1. Hene, all the eigenvalues of C have modulus less than

1. Therefore C

n

onverges to the zero matrix 0, and hene

lim

n!1

1

n

n

X

j=1

C

j

= 0:

Letting n!1 in (2.6), we onlude that

lim

n!1

1

n

n

X

j=1

B

(j)

= (I � C)

�1

BD;

where I � C is invertible by Lemma 2.6, and hene the desired result.

Proposition 2.15 (Perron's formula) [53, Setion 5℄ Let �

0

; �

1

; : : : ; �

r

be the

eigenvalues of A, with algebrai multipliities m

0

; m

1

; : : : ; m

r

, respetively. De�ne

 

t

(�) by

A(�) = j�I � Aj = (�� �

t

)

m

t

 

t

(�); t = 0; : : : ; r;

suh that  

t

(�) are polynomials of degree M �m

t

whih di�er from zero for � = �

t

.

Then, we have identially for all i; j = 1; : : : ;M and k = 1; 2; 3; : : :

a

(k)

ij

=

r

X

t=0

1

(m

t

� 1)!

D

m

t

�1

�

�

�

k

A

ij

(�)

 

t

(�)

�

�=�

t

;

where A

ij

(�) is the ofator of the ij-th element of �I � A. In this equation, D

m

t

�1

�

denotes the derivative of order m

t

� 1 with respet to �, evaluated at � = �

t

.

Note that Perron's formula permits to express an arbitrary element a

(k)

ij

of the matrix

A

k

in terms of the eigenvalues of A and the ofators of the matrix �I � A.
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Lemma 2.8 [53, p. 10℄ Let A(�) = j�I �Aj. Denote by A

ij

(�) the ofator of the

ij-th element of the matrix �I � A. I is the M �M identity matrix. Then

dA(�)

d�

=

M

X

i=1

A

ii

(�):

Proof: By applying Lemma 2.4 to the determinant A(�), the i-th row of A

i

(�)

onsists of zeros exept the i-th position whih is 1. By Lemma 2.5, expanding eah

A

i

(�) along this row yields the desired result.

Lemma 2.9 [53, p. 10℄ Suppose in addition to the previous lemma that � = 1 and

eah row of A sums to 1. Then

A

i1

(1) = A

i2

(1) = � � � = A

iM

(1);

for all i = 1; 2; : : : ;M .

Proof: This statement follows by using the properties of determinants in Lemma

2.1, Lemma 2.2, and Lemma 2.3.

Proposition 2.16 [53, p. 17℄ Let P be the probability transition matrix for an

ergodi Markov soure. Then the stationary distribution � is given by

�

i

=

P

ii

(1)

P

j

P

jj

(1)

; i = 1; : : : ;M;

where P

ij

(1) denotes the ofator of the ij-th entry of the matrix I � P , and I is the

identity matrix.
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Proof: Applying Proposition 2.15 to P yields

p

(k)

ij

=

1

(m

0

� 1)!

D

m

0

�1

�

�

�

k

P

ij

(�)

p

0

(�)

�

�=1

+

r

X

t=1

1

(m

t

� 1)!

D

m

t

�1

�

�

�

k

P

ij

(�)

p

t

(�)

�

�=�

t

; (2.7)

in whih �

0

= 1; �

1

; : : : ; �

r

are the eigenvalues of P and m

0

; m

1

; : : : ; m

r

their respe-

tive multipliities, so thatm

0

+m

1

+ � � �+m

r

=M . The polynomials p

0

(�); p

1

(�); : : : ;

p

r

(�) are de�ned by

P (�) = (�� 1)

m

0

p

0

(�) = (�� �

t

)

m

t

p

t

(�); t = 1; : : : ; r;

where

p

0

(1) 6= 0; p

t

(�

t

) 6= 0; t = 1; : : : ; r:

This relationship has a partiular importane for the ergodi Markov hain assoiated

with P sine �

0

= 1 is a simple eigenvalue, i.e., m

0

= 1. In this ase, (2.7) assumes

the form

p

(k)

ij

=

P

ij

(1)

p

0

(1)

+

r

X

t=1

1

(m

t

� 1)!

D

m

t

�1

�

�

�

k

P

ij

(�)

p

t

(�)

�

�=�

t

: (2.8)

By Lemma 2.9, P

ij

(1) = P

ii

(1). Also, sine P (�) = (� � 1)p

0

(�), then, P

0

(�) =

p

0

(�) + (�� 1)p

0

0

(�), and, P

0

(1) = p

0

(1) 6= 0.

But by Lemma 2.8 P

0

(�) =

P

i

P

ii

(�). Therefore, P

0

(1) =

P

i

P

ii

(1) 6= 0.

For simpliity let

1

(m

t

� 1)!

D

m

t

�1

�

�

�

k

P

ij

(�)

�

k

t

p

t

(�)

�

�=�

t

4

= Q

ijt

(k):

Clearly, Q

ijt

(k) represents a polynomial in k of degree not greater than (m

t

� 1), and

we an therefore write

Q

ijt

(k) =

m

t

�1

X

h=0

Q

(h)

ijt

k

h

;
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where the Q

(h)

ijt

represent some spei� numbers whih do not depend on k. We

onlude that (2.8) an be written as

p

(k)

ij

= p

i

+

r

X

t=1

Q

ijt

(k)�

k

t

;

where

p

i

=

P

ii

(1)

P

0

(1)

=

P

ii

(1)

P

j

P

jj

(1)

:

The magnitude of all the remaining eigenvalues of P are less than unity. Sine Q

ijt

(k)

are polynomials of �nite degree in k, it follows that

lim

k!1

p

(k)

ij

= p

i

; i = 1; 2; : : : ;M;

sine

lim

k!1

k

h

�

k

= 0:

To show the above equality, it is suÆient to prove that

lim

k!1

k

h

j�j

k

= 0: (2.9)

We have the following two ases: if j�j = 0 then (2.9) is obvious. Otherwise, 0 <

j�j < 1. In this ase,

lim

k!1

log k

h

j�j

k

= lim

k!1

(h log k + k log j�j)

= lim

k!1

k

�

h

log k

k

+ log j�j

�

= �1;

sine lim

k!1

log k

k

= 0 by l'Hôpital's rule and log j�j < 0. Therefore, (2.9) also holds

in this ase.
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Chapter 3

Shannon's Information Measure

Rates for Finite-Alphabet Markov

Soures

Let fX

1

; X

2

; : : :g be a �rst-order time-invariant Markov soure with �nite-alphabet

X = f1; : : : ;Mg. Consider the following two di�erent probability laws for this soure.

Under the �rst law,

PrfX

1

= ig =: p

i

and PrfX

k+1

= jjX

k

= ig =: p

ij

; i; j 2 X ;

so that

p

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � �p

i

n�1

i

n

; i

1

; : : : ; i

n

2 X ;

while under the seond law the initial probabilities are q

i

, the transition proba-

bilities are q

ij

, and the n-tuple probabilities are q

(n)

. Let p = (p

1

; : : : ; p

M

) and
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q = (q

1

; : : : ; q

M

) denote the initial distributions under p

(n)

and q

(n)

respetively.

The Kullbak-Leibler divergene [40℄ between two distributions p̂ and q̂ de�ned

on X is given by

D(p̂kq̂) =

X

i2X

p̂

i

log

p̂

i

q̂

i

;

where the base of the logarithm is arbitrary. One natural diretion for further studies

is the investigation of the Kullbak-Leibler divergene rate

lim

n!1

1

n

D(p

(n)

kq

(n)

)

between two probability distributions p

(n)

and q

(n)

de�ned on X

n

, where

D(p

(n)

kq

(n)

) =

X

i

n

2X

n

p

(n)

(i

n

) log

p

(n)

(i

n

)

q

(n)

(i

n

)

;

for soures with memory. In [26℄, Gray proved that the Kullbak-Leibler divergene

rate exists between a stationary soure p

(n)

and a time-invariant Markov soure q

(n)

(Proposition 2.12). This result an also be found in [59, p. 27℄. To the best of

our knowledge, this is the only result available in the literature about the existene

and the omputation of the Kullbak-Leibler divergene rate between soures with

memory. In the sequel, we provide a omputable expression for the Kullbak-Leibler

divergene rate between two arbitrary time-invariant �nite alphabet Markov soures.

This expression, whih is proved in a straightforward manner using results from the

theory of non-negative matries and Perron-Frobenius theory, has a readily usable

form, making it appealing for various analytial studies and appliations involving

the divergene between systems with memory.
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3.1 Kullbak-Leibler Divergene Rate

3.1.1 First-Order Markov Soures

We �rst assume that the time-invariant Markov soure fX

1

; X

2

; : : :g is of order one.

Later, we generalize the results for soures of arbitrary order k. Let p and q be

the initial distributions with respet to p

(n)

and q

(n)

respetively. Also, let P and

Q be the probability transition matries with respet to p

(n)

and q

(n)

respetively.

Without loss of generality, we may assume that p and P are absolutely ontinuous

with respet to q and Q respetively (i.e., q

i

= 0) p

i

= 0 and q

ij

= 0) p

ij

= 0, for

all i; j 2 X ), beause otherwise the Kullbak-Leibler divergene rate is in�nite. We

have the following results.

Theorem 3.1 Suppose that the Markov soure fX

1

; X

2

; : : :g is irreduible under p

(n)

and q

(n)

. Let

S(X

2

jX

1

= i)

4

=

X

j2X

p

ij

log

p

ij

q

ij

:

Then, the Kullbak-Leibler divergene rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) =

X

i2X

�

i

S(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .
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Proof: We have that

1

n

D(p

(n)

kq

(n)

) =

1

n

X

i2X

[p(X

1

= i) + � � �+ p(X

n�1

= i)℄S(X

2

jX

1

= i) +

1

n

X

i2X

p(X

1

= i) log

p(X

1

= i)

q(X

1

= i)

;

whih an be also written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (3.1)

+

1

n

X

i2X

p

i

log

p

i

q

i

; (3.2)

where

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M)):

Note that (3.2) approahes 0 as n!1. Hene, by Proposition 2.13, we obtain that

lim

n!1

1

n

p(I + P + � � �+ P

n�2

)V = pLV;

where

L = ba = (1; : : : ; 1)

t

(�

1

; : : : ; �

M

)

=

2

6

6

6

6

6

6

6

6

4

�

1

�

2

: : : �

M

�

1

�

2

: : : �

M

.

.

.

.

.

.

.

.

.

.

.

.

�

1

�

2

: : : �

M

3

7

7

7

7

7

7

7

7

5

:
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Thus

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

2

6

6

6

6

6

6

6

6

4

�

1

�

2

: : : �

M

�

1

�

2

: : : �

M

.

.

.

.

.

.

.

.

.

.

.

.

�

1

�

2

: : : �

M

3

7

7

7

7

7

7

7

7

5

V

=

X

i2X

�

i

S(X

2

jX

1

= i)

Theorem 3.2 Suppose that the Markov soure fX

1

; X

2

; : : :g under p

(n)

and q

(n)

is

arbitrary

1

(not neessarily irreduible, stationary, et.). Let the anonial form of P

be as in Proposition 2.2. Also, let B, D and C be as de�ned in Proposition 2.14.

Then, the Kullbak-Leibler divergene rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

V;

where

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M));

and I is the identity matrix with same dimensions as the matrix C.

1

Sine p and P are absolutely ontinuous with respet to q and Q respetively, it follows that p

(n)

is absolutely ontinuous with respet to q

(n)

. Hene, some restrition on their behavior is indued.

For instane, if P is irreduible, Q must be irreduible. However, it is possible to have Q irreduible

and P reduible. So, in general, Q and P do not neessarily have the same number of lasses.
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Proof: As in the previous theorem, we have that

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (3.3)

+

1

n

X

i2X

p

i

log

p

i

q

i

: (3.4)

Then, the desired result follows immediately from Proposition 2.14.

Theorem 3.3 The rate of onvergene of the Kullbak-Leibler divergene rate be-

tween arbitrary p

(n)

and q

(n)

is of the order 1=n.

Proof: Clearly, the rate of onvergene of (3.4) to 0 is of the order 1=n. In Proposition

2.13, it is proved that the rate of onvergene of the Ces�aro sum of an irreduible

stohasti matrix is of the order 1=n. On the other hand, if P is not irreduible,

let P

i

, i = 1; : : : ; h, be the sub-matries orresponding to essential lasses and let

P

i

, i = h + 1; : : : ; g be the sub-matries orresponding to inessential lasses as in

Proposition 2.2. For i = 1; : : : ; h, eah P

i

is stohasti and irreduible; so its Ces�aro-

sum is of the order 1=n by Proposition 2.13. Now, for i = h + 1; : : : ; g, every P

i

is

irreduible and hene, by Proposition 2.6, we have that

P

n

i

� �

n

i

G

i

; i = h+ 1; : : : ; g; (3.5)

where �

i

is the largest positive real eigenvalue of P

i

, and G

i

is a matrix with idential

entries that are independent of n. Therefore

1

n

n

X

j=1

P

j

i

�

1

n

n

X

j=1

�

j

i

G

i

=

1

n

�

i

(1� �

n

i

)

1� �

i

G

i

;
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for i = h + 1; : : : ; g. If P

i

has all row sums idential then �

i

< 1 by Proposition

2.5 and the fat that P is stohasti. Otherwise, �

i

< 1 by Lemma 2.7. Hene, the

Ces�aro sum of P

i

, i = h+1; : : : ; g is of the order 1=n. By onsidering the Ces�aro sum

of the anonial form of P , we get that the rate of onvergene of (3.3) is of the order

1=n. Therefore the rate of onvergene of the Kullbak-Leibler divergene rate is of

the order 1=n.

3.1.2 k-th Order Markov Soures

Now, suppose that the Markov soure has an arbitrary order k. De�ne fW

n

g as the

proess obtained by k-step bloking the Markov soure fX

n

g; i.e.,

W

n

:= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then fW

n

g is a �rst order Markov soure with M

k

states. Let p

w

n�1

w

n

:= Pr(W

n

=

w

n

jW

n�1

= w

n�1

). Let p = (p

1

; : : : ; p

M

k
) and q = (q

1

; : : : ; q

M

k
) denote the arbitrary

initial distributions of W

1

under p

(n)

and q

(n)

respetively. Also, let p

ij

and q

ij

denote

the transition probability that W

n

goes from index i to index j under p

(n)

and q

(n)

respetively, i; j = 1; : : : ;M

k

. Then learly D(p

(n)

kq

(n)

) an be written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � � + P

n�2

)V

+

1

n

X

i2X

k

p(W

1

= i) log

p(W

1

= i)

q(W

1

= i)

;

where

V

t

= (S(W

2

jW

1

= 1); : : : ; S(W

2

jW

1

=M

k

)):

It follows diretly that Theorems 3.2 and 3.3 also hold for a Markov soure of arbitrary

order k.
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3.2 Shannon Entropy Rate

The existene and the omputation of the Shannon entropy rate of an arbitrary time-

invariant �nite-alphabet Markov soure an be diretly dedued from the existene

and the omputation of the Kullbak-Leibler divergene rate. Indeed, if q

(n)

is sta-

tionary memoryless with uniform marginal distribution, then

D(p

(n)

kq

(n)

) = n logM �H(p

(n)

):

Therefore

lim

n!1

1

n

D(p

(n)

kq

(n)

) = logM � lim

n!1

1

n

H(p

(n)

): (3.6)

We have the following orollaries.

Corollary 3.1 Suppose that the Markov soure fX

1

; X

2

; : : :g under p

(n)

is irre-

duible. Let

H(X

2

jX

1

= i)

4

= �

X

j2X

p

ij

log p

ij

:

Then, the Shannon entropy rate of p

(n)

is given by

lim

n!1

1

n

H(p

(n)

) =

X

i2X

�

i

H(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .

Proof: Obtained diretly by plugging q

ij

= 1=M in Theorem 3.1 and using (3.6).
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Corollary 3.2 Let the anonial form of P be as in Proposition 2.2. Also, let B, D

and C be as de�ned in Proposition 2.14. Then, the Shannon entropy rate is given by

lim

n!1

1

n

H(p

(n)

) = p

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

V;

where

V

t

= (H(X

2

jX

1

= 1); : : : ; H(X

2

jX

1

=M));

and I is the identity matrix with same dimensions as the matrix C.

Proof: Note that P

i

, i = 1; 2; : : : is a stohasti matrix

2

. Hene,

lim

n!1

1

n

(I + P + � � �+ P

n�2

)1

t

= lim

n!1

n� 1

n

1

t

= 1

t

whih yields that

lim

n!1

1

n

(I + P + � � �+ P

n�2

)

is a stohasti matrix. Therefore,

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

is also a stohasti matrix. Hene,

p

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

2

6

6

6

6

6

4

logM

.

.

.

logM

3

7

7

7

7

7

5

= p

2

6

6

6

6

6

4

logM

.

.

.

logM

3

7

7

7

7

7

5

= logM:

2

We have that P1

t

= 1

t

, where 1 = (1; : : : ; 1) and t is the transpose operation. Using this fat

and the fat that P

i

= PP

i�1

, the result follows by mathematial indution on i.
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Then, the orollary follows diretly by plugging q

ij

=

1

M

in Theorem 3.2 and using

(3.6).

Corollary 3.3 The rate of onvergene of the Shannon entropy rate of p

(n)

is of the

order 1=n.

3.3 Numerial Examples

In this setion, we use the natural logarithm for simpliity.

Example 1: Let P and Q be two possible probability transition matries for a �rst

order Markov soure fX

1

; X

2

; : : :g (not stationary and not irreduible) de�ned as

follows:

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=2 0 0 1=2 0 0 0

0 0 4=7 2=7 1=7 0 0

0 0 1=3 0 0 2=3 0

1=4 0 0 3=4 0 0 0

2=5 2=5 0 0 1=5 0 0

0 0 1 0 0 0 0

1=4 0 1=2 0 1=4 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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and

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=3 0 0 2=3 0 0 0

0 0 2=7 1=7 4=7 0 0

0 0 1=5 0 0 4=5 0

1=6 0 0 5=6 0 0 0

1=5 2=5 0 0 2=5 0 0

0 0 1 0 0 0 0

1=4 0 1=4 0 1=2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Let p = (3=7; 0; 1=7; 0; 1=7; 2=7; 0) and q = (2=8; 0; 3=8; 0; 1=8; 2=8; 0) be two possible

initial distributions under p

(n)

and q

(n)

, respetively. In anonial form, P and Q an

be rewritten as

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=3 2=3 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=2 1=2 0 0 0

0 0 1=4 3=4 0 0 0

0 0 2=5 0 1=5 2=5 0

4=7 0 0 2=7 1=7 0 0

1=2 0 1=4 0 1=4 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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and

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=5 4=5 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=3 2=3 0 0 0

0 0 1=6 5=6 0 0 0

0 0 1=5 0 2=5 2=5 0

2=7 0 0 1=7 4=7 0 0

1=4 0 1=4 0 1=2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

simply by permuting the �rst and third rows and olumns and the seond and

sixth rows and olumns. Note that P has 2 essential lasses, 1 inessential self-

ommuniating lass and 1 inessential non self-ommuniating lass. Aordingly,

the initial distributions are rewritten as p = (1=7; 2=7; 3=7; 0; 1=7; 0; 0) and q =

(3=8; 2=8; 2=8; 0; 1=8; 0; 0), after permuting the �rst and third indies and the seond

and sixth indies. We obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.05323

50 0.03626

100 0.03415

By Theorem 3.2, the Kullbak-Leibler divergene rate is equal to 0.032. Clearly, as

n gets large

1

n

D(p

(n)

kq

(n)

) is loser to the Kullbak-Leibler divergene rate. We also

obtain the following.
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n

1

n

H(p

(n)

)

10 0.54366

50 0.50877

100 0.50442

By Corollary 3.2, the Shannon entropy rate is equal to 0.50008. Clearly, as n gets

large

1

n

H(p

(n)

) is loser to the Shannon entropy rate.

Example 2: Consider the Markov soure fX

i

g of order 2 generated aording a

variation of the Polya urn sheme as desribed in the example of Chapter 3. The

proess fW

n

g suh that eah random variable W

n

is a 2-step bloking of fZ

n

g, i.e.

W

n

= (Z

n

; Z

n+1

);

is a �rst order stationary ergodi Markov soure with 4 states. The probability

transition matrix P of fW

n

g is given by

P =

2

6

6

6

6

6

6

6

6

4

�+2Æ

1+2Æ

�

1+2Æ

0 0

0 0

�+Æ

1+2Æ

�+Æ

1+2Æ

�+Æ

1+2Æ

�+Æ

1+2Æ

0 0

0 0

�

1+2Æ

�+2Æ

1+2Æ

3

7

7

7

7

7

7

7

7

5

;

where � + � = 1. Suppose that the urn ontains initially 3 red balls and 5 blak

balls. Denote by p

(n)

the joint distribution of the soure and P its transition matrix

if 4 = 1. Denote by q

(n)

the joint distribution of the soure and Q its transition

matrix if 4 = 2. In this ase
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P =

2

6

6

6

6

6

6

6

6

4

7=10 3=10 0 0

0 0 6=10 4=10

6=10 4=10 0 0

0 0 5=10 5=10

3

7

7

7

7

7

7

7

7

5

; Q =

2

6

6

6

6

6

6

6

6

4

9=12 3=12 0 0

0 0 7=12 5=12

7=12 5=12 0 0

0 0 5=12 7=12

3

7

7

7

7

7

7

7

7

5

:

The initial distributions under p

(n)

and q

(n)

are respetively p = (30=72; 15=72; 15=72;

12=72) and q = (35=80; 15=80; 15=80; 15=80). We obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.0046

50 0.00512

100 0.00519

By Theorem 3.1, the Kullbak-Leibler divergene rate is equal to 0.005254. Clearly,

as n gets large

1

n

D(p

(n)

kq

(n)

) is loser to the Kullbak-Leibler divergene rate. We

also obtain the following.

n

1

n

H(p

(n)

)

10 0.3887

50 0.5981

100 0.6243

By Corollary 3.1, the Shannon entropy rate is equal to 0.6505. Clearly, as n gets large

1

n

H(p

(n)

) is loser to the Shannon entropy rate.
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Example 3: Suppose that the Markov soure is of order 2 under p

(n)

and q

(n)

re-

spetively. Let fW

1

;W

2

; : : :g be the proess obtained by 2-step bloking the Markov

soure. Let P and Q be two possible transition matries for fW

1

;W

2

; : : :g de�ned as

follows:

P =

2

6

6

6

6

6

6

6

6

4

1=3 2=3 0 0

0 0 1 0

2=5 3=5 0 0

0 0 1=6 5=6

3

7

7

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

6

6

4

3=4 1=4 0 0

0 0 1 0

7=8 1=8 0 0

0 0 2=3 1=3

3

7

7

7

7

7

7

7

7

5

:

Let p = (1=8; 3=8; 2=8; 2=8) and q = (1=7; 2=7; 3=7; 1=7) denote two possible initial

distributions of W

1

under p

(n)

and q

(n)

respetively. The set of indies f1; 2; 3g forms

an essential lass, while the singleton set f4g forms a self-ommuniating non-essential

lass. Hene, P and Q are not irreduible. Note also that both p

(n)

and q

(n)

are not

stationary. We obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.2982

50 0.3253

100 0.3277
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By Theorem 3.2, the Kullbak-Leibler divergene rate is equal to .3301. Clearly, as

n gets large

1

n

D(p

(n)

kq

(n)

) is loser to the Kullbak-Leibler divergene rate. We also

obtain the following.

n

1

n

H(p

(n)

)

10 0.4618

50 0.4175

100 0.4116

By Corollary 3.2, the Shannon entropy rate is equal to 0.4057. Clearly, as n gets large

1

n

H(p

(n)

) is loser to the Shannon entropy rate.

3.4 Hypothesis Testing Error Exponent

For Stationary Irreduible Markov Soures

Let us �rst reall the binary hypothesis testing problem. Consider a sequene of

random variables fX

1

; : : : ; X

n

g whih is generated aording to some distribution

p

(n)

under the null hypothesis H

1

and generated aording to some other distribution

q

(n)

under an alternative hypothesis H

2

. The problem is to deide whih hypothesis

is true based on a sequene of random observations in a �nite set X . Let A

n

� X

n

be an aeptane region for the null hypothesis. Then, two probabilities of error an

our. The type-1 error probability is de�ned as

�

n

4

= p

(n)

(A



n

);
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where A



n

denotes the omplement of A

n

; �

n

basially denotes the probability that

H

2

is hosen given that H

1

is true. The type-2 error probability is de�ned as

�

n

4

= q

(n)

(A

n

);

whih denotes the probability of hoosing H

1

when H

2

is true. In general, one wishes

to minimize both probabilities, but there is a trade-o�. Another approah, is to min-

imize one of the probabilities of error subjet to a onstraint on the other probability

of error.

The best ahievable error exponent for hypothesis testing has been thoroughly

studied for independent and identially distributed (i.i.d.) soures and Markov soures,

and the error exponents have been determined. The result for i.i.d. soures (known

as Stein's Lemma) is given by the following theorem.

Proposition 3.1 (Stein's Lemma) [18℄, [21℄: Let fX

1

; X

2

; : : :g be an i.i.d. soure

generated aording to p

(n)

under H

1

and aording to q

(n)

under H

2

with respetive

initial distributions p and q. Suppose that D(pkq) <1. Let A

n

� X

n

be an aep-

tane region for H

1

and �

n

and �

n

denote the type-1 and type-2 error probabilities,

respetively. For " 2 (0; 1), de�ne

�

"

n

4

= min

A

n

�X

n

:�

n

<"

�

n

:

Then

lim

n!1

�

1

n

log �

"

n

= D(pkq):
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The best ahievable error exponent for testing between two irreduible Markov

soures is given by the following theorem.

Proposition 3.2 [5℄: Let fX

1

; X

2

; : : :g be a stationary and irreduible Markov soure

generated aording to p

(n)

under H

1

and aording to q

(n)

under H

2

with respetive

initial distributions p and q and respetive probability transition matries P and Q.

Suppose that p and P are absolutely ontinuous with respet to q and Q respetively.

Then

lim

n!1

�

1

n

log �

"

n

=

X

i2X

�

i

X

j2X

p

ij

log

p

ij

q

ij

;

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .

The proof involves large deviation theory. It mainly relies on Sanov's Theorem [12℄

for the type or empirial transition-ount matrix of an arbitrary sample x

n

2 X

n

of the soure. The type of x

n

is the probability distribution on X

2

giving mass

N(i; j; x

n

)=n to (i; j) 2 X

2

, where N(i; j; x

n

) denotes the number of transitions from

i to j in x

n

with the yli onvention that x

1

follows x

n

. The ij-th entry of the

empirial transition-ount matrix is also given by N(i; j; x

n

)=n. Sanov's Theorem an

be roughly desribed as follows. The probability of seeing sample sequenes for whih

the type is far from the true distribution dereases to zero exponentially in the sample

size. The deision region used in the proof is desribed as follows. Upon observing a

sample from the soure, hoose p

(n)

as the true distribution i� the empirial transition-

ount matrix of the sample is \lose" to the probability transition matrix P . Reently,

in [15℄ the author generalizes Stein's Lemma for testing between arbitrary soures

(not neessarily, Markov, stationary, ergodi, et.) using an information spetrum
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approah. He obtained a lower bound and an upper bound to the error exponent whih

are not neessarily omputable in general. In the sequel, we provide an alternative

proof of the above proposition whih follows along the same lines as in the proof of

Proposition 3.1. Let us �rst show that the normalized log-likelihood ratio

1

n

log

p

(n)

(X

n

)

q

(n)

(X

n

)

onverges to a limit with probability 1 under the null hypothesis.

Lemma 3.1 Let fX

1

; X

2

; : : : ; g be a Markov soure that is stationary and irreduible

under both p

(n)

and q

(n)

. Then

lim

n!1

1

n

log

p

(n)

(X

n

)

q

(n)

(X

n

)

=

X

i2X

�

i

X

j2X

p

ij

log

p

ij

q

ij

with probability 1 under p

(n)

, where � = (�

1

; : : : ; �

M

) is the unique stationary distri-

bution of P .

Proof: Note that the normalized log-likelihood ratio an be written as

1

n

log

p

(n)

(X

n

)

q

(n)

(X

n

)

=

1

n

log

p(X

1

)

q(X

1

)

+

n� 1

n

"

1

n� 1

n

X

i=2

log

p(X

i

jX

i�1

)

q(X

i

jX

i�1

)

#

:

In the limit, as n ! 1, the �rst term approahes 0, and the seond term whih is

the time average of log

p(X

i

jX

i�1

)

q(X

i

jX

i�1

)

approahes the statistial average with probability

1 under the probability distribution p

(n)

, by the ergodi theorem [10, p. 13℄. The

statistial average of this quantity with respet to p

(n)

is

E

�

log

p(X

i

jX

i�1

)

q(X

i

jX

i�1

)

�

=

X

x

n

2X

n

p(x

n

) log

p(x

i

jx

i�1

)

q(x

i

jx

i�1

)

=

X

x

i�1

;x

i

p(x

i�1

; x

i

) log

p(x

i

jx

i�1

)

q(x

i

jx

i�1

)

=

X

i2X

�

i

X

j2X

p

ij

log

p

ij

q

ij

;
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where the last equality follows by stationarity; hene we obtain the desired result.

Remark: By the previous lemma and Theorem 3.1, the following holds with proba-

bility 1 under p

(n)

.

lim

n!1

1

n

log

p

(n)

(X

n

)

q

(n)

(X

n

)

= lim

n!1

1

n

D(p

(n)

kq

(n)

)

=

X

i2X

�

i

X

j2X

p

ij

log

p

ij

q

ij

;

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P . We now provide

a simple alternative proof for Proposition 3.2, whih goes along the same lines as in

[18, p. 309℄.

Proof of Proposition 3.2: We �rst onstrut a sequene of aeptane regions

A

n

2 X

n

suh that �

n

< " for n suÆiently large and

lim

n!1

�

1

n

log�

n

= L;

where

L

4

= lim

n!1

1

n

D(p

(n)

kq

(n)

);

whih exists by Theorem 3.1. Fix Æ > 0 and let

A

n

=

�

x

n

2 X

n

: 2

n(L�Æ)

�

p

(n)

(x

n

)

q

(n)

(x

n

)

� 2

n(L+Æ)

�

:

Then p

(n)

(A

n

) ! 1 as n ! 1. This follows from the previous remark. Hene, for

Æ = " and suÆiently large n, �

n

= p

(n)

(A



n

) < ". By de�nition of A

n

, we have that
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�

n

= q

(n)

(A

n

) =

X

x

n

2A

n

q

(n)

(x

n

)

�

X

x

n

2A

n

p

(n)

(x

n

)2

�n(L�Æ)

= 2

�n(L�Æ)

X

x

n

2A

n

p

(n)

(x

n

)

= 2

�n(L�Æ)

(1� �

n

):

Similarly, it an be shown that

�

n

� 2

�n(L+Æ)

(1� �

n

):

Hene,

�

1

n

log �

n

� L� Æ �

1

n

log(1� �

n

);

and

�

1

n

log �

n

� L + Æ �

1

n

log(1� �

n

):

Thus

lim

n!1

�

1

n

log�

n

= L:

We now prove that no other sequene of aeptane regions does better. Let B

n

� X

n

be any other sequene of aeptane regions with type 1 error probability �

0

n

=

p

(n)

(B



n

) < ", and type 2 error probability �

0

n

= q

(n)

(B

n

). We will show that �

0

n

�

2

�n(L�Æ)

, where Æ > 0 is arbitrary. We have the following.
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�

0

n

= q

(n)

(B

n

) � q

(n)

(A

n

\ B

n

)

=

X

x

n

2A

n

\B

n

q

(n)

(x

n

)

�

X

x

n

2A

n

\B

n

p

(n)

(x

n

)2

�n(L+Æ)

= 2

�n(L+Æ)

X

x

n

2A

n

\B

n

p

(n)

(x

n

)

� (1� �

n

� �

0

n

)2

�n(L+Æ)

;

where the last inequality follows from the union bound as follows:

X

x

n

2A

n

\B

n

p

(n)

(x

n

) = p

(n)

(A

n

\B

n

)

= 1� p

(n)

(A



n

[ B



n

)

� 1� p

(n)

(A



n

)� p

(n)

(B



n

)

= 1� �

n

� �

0

n

:

Hene

1

n

log �

0

n

� �L� Æ +

1

n

log(1� �

n

� �

0

n

);

and sine Æ > 0 is arbitrary,

lim

n!1

�

1

n

log�

0

n

� L:

Thus, no sequene of sets B

n

has an exponent larger than L. Sine the sequene A

n

ahieves the exponent L, A

n

is asymptotially optimal, and the best error exponent

is L.
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Remark: Our approah generalizes in a straightforward manner for stationary Markov

soures that ontain one irreduible essential lass C

1

and an arbitrary number of

inessential lasses C

2

; : : : ; C

s

. Suh a Markov soure is said to be indeomposable [7℄.

In this ase, the stationary distribution is � = (�

1

; 0; : : : ; 0), where �

1

is the station-

ary distribution orresponding to C

1

and the zeros orrespond to inessential lasses.

We have the following result.

Corollary 3.4 Let fX

1

; X

2

; : : :g be a stationary Markov soure generated aording

to p

(n)

under H

1

and aording to q

(n)

under H

2

with respetive probability transition

matries P and Q. Suppose that the Markov soure has one essential lass C

1

with j

indies and an arbitrary number of inessential lasses C

2

; : : : ; C

s

. Also, suppose that

p and P are absolutely ontinuous with respet to q and Q respetively. Then

lim

n!1

�

1

n

log�

"

n

=

X

i2C

1

�

i

X

k2C

1

p

ik

log

p

ik

q

ik

;

where � = (�

1

; : : : ; �

j

) is the unique stationary distribution orresponding to C

1

.
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Chapter 4

R�enyi's Information Measure

Rates for Finite-Alphabet

Markov Soures

Let fX

1

; X

2

; : : :g be a �rst-order time-invariant Markov soure with �nite-alphabet

X = f1; : : : ;Mg. Consider the following two di�erent probability laws for this soure.

Under the �rst law,

PrfX

1

= ig =: p

i

and PrfX

k+1

= jjX

k

= ig =: p

ij

; i; j 2 X ;

so that

p

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � �p

i

n�1

i

n

; i

1

; : : : ; i

n

2 X ;

while under the seond law the initial probabilities are q

i

, the transition proba-

bilities are q

ij

, and the n-tuple probabilities are q

(n)

. Let p = (p

1

; : : : ; p

M

) and
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q = (q

1

; : : : ; q

M

) denote the initial distributions under p

(n)

and q

(n)

respetively.

The R�enyi divergene [52℄ of order � between two distributions p̂ and q̂ de�ned

on X is given by

D

�

(p̂kq̂) =

1

�� 1

log

 

X

i2X

p̂

�

i

q̂

1��

i

!

;

where 0 < � < 1. This de�nition an be extended to � > 1 if all q̂

i

> 0. The base of

the logarithm is arbitrary. Similarly, the R�enyi entropy of order � for p̂ is de�ned as

H

�

(p̂) =

1

1� �

log

 

X

i2X

p̂

�

i

!

;

where � > 0 and � 6= 1. As � ! 1, the R�enyi divergene approahes the Kullbak-

Leibler divergene (relative entropy) given by

D(p̂kq̂) =

X

i2X

p̂

i

log

p̂

i

q̂

i

;

and the R�enyi entropy approahes the Shannon entropy. The above generalized in-

formation measures and their subsequent variations [57℄ were originally introdued

for the analysis of memoryless soures. One natural diretion for further studies is

the investigation of the R�enyi divergene rate

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

);

where

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log

 

X

i

n

2X

n

[p

(n)

(i

n

)℄

�

[q

(n)

(i

n

)℄

1��

!

;

and of the R�enyi entropy rate

lim

n!1

1

n

H

�

(p

(n)

);
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where

H

�

(p

(n)

) =

1

1� �

log

 

X

i

n

2X

n

[p

(n)

(i

n

)℄

�

!

;

for soures with memory, in partiular Markov soures. Nemetz addressed these

problems in [44℄, where he evaluated the R�enyi divergene rate lim

n!1

1

n

D

�

(p

(n)

kq

(n)

)

between two Markov soures haraterized by p

(n)

and q

(n)

, respetively, under the

restrition that the initial probabilities p and q are stritly positive (i.e., all p

i

's and

q

i

's are stritly positive).

In this hapter, we provide a generalization of the Nemetz result by establishing

a omputable expression for the R�enyi divergene rate between Markov soures with

arbitrary initial distributions. We also investigate the questions of whether the R�enyi

divergene rate redues to the Kullbak-Leibler divergene rate as � ! 1 and the

interhangeability of limits between n and � as n ! 1 and as � ! 0. We provide

suÆient (but not neessary) onditions on the underlying Markov soure distribu-

tions p

(n)

and q

(n)

for whih the interhangeability of limits as n!1 and as �! 1

is valid. We also give an example of non-interhangeability of limits as n ! 1 and

as � ! 1. We also show that the interhangeability of limits as n ! 1 and � ! 0

always holds.

We next address the omputation and the existene of the R�enyi entropy rate

lim

n!1

1

n

H

�

(p

(n)

) for a Markov soure with distribution p

(n)

and examine its limits

as � ! 0 and as � ! 1. We also establish an operational haraterization for

the R�enyi entropy rate by extending the variable-length soure oding theorem for

memoryless soures in [13℄ to Markov soures.
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4.1 R�enyi Divergene Rate

4.1.1 First-order Markov Soures

We assume �rst that the Markov soure fX

1

; X

2

; : : :g is of order one. Later, we

generalize the results for an arbitrary order k. The joint distributions of the random

variables (X

1

; : : : ; X

n

) under p

(n)

and q

(n)

are given respetively by

p

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � �p

i

n�1

i

n

;

and

q

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = q

i

1

q

i

1

i

2

� � � q

i

n�1

i

n

:

Let

V (n; �) =

X

i

n

2X

n

[p

(n)

(i

n

)℄

�

[q

(n)

(i

n

)℄

1��

:

Then

V (n; �) =

X

p

�

i

1

q

1��

i

1

p

�

i

1

i

2

q

1��

i

1

i

2

� � � p

�

i

n�1

i

n

q

1��

i

n�1

i

n

;

where the sum is over i

1

; : : : ; i

n

2 X . De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 1; : : : ;M:

Also, de�ne two new 1�M vetors s = (s

1

; : : : ; s

M

) and 1 by

s

i

= p

�

i

q

1��

i

; 1 = (1; : : : ; 1):

Then learly D

�

(p

(n)

kq

(n)

) an be written as

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log sR

n�1

1

t

; (4.1)
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where 1

t

denotes the transpose of the vetor 1. Without loss of generality, we will

herein assume that there exists at least one i 2 f1; : : : ;Mg for whih s

i

> 0, beause

otherwise (i.e., if s

i

= 0 8i), D

�

(p

(n)

kq

(n)

) is in�nite. We also assume that 0 < � < 1;

we an allow the ase of � > 1 if q > 0 and Q > 0. We obtain the following results.

Theorem 4.1 If the matrix R is irreduible, then the R�enyi divergene rate between

p

(n)

and q

(n)

is given by

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log�;

where � is the largest positive real eigenvalue of R, and 0 < � < 1. Furthermore, the

same result holds for � > 1 if q > 0 and Q > 0.

Proof: By Proposition 2.4, let � be the largest positive real eigenvalue of R with

assoiated positive right eigenvetor b > 0. Then

R

n�1

b = �

n�1

b: (4.2)

Let R

n�1

= (r

(n�1)

ij

) and b

t

= (b

1

; b

2

; : : : ; b

M

). Also, let b

L

= min

1�i�M

(b

i

) and b

U

=

max

1�i�M

(b

i

). Thus 0 < b

L

� b

i

� b

U

8i. Let R

n�1

1

t

= y

t

where y = (y

1

; : : : ; y

M

).

Then, by (4.2)

�

n�1

b

i

=

M

X

j=1

r

(n�1)

ij

b

j

�

M

X

j=1

r

(n�1)

ij

b

U

= b

U

y

i

; 8i = 1; : : : ;M:

Similarly, it an be shown that �

n�1

b

i

� b

L

y

i

, 8i = 1; : : : ;M . Therefore

b

i

b

U

�

y

i

�

n�1

�

b

i

b

L

; 8i = 1; : : : ;M: (4.3)
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Sine sR

n�1

1

t

=

P

M

i=1

s

i

y

i

, it follows diretly from (4.3) that

P

i

s

i

b

i

b

U

�

sR

n�1

1

t

�

n�1

�

P

i

s

i

b

i

b

L

;

or

1

n

log

�

P

i

s

i

b

i

b

U

�

�

1

n

log

�

sR

n�1

1

t

�

n�1

�

�

1

n

log

�

P

i

s

i

b

i

b

L

�

: (4.4)

Note that s

i

; b

i

; b

U

; b

L

do not depend on n. Therefore, by (4.4),

lim

n!1

1

n

log

�

sR

n�1

1

t

�

n�1

�

= 0;

sine it is upper and lower bounded by two quantities that approah 0 as n ! 1.

Hene

lim

n!1

1

n

log

�

sR

n�1

1

t

�

= lim

n!1

1

n

log�

n�1

+ lim

n!1

1

n

log

�

sR

n�1

1

t

�

n�1

�

= log�;

and thus

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = lim

n!1

1

n(�� 1)

log

�

sR

n�1

1

t

�

=

1

�� 1

log�:

Using the above theorem and the anonial form of R we prove the following general

result.
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Theorem 4.2 Let R

i

, i = 1; : : : ; g, be the irreduible matries along the diagonal of

the anonial form of the matrix R as shown in Proposition 2.2. Write the vetor s

as

s = (~s

1

; : : : ; ~s

h

; ~s

h+1

; : : : ; ~s

g

; s

g+1

; : : : ; s

l

);

where the vetor ~s

i

orresponds to R

i

, i = 1; : : : ; g. The salars s

g+1

; : : : ; s

l

orrespond

to non self-ommuniating lasses.

� Let �

k

be the largest positive real eigenvalue of R

k

for whih the orresponding

vetor ~s

k

is di�erent from the zero vetor, k = 1; : : : ; g. Let �

?

be the maximum

over these �

k

's. If ~s

k

= 0, 8k = 1; : : : ; g, then let �

?

= 0.

� For eah inessential lass C

i

with orresponding vetor ~s

i

6= 0, i = h + 1; : : : ; g

or orresponding salar s

i

6= 0, i = g+1; : : : ; l, let �

j

be the largest positive real

eigenvalue of R

j

if lass C

j

is reahable from lass C

i

. Let �

y

be the maximum

over these �

j

's. If ~s

i

= 0 and s

i

= 0 for every inessential lass C

i

, then let

�

y

= 0.

Let � = maxf�

?

; �

y

g. Then the R�enyi divergene rate is given by

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log�;

where 0 < � < 1. Furthermore, the same result holds for � > 1 if q > 0 and Q > 0.

Proof: By Proposition 2.4, let �

i

be the largest positive real eigenvalue of R

i

with

assoiated positive right eigenvetor

~

b

i

> 0, i = 1; : : : ; g. Let

b

t

= (

~

b

1

; : : : ;

~

b

h

;

~

b

h+1

; : : : ;

~

b

g

; 0; : : : ; 0);
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where the zeros orrespond to non self-ommuniating lasses. By Proposition 2.2 we

have that

R

n�1

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

n�1

1

: : : 0 0 : : : 0 : : : : : : 0

0 : : : 0 0 : : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : :

0 : : : R

n�1

h

0 : : : 0 : : : : : : 0

R

(n�1)

h+11

: : : R

(n�1)

h+1h

R

n�1

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : :

R

(n�1)

g1

: : : R

(n�1)

gh

R

(n�1)

gh+1

: : : R

n�1

g

: : : : : : 0

R

(n�1)

g+11

: : : R

(n�1)

g+1h

R

(n�1)

g+1h+1

: : : R

(n�1)

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : :

R

(n�1)

l1

: : : R

(n�1)

lh

R

(n�1)

lh+1

: : : R

(n�1)

lg

R

(n�1)

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Then

sR

n�1

b =

g

X

i=1

~s

i

R

n�1

i

~

b

i

+

g

X

i=h+1

~s

i

�

R

(n�1)

i1

~

b

1

+ � � �+R

(n�1)

ii�1

~

b

i�1

�

+

l

X

i=g+1

s

i

�

R

(n�1)

i1

~

b

1

+ � � �+R

(n�1)

ig

~

b

g

�

:

Rewrite the vetor 1 as

1 = (

~

1

1

; : : : ;

~

1

h

;

~

1

h+1

; : : : ;

~

1

g

; 1; : : : ; 1);

where

~

1

i

, i = 1; : : : ; g orrespond to essential and inessential self-ommuniating

lasses and the 1's orrespond to non self-ommuniating lasses.

Let R

n�1

1

t

= y

t

where

y = (~y

1

; : : : ; ~y

h

; ~z

h+1

+ ~y

h+1

; : : : ; ~z

g

+ ~y

g

; ~z

g+1

; : : : ; ~z

l

);
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and

~y

i

= R

n�1

i

~

1

t

i

; i = 1; : : : ; g;

~z

i

=

i�1

X

j=1

R

(n�1)

ij

~

1

t

j

; i = h+ 1; : : : ; g; (4.5)

~z

i

=

g

X

j=1

R

(n�1)

ij

~

1

t

j

+

i�1

X

j=g+1

R

(n�1)

ij

; i = g + 1; : : : ; l:

Therefore

sR

n�1

1

t

=

g

X

i=1

~s

i

~y

i

+

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

: (4.6)

As in the proof of Theorem 4.1, sine R

i

~

b

i

= �

i

~

b

i

, we an write

R

n�1

i

~

b

i

= �

n�1

i

~

b

i

� b

U

~y

i

; i = 1; : : : ; g;

where b

U

= max

1�i�g

(b

U

i

) and b

U

i

is the largest omponent of

~

b

i

, i = 1; : : : ; g. Simi-

larly,

R

n�1

i

~

b

i

= �

n�1

i

~

b

i

� b

L

~y

i

; i = 1; : : : ; g;

where b

L

= min

1�i�g

(b

L

i

) and b

L

i

is the smallest omponent of

~

b

i

, i = 1; : : : ; g.

Therefore

�

n�1

i

~

b

i

b

U

� ~y

i

�

�

n�1

i

~

b

i

b

L

; i = 1; : : : ; g:

Hene

1

b

U

g

X

i=1

~s

i

�

n�1

i

~

b

i

�

g

X

i=1

~s

i

~y

i

�

1

b

L

g

X

i=1

~s

i

�

n�1

i

~

b

i

:

Therefore, by (4.6)

1

b

U

g

X

i=1

~s

i

�

n�1

i

~

b

i

+

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

� sR

n�1

1

t

�

1

b

L

g

X

i=1

~s

i

�

n�1

i

~

b

i

+

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

;

64



or

1

n

log

0

�

1

b

U

g

X

i=1

~s

i

�

�

i

�

�

n�1

~

b

i

+

1

�

n�1

0

�

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

1

A

1

A

�

1

n

log

�

sR

n�1

1

t

�

n�1

�

(4.7)

and

1

n

log

�

sR

n�1

1

t

�

n�1

�

�

1

n

log

0

�

1

b

L

g

X

i=1

~s

i

�

�

i

�

�

n�1

~

b

i

+

1

�

n�1

0

�

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

1

A

1

A

; (4.8)

where � is as de�ned in the statement of the theorem. Our goal is to show that

1

n

log

�

sR

n�1

1

t

�

n�1

�

onverges to 0 as n ! 1. Let us �rst examine its lower bound in

(4.7). We will provide a simpler lower bound whih onverges to 0 as n ! 1. We

have the following three ases.

1. � = �

i

and ~s

i

6= 0 for some i = 1; : : : ; g. In this ase

1

n

log

0

�

1

b

U

g

X

i=1

~s

i

�

�

i

�

�

n�1

~

b

i

+

1

�

n�1

0

�

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

1

A

1

A

�

1

n

log

�

1

b

U

~s

i

~

b

i

�

whih learly onverges to 0 as n!1.

2. � = �

j

for some j = 1; : : : ; g and ~s

i

6= 0 for some i = h + 1; : : : ; g where the

lass C

j

is reahable from lass C

i

. By equating the entries of R

n�1

and R

n�2

R,

it follows diretly that R

(n�1)

ij

is equal to R

(n�2)

ij

R

j

plus a weighted sum of non-

negative sub-matries.

1

Hene R

(n�1)

ij

� R

(n�2)

ij

R

j

. By indution on n � 3, it

follows diretly that R

(n�1)

ij

� R

ij

R

n�2

j

. Therefore

1

n

log

 

1

b

U

g

X

i=1

~s

i

�

�

i

�

�

n�1

~

b

i

+

1

�

n�1

 

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

!!

1

For example, if R =

2

6

4

R

1

0

R

21

R

2

3

7

5

; then R

(n�1)

21

= R

(n�2)

21

R

1

+R

n�2

2

R

21

.
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�

1

n

log

�

1

�

n�1

~s

i

z

i

�

�

1

n

log

�

1

�

n�1

~s

i

R

(n�1)

ij

~

1

t

j

�

(4.9)

�

1

n

log

�

1

�

n�1

~s

i

R

ij

R

n�2

j

~

1

t

j

�

(4.10)

where (4.9) follows from (4.5). Using similar tehnique as in Theorem 4.1, it

an be veri�ed that the right-hand term of (4.10) onverges to 0 as n!1.

3. � = �

j

for some j = 1; : : : ; g and s

i

6= 0 for some i = g+1; : : : ; l where the lass

C

j

is reahable from lass C

i

. The proof for this ase is similar to that of ase

2.

Let us now examine the upper bound to

1

n

log

�

sR

n�1

1

t

�

n�1

�

in (4.8). By de�nition of �,

it is obvious that

�

i

�

� 1, for all i = 1; : : : ; g suh that ~s

i

6= 0. Therefore

1

n

log

�

sR

n�1

1

t

�

n�1

�

�

1

n

log

 

1

b

L

g

X

i=1

~s

i

~

b

i

+

1

�

n�1

 

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

!!

: (4.11)

Note that

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

=

g

X

i=h+1

i�1

X

j=1

~s

i

R

(n�1)

ij

~

1

t

j

+

l

X

i=g+1

g

X

j=1

s

i

R

(n�1)

ij

~

1

t

j

+

l

X

i=g+1

i�1

X

j=g+1

s

i

R

(n�1)

ij

:

Our approah is to provide an upper bound to the bound in (4.11), simply by providing

an upper bound on R

(n�1)

ij

, i = h + 1; : : : ; l, j = 1; : : : ; g + 1. If R

(n�1)

ij

6= 0 for some

n, then lass C

j

is reahable from lass C

i

(it is enough to hek for n = 2; : : : ; l,

sine the number of lasses is l). From the blok form of R, if R

(n�1)

ij

6= 0, then it is a
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weighted sum involving produts of powers of R

i

and R

j

(whih are irreduible) and

possibly some other sub-matries (whih are irreduible) along the diagonal

2

of R. By

applying Proposition 2.6 to eah of these irreduible sub-matries if ~s

i

6= 0 or s

i

6= 0

(sine R

(n�1)

ij

is multiplied by ~s

i

or s

i

), R

(n�1)

ij

is upper bounded by linear ombinations

of powers of the largest eigenvalues of the sub-matries along the diagonal of R for

whih ~s

i

6= 0, i = h+ 1; : : : ; g, or for whih the orresponding lass is reahable from

lass C

i

, i = g + 1; : : : ; l. For example, in the ase of the R as given in the footnote,

R

(n�1)

21

� �

n�2

D, where D > 0 and its entries are independent of n. We have the

following (here g = l = 2 and h = 1).

1

n

log

 

1

b

L

g

X

i=1

~s

i

~

b

i

+

1

�

n�1

 

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

!!

=

1

n

log

 

1

b

L

2

X

i=1

~s

i

~

b

i

+

1

�

n�1

(~s

2

~z

2

)

!

=

1

n

log

 

1

b

L

2

X

i=1

~s

i

~

b

i

+

1

�

n�1

�

~s

2

R

n�1

21

~

1

t

1

�

!

�

1

n

log

 

1

b

L

2

X

i=1

~s

i

~

b

i

+

1

�

n�1

�

�

n�2

d

�

!

;

2

For example, if R =

2

6

4

R

1

0

R

21

R

2

3

7

5

; then R

(n�1)

21

= R

(n�2)

21

R

1

+ R

n�2

2

R

21

. By indution, using

the previous reursive formula, and Proposition 2.6, it is straightforward that R

(n�1)

21

� �

n�2

D,

where D > 0 and its entries are independent of n. Indeed, by Proposition 2.6, R

n�2

2

� �

n�2

2

D

2

,

and R

1

� �

1

D

1

, where D

2

; D

1

> 0 and their entries are independent of n. By indution, and by

de�nition of �, it follows that

R

(n�1)

21

� �

n�2

D

3

+ �

n�2

R

21

;

where D

3

> 0 and its entries are independent of n. Note also that R

21

has entries independent of

n. Hene, the desired result follows by taking D = D

3

+R

21

.
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where d = ~s

2

D

~

1

t

1

is a positive onstant. As n ! 1, the above limit is obviously 0.

Thus, the upper bound in (4.11) also onverges to 0 as n!1.

If R has three sub-matries along the diagonal, then from the blok form of R,

the matrix R

(n�1)

31

is given reursively by the following formula. R

(n�1)

31

= R

(n�2)

31

R

1

+

R

(n�2)

32

R

21

+R

n�2

3

R

31

. As in the previous example given in the footnote, by indution

and Proposition 2.6, it is straightforward to show that R

(n�1)

31

� �

n�2

D

2

+ �

n�3

D

3

,

where D

2

; D

3

> 0 and their entries are independent of n. In this ase, by a reasoning

similar to the previous example, it is straightforward to verify that

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

is upper bounded by

d

2

�

n�2

+ d

3

�

n�3

;

where d

2

; d

3

are positive onstants. Hene, the upper bound in (4.11) onverges to 0

as n ! 1. In general, using the fat that R

n

= R

n�1

R, a simple indution yields

that

R

n�1

ij

� d

2

�

n�2

+ � � �+ d

l

�

n�l

;

for all i = h + 1; : : : ; l, j = 1; : : : ; g + 1, where l is the number of lasses. Hene, the

expression

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

is upper bounded by

d

2

�

n�2

+ � � �+ d

l

�

n�l

;

where d

2

; : : : ; d

l

are positive onstants. Hene, from (4.11), we obtain the following.
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X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

!!

�

1

n

log

 

1

b

L

g

X

i=1

~s

i

~

b

i

+

1

�

n�1

�

d

2

�

n�2
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l

�

n�l

�

!

=

1

n

log

 

1

b

L

g

X

i=1

~s

i

~

b

i

+

1

�

�

d

2

+

d

3

�

+ � � �+

d

l

�

l�2

�

!

=

1

n

log d;

where d is a positive onstant. Hene

lim

n!1

1

n

log

�

sR

n�1

1

t

�

n�1

�

= 0; (4.12)

sine it is sandwihed between a lower bound (4.7) and an upper bound (4.8) that

onverge to 0 as n!1. Finally, by (4.1) and (4.12), we get that

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log�:

Observation 1: In [44℄, Nemetz showed that the R�enyi divergene rate between two

time-invariant Markov soures with stritly positive initial distributions is given by

1

��1

log

~

�, where

~

� is the largest positive real eigenvalue of R. The key tools used

in establishing the Nemetz result [44℄ are Perron's formula and Perron-Frobenius

theory for an arbitrary (not neessarily irreduible) non-negative matrix [32℄, [54℄.

The assumption that the initial distributions are stritly positive is essential, sine as

mentioned by Nemetz, the �-divergene rate is not neessarily ontinuous at points

where the initial distributions vanish. In order to generalize the result for arbitrary
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initial distributions we used a di�erent approah. We onsidered the anonial form of

the matrix R and then used Perron-Frobenius theory on eah irreduible sub-matrix

along the diagonal of the anonial form instead of using Perron-Frobenius theory

on the whole matrix at one. Although, the proof seems quite involved, the idea is

very simple. As in Theorem 4.1, we employed a sandwih argument to show that the

expression

1

n

log

�

sR

n�1

1

t

�

n�1

�

onverges to 0 as n!1 by showing that a lower bound and an upper bound onverge

to 0. The lower bound onvergene is derived along the same lines as in Theorem

4.1. The key idea in deriving the onvergene of the upper bound is to provide upper

bounds to the sub-matries o� the diagonal of R

n�1

whih involve powers of positive

eigenvalues of the irreduible sub-matries along the diagonal of R. This is shown

by indution with the aid of Proposition 2.6 applied to eah of the irreduible sub-

matries along the diagonal of R

n�1

. It is lear from our proof that no assumption of

positivity is required on the initial distributions.

Observation 2: Note that by Theorem 4.2, the R�enyi divergene rate between

Markov soures with arbitrary initial distributions is not neessarily equal to

1

��1

log

~

�,

where

~

� is the largest positive real eigenvalue of R. However, if the initial distributions

are stritly positive, whih implies diretly that s > 0, then Theorem 4.2 redues to

the Nemetz result. This follows diretly from the fat that, in this ase, � = �

?

=

maxf�

k

g, k = 1; : : : ; g, and the fat that the determinant of a blok lower triangular

matrix is equal to the produt of the determinants of the sub-matries along the

diagonal (thus the largest eigenvalue of this matrix is given by maxf�

k

g).
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Theorem 4.3 The rate of onvergene of the �-divergene rate between p

(n)

and q

(n)

is of the order 1=n.

Proof: Note �rst that if p

(n)

and q

(n)

are irreduible, then by (4.4), the rate of

onvergene of the �-divergene rate is learly of the order 1=n sine s

i

; b

i

; B

U

; b

L

do

not depend on n. For arbitrary p

(n)

and q

(n)

(not neessarily irreduible, stationary,

et.), from the proof of Theorem 4.2, it follows diretly that the rate of onvergene

is also of the order 1=n.

4.1.2 k-th Order Markov Soures

Now, suppose that the Markov soure has an arbitrary order k. De�ne fW

n

g as the

proess obtained by k-step bloking the Markov soure fX

n

g; i.e.,

W

n

4

= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then

Pr(W

n

= w

n

jW

n�1

= w

n�1

; : : : ;W

1

= w

1

) = Pr(W

n

= w

n

jW

n�1

= w

n�1

);

and fW

n

g is a �rst order Markov soure with M

k

states. Let p

w

n�1

w

n

4

= Pr(W

n

=

w

n

jW

n�1

= w

n�1

). We next write the joint distributions of fX

n

g in terms of the

onditional probabilities of fW

n

g. For n � k, V (n; �), as de�ned before, is given by

V (n; �) =

X

p

�

w

1

q

1��

w

1

p

�

w

1

w

2

q

1��

w

1

w

2

: : : p

�

w

n�k

w

n�k+1

q

1��

w

n�k

w

n�k+1

;
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where the sum is over w

1

; w

2

; : : : ; w

n�k+1

2 X

k

. For simpliity of notation, let

(p

1

; : : : ; p

M

k) and (q

1

; : : : ; q

M

k) denote the arbitrary initial distributions of W

1

un-

der p

(n)

and q

(n)

respetively. Also let p

ij

and q

ij

denote the transition probability

thatW

n

goes from index i to index j under p

(n)

and q

(n)

respetively, i; j = 1; : : : ;M

k

.

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 1; : : : ;M

k

: (4.13)

Also, de�ne two new 1�M

k

vetors s = (s

1

; : : : ; s

M

k
) and 1 by

s

i

= p

�

i

q

1��

i

; 1 = (1; : : : ; 1):

Then learly D

�

(p

(n)

kq

(n)

) an be written as

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log sR

n�k

1

t

;

where 1

t

denotes the transpose of the vetor 1. It follows diretly that with the new

matrix R as de�ned in (4.13), all the previous results also hold for a Markov soure

of arbitrary order.

4.1.3 Numerial Examples

In this setion, we use the natural logarithm.

Example 1: Let P and Q be two possible probability transition matries for a �rst

order Markov soure fX

1

; X

2

; : : :g de�ned as follows:
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P =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1=4 3=4 0 0 0

1=3 2=3 0 0 0

0 0 1=2 1=2 0

0 0 1=5 4=5 0

0 1=6 1=2 0 1=3

3

7

7

7

7

7

7

7

7

7

7

7

7

5

; Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1=5 4=5 0 0 0

1=6 5=6 0 0 0

0 0 1=4 3=4 0

0 0 1=2 1=2 0

0 1=2 1=3 0 1=6

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Note that P and Q are not irreduible. Indeed, P and Q have two essential lasses

and 1 inessential self-ommuniating lass. Let the parameter � = 1=3. The largest

eigenvalues of the three sub-matries along the diagonal of R are respetively: �

1

=

0:98676, �

2

= 0:95937, and �

3

= 0:20998. Let p = (0; 0; 3=4; 1=4; 0) and q =

(0; 0; 1=3; 2=3; 0) be two possible initial distributions under p

(n)

and q

(n)

respetively.

It is straightforward to hek that p

(n)

and q

(n)

are not stationary. For these given

initial distributions, we get by Theorem 4.2 that �

?

= �

2

and �

y

= 0. Therefore,

the R�enyi divergene rate is ln(�

2

)=(�� 1) = 0:0622. Note that �

2

is not the largest

eigenvalue of R. We also obtain the following.

n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.0686

50 0.0635

100 0.0628

1000 0.06227

2000 0.06224

3000 0.06223

Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is loser to the R�enyi divergene rate. Note
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however that, in general, the funtion

1

n

D

�

(p

(n)

kq

(n)

) is not monotoni in n. Sup-

pose that s has zero omponents on the �rst two lasses. For example, let p =

(0; 1=4; 1=4; 0; 1=2) and q = (1=4; 0; 0; 1=4; 1=2). In this ase, �

?

= �

3

, and �

y

=

maxf�

1

; �

2

g (the �rst and seond lasses are reahable from the third). Therefore,

the R�enyi divergene rate is ln(�

1

)=(�� 1) = 0:0199. We also get the following.

n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.1473

50 0.0570

100 0.0413

1000 0.02223

2000 0.02111

3000 0.02074

Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is loser to the R�enyi divergene rate.

Suppose now that s has stritly positive omponents (as required in the Nemetz

result). For example, let p = (1=8; 1=4; 1=8; 1=4; 1=4) and q = (1=10; 3=10; 2=10; 2=10;

2=10). In this ase, �

?

= �

y

= maxf�

1

; �

2

; �

3

g = �

1

. Therefore, the R�enyi divergene

rate is ln(�

1

)=(�� 1) = 0:01999. Note that �

1

is the largest eigenvalue of R whih is

expeted sine the omponents of s are stritly positive. We also get the following.
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n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.0384

50 0.0343

100 0.0297

1000 0.02105

2000 0.02052

3000 0.02034

Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is loser to the R�enyi divergene rate.

Example 2: Suppose that the Markov soure is of order 2 under p

(n)

and q

(n)

re-

spetively. Let fW

1

;W

2

; : : :g be the proess obtained by 2-step bloking the Markov

soure. Let P and Q be two possible transition matries for fW

1

;W

2

; : : :g de�ned as

follows:

P =

2

6

6

6

6

6

6

6

6

4

1=4 3=4 0 0

0 0 1 0

3=5 2=5 0 0

0 0 1=5 4=5

3

7

7

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

6

6

4

2=3 1=3 0 0

0 0 1 0

7=8 1=8 0 0

0 0 5=6 1=6

3

7

7

7

7

7

7

7

7

5

:
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Note that both P and Q are not irreduible. The set of indies f1; 2; 3g forms an

essential lass, while the singleton set f4g forms an inessential self-ommuniating

lass. Let the parameter � = 0:5. The largest positive real eigenvalues of the two

sub-matries along the diagonal of R are respetively: �

1

= 0:9467, �

2

= 0:3651. Let

p = (1=4; 3=4; 0; 0) and q = (1=5; 4=5; 0; 0) denote two possible initial distributions of

W

1

under p

(n)

and q

(n)

respetively. Note that p

(n)

and q

(n)

are not stationary. For

these given initial distributions, we get by Theorem 4.2 that �

�

= �

1

and �

y

= 0.

Therefore, the R�enyi divergene rate is ln(�

1

)=(�� 1) = 0:1095. We also obtain the

following.

n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.0817

50 0.1039

100 0.1066

Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is loser to the R�enyi divergene rate.

Let us now suppose that p = (1=4; 0; 0; 3=4) and q = (1=3; 0; 0; 2=3). For these

given initial distributions, we get by Theorem 4.2 that �

�

= �

1

and �

y

= �

1

. There-

fore, the R�enyi divergene rate is ln(�

1

)=(� � 1) = 0:1095. We also obtain the

following.

n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.1389

50 0.1153

100 0.1123
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Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is loser to the R�enyi divergene rate.

4.2 Interhangeability of Limits

4.2.1 Limit as �! 1

We herein show that although the R�enyi divergene redues to the Kullbak-Leibler

divergene as � ! 1, the R�enyi divergene rate does not neessarily redue to the

Kullbak-Leibler divergene rate. Without loss of generality, we will herein deal with

�rst-order Markov soures sine any k-th order Markov soure an be onverted to a

�rst-order Markov soure by k-step bloking it. We �rst show the following lemma.

Lemma 4.1 Let A = (a

ij

) be an n� n matrix of rank n� 1 with the property that

P

j

a

ij

= 0 for eah i. De�ne 

i

to be the ofator of a

ii

; i.e., the determinant of

the matrix obtained from A by deleting the i-th row and the i-th olumn and let

 = (

1

; 

2

; : : : ; 

n

). Then  is a non-zero vetor and satis�es A = 0.

Proof:

Step 1: First we prove that  6= 0. The �rst n � 1 olumns of A are linearly

independent, beause otherwise, the rank of A is less than or equal to n� 2 sine the

sum of the olumns of A is 0. Thus there is at least one non-zero determinant � of

size (n� 1)� (n� 1) whih an be formed by deleting one row and the n-th olumn

of A whih follows from the fat that the determinant of a matrix is 0 i� the olumns

are linearly dependent. Let the deleted row be the k-th row. If k = n, � = 

n

and so
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 6= 0. If k < n, add all the olumns exept the n-th olumn to the k-th olumn; this

does not hange the value of the determinant �. Beause

P

j

a

ij

= 0, the elements of

the k-th olumn are now �a

1n

;�a

2n

; : : : ;�a

nn

. Multiply the elements of this olumn

by �1 and move this olumn to the rightmost position. This yields a new determi-

nant with value �� beause these operations a�et only the sign of the determinant.

However, the new determinant is just 

k

, so that one again,  6= 0. Thus at least one

of the ofators 

i

is non-zero. Without loss of generality assume that 

n

6= 0. Next

we prove that A = 0.

Step 2: Consider the n� 1 equations

n

X

i=1

a

ij

x

i

= 0 j 2 f1; 2; : : : ; n� 1g: (4.14)

Note that

P

n

i=1

a

ij

x

i

= 0 is equivalent to

P

n�1

i=1

a

ij

x

i

= �a

nj

x

n

. Sine 

n

6= 0, we an

use Cramer's rule [41, p. 60℄ to solve these equations for x

1

; : : : ; x

n�1

in terms of x

n

as follows:

x

k

= �x

n

D

k



n

; (4.15)

where

D

k

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

a

11

a

21

� � � a

k�1;1

a

n1

a

k+1;1

� � � a

n�1;1

a

12

a

22

� � � a

k�1;2

a

n2

a

k+1;2

� � � a

n�1;2

� � � � � � � � � � � � � � � � � � � � � � � �

a

1;n�1

a

2;n�1

� � � a

k�1;n�1

a

n;n�1

a

k+1;n�1

� � � a

n�1;n�1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

;

and the elements from the n-th olumn have replaed the elements of the k-th olumn.

If we add the other rows to the k-th row (note that the determinants are transposed
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here) and use the fat that

P

j

a

ij

= 0 we get a new k-th row

�a

1n

;�a

2n

; : : : ;�a

k�1;n

;�a

nn

;�a

k+1;n

; : : : ;�a

n�1;n

:

After moving the k-th row and the k-th olumn to the last row and olumn position

respetively, it follows that D

k

= �

k

. From (4.15), if we put x

n

= 

n

, then x

k

= 

k

for all k 2 f1; 2; : : : ; ng. Beause

P

j

a

ij

= 0, any solution of (4.14) is a solution of

the same equation for j = n. Thus  = (

1

; : : : ; 

n

) satis�es A = 0.

Remark: A diret onsequene of the above lemma generalizes Proposition 2.16 from

ergodi Markov soures to irreduible Markov soures; this is ahieved by setting

A = P � I, where P is stohasti irreduible, and I is the identity matrix with the

same dimension.

We next prove the following theorem.

Theorem 4.4 Given that � 2 (0; 1), onsider a Markov soure fX

1

; X

2

; : : :g with

two possible distributions p

(n)

and q

(n)

on X

n

. Let P and Q be the probability

transition matries assoiated with p

(n)

and q

(n)

respetively. Suppose that P and Q

are irreduible and that P is absolutely ontinuous with respet to Q. Also, suppose

that p is absolutely ontinuous with respet to q. Then

lim

�"1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = lim

n!1

lim

�"1

1

n

D

�

(p

(n)

kq

(n)

)

=

X

i;j

�

i

p

ij

log

p

ij

q

ij

;
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and therefore, the R�enyi divergene rate redues to the Kullbak-Leibler divergene

rate as � " 1.

Proof: Under the above assumptions, the matrix R (as de�ned in Subsetion 4.1.1) is

irreduible. For onveniene of notation denote the largest positive real eigenvalue of

R by �(�;R). We know by Proposition 2.8 that eah eigenvalue of R is a ontinuous

funtion of elements of R. Note that R ! P as � " 1, and the largest positive real

eigenvalue of the stohasti matrix P is 1. Hene

lim

�"1

�(�;R) = 1:

Let a denote an arbitrary base of the logarithm. Then, by l'Hôpital's rule, we �nd

that

lim

�"1

log�(�;R)

�� 1

=

1

ln a

�

0

(1; R)

4

=

1

ln a

��(�;R)

��

�

�

�

�

�=1

(4.16)

whih is well de�ned by Proposition 2.9 sine the algebrai multipliity of �(�;R)

is 1 (R is irreduible) by Proposition 2.7. The equation de�ning the largest positive

eigenvalue �(�;R) = � of R is

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

�

11

q

1��

11

� � p

�

12

q

1��

12

� � � p

�

1M

q

1��

1M

p

�

21

q

1��

21

p

�

22

q

1��

22

� � � � � p

�

2M

q

1��

2M

.

.

.

.

.

.

.

.

.

.

.

.

p

�

M1

q

1��

M1

p

�

M2

q

1��

M2

� � � p

�

MM

q

1��

MM

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 0; (4.17)

where M = jX j. By Lemma 2.4, di�erentiating this equation with respet to �, we

get that

D

1

+D

2

+ � � �+D

M

= 0; (4.18)
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where D

i

is the determinant obtained from (4.17) by replaing the i-th row by

(p

�

i1

q

1��

i1

ln

p

i1

q

i1

; : : : ; p

�

ii

q

1��

ii

ln

p

ii

q

ii

� �

0

(�); : : : ; p

�

iM

q

1��

iM

ln

p

iM

q

iM

):

and leaving the other M � 1 rows unhanged. In this equation, �

0

denotes the deriva-

tive of � with respet to �. Note that if we add in D

i

all the other olumns to the

i-th olumn, the value of the determinant remains unhanged. Therefore, for � = 1

and hene � = 1, D

i

is the determinant

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

11

� 1 : : : 0 : : : p

1M

p

21

: : : 0 : : : p

2M

.

.

.

.

.

. 0 : : :

.

.

.

p

i�1;1

: : : 0 : : : p

i�1;M

p

i1

ln

p

i1

q

i1

: : : S(Xji)� �

0

: : : p

iM

ln

p

iM

q

iM

p

i+1;1

: : : 0 : : : p

i+1;M

.

.

.

.

.

. 0 : : :

.

.

.

p

M1

: : : 0 : : : p

MM

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

;

where

S(Xji) =

M

X

j=1

p

ij

ln

p

ij

q

ij

:

A zero ours in all the entries of the i-th olumn exept for the i-th entry, sine

P

M

j=1

p

lj

= 1. We onlude that

D

i

= (S(Xji)� �

0

(1))

i

; (4.19)

where 

i

is the M � 1 �M � 1 ofator of p

ii

� 1 in the above determinant for the

ase � = 1, given by
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i

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

11

� 1 : : : p

1;i�1

: : : p

1M

p

21

: : : p

2;i�1

: : : p

2M

.

.

. : : : : : : : : :

.

.

.

p

i�1;1

: : : p

i�1;i�1

� 1 : : : p

i�1;M

p

i+1;1

: : : p

i+1;i�1

: : : p

i+1;M

.

.

. : : : : : : : : :

.

.

.

p

M1

: : : p

M;i�1

: : : p

MM

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

After substituting (4.19) in (4.18) and solving for �

0

(1), we obtain by (4.16) that

lim

�"1

log�(�;R)

�� 1

=

1

ln a

�

0

(1; R) =

1

ln a

M

X

i=1

�

i

S(Xji); (4.20)

where

�

i

=



i

P

j



j

:

As � " 1, R! P ; let A = P � I. Sine the stationary distribution of the irreduible

matrix R is unique, the rank of A is n � 1 beause the nullity of A is 1 in this

ase. Hene, the onditions in Lemma 4.1 are satis�ed. Therefore, A = 0, whih is

equivalent to P = . Note that  is the non-normalized stationary distribution of P

and (4.20) is just the Kullbak-Leibler divergene rate between P and Q by Theorem

3.1.

For the ase � 2 (1;1), we an obtain a similar result under the onditions that the

matrix Q and the initial distribution q are positive. This is stated in the following

orollary (whose proof is idential to the proof of Theorem 4.4).
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Corollary 4.1 Given that � 2 (1;1), onsider a Markov soure fX

1

; X

2

; : : :g with

two possible distributions p

(n)

and q

(n)

on X

n

. Let P and Q be the probability

transition matries assoiated with p

(n)

and q

(n)

respetively. If the matrix P is

irreduible, the matrix Q is positive, and the initial distribution q with respet to q

(n)

is positive, then

lim

�#1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = lim

n!1

lim

�#1

1

n

D

�

(p

(n)

kq

(n)

)

=

X

i;j

�

i

p

ij

log

p

ij

q

ij

;

and therefore, the R�enyi divergene rate redues to the Kullbak-Leibler divergene

rate as � # 1.

The following example illustrates that the R�enyi divergene rate does not neessar-

ily redue to the Kullbak-Leibler divergene rate if the onditions of the previous

theorem are not satis�ed.

Example: Given that � 2 (0; 1) [ (1;1), let P and Q be the following:

P =

2

6

6

6

6

6

4

1=4 3=4 0

3=4 1=4 0

0 0 1

3

7

7

7

7

7

5

; Q =

2

6

6

6

6

6

4

1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

3

7

7

7

7

7

5

:

Suppose that p

(n)

is stationary with stationary distribution (b=2; b=2; 1 � b), where

0 < b < 1 is arbitrary. Also, suppose that the initial distribution q is positive.

By Theorem 3.2, a simple omputation yields that the Kullbak-Leibler divergene

rate is given by log

2

3 � 2b + (3b=4) log

2

3, where the logarithm is to the base 2.

The eigenvalues of R are: �

1

= 1=(3

1��

), �

2

= 4

��

=(3

1��

) + 4

��

=(3

1�2�

); and �

3

=
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4

��

=(3

1��

)�4

��

=(3

1�2�

). Note that s > 0 and that, if 0 < � < 1, max

1�i�3

f�

i

g = �

2

.

By Theorem 4.2, the R�enyi divergene rate is (� � 1)

�1

log

2

�

2

. By l'Hôpital's rule,

we get that lim

�"1

(�� 1)

�1

log

2

�

2

= (7=4) log

2

3� 2. Therefore

lim

�"1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = (7=4) log

2

3� 2:

On the other hand, if � > 1, max

1�i�3

f�

i

g = �

1

. Therefore, the R�enyi divergene

rate is given by (�� 1)

�1

log

2

�

1

. Clearly, lim

�#1

(�� 1)

�1

log

2

�

1

= log

2

3. Hene

lim

�#1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = log

2

3:

Therefore, the interhangeability of limits is not valid sine

lim

�"1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) < lim

n!1

lim

�!1

1

n

D

�

(p

(n)

kq

(n)

) < lim

�#1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

):

4.2.2 Limit as � # 0

We obtain the following result.

Theorem 4.5 Let � 2 (0; 1). Consider a Markov soure fX

1

; X

2

; : : :g with two

possible distributions p

(n)

and q

(n)

on X

n

. Let P and Q be the probability transition

matries on X assoiated with p

(n)

and q

(n)

, respetively. Then

lim

�#0

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = lim

n!1

lim

�#0

1

n

D

�

(p

(n)

kq

(n)

):

Proof: By Theorem 4.2, we have

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log�(�;R):
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By Proposition 2.8, �(�;R)! �(0; R) as � # 0. Hene

lim

�#0

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = � log�(0; R):

On the other hand

lim

�#0

1

n

D

�

(p

(n)

kq

(n)

) =

1

n

log
^
sY 1

t

;

where
^
s = lim

�#0

s and Y = lim

�#0

R. Therefore by again applying Theorem 4.2 to Y

we get

lim

n!1

lim

�#0

1

n

D

�

(p

(n)

kq

(n)

) = � log�(0; R):

Hene the interhangeability of limits is always valid between n and � as n!1 and

as � # 0.

4.3 R�enyi's Entropy Rate

The existene and the omputation of the R�enyi entropy rate of a Markov soure an

be dedued from the existene and the omputation of the R�enyi divergene rate.

Indeed, if q

(n)

is stationary memoryless with uniform marginal distribution then for

any � > 0, � 6= 1,

D

�

(p

(n)

kq

(n)

) = n logM �H

�

(p

(n)

):

Therefore

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = logM � lim

n!1

1

n

H

�

(p

(n)

): (4.21)

Hene, the existene and the omputation of the R�enyi entropy rate follows diretly

from Theorem 4.1 if the Markov soure is irreduible, and from Theorem 4.2 if the
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Markov soure is arbitrary (not neessarily irreduible). Atually, lim

n!1

1

n

H

�

(p

(n)

)

an be omputed diretly from Theorem 4.1 or from Theorem 4.2 by determining �

with R = (p

�

ij

) and s

i

= p

�

i

, and setting lim

n!1

1

n

H

�

(p

(n)

) =

1

1��

log�. A formula

for the R�enyi entropy rate was established earlier in [46℄ and [47℄, but only for the

partiular ase of ergodi Markov soures. We have the following orollaries. The

proof follows along the same lines as for the R�enyi divergene rate or by using (4.21)

with q

(n)

stationary memoryless and uniformly distributed.

Corollary 4.2 If the Markov soure under p

(n)

is irreduible, then the R�enyi entropy

rate is given by

lim

n!1

1

n

H

�

(p

(n)

) =

1

1� �

log�;

where � is the largest positive real eigenvalue of R, and 0 < �, � 6= 1.

Corollary 4.3 Let R

i

, i = 1; : : : ; g, be the irreduible matries along the diagonal

of the anonial form of the matrix R as shown in Proposition 2.2. Write the vetor

s as

s = (~s

1

; : : : ; ~s

h

; ~s

h+1

; : : : ; ~s

g

; s

g+1

; : : : ; s

l

);

where the vetor ~s

i

orresponds to R

i

, i = 1; : : : ; g. The salars s

g+1

; : : : ; s

l

orrespond

to non self-ommuniating lasses.

� Let �

k

be the largest positive real eigenvalue of R

k

for whih the orresponding

vetor ~s

k

is di�erent from the zero vetor, k = 1; : : : ; g. Let �

?

be the maximum

over these �

k

's. If ~s

k

= 0, 8k = 1; : : : ; g, then let �

?

= 0.
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� For eah inessential lass C

i

with orresponding vetor ~s

i

6= 0, i = h + 1; : : : ; g

or orresponding salar s

i

6= 0, i = g+1; : : : ; l, let �

j

be the largest positive real

eigenvalue of R

j

if lass C

j

is reahable from lass C

i

. Let �

y

be the maximum

over these �

j

's. If ~s

i

= 0 and s

i

= 0 for every inessential lass C

i

, then let

�

y

= 0.

Let � = maxf�

?

; �

y

g. Then the R�enyi entropy rate is given by

lim

n!1

1

n

H

�

(p

(n)

) =

1

1� �

log�;

where 0 < �, � 6= 1.

Corollary 4.4 The rate of onvergene of the R�enyi entropy rate of p

(n)

is of the

order 1=n.

Although the R�enyi entropy redues to the Shannon entropy, the R�enyi entropy

rate does not neessarily redue to the Shannon entropy rate as �! 1. From the re-

sults about the interhangeability of limits for the R�enyi divergene rate as derived in

Setion 4.2, it follows easily that the R�enyi entropy rate always redues to the Hartley

entropy rate as � # 0 (lim

n!1

1

n

H

0

(p

(n)

)), and if the Markov soure is irreduible, it

redues to the Shannon entropy rate as �! 1. We have the following orollaries.

Corollary 4.5 Let � > 0, � 6= 1. Suppose that the Markov soure under p

(n)

is

irreduible. Then

lim

�!1

lim

n!1

1

n

H

�

(p

(n)

) = lim

n!1

lim

�!1

1

n

H

�

(p

(n)

)

= �

X

i;j

�

i

p

ij

log p

ij

;
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and therefore, the R�enyi entropy rate redues to the Shannon entropy rate as �! 1.

Corollary 4.6 Let � > 0, � 6= 1. Suppose that the Markov soure under p

(n)

is

arbitrary (not neessarily stationary, irreduible, et.). Then

lim

�#0

lim

n!1

1

n

H

�

(p

(n)

) = lim

n!1

lim

�#0

1

n

H

�

(p

(n)

):

Let us now illustrate the omputation of the R�enyi entropy rate by several exam-

ples. We use the natural logarithm.

Example 1: Let P be a possible probability transition matrix for fX

1

; X

2

; : : :g

de�ned as follows:

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1=4 3=4 0 0 0

1=3 2=3 0 0 0

0 0 1=2 1=2 0

0 0 1=5 4=5 0

0 1=6 1=2 0 1=3

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Note that P is not irreduible. Indeed, P has two essential lasses and 1 inessential

self-ommuniating lass. Let the parameter � = 1=3. The largest eigenvalues of

the three sub-matries along the diagonal of R are respetively: �

1

= 1:55476, �

2

=

1:54561, and �

3

= 0:69336. Let p = (0; 0; 3=4; 1=4; 0) be a possible initial distribution

under p

(n)

. It is straightforward to hek that p

(n)

is not stationary. For this given

initial distribution, we get by Corollary 4.3 that �

?

= �

2

and �

y

= 0. Therefore,

the R�enyi entropy rate is ln(�

2

)=(1 � �) = 0:6531. Note that �

2

is not the largest

eigenvalue of R. We also obtain the following.
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n

1

n

H

�

(p

(n)

)

10 0.65368

50 0.65324

100 0.65319

Clearly, as n gets large

1

n

H

�

(p

(n)

) is loser to the R�enyi entropy rate. Note however

that, in general, the funtion

1

n

H

�

(p

(n)

) is not monotoni in n. Suppose that s has

zero omponents on the �rst two lasses, i.e., let p = (0; 0; 0; 0; 1). In this ase,

�

?

= �

3

, and �

y

= maxf�

1

; �

2

g (the �rst and seond lasses are reahable from the

third). Therefore, the R�enyi entropy rate is ln(�

1

)=(1 � �) = 0:66198. We also get

the following.

n

1

n

H

�

(p

(n)

)

10 0.6618

50 0.6580

100 0.6578

200 0.6582

500 0.6596

Clearly, as n gets large

1

n

H

�

(p

(n)

) is loser to the R�enyi entropy rate.

Suppose now that s has stritly positive omponents (as required in the Nemetz

result). For example, let p = (1=8; 1=4; 1=8; 1=4; 1=4). In this ase, �

?

= �

y

=

maxf�

1

; �

2

; �

3

g = �

1

. Therefore, the R�enyi entropy rate is ln(�

1

)=(1� �) = 0:66198.

Note that �

1

is the largest eigenvalue of R whih is expeted sine the omponents

of s are stritly positive. We also get the following.
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n

1

n

H

�

(p

(n)

)

10 0.7693

50 0.6800

100 0.6691

Clearly, as n gets large

1

n

H

�

(p

(n)

) is loser to the R�enyi entropy rate.

Example 2: Suppose that the Markov soure is of order 2 under p

(n)

and q

(n)

re-

spetively. Let fW

1

;W

2

; : : :g be the proess obtained by 2-step bloking the Markov

soure. Let P be a possible transition matrix for fW

1

;W

2

; : : :g de�ned as follows:

P =

2

6

6

6

6

6

6

6

6

4

1=4 3=4 0 0

0 0 1 0

3=5 2=5 0 0

0 0 1=5 4=5

3

7

7

7

7

7

7

7

7

5

:

Note that P is not irreduible. The set of indies f1; 2; 3g forms an essential lass,

while the singleton set f4g forms a self-ommuniating non-essential lass. Let the

parameter � = 0:5. The largest positive real eigenvalues of the two sub-matries

along the diagonal of R are respetively: �

1

= 1:24037, �

2

= 0:89442. Let p =

(1=4; 3=4; 0; 0) denote a possible initial distribution of W

1

under p

(n)

. Note that p

(n)

is not stationary. For this given initial distribution, we get by Corollary 4.3 that

�

�

= �

1

and �

y

= 0. Therefore, the R�enyi entropy rate is ln(�

1

)=(1 � �) = 0:4308.

We also obtain the following.
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n

1

n

H

�

(p

(n)

)

10 0.3951

50 0.4236

100 0.4272

Clearly, as n gets large

1

n

H

�

(p

(n)

) is loser to the R�enyi entropy rate.

Let us now suppose that p = (1=4; 0; 0; 3=4). For this given initial distribution,

we get by Corollary 4.3 that �

�

= �

1

and �

y

= �

1

. Therefore, the R�enyi entropy rate

is ln(�

1

)=(1� �) = 0:4308. We also obtain the following.

n

1

n

H

�

(p

(n)

)

10 0.4533

50 0.4359

100 0.4334

Clearly, as n gets large

1

n

H

�

(p

(n)

) is loser to the R�enyi entropy rate.

4.4 A Variable-Length Soure Coding Theorem

Following [13℄, let the average ode length of order t be de�ned by

L(t) =

1

t

log

D

 

X

i

p

i

D

tl

i

!

;

where 0 < t <1, and l

i

is the length of the odeword (or ode sequene) for the i-th

soure symbol. L(t) is an interesting measure of ode length whih implies that the
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ost of representing a soure symbol varies exponentially with ode length, as opposed

to Shannon's expeted ode length measure

l

4

=

M

X

i=1

p

i

l

i

in whih the ost varies linearly with ode length [13℄. A simple alulation shows

that L(t) redues to l when t ! 0; thus L(t) an be regarded as a more general

measure. Furthermore, in many appliations where the proessing ost of deoding is

high or the bu�er overow due to long odewords is important, an exponential ost

funtion an be more appropriate than a linear ost funtion [11℄, [13℄.

Consider a soure sequene s of length n that we wish to enode via a D-ary

uniquely deodable ode. Let p(s) be the probability of s, and l(s) be the length of

the odeword for s. Then the average ode length of order t for the n-sequenes is

L

n

(t) =

1

t

log

D

 

X

s

p(s)D

tl(s)

!

;

where the summation extends over the M

n

sequenes s. In [13℄, Campbell demon-

strated the following variable-length soure oding theorem for a DMS (disrete mem-

oryless soure), in whih the R�enyi entropy (H

�

(p)) plays a role analogous to the

Shannon entropy when the ost funtion in the oding problem is exponential as

opposed to linear.

Proposition 4.1 [13℄ Let � = 1=(1 + t). By enoding suÆiently long sequenes of

input symbols of a DMS, it is possible to make the average ode length of order t per

input symbol

1

n

L

n

(t) as lose to H

�

(p) as desired. Also, it is not possible to �nd a

uniquely deodable ode whose average length of order t is less than H

�

(p).
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We next establish an operational haraterization for the R�enyi entropy rate by

extending this theorem to Markov soures.

Theorem 4.6 Let � = 1=(1 + t). There exists a uniquely deodable ode for a

Markov soure with an asymptoti average ode length of order t per input symbol

satisfying

lim

n!1

1

n

L

n

(t) =

1

1� �

log�;

where � denotes the positive eigenvalue of the matrix R = (p

�

ij

) as de�ned in Corollary

4.3. Conversely, any uniquely deodable ode for the soure has an asymptoti average

ode length of order t per input symbol satisfying

lim

n!1

1

n

L

n

(t) �

1

1� �

log�:

Proof: Let s be a sequene of input symbols of length n from the soure. We an

onsider suh sequene as an element from the alphabet X

M

. Proeeding exatly as

in the proof of [13, Theorem 1℄, we an similarly establish the existene of a uniquely

deodable ode satisfying

1

n

H

�

(p

(n)

) �

1

n

L

n

(t) <

1

n

H

�

(p

(n)

) +

1

n

:

From Corollary 4.3, we have

lim

n!1

1

n

H

�

(p

(n)

) =

1

1� �

log�: (4.22)

Therefore

lim

n!1

1

n

L

n

(t) =

1

1� �

log�:
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This ompletes the proof of the forward part. By [13, Lemma 1℄, every uniquely

deodable ode satis�es L

n

(t) � H

�

(p

(n)

). Hene, the proof of the onverse part

follows diretly from (4.22).

Remark: By Corollary 4.5, the above theorem does not neessarily redue to the

Shannon lossless soure oding theorem as � ! 1 and n ! 1. It redues to the

Shannon oding theorem if for example the Markov soure is irreduible.

Let us now illustrate numerially using a generalized Hu�man ode for the Markov

soure that

1

n

H

�

(p

(n)

) is lose to the R�enyi entropy rate and that

1

n

H

�

(p

(n)

) is lose

to

1

n

L

n

(t) for several values of n. Following [11℄, the R�enyi redundany of a ode for

a soure sequene of length n is de�ned as

�

n

=

1

n

L

n

(t)�

1

n

H

�

(p

(n)

):

In [33, Theorem 1

0

℄, a simple generalization of Hu�man's algorithm whih minimizes

�

n

is given. In Hu�man's algorithm, eah new node is assigned the weight p

i

+ p

j

,

where p

i

and p

j

are the lowest weights on available nodes. In the generalized algo-

rithm, the new node is assigned the weight 2

t

(p

i

+ p

j

). The base of the logarithm is

2, so the entropies are measured in bits.

Example: Let fX

1

; X

2

; : : :g be a binary �rst-order Markov soure with initial distri-

bution (0:8; 0:2) and probability transition matrix

P =

0

B

�

0:4 0:6

0:7 0:3

1

C

A

:
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Let � = 0:5, then t = 1. The largest eigenvalue of R = (p

�

ij

) is found to be � = 1:396.

By Corollary 4.2, the R�enyi entropy rate is equal to 0.963. Using the generalized

Hu�man's algorithm we get the following.

n

1

n

H

�

(p

(n)

)

1

n

L

n

(t)

1 0.848 1.000

2 0.909 0.9705

3 0.927 0.945

The sets of odewords are (0,1), (0,10,110,111) and (10,000,001,010,110,111,0110,

0111) for n = 1; 2 and 3 respetively. As n gets large,

1

n

H

�

(p

(n)

) is loser to the R�enyi

entropy rate. Also,

1

n

L

n

(t) is lose to

1

n

H

�

(p

(n)

).
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Chapter 5

Csisz�ar's Forward Cuto� Rate for

Hypothesis Testing Between

General Soures with Memory

In [20℄, Csisz�ar established the onept of forward �-uto� rate for the hypothesis

testing problem based on independent and identially distributed (i.i.d.) observa-

tions. Given � < 0, he de�nes the forward �-uto� rate as the number R

0

� 0 that

provides the best possible lower bound in the form �(E � R

0

) to the type 1 error

exponent funtion for hypothesis testing where 0 < E < R

0

is the rate of exponen-

tial onvergene to 0 of the type 2 error probability. He then demonstrated that

the forward �-uto� rate is given by D

1=(1��)

(Xk

�

X), where D

�

(Xk

�

X) denotes the

�-divergene, � > 0, � 6= 1. This result provides a new operational signi�ane for

the �-divergene.
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The error exponent for the binary hypothesis testing problem has been thoroughly

studied for �nite state i.i.d. soures and Markov hains. The results for i.i.d. soures

an be found in [21℄, [31℄, [35℄, and for irreduible Markov soures in [5℄, [43℄. The error

exponent for testing between ergodi Markov soures with ontinuous state-spae

under ertain additional restritions was established in [39℄. In its full generality, i.e.,

for arbitrary soures (not neessarily, stationary, ergodi, et.), the error exponent

was studied in [15℄, [29℄, [30℄.

In the sequel, we extend Csisz�ar's result [20℄ by investigating the forward �-uto�

rate for the hypothesis testing between two arbitrary soures. Our proof relies in part

on the formulas established in [29℄, and extensions of the tehniques used in [14℄ to

generalize Csisz�ar's results for arbitrary disrete soures with memory. Unlike [14℄

where the soure alphabet was assumed to be �nite, we assume arbitrary (ountable

or ontinuous) soure alphabet. The tehniques used in our proof are a mixture

of the tehniques used in deriving the forward and reverse �-uto� rates for soure

oding [14℄. However, some new tehniques are also needed to obtain the result. We

demonstrate that the liminf �-divergene rate provides the expression for the forward

�-uto� rate.

5.1 Preliminaries

In this setion, we briey review previous results by Han [29℄ on the general ex-

pression for the Neyman-Pearson type 2 error subjet to an exponential bound on

the type 1 error. Let us �rst de�ne the general soure as an in�nite sequene
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X = fX

n

g

1

n=1

4

=

n

X

n

=

�

X

(n)

1

; : : : ; X

(n)

n

�o

1

n=1

of n-dimensional random variablesX

n

where eah omponent random variable X

(n)

i

(1 � i � n) takes values in an arbitrary

set X that we all the soure alphabet. Given two arbitrary soures X = fX

n

g

1

n=1

and

�

X = f

�

X

n

g

1

n=1

taking values in the same soure alphabet fX

n

g

1

n=1

, we may de�ne

the general hypothesis testing problem with X = fX

n

g

1

n=1

as the null hypothesis and

�

X = f

�

X

n

g

1

n=1

as the alternative hypothesis.

Let A

n

be any subset of X

n

, n = 1; 2; : : : that we all the aeptane region of the

hypothesis test, and de�ne

�

n

4

= PrfX

n

62 A

n

g and �

n

4

= Prf

�

X

n

2 A

n

g

where �

n

; �

n

are alled type 1 error probability and type 2 error probability, respe-

tively.

De�nition 5.1 Fix r > 0. A rate E is alled r-ahievable if there exists a sequene

of aeptane regions A

n

suh that

1

lim inf

n!1

�

1

n

log�

n

� r and lim inf

n!1

�

1

n

log�

n

� E:

1

Let (a

n

) be a sequene in R [ f�1;+1g. The limit inferior is given by

lim inf

n!1

a

n

= sup

n�1

inf

k�n

a

k

= lim

n!1

inf

k�n

a

k

:

Similarly, the limit superior is given by

lim sup

n!1

a

n

= inf

n�1

sup

k�n

a

k

= lim

n!1

sup

k�n

a

k

:

98



De�nition 5.2 The supremum of all r-ahievable rates is denoted by B

e

(rjXk

�

X):

B

e

(rjXk

�

X)

4

= supfE > 0 : E is r-ahievableg;

and B

e

(rjXk

�

X) = 0 if the above set is empty.

The dual of this funtion is de�ned as:

D

e

(EjXk

�

X)

4

= supfr > 0 : E is r-ahievableg;

and D

e

(EjXk

�

X) = 0 if the above set is empty.

Proposition 5.1 [29℄ Fix r > 0. For the general hypothesis testing problem, we

have that

B

e

(rjXk

�

X) = inf

R2R

fR + �(R) : �(R) < rg;

where

2

�(R)

4

= lim inf

n!1

�

1

n

logPr

�

1

n

log

P

X

n

(X

n

)

P

�

X

n

(X

n

)

� R

�

;

is the large deviation spetrum of the normalized log-likelihood ratio.

We herein assume that the soure alphabet is ountable. However, we will point

out the neessary modi�ations in the proofs for the ase of a ontinuous alphabet.

The above proposition is the main tool for our key lemma in the following setion.

2

If the soure alphabet X is (absolutely) ontinuous, then P

X

n

(X

n

) plays the role of the density

funtion f

X

n

(X

n

).
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5.2 Hypothesis Testing Forward �-Cuto� Rate

De�nition 5.3 Fix � < 0. R

0

� 0 is a forward �-ahievable rate for the general

hypothesis testing problem if

D

e

(EjXk

�

X) � �(E � R

0

)

for every E > 0, or equivalently,

B

e

(rjXk

�

X) � R

0

+

r

�

;

for every r > 0. The forward �-uto� rate is de�ned as the supremum of all forward

�-ahievable rates, and is denoted by R

(f)

0

(�jXk

�

X).

Note that in the degenerate and uninteresting ase where D

e

(EjXk

�

X) is identially

0, we have that R

(f)

0

(�jXk

�

X) = 0. We herein assume that D

e

(EjXk

�

X) is not 0 for

all values of E. A graphial illustration of R

(f)

0

(�jXk

�

X) is presented in Figure 5.1.
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X)

E

�(E �R
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0
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�

X))

D

e

(EjXk

�

X)

Figure 5.1: A graphial illustration of the forward �-uto� rate, R

(f)

0

(�jXk

�

X), for

testing between two arbitrary soures X and

�

X.
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Before stating our main result, we �rst observe in the next lemma that the forward

�-uto� rate R

(f)

0

(�jXk

�

X) is indeed the R-axis interept of a support line of slope

�

1��

to the large deviation spetrum �(R).

Lemma 5.1 Fix � < 0. The following onditions are equivalent.

(8R 2 R) �(R) �

�

� � 1

(R

0

� R) (5.1)

and

(8r > 0) B

e

(rjXk

�

X) � R

0

+

r

�

: (5.2)

Proof:

a) (5.1) ) (5.2).

For any r > 0, we obtain by Proposition 5.1 that

(8Æ > 0)(9R

Æ

with �(R

Æ

) < r) B

e

(rjXk

�

X) + Æ � R

Æ

+ �(R

Æ

):

Therefore

B

e

(rjXk

�

X) � R

Æ

+ �(R

Æ

)� Æ

� R

Æ

� Æ +

�

� � 1

(R

0

� R

Æ

) (5.3)

= �Æ +

�

� � 1

R

0

�

R

Æ

� � 1

� �Æ +

�

� � 1

R

0

�

R

0

� � 1

+

r

�

(5.4)

=

r

�

+R

0

� Æ;

where (5.3) follows from (5.1), and (5.4) holds beause

r > �(R

Æ

) �

�

� � 1

(R

0

� R

Æ

):
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Sine Æ an be made arbitrarily small, the proof of the forward part is ompleted.

b) (5.2) ) (5.1).

(5.1) holds trivially for those R satisfying �(R) = 1. For any R 2 R with

�(R) <1, let r

Æ

4

= �(R) + Æ for some Æ > 0. Then (by Proposition 5.1)

B

e

(r

Æ

jXk

�

X) � R + �(R):

Therefore

�(R) � B

e

(r

Æ

jXk

�

X)� R

� R

0

+

r

Æ

�

� R (5.5)

= R

0

+

�(R)

�

+

Æ

�

�R;

where (5.5) follows by (5.2). Thus,

�(R) �

�

� � 1

(R

0

� R) +

Æ

� � 1

:

Sine Æ an be made arbitrarily small, the proof of the onverse part is ompleted.
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Theorem 5.1 (Forward �-uto� rate formula). Fix � < 0. For the general

hypothesis testing problem,

R

(f)

0

(�jXk

�

X) = lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

);

where

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

�

[P

�

X

n

(x

n

)℄

1��

!

is the n-dimensional �-divergene

3

.

Proof: Note that �(R) > 0 for some

4

R 2 R.

1. Forward part: R

(f)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

). By the equivalene of

onditions (5.1) and (5.2), it suÆes to show that

(8R 2 R) �(R) �

�

� � 1

�

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)� R

�

:

Indeed, we have the following.

3

If the soure alphabet is (absolutely) ontinuous, i.e., it admits a density f

X

n

(�), then the n-

dimensional �-divergene is given by

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

�

Z

[f

X

n

(x

n

)℄

�

[f

�

X

n

(x

n

)℄

1��

dx

n

�

:

4

If �(R) = 0 for all R 2 R, then

B

e

(rjXk

�

X) = inf

R2R

fR+ �(R)j�(R) < rg = inf

R2R

fRg = �1;

ontraditing that B

e

(rjXk

�

X) is, by de�nition, an exponent and should be always non-negative.
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Pr

�

1

n

log

P

X

n

(X

n

)

P

�

X

n

(X

n

)

� R

�

= Pr

�

e

�t log

P

X

n

(X

n

)

P

�

X

n

(X

n

)

� e

�ntR

�

; for t > 0

� e

ntR

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

1�t

[P

�

X

n

(x

n

)℄

t

!

(5.6)

= exp

�

�nt

�

1

n

D

1�t

(X

n

k

�

X

n

)� R

��

;

for 0 < t < 1, where (5.6) follows by Markov's inequality. Therefore

�(R) � t

�

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)�R

�

=

�

� � 1

�

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)�R

�

; for �

4

=

t

t� 1

< 0:

2. Converse part: R

(f)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

).

The onverse holds trivially if lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

) is in�nite. Hene we

an assume that lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

) < K, where K is some onstant. By

the equivalene of onditions (5.1) and (5.2), it suÆes to show that for any Æ > 0

arbitrarily small, there exists R = R(Æ) 2 R suh that

�(R) �

�

� � 1

�

3Æ + lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)�R

�

:

Consider the twisted distribution de�ned as:

P

(t)

X

n

(x

n

)

4

=

[P

�

X

n

(x

n

)℄

t

[P

X

n

(x

n

)℄

1�t

P

x̂

n

2X

n

[P

�

X

n

(x̂

n

)℄

t

[P

X

n

(x̂

n

)℄

1�t

= exp

�

t

�

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

��

P

X

n

(x

n

); (5.7)

where t = �=(� � 1). Note that 0 < t < 1. Let N be a set of positive integers suh

that

lim

n2N ;n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

);
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and de�ne

�

4

= supfR 2 R : �

(t)

(R) > 0g;

where

�

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� R

�

;

is the twisted large deviation spetrum of the normalized log-likelihood ratio with

parameter t, and � satis�es (f. Lemmas 5.2 and 5.3 in Setion 5.4) that

�1 < � � lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) < K:

We then note by de�nition of �

(t)

(�) and the �niteness property of � that for any

Æ > 0, there exists " > 0 suh that:

�

(t)

(� � Æ) = lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� � � Æ

�

> " > 0:

As a result,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

� 1� e

�n"

for n 2 N suÆiently large:

On the other hand, de�ne

��

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

and

��

4

= inffR 2 R : ��

(t)

(R) > 0g:

Then by noting that

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

= D

1�t

(X

n

k

�

X

n

)�

1

t

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

;
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we have:

��

(t)

(R) = �

�

�tR +

t

n

D

1�t

(X

n

k

�

X

n

)

�

and

�� = �

1

t

supfR 2 R : � (R) > 0g+

1

n

D

1�t

(X

n

k

�

X

n

)

�

1

n

D

1�t

(X

n

k

�

X

n

) (5.8)

< K for n 2 N suÆiently large; (5.9)

where

�(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� R

)

;

(5.8) follows from Lemma 5.4 in Setion 5.4, and (5.9) holds by de�nition of K. This

indiates the existene of �" > 0 suh that ��

(t)

(K) > �", whih immediately gives that

for n 2 N suÆiently large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

� e

�n�"

:

Therefore, for n 2 N suÆiently large,

P

(t)

X

n

�

x

n

2 X

n

: K >

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> � � Æ

�

= P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

�P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

� 1� e

�n"

� e

�n�"

: (5.10)

Let I

1

4

= (� � Æ; b

1

); and

I

k

4

= [b

k�1

; b

k

) for 2 � k � L

4

=

�

K � � + Æ

2Æ

�

;
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where b

k

4

= (� � Æ) + 2kÆ for 1 � k < L, and b

L

4

= K. By (5.10), there exists

1 � k(n) � L suh that

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

2 I

k(n)

�

�

1� e

�n"

� e

�n�"

L

; (5.11)

for n 2 N suÆiently large. Then, by letting R

1

4

= lim sup

n2N ;n!1

b

k(n)

+ Æ, we

obtain that for n 2 N suÆiently large

P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

1

�

� P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

:

However, for suÆiently large n 2 N , we have that

P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

2 I

k(n)

�

=

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

P

X

n

(x

n

)

=

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

e

�t

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

P

(t)

X

n

(x

n

) (5.12)

� e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

P

(t)

X

n

(x

n

)

= e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n"

� e

�n�"

L

e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

; (5.13)

where (5.12) follows from (5.7), and (5.13) follows from (5.11). Consequently
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�(R

1

) = lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� R

1

�

� lim inf

n2N ;n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

1

�

� t

�

� lim sup

n2N ;n!1

b

k(n)�1

+ lim inf

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)

�

� t

�

� lim sup

n2N ;n!1

b

k(n)

+ 2Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

�

= t

�

3Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� R

1

�

:

Sine Æ an be made arbitrarily small, the proof is ompleted.

Observations:

A. While the proof of the forward part is straightforward, the proof of the onverse

part is onsiderably more omplex. The objetive of the onverse part is to demon-

strate that if lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) is slightly shifted to the right (by a fator

of 3Æ), then there exists a oordinate R suh that a straight line of slope �=(1� �)

given by

y =

�

� � 1

�

3Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� R

�

lies above the urve of �(R) at R = R, thus violating its status of support line for

�(R).

This proof is established by observing that the desired oordinate R lies in a small

neighborhood of � , where � is the smallest point for whih �

(t)

(R) vanishes. A key
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point is to hoose the twisted parameter t to be equal to �=(� � 1) whih is the

negative slope of the support line to �(R). We graphially illustrate this observation

(based on a true example) in Figure 5.2. The omputational details are desribed in

Example 1 (f. Setion 5.3).

B. Note also that the proof holds if the alphabet is ountable or ontinuous as opposed

to the soure oding uto� rate [14℄ where the �niteness property of the alphabet is

neessary. The modi�ations in the proof for the ontinuous ase are lear. Simply,

replae the probability mass funtion by the probability density funtion and the

summation by integration. We graphially illustrate this observation (based on a true

example involving memoryless Gaussian soures) in Figure 5.3. The omputational

details are desribed in Example 2 (f. Setion 5.3).

C. The proof of the hypothesis testing uto� rate is more involved than the proof of

the soure oding uto� rate given in [14℄. The main diÆulty arises from the formula

in Theorem 5.1 where the in�mum for R is taken over the entire real line ontrary to

Theorem 1 in [14℄ for soure oding where R ranges from 0 to 1. This requires us

to deal separately with the degenerate ase � = �1 (f. Lemma 5.3 in Setion 5.4).

Also, the tehnique used to prove the forward uto� rate for hypothesis testing relies

on the proofs of both the soure oding forward and reverse uto� rates, but in major

parts though similar to the reverse soure oding uto� rate.
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D. If the soures X and

�

X are arbitrary (not neessarily stationary, irreduible)

Markov soures of arbitrary order, then we know from Chapter 4 that the �-divergene

rate exists and an be omputed. Thus in this ase, the forward �-uto� rate for test-

ing between Markov soures an be obtained. Also, from the de�nition ofD

e

(EjXk

�

X),

it follows diretly that for all E > 0,

D

e

(EjXk

�

X) � sup

�<0

h

�(E �R

(f)

0

(�jXk

�

X))

i

:

Note that this onvex lower bound is omputable for the entire lass of Markov soures,

while D

e

(EjXk

�

X) is not neessarily omputable in general (it is omputable for ir-

reduible Markov soures [5℄, [43℄, see Figure 5.4). We graphially illustrate this

observation for testing between irreduible Markov soures in Figure 5.4 and arbi-

trary Markov soures (not neessarily stationary, irreduible) in Figure 5.5. The

omputational details are desribed in Examples 3 and 4 (f. Setion 5.3).
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h

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)� R

i

for testing between two binary memoryless soures X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the distributions (1=2; 1=2) and (1=4; 3=4) respetively, and with � = �7.

When R < � log(3=2), �(R) = �

(t)

(R) =1.

112



-

6

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

�(R)

�

(t)

(R)

�

.

.

.

+

D(Xk

�

X)

#

+

D

1=(1��)

(Xk

�

X)

R

O

Figure 5.3: Funtions �(R), �

(t)

(R) and (�=(��1))

h

lim inf

n!1
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1��

(X

n

k

�

X

n

)� R

i

for testing between two memoryless soures X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the

Gaussian distributions N(�; 1) and N(��; 1) respetively, and with � = �0:5.
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5.3 Numerial Examples

Throughout this setion, the natural logarithm is used.

Example 1 Finite-alphabet memoryless soures: Consider the binary hypothesis test-

ing between two memoryless soures X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the

distributions (1=2; 1=2) and (1=4; 3=4) respetively. Then the log-likelihood ratio

Z = log

P

X

(X)

P

�

X

(X)

has the following distribution:

PrfZ = log(2)g = 1� PrfZ = log(2=3)g = 1=2:

Let M

Z

(�) denote the moment generating funtion of the random variable Z. By

Cramer's Theorem

5

[12, p. 9℄, we get that

5

Let fY

1

; Y

2

; : : :g be an i.i.d. sequene of random variables. Suppose that the expeted value of

Y

1

, E[Y

1

℄, exists and is �nite. Consider the funtion

I(y)

4

= sup

�2R

[�y � logM(�)℄;

where M(�)

4

= Efexp[�Y

1

℄g is the moment generating funtion of Y

1

. The funtion I(y) is known

as the large deviation rate funtion. A simple version of Cramer's Theorem is as follows. Assume

that M(�) <1 for all �. For a � E[Y

1

℄,

lim inf

n!1

�

1

n

logPrfS

n

� ag = lim sup

n!1

�

1

n

logPrfS

n

� ag = 0

where S

n

4

=

Y

1

+���+Y

n

n

is the sample average. This follows diretly from the law of large numbers.

For a < E[Y

1

℄,

lim inf

n!1

�

1

n

logPrfS

n

� ag = lim sup

n!1

�

1

n

logPrfS

n

� ag = I(a):
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�(R) = inf

�2(�1;R℄

I

Z

(�)

=

8

>

<

>

:

I

Z

(R); R < E[Z℄ = log(2)� log(3)=2;

0; otherwise;

where E[Z℄ denotes the expetation of the random variable Z and

I

Z

(�) = sup

�2R

(��� logM

Z

(�))

= sup

�2R

�

��� (� � 1) log(2)� log(1 + 3

��

)

�

=

log(log(3=2) + �)� log(log(2)� �)

log(3)

(�� log(2)) + log(2)

� log(1 +

log(2)� �

log(3=2) + �

)

=

log(log(3=2) + �)� log(log(2)� �)

log(3)

�+

log(3=2)

log(3)

log(log(3=2) + �)

+

log(2)

log(3)

log(log(2)� �) + log(2)� log(log(3)):

Consequently,

�(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1; R < � log(3=2)

log(2); R = � log(3=2)

log(log(3=2)+R)�log(log(2)�R)

log(3)

R

+

log(3=2)

log(3)

log(log(3=2) +R)

+

log(2)

log(3)

log(log(2)� R)

+ log(2)� log(log(3)); � log(3=2) < R < log(2)� log(3)=2

0; otherwise:

Let R

0

be the rate at whih the line of slope �=(1� �) is tangent to �(R). We have
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that �

0

(R)j

R=R

0

= �=(1� �). Note that

�

0

(R) =

R

log 3

�

1

R + log(3=2)

+

1

log 2� R

�

+

log(3=2)

log 3

1

R + log(3=2)

+

1

log 3

(log(log(3=2) +R)� log(log 2� R))�

log 2

log 3

1

log 2� R

=

1

log 3

R + log(3=2)

log 2� R

:

Hene

1

log 3

R

0

+ log(3=2)

log 2�R

0

=

�

1� �

;

whih yields

R

0

= log 2� log

3

1 + 3

�

1��

:

By straightforward alulations we get that

�(R

0

) =

 

1�

1

1 + 3

�

1��

!

log 3

�

1��

+ log 2� log

�

1 + 3

�

1��

�

:

Thus, the forward uto� rate R

(f)

0

(�jXk

�

X), whih is the R-axis interept of the line

of slope �=(1� �), is given by

R

(f)

0

(�jXk

�

X) =

� � 1

�

�(R

0

) +R

0

=

2� � 1

�

log 2�

� � 1

�

log

�

1 + 3

�

1��

�

� log 3:

On the other hand, the �-divergene between X and

�

X is given by

D

�

(Xk

�

X) =

1

�� 1

log

 

�

1

2

�

�

�

1

4

�

1��

+

�

1

2

�

�

�

3

4

�

1��

!

=

1

�� 1

�

(�� 2) log 2 + log(1 + 3

1��

)

�

;

whih yields

D

1

1��

(Xk

�

X) =

2� � 1

�

log 2�

� � 1

�

log

�

1 + 3

�

1��

�

� log 3:
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Note that the forward uto� rate R

(f)

0

(�jXk

�

X) and the lim inf �-divergene rate

(whih is equal to the �-divergene sine the soures are DMS) of order � = 1=(1��)

are equal as expeted from Theorem 5.1. Let us now derive � in order to hek that

� = R

0

. First, we need to ompute �

(t)

(R). The set N is equal to the set of natural

numbers in this ase. Note that the distribution of the random variable Z

(t)

under

the twisted distribution with parameter 0 < t < 1 is given by

P

(t)

fZ = log 2g = 1=(1 + 3

t

) and P

(t)

fZ = log(2=3)g = 3

t

=(1 + 3

t

):

By Cramer's theorem [12, p. 9℄, we get that

�

(t)

(R) = inf

�2(�1;R℄

I

Z

(t)

(�)

=

8

>

<

>

:

I

(t)

Z

(R); R < E

P

(t)

[Z

(t)

℄ =

log 2

1+3

t

+ log(2=3)

3

t

1+3

t

;

0; otherwise;

where E

P

(t)

[Z

(t)

℄ denotes the expetation of the random variableZ

(t)

under the twisted

distribution and

I

(t)

Z

(�) = sup

�2R

�

��� logM

(t)

Z

(�)

�

= sup

�2R

�

��� � log(2)� log(1 + 3

t��

) + log(1 + 3

t

)

�

=

�

t +

1

log 3

[log(�+ log(3=2))� log(log 2� �)℄

�

(�� log 2)

+ log(1 + 3

t

)� log

�

1 +

log 2� �

�� log 2 + log 3

�

:
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Finally, we get that

�

(t)

(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1; R < � log(3=2)

log(1 + 3

t

); R = � log(3=2)

t(R � log 2)

+

log(log(3=2)+R)�log(log(2)�R)

log(3)

R

+

log(3=2)

log(3)

log(log(3=2) +R)

+

log(2)

log(3)

log(log(2)� R)

+ log(1 + 3

t

)� log(log(3)); � log(3=2) < R <

log 2

1+3

t

+ log(2=3)

3

t

1+3

t

0; otherwise:

Therefore

� =

log 2

1 + 3

t

+ log(2=3)

3

t

1 + 3

t

�

It is easy to hek that indeed we have � = R

0

when the twisted parameter t is hosen

to be �=(� � 1). This example is illustrated in Figure 5.2 for � = �7.

Example 2 Continuous alphabet memoryless soures: Consider the hypothesis test-

ing problem between two memoryless soures X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under

the Gaussian distributions N(�; 1) and N(��; 1) respetively. It is easy to hek that

the log-likelihood ratio Z is Gaussian distributed with mean 2�

2

and variane 4�

2

,

whih gives that the moment generating funtion of Z is E[e

�Z

℄ = e

2�

2

�+2�

2

�

2

. So,

I

Z

(�) = sup

�2R

(��� 2�

2

�� 2�

2

�

2

) = (�� 2�

2

)

2

=(8�

2

). By Cramer's theorem, we get

that

�(R) =

8

>

<

>

:

1

8�

2

(R� 2�

2

)

2

; R < 2�

2

0; otherwise:
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Let R

0

be the rate at whih the line of slope �=(1� �) is tangent to �(R). We have

that �

0

(R)j

R=R

0

= �=(1� �). Note that

�

0

(R) =

1

4�

2

(R � 2�

2

):

Hene

1

4�

2

(R

0

� 2�

2

) =

�

� � 1

;

whih yields

R

0

= 2�

2

1 + �

1� �

�

By straightforward alulations we get that

�(R

0

) =

2�

2

�

2

(1� �)

2

�

Thus, the forward uto� rate R

(f)

0

(�jXk

�

X), whih is the R-axis interept of the line

of slope �=(1� �), is given by

R

(f)

0

(�jXk

�

X) =

� � 1

�

�(R

0

) +R

0

= 2�

2

1

1� �

�

On the other hand, the �-divergene between X and

�

X is given by

D

�

(Xk

�

X) =

1

�� 1

log

Z

1

p

2�

e

�

1

2

�(x��)

2

�

1

2

(1��)(x+�)

2

dx

=

1

�� 1

log e

�

1

2

(�

2

�(2����)

2

)

Z

1

p

2�

e

�

1

2

(x�(2����)

2

)

dx

=

1

�� 1

log e

�

1

2

(�

2

�(2����)

2

)

= 2�

2

�
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whih yields

D

1

1��

(Xk

�

X) = 2�

2

1

1� �

�

Note that the forward uto� rate R

(f)

0

(�jXk

�

X) and the lim inf �-divergene rate

(whih is equal to the �-divergene sine the soures are DMS) of order � = 1=(1��)

are equal as expeted from Theorem 5.1.

Now, let us ompute �

(t)

(R). The set N in this ase is equal to the set of natural

numbers. For some normalization onstant C,

P

(t)

X

n

(x

n

) = C � exp

(

�

t

2

n

X

i=1

(x

i

+ �)

2

)

exp

(

�

1� t

2

n

X

i=1

(x

i

� �)

2

)

= C � exp

(

�

1

2

n

X

i=1

[t(x

i

+ �)

2

+ (1� t)(x

i

� �)

2

℄

)

= C � exp

(

�

1

2

n

X

i=1

(x

2

i

+ 2(2t� 1)�x

i

+ �

2

)

)

;

whih is a Gaussian distribution with mean (1 � 2t)� and unit variane. Similarly,

by invoking Cramer's theorem, we get that,

�

(t)

(R) =

8

>

<

>

:

1

8�

2

(R + (2t� 1)2�

2

)

2

; R < (1� 2t)2�

2

0; otherwise:

Hene, � = (1� 2t)2�

2

. It is straightforward to hek that � = R

0

when the twisted

parameter t is hosen to be �=(� � 1). This example is depited in Figure 5.3 for

� = �0:5.
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Example 3 Irreduible �nite-alphabet Markov soures: Suppose that X and

�

X are

two irreduible Markov soures with arbitrary initial distributions and probability

transition matries P and Q de�ned as follows:

P =

0

B

�

1=3 2=3

1=4 3=4

1

C

A

; Q =

0

B

�

1=5 4=5

5=6 1=6

1

C

A

:

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 0; 1:

By Theorem 4.1, the �-divergene rate between X and

�

X exists and is given by

lim

n!1

1

n

D

�

(X

n

k

�

X

n

) =

1

�� 1

log�;

where � is the largest positive real eigenvalue of R. Hene the omputation of the

onvex lower bound for D

e

(EjXk

�

X) is easily obtained as shown in Figure 5.4 for the

values � = �5;�3;�2;�4=3;�1; �2=3;�1=2;�2=5 (proeeding from left to right),

where � =

1

1��

. Note that in this ase the bound is tight [5℄, [43℄.

Example 4 Arbitrary �nite-alphabet Markov soures: Suppose that X and

�

X are two

arbitrary Markov soures with arbitrary initial distributions and probability transition

matries P and Q de�ned as follows:
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P =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1=2 1=2 0 0 0

1=4 3=4 0 0 0

0 0 3=5 2=5 0

0 1=6 5=6 0 0

1=4 0 1=4 0 1=2

1

C

C

C

C

C

C

C

C

C

C

C

C

A

; Q =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1=5 4=5 0 0 0

2=3 1=3 0 0 0

0 0 1=2 1=2 0

0 1=6 5=6 0 0

1=8 0 1=2 0 3=8

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 0; 1; 2; 3; 4:

By Theorem 4.2, the �-divergene rate between X and

�

X an be omputed. Hene,

the onvex lower bound for D

e

(EjXk

�

X) an be easily derived as shown in Figure 5.5

for the values � = �5;�3;�2;�1;�2=3;�1=2;�2=5;�1=6 (proeeding from left to

right), where � =

1

1��

.

5.4 Properties of � and �(R)

Lemma 5.2 For 0 < t < 1,

�

4

= supfR : �

(t)

(R) > 0g � lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

):

Proof: For any � > 0,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

>

1

n

D

1�t

(X

n

k

�

X

n

) + �

�
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for suÆiently large n 2 N . But

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

>

1

n

D

1�t

(X

n

k

�

X

n

) + �

�

= P

(t)

X

n

�

x

n

2 X

n

: �

1

n

�

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

> �

�

= P

(t)

X

n

�

x

n

2 X

n

:

t

n

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

< ��t

�

= P

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

< ��t

)

(5.14)

= P

(t)

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) < e

�n�t

P

X

n

(x

n

)

o

� e

�n�t

P

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) < e

�n�t

P

X

n

(x

n

)

o

� e

�n�t

;

where (5.14) follows from (5.7). Thus for suÆiently large n 2 N ,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� 1� e

�n�t

;

whih implies

�

(t)

�

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� lim sup

n2N ;n!1

�

1

n

log

�

1� e

�n�t

�

= 0:

Consequently,

sup

�

R : �

(t)

(R) > 0

	

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�:

The proof is ompleted by noting that � an be made arbitrarily small.
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Lemma 5.3 For 0 < t < 1, if lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) < K, then

�

4

= supfR : �

(t)

(R) > 0g > �1:

Proof: By (5.7), we get that

P

(t)

X

n

(x

n

) = e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t) log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

P

�

X

n

(x

n

):

Hene,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

� e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nR

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� R

�

� e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nR

;

whih implies that

�

(t)

(R) � �t lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t)R:

Therefore,

� � �

t

1� t

lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

):

This shows that � = �1 implies that

lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) =1;

ontraditing the assumption that lim inf

n!1

(1=n)D

1�t

(X

n

k

�

X

n

) < K.
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Lemma 5.4 We have the following:

supfR 2 R : � (R) > 0g � 0:

Proof: For any � > 0,

P

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� ��

)

= P

(t)

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) � e

�n�

P

X

n

(x

n

)

o

� e

�n�

P

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) � e

�n�

P

X

n

(x

n

)

o

� e

�n�

;

whih implies �(��) � �. Hene, the lemma holds.
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Chapter 6

Csisz�ar's Reverse Cuto� Rate for

Hypothesis Testing Between

General Soures with Memory

In [20℄, Csisz�ar established the onept of reverse �-uto� rate for the hypothesis

testing problem based on i.i.d. observations. Given � > 0, he de�nes the reverse �-

uto� rate as the number R

0

� 0 that provides the best possible lower bound in the

form �(E�R

0

) to the type 1 orret exponent (or reliability) funtion for hypothesis

testing where 0 < R

0

< E is the rate of exponential onvergene to 0 of the type

2 error probability. He then demonstrated that the reverse �-uto� rate is given by

D

1=(1��)

(Xk

�

X), where D

�

(Xk

�

X) denotes the �-divergene, � > 0, � 6= 1. This result

provides a new operational signi�ane for the �-divergene.

In this hapter, we extend Csisz�ar's result [20℄ by investigating the reverse �-
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uto� rate for hypothesis testing between two arbitrary soures. Our proof relies in

part on the formulas established in [29℄, and extensions of the tehniques used in [14℄

to generalize Csisz�ar's soure oding result for arbitrary disrete soures. Unlike [14℄

where the soure alphabet was assumed to be �nite, we assume arbitrary (ountable or

ontinuous) soure alphabet. We show that if the log-likelihood ratio large deviation

spetrum �(R) is onvex and if there exists an R 2 R suh that �(R) + R = 0, then

the limsup �-divergene rate with � =

1

1��

provides the expression for the reverse

�-uto� rate for 0 < � < �

max

, where �

max

is the largest � < 1 for whih the lim sup

1

1��

-divergene rate is �nite. For 1 > � � �

max

, we only provide an upper bound

on the reverse uto� rate. However, our result does redue to Csisz�ar's result for

�nite-alphabet i.i.d. observations for 0 < � < 1. In the following setion, relevant

previous results by Han on the probability of orret testing are briey reviewed and

the problem setup is presented.

6.1 Preliminaries and Problem Formulation

De�ne the general soure [29℄ as an in�nite sequene X = fX

n

g

1

n=1

4

=

n

X

n

=

�

X

(n)

1

;

: : : ; X

(n)

n

�o

1

n=1

of n-dimensional random variablesX

n

where eah omponent random

variable X

(n)

i

(1 � i � n) takes values in an arbitrary set X that we all the soure

alphabet. Given two arbitrary soures X = fX

n

g

1

n=1

and

�

X = f

�

X

n

g

1

n=1

taking

values in the same soure alphabet fX

n

g

1

n=1

, we may de�ne the general hypothesis

testing problem with X = fX

n

g

1

n=1

as the null hypothesis and

�

X = f

�

X

n

g

1

n=1

as the

alternative hypothesis.
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Let A

n

be any subset of X

n

, n = 1; 2; : : : that we all the aeptane region of the

hypothesis test, and de�ne

�

n

4

= PrfX

n

62 A

n

g and �

n

4

= Prf

�

X

n

2 A

n

g

where �

n

; �

n

are alled type 1 error probability and type 2 error probability, respe-

tively.

In [20℄, Csisz�ar investigated the hypothesis testing problem between i.i.d. observa-

tions by onsidering the �-uto� rate for the exponent of the best orret probability

of type 1 with exponential onstraint on the probability of type 2 error. More formally,

he used the following de�nitions.

De�nition 6.1 Fix E > 0. A rate r is alled E-unahievable if there exists a se-

quene of aeptane regions A

n

suh that

lim sup

n!1

�

1

n

log(1� �

n

) � r and lim inf

n!1

�

1

n

log�

n

� E:

De�nition 6.2 The in�mum of all E-unahievable rates is de�ned as:

D

�

e

(EjXk

�

X)

4

= inffr > 0 : r is E-unahievableg;

and D

�

e

(EjXk

�

X) = 0 if the above set is empty.

For 0 < r < D

�

e

(EjXk

�

X), every aeptable regionA

n

with lim inf

n!1

�

1

n

log�

n

�

E satis�es �

n

> 1� e

�nr

for n in�nitely often.
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De�nition 6.3 Fix � > 0. R

0

� 0 is a reverse �-ahievable rate for the general

hypothesis testing problem if

D

�

e

(EjXk

�

X) � �(E �R

0

)

for every E > 0. The reverse �-uto� rate is de�ned as the in�mum of all reverse

�-ahievable rates, and is denoted by R

(r)

0

(�jXk

�

X).

However, in [29℄, Han investigated the general hypothesis testing problem between

arbitrary soures with memory by onsidering the exponent of the best orret prob-

ability of type 2 with exponential onstraint on the probability of type 1 error. More

formally, he used the following de�nitions.

De�nition 6.4 [29℄ Fix r > 0. A rate E is alled r-unahievable if there exists a

sequene of aeptane regions A

n

suh that

lim inf

n!1

�

1

n

log�

n

� r and lim sup

n!1

�

1

n

log(1� �

n

) � E:

De�nition 6.5 [29℄ The in�mum of all r-unahievable rates is denoted byB

�

e

(rjXk

�

X):

B

�

e

(rjXk

�

X)

4

= inffE > 0 : E is r-unahievableg;

and B

�

e

(rjXk

�

X) = 0 if the above set is empty.

Proposition 6.1 [29℄ Fix r > 0. For the general hypothesis testing problem, we

have that

B

�

e

(rjXk

�

X) = inf

R2R

fR + ��(R) + [r � ��(R)℄

+

g;
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where

��(R)

4

= lim

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

;

and [x℄

+

= maxfx; 0g, provided the limit de�ning ��(R) exists, and for any M > 0,

there exists K > 0 suh that

lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� K

�

�M:

Remark 1: Note that Csisz�ar's and Han's de�nitions seem di�erent at �rst glane.

In our investigation, we realized that in order to establish our results on the reverse

uto� rate for general soures with memory, a formula for the reliability funtion of

the type 1 probability of orret deoding, D

�

e

(EjXk

�

X), is needed. However, in [29℄,

Han provided a formula for the reliability funtion of the type 2 probability of orret

deoding, B

�

e

(rjXk

�

X). This turned out to be an obstale, sine we were not able to

derive the reverse uto� rate formula by diretly using the formula for B

�

e

(rjXk

�

X).

To overome this obstale, we observed that if we interhange the role of the null and

alternative hypotheses distributions (i.e., X $

�

X), and also r with E (i.e., r $ E)

in Han's de�nitions (De�nitions 6.4 and 6.5), then a formula for D

�

e

(EjXk

�

X) an be

readily obtained from Han's result. More spei�ally, we have the following.

De�nition 6.6 Fix E > 0. A rate r is alled E-unahievable if there exists a se-

quene of aeptane regions A

0

n

= A



n

(omplement of A

n

) suh that

lim inf

n!1

�

1

n

log�

n

� E and lim sup

n!1

�

1

n

log(1� �

n

) � r;

where

�

n

= Prf

�

X

n

62 A

0

n

g = Prf

�

X

n

2 A

n

g and �

n

= PrfX

n

2 A

0

n

g = PrfX

n

62 A

n

g:
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De�nition 6.7 The in�mum of all E-unahievable rates is given by

B

�

e

(Ej

�

XkX) = inffr > 0 : r is E-unahievableg;

and B

�

e

(Ej

�

XkX) = 0 if the above set is empty.

With De�nitions 6.6 and 6.7, Proposition 6.1 beomes as follows.

Proposition 6.2 For any E > 0,

B

�

e

(Ej

�

XkX) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

;

where

�(R)

4

= lim

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

provided the limit de�ning �(R) exists, and for any M > 0, there exists K > 0 suh

that

lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� K

�

�M:

Remark 2: We an now learly observe that De�nitions 6.6 and 6.1 are idential.

This indiates that Han's B

�

e

(Ej

�

XkX) is in fat Csisz�ar's D

�

e

(EjXk

�

X). Hene, using

De�nitions 6.1 and 6.2, Proposition 6.2 should be as follows.
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Proposition 6.3 For any E > 0,

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

;

where

�(R) = lim

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

provided the limit de�ning �(R) exists, and for any M > 0, there exists K > 0 suh

that

lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� K

�

�M: (6.1)

The above proposition is a key ingredient for our main results in the following

setion.

6.2 Hypothesis Testing Reverse �-Cuto� Rate

For larity of presentation, we herein restate the de�nition of the reverse �-uto� rate

(whih was already given in De�nition 6.3).

De�nition 6.8 Fix � > 0. R

0

� 0 is a reverse �-ahievable rate for the general

hypothesis testing problem if

D

�

e

(EjXk

�

X) � �(E �R

0

)

for every E > 0. The reverse �-uto� rate is de�ned as the in�mum of all reverse

�-ahievable rates, and is denoted by R

(r)

0

(�jXk

�

X).

134



In the degenerate ase where D

�

e

(EjXk

�

X) = 0, we have that R

(r)

0

(�jXk

�

X) = 1.

We herein assume that D

�

e

(EjXk

�

X) is not identially 0 for all values of E and that the

onditions of Proposition 6.3 are satis�ed. A graphial illustration of R

(r)

0

(�jXk

�

X) is

given in Figure 6.1.

d

t

d

t

-�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

R

(r)

0

(�jXk

�

X)

E

�(E � R

(r)

0

(�jXk

�

X))

D

�

e

(EjXk

�

X)

Figure 6.1: A graphial illustration of the reverse �-uto� rate, R

(r)

0

(�jXk

�

X), for

testing between two arbitrary soures X and

�

X.

135



We �rst show the following lemmas, whih will provide us the key mehanism to

establish our reverse uto� rate result.

Lemma 6.1 For all E > 0, we have that

D

�

e

(EjXk

�

X) � E + inffR 2 R : �(R) � Eg:

Proof: We have the following.

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

(by Proposition 6.3)

= min

�

inf

�(R)�E

fR + Eg; inf

�(R)>E

fR + �(R)g

�

� inf

�(R)�E

fR + Eg

= E + inffR 2 R : �(R) � Eg:

Lemma 6.2 Assume that �(R) is onvex, and also assume that there exists an R

suh that R + �(R) = 0. Then for those E satisfying D

�

e

(EjXk

�

X) > 0,

D

�

e

(EjXk

�

X) = E + inffR 2 R : �(R) � Eg:

Proof: Sine �(R) is dereasing by de�nition and it is assumed to be onvex, then

it is ontinuous and stritly dereasing. Let R

�

be the smallest one that satis�es

R + �(R) = 0. Then for E � �(R

�

),

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

(by Proposition 6.3)

� R

�

+ �(R

�

) + [E � �(R

�

)℄

+

= 0:
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Hene, the set of values of E suh that D

�

e

(EjXk

�

X) > 0 does not inlude E � �(R

�

).

Now as �(R) is assumed onvex, its slope is stritly inreasing, whih implies that

the slope of �(R) is less than �1 for R < R

�

. This immediately gives that the slope

of the funtion R + �(R) is negative for R < R

�

. Consequently, for any E > �(R

�

)

(whih orresponds to R < R

�

sine �(R) is stritly dereasing),

inf

fR:�(R)>Eg

fR + �(R)g = fR + �(R)gj

R=�

�1

(E)

= �

�1

(E) + E = inf

�(R)�E

fR + Eg ;

where

�

�1

(E)

4

= inffa : �(a) � Eg;

is the quantile or inverse of �(�). Thus,

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

= min

�

inf

�(R)�E

fR + Eg; inf

�(R)>E

fR + �(R)g

�

= inf

�(R)�E

fR + Eg

= E + inffR 2 R : �(R) � Eg:

It is important to note that the above lemma does not neessarily hold in general;

this is illustrated in the following example for the ase where �(R) is not onvex.
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Example 1: Let

�(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

0; R > 2;

�

1

2

R + 1; �2 � R < 2;

�2R� 2; �4 � R < �2;

�

1

2

R + 4; �6 � R < �4;

�R + 1; R < �6;

whih is ontinuous and dereasing but not onvex. Hene,

R + �(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

0; R > 2;

1

2

R + 1; �2 � R < 2;

�R � 2; �4 � R < �2;

1

2

R + 4; �6 � R < �4;

1; R < �6;

Then indeed,

D

�

e

(EjXk

�

X) = min

�

inf

�(R)�E

[R + E℄; inf

�(R)>E

[R + �(R)℄

�

= inf

�(R)>E

fR + �(R)g =

8

>

>

>

>

>

<

>

>

>

>

>

:

0; 0 < E � 2;

1

2

E � 1; 2 < E � 4;

1; E > 4;

and

E + inffR : �(R) � Eg =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�E + 2; 0 < E � 2;

1

2

E � 1; 2 < E � 6;

�E + 8; 6 < E � 7;

1; E > 7:
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Lemma 6.3 Fix t < 0. Also, assume that �(R) is onvex, and suppose that there

exists an R suh that R + �(R) = 0. The following two onditions are equivalent.

(8 R 2 R) �(R) � �R(1� t) + tR

0

(6.2)

and

(8 E > 0) D

�

e

(EjXk

�

X) �

t

t� 1

(E �R

0

): (6.3)

Proof:

a) (6.2))(6.3). By Lemma 6.2, for those E satisfying D

�

e

(EjXk

�

X) > 0, we have

that

D

�

e

(EjXk

�

X) = E + inffR 2 R : �(R) � Eg

� E + inffR 2 R : �R(1� t) + tR

0

� Eg

=

t

t� 1

(E � R

0

) ;

where the inequality follows from (6.2). This implies that

inffE > 0 : D

�

e

(EjXk

�

X) > 0g � R

0

:

Hene, for these E satisfying D

�

e

(EjXk

�

X) = 0, the laim also holds sine D

�

e

(EjXk

�

X)

is inreasing.

b) (6.3))(6.2). By Lemma 6.1 and (6.3), for E > 0, we have that

inffR 2 R : �(R) � Eg �

t

t� 1

(E �R

0

)� E =

1

t� 1

E �

t

t� 1

R

0

:

Thus

E � �

�

1

t� 1

E �

t

t� 1

R

0

�

;
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sine �(�) is stritly dereasing. Letting

R =

1

t� 1

E �

t

t� 1

R

0

;

or

E = �R(1� t) + tR

0

;

the above inequality an be rewritten as

�(R) � �R(1� t) + tR

0

;

where R 2 R.

We next employ Lemma 6.3 to show our main result regarding the reverse uto�

rate.
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Theorem 6.1 (Reverse �-uto� rate formula). Assume that �(R) is onvex, and

suppose that there exists an R suh that R + �(R) = 0. For the general hypothesis

testing problem,

R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1;

and

R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < �

max

;

where

�

max

= sup

�

� 2 (0; 1) : lim sup

n!1

1

n

D

1=(1�)

(X

n

k

�

X

n

) <1 for every 0 <  < �

�

;

and

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

�

[P

�

X

n
(x

n

)℄

1��

!

is the n-dimensional R�enyi �-divergene. Note that from the above two inequalities,

R

(r)

0

(�jXk

�

X) is indeed equal to the limsup

1

1��

-divergene rate for 0 < � < �

max

.

Proof:

1

1. Forward part: R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1.

By the equivalene of onditions (6.2) and (6.3), it suÆes to show that

(8R 2 R) �(R) � �R(1� t) + t � lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

):

1

For the proof of the ontinuous alphabet ase, the same remark given in Observation B (f.

Setion 5.2) applies.
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Consider the twisted distribution de�ned as:

P

(t)

X

n

(x

n

)

4

=

[P

�

X

(x

n

)℄

t

[P

X

n

(x

n

)℄

1�t

P

x̂

n

2X

n

[P

�

X

(x̂

n

)℄

t

[P

X

n

(x̂

n

)℄

1�t

= exp

�

(t� 1) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+ tD

1�t

(X

n

k

�

X

n

)

�

P

�

X

n

(x

n

): (6.4)

Then for t < 0,

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

P

�

X

n

(x

n

)

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

exp

�

(1� t) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� tD

1�t

(X

n

k

�

X

n

)

�

P

(t)

X

n

(x

n

)

� exp

�

nR(1� t)� tD

1�t

(X

n

k

�

X

n

)

	

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

P

(t)

X

n

(x

n

)

� exp

�

nR(1� t)� tD

1�t

(X

n

k

�

X

n

)

	

:

So,

�(R) = lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

�

� �R(1� t) + t � lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

= �R(1� t) + t � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

); for �

4

=

t

t� 1

2 (0; 1):

2. Converse part: R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < �

max

.

By the equivalene of (6.2) and (6.3), it suÆes to show the existene of

�

R for any

Æ > 0 suh that

�(

�

R) � �

�

R(1� t) + t

�

lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

) +

(1� t)

t

3Æ

�

;
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where t = �=(� � 1) < 0. Let N be a set of positive integers suh that

lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

and de�ne

�

4

= supfR 2 R : �

(t)

(R) > 0g;

where

�

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

is the twisted large deviation spetrum of the normalized log-likelihood ratio with

parameter t. It an be shown that � satis�es �1 < � � 0 (f. Lemmas 6.4 and 6.5

in Setion 6.3). We then note by de�nition of �

(t)

(�) and the �niteness property of �

that for any Æ > 0, there exists � > 0 suh that

�

(t)

(�� Æ) = lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� �� Æ

�

> � > 0:

As a result,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

> �� Æ

�

� 1� e

�n�

for n 2 N suÆiently large:

On the other hand, de�ne

��

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

�

and

�

�

4

= inffR 2 R : ��

(t)

(R) > 0g:

Then by noting that

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

= �D

1�t

(X

n

k

�

X

n

) +

1

t

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

;
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we have:

��

(t)

(R) = �

�

tR +

t

n

D

1�t

(X

n

k

�

X

n

)

�

;

where

�(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� R

)

;

and

�

� =

1

t

supfR 2 R : � (R) > 0g �

1

n

D

1�t

(X

n

k

�

X

n

)

� 0; (6.5)

where (6.5) follows from Lemma 5.4 in Setion 5.4, and the non-negativity [20℄ of

the R�enyi divergene D

1�t

(X

n

k

�

X

n

). This indiates the existene of �� > 0 suh that

��

(t)

(Æ) > ��, whih immediately gives that for n 2 N suÆiently large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� Æ

�

� e

�n��

:

Therefore, for n 2 N suÆiently large,

P

(t)

X

n

�

x

n

2 X

n

: Æ >

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> �� Æ

�

� P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> �� Æ

�

�P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� Æ

�

� 1� e

�n�

� e

�n��

: (6.6)

Let I

1

4

= (�� Æ; b

1

), and

2

2

Note that when � < 0, L � 2; so the de�nition is well-established. However, in ase � = 0, we

just take L = 1, and I

1

= (�Æ; Æ).
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I

k

4

= [b

k�1

; b

k

) for 2 � k � L

4

=

�

2Æ � �

2Æ

�

;

where b

k

4

= (� � Æ) + 2kÆ for 1 � k < L, and b

L

4

= Æ. By (6.6), there exists

1 � k(n) � L suh that

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n�

� e

�n��

L

; (6.7)

for n 2 N suÆiently large. Then, by letting R

1

4

= lim sup

n2N ;n!1

b

k(n)

+ Æ, we

obtain that for n 2 N suÆiently large,

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

1

�

� P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

:

However, for suÆiently large n 2 N , we have that:

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

P

�

X

n
(x

n

)

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

P

(t)

X

n

(x

n

)

� e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2I

k(n)

o

P

(t)

X

n

(x

n

)

= e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n�

� e

�n��

L

e

�tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nb

k(n)�1

:
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Consequently,

�(R

1

) = lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

1

�

� lim inf

n2N ;n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

1

�

� t lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)�1

� t lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)

+ 2Æ(1� t)

= t lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t)R

1

+ 3Æ(1� t):

Sine Æ an be made arbitrarily small, the proof is ompleted.

We observe that the onditions given in the above theorem are not neessary for

the expression of the reverse �-uto� rate to be given by the lim sup

1

1��

-divergene

rate. This is illustrated in the following example, where we show that �(R) is not

onvex while

R

(r)

0

(�jXk

�

X) = lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Example 2: Let P

�

X

n

(a

n

) = 1 � e

�2n

and P

�

X

n

(b

n

) = e

�2n

, where a

n

6= b

n

and

a

n

; b

n

2 X

n

. Also, let P

X

n

(a

n

) = 1 � e

�n

and P

X

n

(b

n

) = e

�n

, where 0 <  < 2.

Then, the log-likelihood ratio, Z

n

, is given by

Z

n

= log

P

�

X

n

(X

n

)

P

X

n

(X

n

)

=

8

>

>

>

<

>

>

>

:

log

1� e

�2n

1� e

�n

; with probability (in P

�

X

n
) 1� e

�2n

�(2� )n; with probability (in P

�

X

n

) e

�2n

;
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whih implies that

�(R) = lim

n!1

�

1

n

logPr

�

1

n

Z

n

� R

�

=

8

>

>

>

>

>

<

>

>

>

>

>

:

0; for R � 0

2; for � (2� ) � R < 0

1; for R < �(2� ):

Note that �(R) in not onvex but R + �(R) = 0 for R = 0. Note also that Han's

ondition (6.1) is satis�ed sine P

X

n

(�) and P

�

X

n

(�) are absolutely ontinuous with

respet to eah other. Let us �rst ompute the �-divergene rate between X

n

and

�

X

n

, where � > 1. The normalized n-dimensional �-divergene is given by

1

n

D

�

(X

n

k

�

X

n

) =

1

n(�� 1)

log

�

(1� e

�n

)

�

(1� e

�2n

)

1��

+ e

�n�

e

�2n(1��)

�

:

We have the following three ases.

1. � + 2 � 2� > 0. Note that e

�n

and e

�2n

approah 0 as n ! 1 and that

e

�n�

e

�2n(1��)

= e

�n(�+2�2�)

; whih also approahes 0 as n ! 1. Hene, the

�-divergene rate is equal to 0 sine the argument of the logarithm ! 1 as

n!1.

2. �+2� 2� < 0. In this ase, sine e

�n(�+2�2�)

!1 as n!1, the argument

of the logarithm, for large n, is dominated by e

�n(�+2�2�)

. Hene

lim

n!1

1

n

D

�

(X

n

k

�

X

n

) = lim

n!1

�

n(� + 2� 2�)

n(�� 1)

=

� + 2� 2�

1� �

�

3. �+ 2� 2� = 0. Clearly, the �-divergene rate is equal to 0 in this ase.
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Let us now ompute the reverse �-uto� rate. First, we need to omputeD

�

e

(EjXk

�

X)

using Proposition 6.3. We have the following ases.

� E > 2. We have that

R + �(R) + [E � �(R)℄

+

=

8

>

>

>

>

>

<

>

>

>

>

>

:

R + E; for R � 0

R + E; for � (2� ) � R < 0

1; for R < �(2� ):

Hene

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

= E � 2 + :

� 0 <  < E � 2. In this ase

R + �(R) + [E � �(R)℄

+

=

8

>

>

>

>

>

<

>

>

>

>

>

:

R + E; for R � 0

R + 2; for � (2� ) � R < 0

1; for R < �(2� ):

Hene, D

�

e

(EjXk

�

X) = .

� 0 < E � . In this ase

R + �(R) + [E � �(R)℄

+

=

8

>

>

>

>

>

<

>

>

>

>

>

:

R + E; for R � 0

R + 2; for � (2� ) � R < 0

1; for R < �(2� ):

Hene, D

�

e

(EjXk

�

X) = E.
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The reverse �-uto� rate is the E-axis interept of the line of slope � passing by

the point (2; ) as illustrated in Figure 6.2. By straightforward alulation, we get

that

R

(r)

0

(�jXk

�

X) = �



�

+ 2:

For � = 1=(1� �), we get that

R

(r)

0

(�jXk

�

X) =

� + 2� 2�

1� �

�

Sine, by de�nition, R

(r)

0

(�jXk

�

X) � 0, it is straightforward to hek that

R

(r)

0

(�jXk

�

X) = lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Note that for this example, sine the �-divergene rate is always �nite , it follows

diretly that �

max

= 1.
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�
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+

Figure 6.2: Reliability funtion of the type 1 probability of orret deoding for testing

between the two soures P

X

n

(�) and P

�

X

n

(�) as given in Example 1.
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We next show that in the ase of i.i.d. �nite-alphabet observations, our result in

Theorem 6.1 redues to Csisz�ar's result [20℄; i.e., the reverse �-uto� rate is given by

the R�enyi divergene with parameter

1

1��

, for 0 < � < 1.

Corollary 6.1 For the hypothesis testing problem between two �nite-alphabet mem-

oryless soures X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

, we have that

R

(r)

0

(�jXk

�

X) = D

1=(1��)

(Xk

�

X) for 0 < � < 1:

Proof: By Cramer's theorem [12, p. 9℄, we get that

�(R) = inf

s2(�1;R℄

I

Z

(s)

=

8

>

<

>

:

I

Z

(R); R < E

P

�

X

[Z℄

0; otherwise;

where E

P

�

X

[Z℄ denotes the expetation of the log-likelihood ratio Z = log

P

�

X

(

�

X)

P

X

(

�

X)

with

respet to P

�

X

, and

I

Z

(s) = sup

�2R

(�s� logM

Z

(�)) ;

where M

Z

(�) = E

P

�

X

[expf�Zg℄ is the moment generating funtion of the random

variable Z. Clearly, �(R) is onvex [12, p. 9℄, and it is in�nite

3

when R < logm,

where

m

4

= min

�

P

�

X

(x)

P

X

(x)

; x 2 X

�

:

3

Indeed, let R = logm� Æ, for some positive onstant Æ. Then

�R� logM

Z

(�) = ��Æ + log

m

�

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

;

whih diverges to +1 when � ! �1, sine the last term onverges to a onstant.
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Let us now prove that there exists an R suh that �(R) + R = 0. If we di�erentiate

(�R� logM

Z

(�)) with respet to �, and set the result to 0, we get that

R =

M

0

Z

(�)

M

Z

(�)

4

= f(�): (6.8)

By Shwarz inequality, it is straightforward to verify that the funtion f(�) is stritly

inreasing

4

. Hene, f

�1

exists and is di�erentiable (f

0

(�) > 0, for all � 2 R). Note

that

f(�) 2 I

4

= [logm; logM ℄;

where

M

4

= max

�

P

�

X

(x)

P

X

(x)

; x 2 X

�

:

Note also that E

P

�

X

[Z℄ � logM . Therefore, for every R 2 [logm;E

P

�

X

[Z℄℄, there exists

a unique � whih satis�es equation (6.8). Hene,

�(R) = f

�1

(R)R � logM

Z

(f

�1

(R));

whih yields that �(R) is di�erentiable. Sine �(R) is in�nite when R < logm and

is equal to 0 for R � E[Z℄, the set of slopes of tangent lines to �(R) is between �1

4

We have that

f(�) =

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

log

P

�

X

(x)

P

X

(x)

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

;

and hene

f

0

(�) =

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

�

log

P

�

X

(x)

P

X

(x)

�

2

�

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

�

�

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

log

P

�

X

(x)

P

X

(x)

�

2

�

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

�

2

:

By Shwarz inequality, f

0

(�) � 0 with equality i� P

�

X

(x) = P

X

(x) for all x 2 X where  is some

positive onstant. Thus, f

0

(�) > 0, sine in the hypothesis testing problem it is assumed that the

soures are di�erent.

152



and 0. Hene, there exists a tangent line with slope �1 to �(R). Let R

�

be the point

where the line of slope �1 is tangent to �(R). By de�nition

�(R

�

) = sup

�2R

(�R

�

� logM

Z

(�)) :

If this supremum is ahieved by some �

�

6= �1, it would ontradit the fat that

�R

�

� logM

Z

(�) is a lower bound for �(R

�

) for eah � (any line with slope di�erent of

�1 passing through the point (R

�

; �(R

�

)) annot be a lower bound to �(R

�

)). Hene

�(R

�

) = �R

�

� logM

Z

(�)j

�=�1

:

But M

Z

(�) = 1 for � = �1, hene �(R

�

) = �R

�

. Hene, there exists an R suh that

R + �(R) = 0. Finally, we show that �

max

= 1. Note �rst that

lim sup

n!1

1

n

D

�

(X

n

k

�

X

n

) = D

�

(Xk

�

X):

If �

max

< 1, then there exists some � > 1 suh that D

�

(Xk

�

X) = 1. Sine the

alphabet X is �nite, this implies that

P

x

p

�

X

(x)p

1��

�

X

(x) is in�nite. Hene, there

exists at least an x 2 X suh that P

X

(x) 6= 0 and P

�

X

(x) = 0. But this ertainly

violates Han's ondition (6.1) in Theorem 6.3. Hene �

max

= 1 and the orollary is

proved.

We �nally present a lass of soures with memory for whih the reverse �-uto�

rate is given by the R�enyi

1

1��

-divergene rate for all 0 < � < 1.
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Corollary 6.2 Consider the hypothesis testing problem between �nite-alphabet soures

with memory suh that the log-likelihood ratio proess fZ

n

g, where Z

n

= log

P

�

X

n

(

�

X

n

)

P

X

n
(

�

X

n

)

,

satis�es both hypotheses of the G�artner-Ellis Theorem [12, p. 15℄:

� �(�)

4

= lim

n!1

1

n

�

n

(�) exists for all � 2 R,

� � is di�erentiable on d

'

, where d

'

4

= f� : �(�) <1g;

where �

n

(�)

4

= logE

P

�

X

n

[exp(�Z

n

)℄: Also, suppose that

1

n

�

n

(�) onverges uniformly in

n to �(�). Then the reverse �-uto� rate satis�es

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Proof: To prove the result, we need to show that for soures satisfying the G�artner-

Ellis Theorem, the R�enyi divergene rate exists, that the onditions of Theorem

6.1 hold and that �

max

= 1. First, the R�enyi divergene rate exists from the �rst

hypothesis of the G�artner-Ellis Theorem and the fat that

1

n

D

1

1��

(X

n

k

�

X

n

) =

1� �

�

1

n

�

n

�

1

� � 1

�

:

Next, by the G�artner-Ellis Theorem, we have that

�(R) = sup

�2R

f�R� �(�)g :

Clearly, �(R) is onvex in R. Let us show that there exists an R suh that R+�(R) =

0. In order to employ the previous orollary, we let

�

n

(R)

4

= sup

�2R

�

�R �

1

n

�

n

(�)

�

;
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for n = 1; 2; : : :. Along the same lines as in the previous orollary, it an be shown

that there exists an R

�

n

suh that R

�

n

+ �

n

(R

�

n

) = 0, n = 1; 2; : : : On the other hand,

j�(�) �

1

n

�

n

(�)j < Æ

n

for n suÆiently large, where Æ

n

> 0 is independent of � by

the uniform onvergene assumption, and onverges to 0 as n ! 1 for all � 2 R.

Therefore

j�

n

(R)� �(R)j < sup

�2R

Æ

n

= Æ

n

; (6.9)

for all R 2 R. In partiular, (6.9) holds for R = R

�

n

:

j�

n

(R

�

n

)� �(R

�

n

)j < Æ

n

:

But �

n

(R

�

n

) +R

�

n

= 0, therefore j�(R

�

n

) +R

�

n

j < Æ

n

. De�ne

R

�

4

= lim sup

n!1

R

�

n

:

We onlude that �(R

�

) + R

�

= 0. Finally, the fat that �

max

= 1 follows diretly

from the �rst hypothesis of the G�artner-Ellis Theorem.

Numerial Examples: We briey present two examples of memoryless soures

where we expliitly verify the existene of R suh that R + �(R) = 0.

Example 3: Finite-alphabet memoryless soures: Consider Example 1 in Setion 5.3

where X and

�

X are interhanged. Note that �(R) is equal to �(R) in this ase. It is

straightforward to hek that R + �(R) = 0 for R approximately �0:13.

Example 4: Continuous alphabet memoryless soures: Consider Example 2 in Se-

tion 5.3 where X and

�

X are interhanged. Note that �(R) is equal to �(R) in this
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ase. By straightforward alulation we get that R + �(R) = 0 for R = �2�

2

.

6.3 Properties of �

Lemma 6.4 For t < 0, � � 0.

Proof: Observe that for R > 0,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

> R

�

� e

�nR(1�t)+tD

1�t

(X

n

k

�

X

n

)

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

> R

�

� e

�nR(1�t)+tD

1�t

(X

n

k

�

X

n

)

� e

�nR(1�t)

;

where the last inequality follows from the non-negativity of D

1�t

(X

n

k

�

X

n

). This

implies that for R > 0,

�

(t)

(R) � lim inf

n2N ;n!1

�

1

n

log

�

1� e

�nR(1�t)

�

= 0;

whih immediately implies that � � 0.
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Lemma 6.5 For 0 > t > �

max

=(�

max

� 1), � > �1.

Proof: If � = �1, then �
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whih implies that

0 = �

(t)

(R) � (t� Æ) lim sup

n2N ;n!1

1

n
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(X

n
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)� ÆR:

This indiates that

lim sup

n!1
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or equivalently,
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�

X

n

) =1;

whih ontradits the assumption on �

max

.
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Chapter 7

Conlusion and Future Work

7.1 Summary

This thesis onsists of two major parts.

In the �rst part, we studied Shannon's and R�enyi's measure rates for �nite-

alphabet time-invariant Markov soures of arbitrary order and arbitrary initial dis-

tributions. We obtained omputable expressions for the Kullbak-Leibler divergene

rate and the �-divergene rate between Markov soures. We also showed that their

rate of onvergene is of the order 1=n. We also provided suÆient onditions un-

der whih the �-divergene rate redues to the Kullbak-Leibler divergene rate as

n ! 1 and � ! 1. We obtained similar results for the Shannon entropy rate and

the R�enyi entropy rate. The main tools used in obtaining these results are the theory

of non-negative matries and Perron-Frobenius theory. As an appliation to hypoth-

esis testing, we provided a simple proof of Stein's Lemma for irreduible stationary
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Markov soures whih goes along the same lines as in the i.i.d. ase. As an appliation

to soure oding, we generalized Campbell's variable-length soure oding theorem

for i.i.d. soures to Markov soures.

In the seond part, we examined the forward and reverse �-uto� rates for the

hypothesis testing problem between arbitrary soures with memory (not neessarily

Markovian, ergodi, stationary, et.) of arbitrary alphabet (ountable or unount-

able). We showed that the forward �-uto� rate is given by the lim inf �-divergene

rate, where � =

1

1��

and � < 0. Under two onditions on the log likelihood ratio

large deviation spetrum, �(R), we showed that the reverse �-uto� rate is given by

the lim sup �-divergene rate, where � =

1

1��

and 0 < � < �

max

. For �

max

� � < 1,

we provided an upper bound on the reverse uto� rate. In partiular, we examined

i.i.d. observations and soures that satisfy the hypotheses of the G�artner-Ellis The-

orem. We showed that in these ases, the onditions on �(R) are satis�ed and that

the reverse uto� rate admits a simple form. We also provided several numerial ex-

amples to illustrate our forward and reverse uto� rate results. The main tools used

in obtaining these results are large deviation theory and the information spetrum

approah.

7.2 Future Work

One possible diretion for future work is the investigation of Shannon's and R�enyi's

information measure rates for general soures with memory (not neessarily Marko-

vian), inluding hidden Markov soures. For instane, to the best of our knowledge,
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it is not known whether the R�enyi entropy rate for �nite-alphabet stationary ergodi

soures exists or not. Further investigation of the reverse uto� rate is also of interest.

One aim is to investigate if the reverse �-uto� rate result of Theorem 6.1 holds with-

out any restrition on �(R). Another diretion is to study Csisz�ar's hannel oding

uto� rates [20℄ for arbitrary disrete hannels with memory using our information

spetrum tehniques.
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