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Abstra
t

In this work, we investigate Shannon's and R�enyi's information measure rates for

�nite-alphabet time-invariant Markov sour
es of arbitrary order and arbitrary initial

distributions, along with their appli
ation to hypothesis testing and sour
e 
oding.

We also study, using information-spe
trum te
hniques, Csisz�ar's forward and reverse


uto� rates for the hypothesis testing problem between general sour
es with memory

(in
luding all non-ergodi
 or non-stationary sour
es) with arbitrary alphabet (
ount-

able or un
ountable).

We �rst provide a 
omputable expression for the Kullba
k-Leibler divergen
e rate,

lim

n!1

1

n

D(p

(n)

kq

(n)

), between two Markov sour
es des
ribed by the probability dis-

tributions p

(n)

and q

(n)

, respe
tively. We illustrate it numeri
ally and examine its

rate of 
onvergen
e. Similarly, we provide a formula for the Shannon entropy rate,

lim

n!1

1

n

H(p

(n)

), of Markov sour
es and examine its rate of 
onvergen
e. As an

appli
ation to hypothesis testing, we provide an alternative simple proof for Stein's

Lemma for testing between stationary irredu
ible Markov sour
es.

We also address the existen
e and the 
omputation of the R�enyi �-divergen
e

rate, lim

n!1

1

n

D

�

(p

(n)

kq

(n)

), between Markov sour
es, where � > 0 and � 6= 1. We

provide numeri
al examples and examine its rate of 
onvergen
e. We also investigate

the limits of the R�enyi divergen
e rate as �! 1 and as � # 0. Similarly, we provide

a formula for the R�enyi entropy rate, lim

n!1

1

n

H

�

(p

(n)

), of Markov sour
es. We also
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study its rate of 
onvergen
e and its limits as �! 1 and as � # 0. As an appli
ation

to sour
e 
oding, we present a generalization of Campbell's variable-length sour
e


oding theorem for dis
rete memoryless sour
es to Markov sour
es. This provides a

new operational 
hara
terization for the R�enyi entropy rate. The main tools used

to obtain Shannon's and R�enyi's information measure rates results are the theory of

non-negative matri
es and Perron-Frobenius theory.

We next establish an operational 
hara
terization for the R�enyi �-divergen
e rate,

by showing, using an information-spe
trum approa
h, that the Csisz�ar forward �-


uto� rate for the hypothesis testing problem between general sour
es with memory

is given by the lim inf �-divergen
e rate with � =

1

1��

. The Csisz�ar forward �-
uto�

rate (� < 0) for hypothesis testing is de�ned as the largest rate R

0

� 0 su
h that for

all rates 0 < E < R

0

, the best (i.e., smallest) probability of type 1 error of sample

size-n tests with probability of type 2 error � e

�nE

is asymptoti
ally vanishing as

e

�n�(E�R

0

)

. We also demonstrate that, under some 
onditions on the large deviation

spe
trum, the Csisz�ar reverse �-
uto� rate for the general hypothesis testing problem

is given by the lim sup �-divergen
e rate with � =

1

1��

. The Csisz�ar reverse �-
uto�

rate (� > 0) for hypothesis testing is de�ned as the smallest rate R

0

� 0 su
h that for

all rates 0 < R

0

< E, the best (i.e., largest) 
orre
t probability of type 1 of sample

size-n tests with probability of type 2 error � e

�nE

is asymptoti
ally vanishing as

e

�n�(E�R

0

)

. Furthermore, we investigate the important 
lasses of dis
rete memoryless

sour
es and sour
es that satisfy the hypotheses of the G�artner-Ellis Theorem for

whi
h the forward and reverse �-
uto� rates are 
omputable. Finally, we 
on
lude

with observations and remarks along with several possible dire
tions for future work.
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Chapter 1

Introdu
tion

The �rst subje
t of this thesis is the investigation of Shannon's and R�enyi's informa-

tion measure rates for �nite-alphabet time-invariant Markov sour
es, along with their

appli
ation to hypothesis testing and sour
e 
oding. The se
ond subje
t is the inves-

tigation of Csisz�ar's 
uto� rates for the hypothesis testing problem between general

sour
es with memory (not ne
essarily Markovian, stationary, ergodi
, et
.). In this


hapter, we present the literature review of arti
les upon whi
h our resear
h is based.

We then spe
ify the main 
ontributions of the thesis and present its outline.

1.1 Literature Review

The 
on
ept of entropy as a measure of information of a random variable was �rst in-

trodu
ed by Shannon in his 
elebrated 1948 paper [55℄. He investigated the properties

of entropy and its appli
ations to sour
e 
oding in the 
ontext of dis
rete memoryless

1



sour
es (DMS). Sin
e then, a 
onsiderable amount of resear
h has fo
used on provid-

ing new measures of information and extending Shannon's results for more general

sour
es (Markov, stationary, ergodi
, et
.). A parti
ular alternative measure to Shan-

non's entropy that brought the attention of many resear
hers is the R�enyi entropy

[52℄, H

�

(p), or entropy of order �. An operational 
hara
terization of R�enyi's entropy

in the 
ontext of sour
e 
oding was �rst given by Campbell in [13℄. He showed that,

for DMS, R�enyi's entropy plays a role analogous to the Shannon entropy in variable-

length sour
e 
oding when the 
ost fun
tion in the 
oding problem is exponential

as opposed to linear. This o

urs in many appli
ations where the pro
essing 
ost of

de
oding is high or the bu�er over
ow due to long 
odewords is important. From

this work, a natural question arises: how 
an one generalize Shannon's and Camp-

bell's variable-length sour
e 
oding theorems for DMS to more general sour
es with

memory, su
h as Markov sour
es. This led us to investigate Shannon's entropy rate,

lim

n!1

1

n

H(p

(n)

), and R�enyi's entropy rate, lim

n!1

1

n

H

�

(p

(n)

), for Markov sour
es.

Previous work on the 
omputation of Shannon's entropy rate for stationary and irre-

du
ible Markov sour
es may be found in [10℄, [18℄, [25℄. In [25℄, the author showed the

existen
e of the Shannon entropy rate for arbitrary Markov sour
es (not ne
essarily

stationary, irredu
ible, et
.), but he did not provide the 
omputational details.

The R�enyi entropy and the R�enyi entropy rate have revealed several operational


hara
terizations in the problem of �xed-length sour
e 
oding [14, 20℄, variable-length

sour
e 
oding [11, 34℄, error exponent 
al
ulations [23℄, and other areas [1, 6, 8, 46℄.

Other important measures, primarily introdu
ed in the hypothesis testing problem

between DMS, are the Kullba
k-Leibler divergen
e [40℄, D(pkq) and the R�enyi diver-

2



gen
e [52℄, D

�

(pkq), or the �-divergen
e. The appli
ation of the Kullba
k-Leibler

divergen
e 
an be found in many areas su
h as approximation of probability distribu-

tions [17℄, [38℄, signal pro
essing [36℄, [37℄, [22℄, pattern re
ognition [9℄, [16℄, et
. In

[26℄, Gray proved that the Kullba
k-Leibler divergen
e rate, lim

n!1

1

n

D(p

(n)

kq

(n)

),

exists between a stationary sour
e p

(n)

and a Markov sour
e q

(n)

. This result 
an also

be found in [59, p. 27℄. In [42℄, the authors noted that the Kullba
k-Leibler diver-

gen
e rate between ergodi
 Markov sour
es exits. Also, in [56℄, Shields presented two

examples for non-Markovian sour
es for whi
h the Kullba
k-Leibler divergen
e rate

does not exist.

The R�enyi divergen
e rate, lim

n!1

1

n

D

�

(p

(n)

kq

(n)

), has played a signi�
ant role in


ertain hypothesis testing questions [39, 44, 45℄. In [44℄, [45℄, the author evaluated

the R�enyi divergen
e rate between two Markov sour
es under the restri
tion that the

initial probabilities are stri
tly positive.

The �-
uto� rate 
on
ept, for sour
e 
oding and hypothesis testing, was �rst

introdu
ed in [20℄ for DMS. In [14℄, the authors generalized the sour
e 
oding �-
uto�

rate for DMS to general sour
es (not ne
essarily stationary, ergodi
, et
.) using an

information spe
trum philosophy whi
h was developed by Han and Verd�u [27℄. With

the aid of this method, Verd�u and Han obtained a general formula for the 
apa
ity

of arbitrary single-user 
hannels (not ne
essarily information stable, stationary, et
.)

without feedba
k [58℄. In [30℄, Han addressed at length many information theoreti


problems using the information spe
trum approa
h whi
h is a very powerful tool that

applies to general sour
es (not ne
essarily Markovian, stationary, ergodi
, et
.) and

general alphabets (
ountable or un
ountable). Several results from this book were

3



re
ently published in the IEEE Transa
tions on Information Theory. In parti
ular,

Han investigated in [28℄ the optimal exponent problem for the probability of de
oding

error and 
orre
t de
oding in �xed-length sour
e 
oding. In [29℄, he studied the

hypothesis testing problem between general sour
es with memory. Spe
i�
ally, he

examined the optimal exponent problem for the type 2 probability of testing error,

as well as the type 2 probability of 
orre
t testing subje
t to an exponential error


onstraint on the type 1 probability of testing error.

1.2 Contributions

The 
ontributions of this thesis (parts of whi
h appeared in [3℄, [4℄, [47℄{[51℄) are as

follows:

� Computable expressions for the Kullba
k-Leibler divergen
e rate and for the

Shannon entropy rate for arbitrary �nite-alphabet Markov sour
es along with

their rate of 
onvergen
e.

� Computable expressions for the R�enyi �-divergen
e rate and for the R�enyi en-

tropy rate for arbitrary �nite-alphabet Markov sour
es along with their rate of


onvergen
e.

� SuÆ
ient 
onditions under whi
h the R�enyi informationmeasure rates for Markov

sour
es redu
e to the Shannon information measure rates as �! 1 and the in-

ter
hangeability of limits between n and � as n!1 and as � # 0.

4



� Generalization of Campbell's variable-length sour
e 
oding theorem for DMS

to Markov sour
es whi
h provides an operational 
hara
terization for the R�enyi

entropy rate.

� A simple proof of Stein's Lemma for hypothesis testing between stationary

irredu
ible Markov sour
es.

� A generalization of Csisz�ar's forward and reverse �-
uto� rates for hypothesis

testing between DMS to general sour
es with memory of arbitrary alphabet.

This yields an operational 
hara
terization for the �-divergen
e rate. An ex-

amination of the important 
lasses of DMS and Markov sour
es for whi
h the

forward and reverse �-
uto� rates are 
omputable is also provided.

1.3 Thesis Overview

The thesis is organized in the following manner.

In Chapter 2, we present some useful properties and results from linear algebra,

spe
i�
ally the theory of non-negative matri
es and Perron-Frobenius theory. We also

present some useful properties and results for dis
rete sto
hasti
 pro
esses, spe
i�
ally

dis
rete Markov 
hains.

In Chapter 3, we provide a 
omputable expression for the Kullba
k-Leibler diver-

gen
e rate between time-invariant Markov sour
es with �nite alphabet and arbitrary

initial distributions. The result is �rst proved for �rst-order Markov sour
es, and is

then extended for Markov sour
es of arbitrary order. We illustrate it numeri
ally and

5



examine its rate of 
onvergen
e. Similarly, we address the 
omputation and the rate

of 
onvergen
e for the Shannon entropy rate of Markov sour
es. Using the formula for

the Kullba
k-Leibler divergen
e rate, we provide a simple alternative proof of Stein's

Lemma for testing between stationary irredu
ible Markov sour
es.

In Chapter 4, we generalize Nemetz's result by establishing a formula for the

�-divergen
e rate between two time-invariant Markov sour
es with arbitrary initial

distributions and illustrate it numeri
ally. The result is �rst proved for �rst-order

Markov sour
es, and is then extended for Markov sour
es of arbitrary order. We then

show that if the probability transition matrix P asso
iated with the Markov sour
e

under p

(n)

is absolutely 
ontinuous with respe
t to the probability transition matrix

Q asso
iated with the Markov sour
e under q

(n)

and if the initial distribution p under

p

(n)

is absolutely 
ontinuous with respe
t to the initial distribution q under q

(n)

, then

the R�enyi divergen
e rate redu
es to the Kullba
k-Leibler divergen
e rate as �! 1.

We also show that the inter
hangeability of limits as n !1 and as � # 0 is always

valid. Furthermore, we address similar questions for the R�enyi entropy rate. As an

appli
ation to sour
e 
oding, we provide a new operational 
hara
terization for the

R�enyi entropy rate by generalizing Campbell's variable-length sour
e 
oding theorem

for DMS to Markov sour
es.

In Chapter 5, we review relevant previous results by Han on the optimal asymp-

toti
 exponent of the probability of testing error. We then derive a general expression

for the forward �-
uto� rate for hypothesis testing between arbitrary sour
es. We

demonstrate that the liminf �-divergen
e rate, where � =

1

1��

and � < 0, provide the

expression for the forward �-
uto� rate. We also provide numeri
al examples based

6



on DMS using Cramer's Theorem [12℄.

In Chapter 6, we review relevant previous de�nitions and results by Csisz�ar and

Han on the optimal asymptoti
 exponent of the probability of 
orre
t testing. Under

two 
onditions on the log likelihood ratio large deviation spe
trum, �(R), we show

that the reverse �-
uto� rate is given by the lim sup �-divergen
e rate, where � =

1

1��

and 0 < � < �

max

, where �

max

is the largest � < 1 for whi
h the lim sup

1

1��

-divergen
e rate is �nite. For �

max

� � < 1, we provide an upper bound on

the reverse 
uto� rate. In parti
ular, we examine �nite-alphabet independent and

identi
ally distributed (i.i.d.) observations and sour
es that satisfy the hypotheses

of the G�artner-Ellis Theorem [12℄. We show that in these 
ases, the 
onditions on

�(R) are satis�ed and that the reverse 
uto� rate admits a simple form. We also

provide several numeri
al examples to illustrate our results. The main tools used in

obtaining the forward and reverse 
uto� rates results are large deviation theory and

the information spe
trum approa
h.

In Chapter 7, we 
on
lude with a summary along with several dire
tions for future

work.

7



Chapter 2

Preliminaries: Non-Negative

Matri
es and Dis
rete Markov

Sour
es

2.1 Non-Negative Matri
es and Perron-Frobenius

Theory

We begin with some useful de�nitions and important properties about determinants

that 
an be found in any text book in linear algebra su
h as [32℄. Throughout,

A := (a

ij

) denotes an M �M square matrix.

De�nition 2.1 A pair of numbers j

k

and j

p

in a permutation (j

1

; j

2

; : : : ; j

M

) form

an inversion if j

k

> j

p

while k < p, that is, if a larger number in the permutation

8



pre
edes a smaller one. Ea
h permutation j = (j

1

; j

2

; : : : ; j

M

) has a 
ertain number

of inversions asso
iated with it, denoted brie
y by t(j). The permutation is 
alled

odd or even a

ording to whether the number t(j) is odd or even.

De�nition 2.2 The determinant of A, denoted by det(A) or jAj, is de�ned as

jAj =

X

j

(�1)

t(j)

a

1j

1

a

2j

2

� � �a

Mj

M

; (2.1)

where j varies over all the M ! permutations of 1; 2; : : : ;M .

Lemma 2.1 If B is obtained from A by multiplying one of its rows (or 
olumns) by

a s
alar k, then jBj = kjAj.

Lemma 2.2 If B is obtained by inter
hanging two rows (or 
olumns) of A, then

jBj = �jAj.

Lemma 2.3 If B is obtained from A by adding the elements of its i-th row (or


olumn) to the 
orresponding elements of its j-th row (or 
olumn) multiplied by a

s
alar �, then jBj = jAj.

Lemma 2.4 Suppose that the entries of A are fun
tions of some parameter �. Let

jAj

i

be the determinant obtained from A by repla
ing the elements in the i-th row

by their derivatives with respe
t to � and leaving the other rows un
hanged. Then

jAj

0

=

M

X

i=1

jAj

i

;

where jAj

0

is the derivative of jAj with respe
t to �.

9



Proof: If we di�erentiate (2.1), we get that

jAj

0

=

X

i

(�1)

t(j)

(a

1j

1

a

2j

2

: : : a

Mj

M

)

0

;

where j varies over allM ! permutations of 1; 2; : : : ;M . By the produ
t rule of deriva-

tives

(a

1j

1

a

2j

2

: : : a

Mj

M

)

0

= a

0

1j

1

a

2j

2

: : : a

Mj

M

+ a

1j

1

a

0

2j

2

: : : a

Mj

M

+ � � �+ a

1j

1

a

2j

2

: : : a

0

Mj

M

:

Therefore

jAj

0

=

X

j

(�1)

t(j)

a

0

1j

1

a

2j

2

� � �a

Mj

M

+

X

j

(�1)

t(j)

a

1j

1

a

0

2j

2

� � �a

Mj

M

+ � � �+

X

j

(�1)

t(j)

a

1j

1

a

2j

2

� � �a

0

Mj

M

:

Hen
e, we 
on
lude that jAj

0

=

P

i

jAj

i

:

De�nition 2.3 A minor of order M � 1 of A is de�ned to be the determinant of a

submatrix of A obtained by deleting one row and one 
olumn. The minor obtained

by deleting the i-th row and the j-th 
olumn is denoted by L

ij

, (1 � i; j �M). The


ofa
tor A

ij

of an element a

ij

is given by: A

ij

= (�1)

i+j

L

ij

.

Lemma 2.5 The determinant of A 
an be 
omputed as follows:

jAj = a

i1

A

i1

+ a

i2

A

i2

+ � � �+ a

iM

A

iM

;

or similarly,

jAj = a

1j

A

1j

+ a

2j

A

2j

+ � � �+ a

Mj

A

Mj

:

10



De�nition 2.4 A right eigenve
tor, b, 
orresponding to an eigenvalue �, is a nonzero

ve
tor su
h that Ab = �b. A left eigenve
tor, a, 
orresponding to �, is a nonzero ve
tor

su
h that aA = �a. Note that a is a row ve
tor while b is a 
olumn ve
tor.

De�nition 2.5 A Jordan blo
k J

s

(�) 
orresponding to an eigenvalue � of A is a s�s

upper triangular matrix of the form

J

s

(�) =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

� 1 0 : : : 0

0 � 1 : : : 0

0 : : : : : : : : : 0

0 : : : : : : � 1

0 : : : : : : : : : �

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

De�nition 2.6 An M �M Jordan matrix J for A is of the form

J =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

J

n

1

(�

1

) 0 : : : : : : 0

0 J

n

2

(�

2

) 0 : : : 0

0 : : : : : : : : : 0

0 : : : : : : : : : 0

0 : : : : : : : : : J

n

r

(�

r

)

3

7

7

7

7

7

7

7

7

7

7

7

7

5

; n

1

+ n

2

+ : : :+ n

r

=M;

where 0 denotes a zero matrix (i.e., all entries are zeros) with appropriate dimension.

Theorem 2.1 [32, p. 126℄ Let �

i

, i = 1; : : : ; r be the eigenvalues of A (not ne
es-

sarily distin
t). There is an invertible matrix S su
h that

A = SJS

�1

:

11



The following limiting behavior result of A 
an be proved using its Jordan form.

Theorem 2.2 [32, p. 138℄ The matrix A

m


onverges to the zero matrix 0 as

m!1 i� the eigenvalues of A have modulus stri
tly less than 1.

Lemma 2.6 If all the eigenvalues of A have modulus stri
tly less than 1, then I �A

is invertible.

Proof: Note �rst that if � is an eigenvalue of A, then 1�� is an eigenvalue of I�A.

Indeed, if Ab = �b, then

(A� I)b = Ab� Ib = �b� b = (�� 1)b:

Therefore, all the eigenvalues of I � A are non-zero. Hen
e, it is invertible sin
e its

determinant is non-zero (the determinant is equal to the produ
t of the eigenvalues

by simply 
onsidering the Jordan blo
k form of A).

De�nition 2.7 The algebrai
 multipli
ity of an eigenvalue � is its multipli
ity as a

root of the 
hara
teristi
 equation det(A� �I) = 0, where I is the identity matrix.

Let us also re
all some de�nitions and results about non-negative matri
es and

Perron Frobenius theory. Most of what follows may be found in [54, Chapter 1℄, [24,

Chapter 4℄, and [32, Chapter 8℄.

De�nition 2.8 A Matrix or a ve
tor is positive if all its 
omponents are positive and

non-negative if all its 
omponents are non-negative.

12



Throughout, unless otherwise stated, A denotes an M � M non-negative matrix

(A � 0) with elements a

ij

. The ij-th element of A

m

is denoted by a

(m)

ij

. We write

i! j if a

(m)

ij

> 0 for some positive integer m, and we write i 6! j if a

(m)

ij

= 0 for every

positive integer m.

De�nition 2.9 Two indi
es i and j 
ommuni
ate (i$ j) if i! j and j ! i.

De�nition 2.10 If i ! j but j 6! i for some index j, then the index i is 
alled

inessential. An index whi
h leads to no index at all (this arises when A has a row of

zeros) is also 
alled inessential.

De�nition 2.11 An index i is essential if i! j implies i $ j, and there is at least

one j su
h that i! j.

With these de�nitions, it is possible to partition the set of indi
es f1; 2; : : : ;Mg into

disjoint sets, 
alled 
lasses. All essential indi
es (if any) 
an be subdivided into essen-

tial 
lasses in su
h a way that all the indi
es belonging to one 
lass 
ommuni
ate, but


annot lead to an index outside the 
lass. Moreover, all inessential indi
es (if any)

may be divided into two types of inessential 
lasses: self-
ommuni
ating 
lasses and

non self-
ommuni
ating 
lasses. Ea
h self-
ommuni
ating inessential 
lass 
ontains

inessential indi
es whi
h 
ommuni
ate with ea
h other. A non self-
ommuni
ating

inessential 
lass is a singleton set whose element is an index whi
h does not 
ommu-

ni
ate with any index (in
luding itself).

De�nition 2.12 A matrix is irredu
ible if its indi
es form a single essential 
lass;

i.e., if every index 
ommuni
ates with every other index.

13



De�nition 2.13 The period of an index i, denoted d(i), is de�ned as the greatest


ommon divisor (g
d) of those values of n for whi
h a

(n)

ii

> 0. If the period is 1, the

index is aperiodi
, and if the period is 2 or more, the index is periodi
.

Proposition 2.1 [54, p. 17℄ In a 
ommuni
ating 
lass, all indi
es have the same

period.

De�nition 2.14 An irredu
ible matrix is said to be periodi
 with period d, if the

period of any one (and so of ea
h one) of its indi
es satis�es d > 1, and is said to be

aperiodi
 if d = 1.

Proposition 2.2 [54, p. 15℄ By renumbering the indi
es (i.e., by performing row

and 
olumn permutations), it is possible to put a non-negative matrix A in the 
anon-

i
al form

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

A

1

: : : 0 0 : : : 0 : : : : : : 0

0 : : : 0 0 : : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

0 : : : A

h

0 : : : 0 : : : : : : 0

A

h+11

: : : A

h+1h

A

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

A

g1

: : : A

gh

A

gh+1

: : : A

g

: : : : : : 0

A

g+11

: : : A

g+1h

A

g+1h+1

: : : A

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : 0

A

l1

: : : A

lh

A

lh+1

: : : A

lg

A

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

14



where A

i

, i = 1; : : : ; g, are irredu
ible square matri
es (periodi
 in general), and in

ea
h row i = h + 1; : : : ; g at least one of the matri
es A

i1

; A

i2

; : : : ; A

ii�1

is not zero.

The matrix A

i

for i = 1; : : : ; h 
orresponds to the essential 
lass C

i

; while the matrix

A

i

for i = h + 1; : : : ; g 
orresponds to the self-
ommuni
ating inessential 
lass C

i

.

The other diagonal blo
k sub-matri
es whi
h 
orrespond to non self-
ommuni
ating


lasses C

i

, i = g + 1; : : : ; l, are 1� 1 zero matri
es. In every row i = g + 1; : : : ; l any

of the matri
es A

i1

; : : : ; A

ii�1

may be zero.

De�nition 2.15 A 
lass C

j

is rea
hable from another 
lass C

i

where j = 1; : : : ; l and

i = h + 1; : : : ; l if A

ij

6= 0, or if for some i

1

; : : : ; i




, A

ii

1

6= 0,A

i

1

i

2

6= 0,. . . ,A

i




;j

6= 0,

where 
 is at most l � 1 (sin
e there are l 
lasses).

Remark: 
 
an be viewed as the number of steps needed to rea
h 
lass C

j

starting

from 
lass C

i

. Note that from the 
anoni
al form of A, the 
lass C

j

is rea
hable from


lass C

i

if A

(
)

ij

6= 0 for some 
 = 1; : : : ; l� 1, where A

(
)

ij

is the ij-th submatrix of A




.

Note also that no 
lass 
an be rea
hed from any of the 
lasses C

1

; : : : ; C

h

sin
e they

are essential 
lasses.

15



Example: Consider the following non-negative matrix A along with its 
anoni
al

form A




.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 1 0 0 0

0 0 1 1 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 0

1 1 0 0 1 0 0

0 0 1 0 0 0 0

1 0 1 0 1 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; A




=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 1 0 1 1 0

1 0 0 1 1 0 0

1 0 1 0 1 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

The 
anoni
al form A




is obtained by permuting the �rst and third rows and 
olumns

and the se
ond and sixth rows and 
olumns of A. Note that A




has 2 essential 
lasses,

C

1

= f1; 2g and C

2

= f3; 4g, 1 inessential self-
ommuni
ating 
lass, C

3

= f5; 6g, and

1 inessential non self-
ommuni
ating 
lass, C

4

= f7g. Also, note that the 
lass C

1

is

not rea
hable from the 
lass C

2

(sin
e C

1

and C

2

are essential 
lasses), however it is

rea
hable from C

3

and C

4

.

Proposition 2.3 (Perron) [24, p. 115℄ If A is positive, then A has a real positive

eigenvalue � with algebrai
 multipli
ity 1 that is greater than the magnitude of ea
h

other eigenvalue. There is a positive left (right) eigenve
tor, a (b), 
orresponding to

�, where a is a row ve
tor and b is a 
olumn ve
tor.

The theory of non-negative matri
es was initiated by Perron for positive matri
es

and generalized later by Frobenius for irredu
ible matri
es. The key idea is that if

A is irredu
ible, then (I + A)

M�1

> 0, where I is the identity matrix. The latter

16



inequality follows dire
tly from the de�nition of an irredu
ible matrix. Indeed, if A

is irredu
ible, then for all i; j = 1; : : : ;M , a

(n)

ij

> 0, for some 1 � n � M � 1.

Proposition 2.4 (Frobenius) [24, p. 115℄ If A is irredu
ible, then A has a real

positive eigenvalue � that is greater than or equal to the magnitude of ea
h other

eigenvalue. There is a positive left (right) eigenve
tor, a (b), 
orresponding to �,

where a is a row ve
tor and b is a 
olumn ve
tor.

The proof relies on the fa
t that (I+A)

M�1

> 0 and the fa
t that if � is an eigenvalue

of A, then 1 + � is an eigenvalue of I +A. Also, I +A and A have exa
tly the same

eigenve
tors.

Proposition 2.5 [32, p. 492℄ Suppose A is irredu
ible and let R

i

, i = 1; : : : ;M

denote the sum of the i-th row. Also, let R

max

= maxfR

1

; : : : ; R

M

g and R

min

=

minfR

1

; : : : ; R

M

g. Then the largest positive real eigenvalue � satis�es

R

min

� � � R

max

:

The following lemma follows by appropriately modifying the proof of the above propo-

sition.

17



Lemma 2.7 If A is irredu
ible and the row sums are not all identi
al, then the largest

positive real eigenvalue � satis�es,

R

min

< � < R

max

:

Proof: Let � be the largest positive real eigenvalue of A with asso
iated stri
tly

positive left eigenve
tor a, whi
h exists by Proposition 2.4. Without loss of generality

a 
an be normalized, i.e., the sum of its 
omponents is equal to 1. Let 1

t

be the row

ve
tor

1

t

= (1; : : : ; 1):

Note that a1 = 1, where t denotes the transpose operation. We have aA = �a. Hen
e

aA1 = �a1 = �. On the other hand

aA1 = a(R

1

; : : : ; R

M

)

t

< a(R

max

; : : : ; R

max

)

t

=

M

X

i=1

a

i

R

max

= R

max

Therefore � < R

max

. Similarly, we 
an show that � > R

min

. Finally we 
on
lude that

R

min

< � < R

max

:

18



Proposition 2.6 Suppose A is irredu
ible. Let � be the largest positive real eigen-

value with asso
iated right positive eigenve
tor b. Then A

m

� �

m

C (i.e., a

(m)

ij

�

�

m




ij

), for all m = 1; 2; : : :, where C = (

max

1�k�M

b

k

min

1�k�M

b

k

) is a matrix with identi
al entries

that are independent of m.

Proof: If Ab = �b, then A

m

b = �

m

b. We have that

�

m

( max

1�k�M

b

k

) � �

m

b

i

=

M

X

j=1

a

(m)

ij

b

j

� ( min

1�k�M

b

k

)

M

X

j=1

a

(m)

ij

� ( min

1�k�M

b

k

)a

(m)

ij

;

for all i = 1; : : : ;M and j = 1; : : : ;M . Sin
e b > 0, we obtain the desired result.

Proposition 2.7 [32, p. 508℄ If A is irredu
ible, then the largest positive real

eigenvalue has algebrai
 multipli
ity 1.

Proof: Let B = A=�, where � is the largest positive real eigenvalue of A. By the

previous 
orollary, B

m

is bounded above by C for all m = 1; 2; : : : Note that the

largest positive real eigenvalue of B is 1. The blo
k 
orresponding to this eigenvalue

in the Jordan 
anoni
al form of B must have size 1�1, be
ause otherwise, the entries

of this blo
k diverge as m ! 1 whi
h 
ontradi
ts the fa
t that B

m

is uniformly

bounded for all m = 1; 2; : : :

19



Proposition 2.8 [41, p. 371℄ The eigenvalues of a matrix are 
ontinuous fun
tions

of the entries of the matrix.

This proposition follows from that fa
t that the roots of a polynomial are 
ontinuous

fun
tions of its 
oeÆ
ients, and the fa
t that the eigenvalues are the roots of the


hara
teristi
 equation of the matrix.

Proposition 2.9 [32, p. 372℄ Let A(t) be an M � M matrix whose entries are

all di�erentiable fun
tions at t = 0. Assume that � is an eigenvalue of A(0) = A

of algebrai
 multipli
ity 1, and that �(t) is an eigenvalue of A(t), for small t, su
h

that �(0) = �. Let a (b) be the left (right) eigenve
tor 
orresponding to �, su
h that

ab = 1. Then

�

0

(t)j

t=0

= aA

0

(t)j

t=0

b:

Proof: By the previous proposition, for all suÆ
iently small t there is an eigenvalue

�(t) of A(t) su
h that �(0) = �. There is also a left (right) eigenve
tor a(t) (b(t))


orresponding to �(t) su
h that a(t)b(t) = 1. If we di�erentiate this last normalization


ondition, we obtain the identity

a

0

(t)b(t) + a(t)b

0

(t) = 0: (2.2)

Sin
e A(t)b(t) = �(t)b(t) for all small t, we also have the identity a(t)A(t)b(t) =

�(t)a(t)b(t) = �(t). If we di�erentiate this identity, we obtain

�

0

(t) = a

0

(t)A(t)b(t) + a(t)A

0

(t)b(t) + a(t)A(t)b

0

(t):

20



But sin
e A(t)b(t) = �(t)b(t) and a(t)A(t) = �(t)a(t), we obtain via (2.2) that

�

0

(t) = �(t)fa

0

(t)b(t) + a(t)b

0

(t)g+ a(t)A

0

(t)b(t) = a(t)A

0

(t)b(t):

Thus

�

0

(t)j

t=0

= aA

0

(t)j

t=0

b:

2.2 Dis
rete Markov Sour
es and Sto
hasti
 Ma-

tri
es

Most of the following 
an be found in [18, Chapter 4℄ and [24, Chapter 4℄.

De�nition 2.16 A dis
rete sto
hasti
 pro
ess fX

1

; X

2

; : : :g with �nite-alphabet X =

f1; 2; : : : ;Mg is said to be a Markov sour
e of order k if, for n > k,

PrfX

n

= i

n

jX

n�1

= i

n�1

; X

n�2

= i

n�2

; : : : ; X

1

= i

1

g =

PrfX

n

= i

n

jX

n�1

= i

n�1

; X

n�2

= i

n�2

; : : : ; X

n�k

= i

n�k

g;

for all i

1

; : : : ; i

n

2 X .

De�ne fW

n

g as the pro
ess obtained by k-step blo
king the Markov sour
e fX

n

g; i.e.,

W

n

4

= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then

PrfW

n

= w

n

jW

n�1

= w

n�1

; : : : ;W

1

= w

1

g = PrfW

n

= w

n

jW

n�1

= w

n�1

g;
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and hen
e, fW

n

g is a �rst order Markov sour
e with M

k

states. We herein 
onsider

Markov sour
es of �rst order unless otherwise stated.

De�nition 2.17 A sto
hasti
 pro
ess is said to be stationary if the joint distribution

of any subset of the sequen
e of random variables is invariant with respe
t to shifts

in time index, i.e.,

PrfX

1

= i

1

; X

2

= i

2

; : : : ; X

n

= i

n

g = PrfX

1+l

= i

1

; X

2+l

= i

2

; : : : ; X

n+l

= i

n

g;

for every time shift l and for all i

1

; : : : ; i

n

2 X .

De�nition 2.18 A Markov sour
e is said to be time-invariant if the 
onditional

probability does not depend on n, i.e., for n > 1,

PrfX

n

= jjX

n�1

= ig = PrfX

2

= jjX

1

= ig; for all i; j 2 X :

If fX

1

; X

2

; : : :g is a Markov sour
e, then X

n

is 
alled the state at time n. A time-

invariant Markov sour
e is 
hara
terized by its initial state and a probability transition

matrix P = (p

ij

), i; j 2 X , where p

ij

= PrfX

n+1

= jjX

n

= ig. From now on, we will

only deal with time-invariant Markov sour
es.

De�nition 2.19 A distribution on the states su
h that the distribution at time n+1

is the same as the distribution at time n is 
alled a stationary distribution and is

denoted by � = (�

1

; : : : ; �

M

).
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Remark: For a �nite-alphabet Markov sour
e with probability transition matrix P ,

its stationary distribution � always exists [24, p. 110℄ and 
an be obtained by solving

�P = �. Furthermore, the sour
e is stationary if the distribution of its initial state

is given by �.

De�nition 2.20 A Markov 
hain is irredu
ible if its probability transition matrix P

is irredu
ible. It is ergodi
 if P is irredu
ible and aperiodi
.

De�nition 2.21 The entropy rate of a sto
hasti
 pro
ess fX

1

; X

2

; : : :g is de�ned by

H(X ) = lim

n!1

1

n

H(X

1

; X

2

; : : : ; X

n

)

when the limit exists.

De�nition 2.22 We 
an also de�ne a related quantity for entropy rate:

H

0

(X ) = lim

n!1

H(X

n

jX

n�1

; X

n�2

; : : : ; X

1

);

when the limit exists.

The two above quantities 
orrespond to two di�erent notions of entropy rate. The

�rst is the per symbol of the n random variables, and the se
ond is the 
onditional

entropy of the last random variable given the past.

Proposition 2.10 [18, p. 64℄ For a stationary sour
e, H(X ) and H

0

(X ) exist and

are equal.
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Proposition 2.11 [18, p. 66℄, [25, p. 68℄ Let fX

1

; X

2

; : : :g be a Markov sour
e

with stationary distribution � and transition matrix P . Then the entropy rate is

given by

H(X ) = H(X

2

jX

1

) = �

X

i;j2X

�

i

p

ij

log p

ij

;

if the sour
e is stationary. The same result also holds for irredu
ible (not ne
essarily

stationary) Markov sour
es.

Example: Finite-memory Polya 
ontagion pro
ess: Consider the following sour
e

fX

1

; X

2

; : : :g whi
h is generated a

ording to the following urn s
heme as des
ribed

in [2℄: An urn initially 
ontains T balls{R red and S bla
k (T = R+ S). At the j-th

draw, j=1,2,. . . , we sele
t a ball from the urn and repla
e it with 1 +4 balls of the

same 
olor (4 > 0); then, k draws later{after the (j + k)-th draw{we retrieve from

the urn 4 balls of the 
olor pi
ked at time j. Let � = R=T < 1=2, � = 1� � = S=T

and Æ = 4=T . Then, the sour
e fX

i

g 
orresponds to the out
omes of the draws from

the urn, where

X

i

=

8

>

<

>

:

1; if the i-th ball drawn is red

0; if the i-th ball drawn is bla
k

It was shown in [2℄ that fX

1

; X

2

; : : :g is a stationary ergodi
 Markov sour
e of order

k with entropy rate given by

H(X ) = H(X

k+1

jX

k

; : : : ; X

1

) =

k

X

i=0

0

B

�

k

i

1

C

A

L

i

h

b

�

� + iÆ

1 + kÆ

�

;

where

L

i

=

Q

i�1

j=0

(�+ jÆ)

Q

k�i�1

l=0

(� + lÆ)

Q

k�1

m=1

(1 +mÆ)

;
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and

h

b

(a) := �a log

2

a� (1� a) log

2

(1� a)

is the binary entropy fun
tion.

Proposition 2.12 [26, p. 40℄ The Kullba
k-Leibler divergen
e rate between a sta-

tionary sour
e p

(n)

, with stationary distribution �, and a Markov sour
e q

(n)

, with

transition matrix Q = (q

ij

), is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) = �H

p

(X )�

X

i;j2X

�

i

p

ij

log q

ij

;

where H

p

(X ) is the entropy rate of the stationary sour
e p

(n)

whi
h exists by Propo-

sition 2.10.

Let us re
all some useful results from Perron-Frobenius theory in the 
ontext of

sto
hasti
 matri
es. An immediate 
onsequen
e of Propositions 2.4 and 2.5 is the

following result.

Corollary 2.1 Let P be the probability transition matrix for an irredu
ible Markov

sour
e. Then � = 1 is an eigenvalue of P whi
h is greater than or equal to the

magnitude of ea
h other eigenvalue.

Proposition 2.13 [32, p. 524℄ Let P be the probability transition matrix for an

irredu
ible Markov sour
e. Also, let a (b) be the left (right) eigenve
tor asso
iated

with the largest positive real eigenvalue � = 1 su
h that ab = 1. Also, let L = ba.

Then

lim

n!1

1

n

n

X

i=1

P

i

= L:
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Moreover, there exists a �nite positive 
onstant C = C(P ) su
h that
















1

n

n

X

i=1

P

i

� L
















1

�

C

n

;

for all n = 1; 2; : : : and k � k

1

is the l

1

norm, where the l

1

norm of an M �M matrix

A is de�ned by kAk

1

4

= max

1�i;j�M

ja

ij

j.

Proof: We have that

1

n

n

X

i=1

P

i

=

1

n

n

X

i=1

[(P � L)

i

+ L℄ (2.3)

= L+

1

n

n

X

i=1

(P � L)

i

= L+

1

n

(P � L)(I � (P � L)

n

)(I � (P � L))

�1

(2.4)

= L+

1

n

(P � L)(I � P

n

+ L)(I � (P � L))

�1

; (2.5)

where (2.3) follows from the identity (P � L)

m

= P

m

� L for all m = 1; 2; : : : (whi
h


an be shown by indu
tion on m) and (2.4) follows from the fa
t that if B is a square

matrix su
h that I �B is invertible, then

P

n

i=1

B

i

= B(I �B

n

)(I �B)

�1

. It 
an be

shown that the matrix I � (P � L) is indeed invertible. The equality (2.5) follows

also from the identity (P �L)

m

= P

m

�L. The only part in (2.5) that depends on n

is the fa
tor 1=n and the term P

n

. But, by Proposition 2.6, P

n

is uniformly bounded

as n!1. Thus,

1

n

P

n

i=1

P

i


onverges to L, and the order of 
onvergen
e is 1=n.

26



Remark: The left eigenve
tor a is the unique stationary distribution � of P asso
i-

ated with the largest positive real eigenvalue � = 1 and b

t

= (1; : : : ; 1).

With the aid of the above proposition and Proposition 2.2, it 
an be shown that

for an arbitrary sto
hasti
 matrix P the Ces�aro limit, lim

n!1

1

n

P

n

i=1

P

i

, exists and

is 
omputable.

Proposition 2.14 [19, p. 129℄ Let P be the probability transition matrix for an

arbitrary Markov sour
e with asso
iated 
anoni
al form as in Proposition 2.2. Let a

i

(b

i

) be the left (right) eigenve
tor of P

i

asso
iated with � = 1 su
h that a

i

b

i

= 1, for

i = 1; : : : ; h. Let

A =

2

6

6

6

6

6

6

6

6

4

P

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : P

h

3

7

7

7

7

7

7

7

7

5

; B =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P

h+11

: : : P

h+1h

: : : : : : : : :

P

g1

: : : P

gh

P

g+11

: : : P

g+1h

: : : : : : : : :

P

l1

: : : P

lh

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Also, let

C =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : :

P

gh+1

: : : P

g

: : : : : : 0

P

g+1h+1

: : : P

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : :

P

lh+1

: : : P

lg

P

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; D =

2

6

6

6

6

6

6

6

6

4

b

1

a

1

: : : 0

0 : : : 0

: : : : : : : : :

0 : : : b

h

a

h

3

7

7

7

7

7

7

7

7

5

:
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We have the following:

lim

n!1

1

n

n

X

i=1

P

i

=

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

;

where I is the identity matrix.

Proof: We have that

P

n

=

2

6

4

A

n

0

B

(n)

C

n

3

7

5

:

Note that

B

(n)

= BA

n�1

+ CB

(n�1)

;

by simply equating the entries of the matrix P

n

with the entries of the matrix PP

n�1

.

Therefore

n

X

i=1

B

(i)

= B

n

X

i=1

A

i�1

+ C

n

X

i=1

B

(i�1)

;

where B

(0)

:= 0 and A

0

:= I. Hen
e

1

n

n

X

i=1

B

(i)

= B

1

n

n

X

i=1

A

i�1

+ C

1

n

n

X

i=1

B

(i�1)

: (2.6)

By Proposition 2.13

lim

n!1

1

n

n

X

j=1

P

j

i

= b

i

a

i

;

for i = 1; : : : ; h, where b

i

(a

i

) is the right (left) eigenve
tor 
orresponding to 1 whi
h

is the largest positive real eigenvalue 
orresponding to all the sto
hasti
 matri
es P

i

su
h that a

i

b

i

= 1. It follows that

lim

n!1

1

n

n

X

j=1

A

j

= D =

2

6

6

6

6

6

4

b

1

a

1

0 0

0

.

.

.

0

0 0 b

h

a

h

3

7

7

7

7

7

5

:
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If P

i

, i = h + 1; : : : ; g has all row sums identi
al, then by Proposition 2.5, its largest

positive real eigenvalue is less than 1. Otherwise, by Lemma 2.7, its largest positive

real eigenvalue is less than 1. Hen
e, all the eigenvalues of C have modulus less than

1. Therefore C

n


onverges to the zero matrix 0, and hen
e

lim

n!1

1

n

n

X

j=1

C

j

= 0:

Letting n!1 in (2.6), we 
on
lude that

lim

n!1

1

n

n

X

j=1

B

(j)

= (I � C)

�1

BD;

where I � C is invertible by Lemma 2.6, and hen
e the desired result.

Proposition 2.15 (Perron's formula) [53, Se
tion 5℄ Let �

0

; �

1

; : : : ; �

r

be the

eigenvalues of A, with algebrai
 multipli
ities m

0

; m

1

; : : : ; m

r

, respe
tively. De�ne

 

t

(�) by

A(�) = j�I � Aj = (�� �

t

)

m

t

 

t

(�); t = 0; : : : ; r;

su
h that  

t

(�) are polynomials of degree M �m

t

whi
h di�er from zero for � = �

t

.

Then, we have identi
ally for all i; j = 1; : : : ;M and k = 1; 2; 3; : : :

a

(k)

ij

=

r

X

t=0

1

(m

t

� 1)!

D

m

t

�1

�

�

�

k

A

ij

(�)

 

t

(�)

�

�=�

t

;

where A

ij

(�) is the 
ofa
tor of the ij-th element of �I � A. In this equation, D

m

t

�1

�

denotes the derivative of order m

t

� 1 with respe
t to �, evaluated at � = �

t

.

Note that Perron's formula permits to express an arbitrary element a

(k)

ij

of the matrix

A

k

in terms of the eigenvalues of A and the 
ofa
tors of the matrix �I � A.
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Lemma 2.8 [53, p. 10℄ Let A(�) = j�I �Aj. Denote by A

ij

(�) the 
ofa
tor of the

ij-th element of the matrix �I � A. I is the M �M identity matrix. Then

dA(�)

d�

=

M

X

i=1

A

ii

(�):

Proof: By applying Lemma 2.4 to the determinant A(�), the i-th row of A

i

(�)


onsists of zeros ex
ept the i-th position whi
h is 1. By Lemma 2.5, expanding ea
h

A

i

(�) along this row yields the desired result.

Lemma 2.9 [53, p. 10℄ Suppose in addition to the previous lemma that � = 1 and

ea
h row of A sums to 1. Then

A

i1

(1) = A

i2

(1) = � � � = A

iM

(1);

for all i = 1; 2; : : : ;M .

Proof: This statement follows by using the properties of determinants in Lemma

2.1, Lemma 2.2, and Lemma 2.3.

Proposition 2.16 [53, p. 17℄ Let P be the probability transition matrix for an

ergodi
 Markov sour
e. Then the stationary distribution � is given by

�

i

=

P

ii

(1)

P

j

P

jj

(1)

; i = 1; : : : ;M;

where P

ij

(1) denotes the 
ofa
tor of the ij-th entry of the matrix I � P , and I is the

identity matrix.
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Proof: Applying Proposition 2.15 to P yields

p

(k)

ij

=

1

(m

0

� 1)!

D

m

0

�1

�

�

�

k

P

ij

(�)

p

0

(�)

�

�=1

+

r

X

t=1

1

(m

t

� 1)!

D

m

t

�1

�

�

�

k

P

ij

(�)

p

t

(�)

�

�=�

t

; (2.7)

in whi
h �

0

= 1; �

1

; : : : ; �

r

are the eigenvalues of P and m

0

; m

1

; : : : ; m

r

their respe
-

tive multipli
ities, so thatm

0

+m

1

+ � � �+m

r

=M . The polynomials p

0

(�); p

1

(�); : : : ;

p

r

(�) are de�ned by

P (�) = (�� 1)

m

0

p

0

(�) = (�� �

t

)

m

t

p

t

(�); t = 1; : : : ; r;

where

p

0

(1) 6= 0; p

t

(�

t

) 6= 0; t = 1; : : : ; r:

This relationship has a parti
ular importan
e for the ergodi
 Markov 
hain asso
iated

with P sin
e �

0

= 1 is a simple eigenvalue, i.e., m

0

= 1. In this 
ase, (2.7) assumes

the form

p

(k)

ij

=

P

ij

(1)

p

0

(1)

+

r

X

t=1

1

(m

t

� 1)!

D

m

t

�1

�

�

�

k

P

ij

(�)

p

t

(�)

�

�=�

t

: (2.8)

By Lemma 2.9, P

ij

(1) = P

ii

(1). Also, sin
e P (�) = (� � 1)p

0

(�), then, P

0

(�) =

p

0

(�) + (�� 1)p

0

0

(�), and, P

0

(1) = p

0

(1) 6= 0.

But by Lemma 2.8 P

0

(�) =

P

i

P

ii

(�). Therefore, P

0

(1) =

P

i

P

ii

(1) 6= 0.

For simpli
ity let

1

(m

t

� 1)!

D

m

t

�1

�

�

�

k

P

ij

(�)

�

k

t

p

t

(�)

�

�=�

t

4

= Q

ijt

(k):

Clearly, Q

ijt

(k) represents a polynomial in k of degree not greater than (m

t

� 1), and

we 
an therefore write

Q

ijt

(k) =

m

t

�1

X

h=0

Q

(h)

ijt

k

h

;
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where the Q

(h)

ijt

represent some spe
i�
 numbers whi
h do not depend on k. We


on
lude that (2.8) 
an be written as

p

(k)

ij

= p

i

+

r

X

t=1

Q

ijt

(k)�

k

t

;

where

p

i

=

P

ii

(1)

P

0

(1)

=

P

ii

(1)

P

j

P

jj

(1)

:

The magnitude of all the remaining eigenvalues of P are less than unity. Sin
e Q

ijt

(k)

are polynomials of �nite degree in k, it follows that

lim

k!1

p

(k)

ij

= p

i

; i = 1; 2; : : : ;M;

sin
e

lim

k!1

k

h

�

k

= 0:

To show the above equality, it is suÆ
ient to prove that

lim

k!1

k

h

j�j

k

= 0: (2.9)

We have the following two 
ases: if j�j = 0 then (2.9) is obvious. Otherwise, 0 <

j�j < 1. In this 
ase,

lim

k!1

log k

h

j�j

k

= lim

k!1

(h log k + k log j�j)

= lim

k!1

k

�

h

log k

k

+ log j�j

�

= �1;

sin
e lim

k!1

log k

k

= 0 by l'Hôpital's rule and log j�j < 0. Therefore, (2.9) also holds

in this 
ase.
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Chapter 3

Shannon's Information Measure

Rates for Finite-Alphabet Markov

Sour
es

Let fX

1

; X

2

; : : :g be a �rst-order time-invariant Markov sour
e with �nite-alphabet

X = f1; : : : ;Mg. Consider the following two di�erent probability laws for this sour
e.

Under the �rst law,

PrfX

1

= ig =: p

i

and PrfX

k+1

= jjX

k

= ig =: p

ij

; i; j 2 X ;

so that

p

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � �p

i

n�1

i

n

; i

1

; : : : ; i

n

2 X ;

while under the se
ond law the initial probabilities are q

i

, the transition proba-

bilities are q

ij

, and the n-tuple probabilities are q

(n)

. Let p = (p

1

; : : : ; p

M

) and
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q = (q

1

; : : : ; q

M

) denote the initial distributions under p

(n)

and q

(n)

respe
tively.

The Kullba
k-Leibler divergen
e [40℄ between two distributions p̂ and q̂ de�ned

on X is given by

D(p̂kq̂) =

X

i2X

p̂

i

log

p̂

i

q̂

i

;

where the base of the logarithm is arbitrary. One natural dire
tion for further studies

is the investigation of the Kullba
k-Leibler divergen
e rate

lim

n!1

1

n

D(p

(n)

kq

(n)

)

between two probability distributions p

(n)

and q

(n)

de�ned on X

n

, where

D(p

(n)

kq

(n)

) =

X

i

n

2X

n

p

(n)

(i

n

) log

p

(n)

(i

n

)

q

(n)

(i

n

)

;

for sour
es with memory. In [26℄, Gray proved that the Kullba
k-Leibler divergen
e

rate exists between a stationary sour
e p

(n)

and a time-invariant Markov sour
e q

(n)

(Proposition 2.12). This result 
an also be found in [59, p. 27℄. To the best of

our knowledge, this is the only result available in the literature about the existen
e

and the 
omputation of the Kullba
k-Leibler divergen
e rate between sour
es with

memory. In the sequel, we provide a 
omputable expression for the Kullba
k-Leibler

divergen
e rate between two arbitrary time-invariant �nite alphabet Markov sour
es.

This expression, whi
h is proved in a straightforward manner using results from the

theory of non-negative matri
es and Perron-Frobenius theory, has a readily usable

form, making it appealing for various analyti
al studies and appli
ations involving

the divergen
e between systems with memory.
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3.1 Kullba
k-Leibler Divergen
e Rate

3.1.1 First-Order Markov Sour
es

We �rst assume that the time-invariant Markov sour
e fX

1

; X

2

; : : :g is of order one.

Later, we generalize the results for sour
es of arbitrary order k. Let p and q be

the initial distributions with respe
t to p

(n)

and q

(n)

respe
tively. Also, let P and

Q be the probability transition matri
es with respe
t to p

(n)

and q

(n)

respe
tively.

Without loss of generality, we may assume that p and P are absolutely 
ontinuous

with respe
t to q and Q respe
tively (i.e., q

i

= 0) p

i

= 0 and q

ij

= 0) p

ij

= 0, for

all i; j 2 X ), be
ause otherwise the Kullba
k-Leibler divergen
e rate is in�nite. We

have the following results.

Theorem 3.1 Suppose that the Markov sour
e fX

1

; X

2

; : : :g is irredu
ible under p

(n)

and q

(n)

. Let

S(X

2

jX

1

= i)

4

=

X

j2X

p

ij

log

p

ij

q

ij

:

Then, the Kullba
k-Leibler divergen
e rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) =

X

i2X

�

i

S(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .
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Proof: We have that

1

n

D(p

(n)

kq

(n)

) =

1

n

X

i2X

[p(X

1

= i) + � � �+ p(X

n�1

= i)℄S(X

2

jX

1

= i) +

1

n

X

i2X

p(X

1

= i) log

p(X

1

= i)

q(X

1

= i)

;

whi
h 
an be also written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (3.1)

+

1

n

X

i2X

p

i

log

p

i

q

i

; (3.2)

where

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M)):

Note that (3.2) approa
hes 0 as n!1. Hen
e, by Proposition 2.13, we obtain that

lim

n!1

1

n

p(I + P + � � �+ P

n�2

)V = pLV;

where

L = ba = (1; : : : ; 1)

t

(�

1

; : : : ; �

M

)

=

2

6

6

6

6

6

6

6

6

4

�

1

�

2

: : : �

M

�

1

�

2

: : : �

M

.

.

.

.

.

.

.

.

.

.

.

.

�

1

�

2

: : : �

M

3

7

7

7

7

7

7

7

7

5

:
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Thus

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

2

6

6

6

6

6

6

6

6

4

�

1

�

2

: : : �

M

�

1

�

2

: : : �

M

.

.

.

.

.

.

.

.

.

.

.

.

�

1

�

2

: : : �

M

3

7

7

7

7

7

7

7

7

5

V

=

X

i2X

�

i

S(X

2

jX

1

= i)

Theorem 3.2 Suppose that the Markov sour
e fX

1

; X

2

; : : :g under p

(n)

and q

(n)

is

arbitrary

1

(not ne
essarily irredu
ible, stationary, et
.). Let the 
anoni
al form of P

be as in Proposition 2.2. Also, let B, D and C be as de�ned in Proposition 2.14.

Then, the Kullba
k-Leibler divergen
e rate between p

(n)

and q

(n)

is given by

lim

n!1

1

n

D(p

(n)

kq

(n)

) = p

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

V;

where

V

t

= (S(X

2

jX

1

= 1); : : : ; S(X

2

jX

1

=M));

and I is the identity matrix with same dimensions as the matrix C.

1

Sin
e p and P are absolutely 
ontinuous with respe
t to q and Q respe
tively, it follows that p

(n)

is absolutely 
ontinuous with respe
t to q

(n)

. Hen
e, some restri
tion on their behavior is indu
ed.

For instan
e, if P is irredu
ible, Q must be irredu
ible. However, it is possible to have Q irredu
ible

and P redu
ible. So, in general, Q and P do not ne
essarily have the same number of 
lasses.
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Proof: As in the previous theorem, we have that

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � �+ P

n�2

)V (3.3)

+

1

n

X

i2X

p

i

log

p

i

q

i

: (3.4)

Then, the desired result follows immediately from Proposition 2.14.

Theorem 3.3 The rate of 
onvergen
e of the Kullba
k-Leibler divergen
e rate be-

tween arbitrary p

(n)

and q

(n)

is of the order 1=n.

Proof: Clearly, the rate of 
onvergen
e of (3.4) to 0 is of the order 1=n. In Proposition

2.13, it is proved that the rate of 
onvergen
e of the Ces�aro sum of an irredu
ible

sto
hasti
 matrix is of the order 1=n. On the other hand, if P is not irredu
ible,

let P

i

, i = 1; : : : ; h, be the sub-matri
es 
orresponding to essential 
lasses and let

P

i

, i = h + 1; : : : ; g be the sub-matri
es 
orresponding to inessential 
lasses as in

Proposition 2.2. For i = 1; : : : ; h, ea
h P

i

is sto
hasti
 and irredu
ible; so its Ces�aro-

sum is of the order 1=n by Proposition 2.13. Now, for i = h + 1; : : : ; g, every P

i

is

irredu
ible and hen
e, by Proposition 2.6, we have that

P

n

i

� �

n

i

G

i

; i = h+ 1; : : : ; g; (3.5)

where �

i

is the largest positive real eigenvalue of P

i

, and G

i

is a matrix with identi
al

entries that are independent of n. Therefore

1

n

n

X

j=1

P

j

i

�

1

n

n

X

j=1

�

j

i

G

i

=

1

n

�

i

(1� �

n

i

)

1� �

i

G

i

;
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for i = h + 1; : : : ; g. If P

i

has all row sums identi
al then �

i

< 1 by Proposition

2.5 and the fa
t that P is sto
hasti
. Otherwise, �

i

< 1 by Lemma 2.7. Hen
e, the

Ces�aro sum of P

i

, i = h+1; : : : ; g is of the order 1=n. By 
onsidering the Ces�aro sum

of the 
anoni
al form of P , we get that the rate of 
onvergen
e of (3.3) is of the order

1=n. Therefore the rate of 
onvergen
e of the Kullba
k-Leibler divergen
e rate is of

the order 1=n.

3.1.2 k-th Order Markov Sour
es

Now, suppose that the Markov sour
e has an arbitrary order k. De�ne fW

n

g as the

pro
ess obtained by k-step blo
king the Markov sour
e fX

n

g; i.e.,

W

n

:= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then fW

n

g is a �rst order Markov sour
e with M

k

states. Let p

w

n�1

w

n

:= Pr(W

n

=

w

n

jW

n�1

= w

n�1

). Let p = (p

1

; : : : ; p

M

k
) and q = (q

1

; : : : ; q

M

k
) denote the arbitrary

initial distributions of W

1

under p

(n)

and q

(n)

respe
tively. Also, let p

ij

and q

ij

denote

the transition probability that W

n

goes from index i to index j under p

(n)

and q

(n)

respe
tively, i; j = 1; : : : ;M

k

. Then 
learly D(p

(n)

kq

(n)

) 
an be written as

1

n

D(p

(n)

kq

(n)

) =

1

n

p(I + P + � � � + P

n�2

)V

+

1

n

X

i2X

k

p(W

1

= i) log

p(W

1

= i)

q(W

1

= i)

;

where

V

t

= (S(W

2

jW

1

= 1); : : : ; S(W

2

jW

1

=M

k

)):

It follows dire
tly that Theorems 3.2 and 3.3 also hold for a Markov sour
e of arbitrary

order k.
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3.2 Shannon Entropy Rate

The existen
e and the 
omputation of the Shannon entropy rate of an arbitrary time-

invariant �nite-alphabet Markov sour
e 
an be dire
tly dedu
ed from the existen
e

and the 
omputation of the Kullba
k-Leibler divergen
e rate. Indeed, if q

(n)

is sta-

tionary memoryless with uniform marginal distribution, then

D(p

(n)

kq

(n)

) = n logM �H(p

(n)

):

Therefore

lim

n!1

1

n

D(p

(n)

kq

(n)

) = logM � lim

n!1

1

n

H(p

(n)

): (3.6)

We have the following 
orollaries.

Corollary 3.1 Suppose that the Markov sour
e fX

1

; X

2

; : : :g under p

(n)

is irre-

du
ible. Let

H(X

2

jX

1

= i)

4

= �

X

j2X

p

ij

log p

ij

:

Then, the Shannon entropy rate of p

(n)

is given by

lim

n!1

1

n

H(p

(n)

) =

X

i2X

�

i

H(X

2

jX

1

= i);

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .

Proof: Obtained dire
tly by plugging q

ij

= 1=M in Theorem 3.1 and using (3.6).
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Corollary 3.2 Let the 
anoni
al form of P be as in Proposition 2.2. Also, let B, D

and C be as de�ned in Proposition 2.14. Then, the Shannon entropy rate is given by

lim

n!1

1

n

H(p

(n)

) = p

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

V;

where

V

t

= (H(X

2

jX

1

= 1); : : : ; H(X

2

jX

1

=M));

and I is the identity matrix with same dimensions as the matrix C.

Proof: Note that P

i

, i = 1; 2; : : : is a sto
hasti
 matrix

2

. Hen
e,

lim

n!1

1

n

(I + P + � � �+ P

n�2

)1

t

= lim

n!1

n� 1

n

1

t

= 1

t

whi
h yields that

lim

n!1

1

n

(I + P + � � �+ P

n�2

)

is a sto
hasti
 matrix. Therefore,

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

is also a sto
hasti
 matrix. Hen
e,

p

2

6

4

D 0

(I � C)

�1

BD 0

3

7

5

2

6

6

6

6

6

4

logM

.

.

.

logM

3

7

7

7

7

7

5

= p

2

6

6

6

6

6

4

logM

.

.

.

logM

3

7

7

7

7

7

5

= logM:

2

We have that P1

t

= 1

t

, where 1 = (1; : : : ; 1) and t is the transpose operation. Using this fa
t

and the fa
t that P

i

= PP

i�1

, the result follows by mathemati
al indu
tion on i.
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Then, the 
orollary follows dire
tly by plugging q

ij

=

1

M

in Theorem 3.2 and using

(3.6).

Corollary 3.3 The rate of 
onvergen
e of the Shannon entropy rate of p

(n)

is of the

order 1=n.

3.3 Numeri
al Examples

In this se
tion, we use the natural logarithm for simpli
ity.

Example 1: Let P and Q be two possible probability transition matri
es for a �rst

order Markov sour
e fX

1

; X

2

; : : :g (not stationary and not irredu
ible) de�ned as

follows:

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=2 0 0 1=2 0 0 0

0 0 4=7 2=7 1=7 0 0

0 0 1=3 0 0 2=3 0

1=4 0 0 3=4 0 0 0

2=5 2=5 0 0 1=5 0 0

0 0 1 0 0 0 0

1=4 0 1=2 0 1=4 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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and

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=3 0 0 2=3 0 0 0

0 0 2=7 1=7 4=7 0 0

0 0 1=5 0 0 4=5 0

1=6 0 0 5=6 0 0 0

1=5 2=5 0 0 2=5 0 0

0 0 1 0 0 0 0

1=4 0 1=4 0 1=2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Let p = (3=7; 0; 1=7; 0; 1=7; 2=7; 0) and q = (2=8; 0; 3=8; 0; 1=8; 2=8; 0) be two possible

initial distributions under p

(n)

and q

(n)

, respe
tively. In 
anoni
al form, P and Q 
an

be rewritten as

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=3 2=3 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=2 1=2 0 0 0

0 0 1=4 3=4 0 0 0

0 0 2=5 0 1=5 2=5 0

4=7 0 0 2=7 1=7 0 0

1=2 0 1=4 0 1=4 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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and

Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1=5 4=5 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1=3 2=3 0 0 0

0 0 1=6 5=6 0 0 0

0 0 1=5 0 2=5 2=5 0

2=7 0 0 1=7 4=7 0 0

1=4 0 1=4 0 1=2 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

simply by permuting the �rst and third rows and 
olumns and the se
ond and

sixth rows and 
olumns. Note that P has 2 essential 
lasses, 1 inessential self-


ommuni
ating 
lass and 1 inessential non self-
ommuni
ating 
lass. A

ordingly,

the initial distributions are rewritten as p = (1=7; 2=7; 3=7; 0; 1=7; 0; 0) and q =

(3=8; 2=8; 2=8; 0; 1=8; 0; 0), after permuting the �rst and third indi
es and the se
ond

and sixth indi
es. We obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.05323

50 0.03626

100 0.03415

By Theorem 3.2, the Kullba
k-Leibler divergen
e rate is equal to 0.032. Clearly, as

n gets large

1

n

D(p

(n)

kq

(n)

) is 
loser to the Kullba
k-Leibler divergen
e rate. We also

obtain the following.
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n

1

n

H(p

(n)

)

10 0.54366

50 0.50877

100 0.50442

By Corollary 3.2, the Shannon entropy rate is equal to 0.50008. Clearly, as n gets

large

1

n

H(p

(n)

) is 
loser to the Shannon entropy rate.

Example 2: Consider the Markov sour
e fX

i

g of order 2 generated a

ording a

variation of the Polya urn s
heme as des
ribed in the example of Chapter 3. The

pro
ess fW

n

g su
h that ea
h random variable W

n

is a 2-step blo
king of fZ

n

g, i.e.

W

n

= (Z

n

; Z

n+1

);

is a �rst order stationary ergodi
 Markov sour
e with 4 states. The probability

transition matrix P of fW

n

g is given by

P =

2

6

6

6

6

6

6

6

6

4

�+2Æ

1+2Æ

�

1+2Æ

0 0

0 0

�+Æ

1+2Æ

�+Æ

1+2Æ

�+Æ

1+2Æ

�+Æ

1+2Æ

0 0

0 0

�

1+2Æ

�+2Æ

1+2Æ

3

7

7

7

7

7

7

7

7

5

;

where � + � = 1. Suppose that the urn 
ontains initially 3 red balls and 5 bla
k

balls. Denote by p

(n)

the joint distribution of the sour
e and P its transition matrix

if 4 = 1. Denote by q

(n)

the joint distribution of the sour
e and Q its transition

matrix if 4 = 2. In this 
ase
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P =

2

6

6

6

6

6

6

6

6

4

7=10 3=10 0 0

0 0 6=10 4=10

6=10 4=10 0 0

0 0 5=10 5=10

3

7

7

7

7

7

7

7

7

5

; Q =

2

6

6

6

6

6

6

6

6

4

9=12 3=12 0 0

0 0 7=12 5=12

7=12 5=12 0 0

0 0 5=12 7=12

3

7

7

7

7

7

7

7

7

5

:

The initial distributions under p

(n)

and q

(n)

are respe
tively p = (30=72; 15=72; 15=72;

12=72) and q = (35=80; 15=80; 15=80; 15=80). We obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.0046

50 0.00512

100 0.00519

By Theorem 3.1, the Kullba
k-Leibler divergen
e rate is equal to 0.005254. Clearly,

as n gets large

1

n

D(p

(n)

kq

(n)

) is 
loser to the Kullba
k-Leibler divergen
e rate. We

also obtain the following.

n

1

n

H(p

(n)

)

10 0.3887

50 0.5981

100 0.6243

By Corollary 3.1, the Shannon entropy rate is equal to 0.6505. Clearly, as n gets large

1

n

H(p

(n)

) is 
loser to the Shannon entropy rate.
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Example 3: Suppose that the Markov sour
e is of order 2 under p

(n)

and q

(n)

re-

spe
tively. Let fW

1

;W

2

; : : :g be the pro
ess obtained by 2-step blo
king the Markov

sour
e. Let P and Q be two possible transition matri
es for fW

1

;W

2

; : : :g de�ned as

follows:

P =

2

6

6

6

6

6

6

6

6

4

1=3 2=3 0 0

0 0 1 0

2=5 3=5 0 0

0 0 1=6 5=6

3

7

7

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

6

6

4

3=4 1=4 0 0

0 0 1 0

7=8 1=8 0 0

0 0 2=3 1=3

3

7

7

7

7

7

7

7

7

5

:

Let p = (1=8; 3=8; 2=8; 2=8) and q = (1=7; 2=7; 3=7; 1=7) denote two possible initial

distributions of W

1

under p

(n)

and q

(n)

respe
tively. The set of indi
es f1; 2; 3g forms

an essential 
lass, while the singleton set f4g forms a self-
ommuni
ating non-essential


lass. Hen
e, P and Q are not irredu
ible. Note also that both p

(n)

and q

(n)

are not

stationary. We obtain the following.

n

1

n

D(p

(n)

kq

(n)

)

10 0.2982

50 0.3253

100 0.3277
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By Theorem 3.2, the Kullba
k-Leibler divergen
e rate is equal to .3301. Clearly, as

n gets large

1

n

D(p

(n)

kq

(n)

) is 
loser to the Kullba
k-Leibler divergen
e rate. We also

obtain the following.

n

1

n

H(p

(n)

)

10 0.4618

50 0.4175

100 0.4116

By Corollary 3.2, the Shannon entropy rate is equal to 0.4057. Clearly, as n gets large

1

n

H(p

(n)

) is 
loser to the Shannon entropy rate.

3.4 Hypothesis Testing Error Exponent

For Stationary Irredu
ible Markov Sour
es

Let us �rst re
all the binary hypothesis testing problem. Consider a sequen
e of

random variables fX

1

; : : : ; X

n

g whi
h is generated a

ording to some distribution

p

(n)

under the null hypothesis H

1

and generated a

ording to some other distribution

q

(n)

under an alternative hypothesis H

2

. The problem is to de
ide whi
h hypothesis

is true based on a sequen
e of random observations in a �nite set X . Let A

n

� X

n

be an a

eptan
e region for the null hypothesis. Then, two probabilities of error 
an

o

ur. The type-1 error probability is de�ned as

�

n

4

= p

(n)

(A




n

);
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where A




n

denotes the 
omplement of A

n

; �

n

basi
ally denotes the probability that

H

2

is 
hosen given that H

1

is true. The type-2 error probability is de�ned as

�

n

4

= q

(n)

(A

n

);

whi
h denotes the probability of 
hoosing H

1

when H

2

is true. In general, one wishes

to minimize both probabilities, but there is a trade-o�. Another approa
h, is to min-

imize one of the probabilities of error subje
t to a 
onstraint on the other probability

of error.

The best a
hievable error exponent for hypothesis testing has been thoroughly

studied for independent and identi
ally distributed (i.i.d.) sour
es and Markov sour
es,

and the error exponents have been determined. The result for i.i.d. sour
es (known

as Stein's Lemma) is given by the following theorem.

Proposition 3.1 (Stein's Lemma) [18℄, [21℄: Let fX

1

; X

2

; : : :g be an i.i.d. sour
e

generated a

ording to p

(n)

under H

1

and a

ording to q

(n)

under H

2

with respe
tive

initial distributions p and q. Suppose that D(pkq) <1. Let A

n

� X

n

be an a

ep-

tan
e region for H

1

and �

n

and �

n

denote the type-1 and type-2 error probabilities,

respe
tively. For " 2 (0; 1), de�ne

�

"

n

4

= min

A

n

�X

n

:�

n

<"

�

n

:

Then

lim

n!1

�

1

n

log �

"

n

= D(pkq):
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The best a
hievable error exponent for testing between two irredu
ible Markov

sour
es is given by the following theorem.

Proposition 3.2 [5℄: Let fX

1

; X

2

; : : :g be a stationary and irredu
ible Markov sour
e

generated a

ording to p

(n)

under H

1

and a

ording to q

(n)

under H

2

with respe
tive

initial distributions p and q and respe
tive probability transition matri
es P and Q.

Suppose that p and P are absolutely 
ontinuous with respe
t to q and Q respe
tively.

Then

lim

n!1

�

1

n

log �

"

n

=

X

i2X

�

i

X

j2X

p

ij

log

p

ij

q

ij

;

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P .

The proof involves large deviation theory. It mainly relies on Sanov's Theorem [12℄

for the type or empiri
al transition-
ount matrix of an arbitrary sample x

n

2 X

n

of the sour
e. The type of x

n

is the probability distribution on X

2

giving mass

N(i; j; x

n

)=n to (i; j) 2 X

2

, where N(i; j; x

n

) denotes the number of transitions from

i to j in x

n

with the 
y
li
 
onvention that x

1

follows x

n

. The ij-th entry of the

empiri
al transition-
ount matrix is also given by N(i; j; x

n

)=n. Sanov's Theorem 
an

be roughly des
ribed as follows. The probability of seeing sample sequen
es for whi
h

the type is far from the true distribution de
reases to zero exponentially in the sample

size. The de
ision region used in the proof is des
ribed as follows. Upon observing a

sample from the sour
e, 
hoose p

(n)

as the true distribution i� the empiri
al transition-


ount matrix of the sample is \
lose" to the probability transition matrix P . Re
ently,

in [15℄ the author generalizes Stein's Lemma for testing between arbitrary sour
es

(not ne
essarily, Markov, stationary, ergodi
, et
.) using an information spe
trum
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approa
h. He obtained a lower bound and an upper bound to the error exponent whi
h

are not ne
essarily 
omputable in general. In the sequel, we provide an alternative

proof of the above proposition whi
h follows along the same lines as in the proof of

Proposition 3.1. Let us �rst show that the normalized log-likelihood ratio

1

n

log

p

(n)

(X

n

)

q

(n)

(X

n

)


onverges to a limit with probability 1 under the null hypothesis.

Lemma 3.1 Let fX

1

; X

2

; : : : ; g be a Markov sour
e that is stationary and irredu
ible

under both p

(n)

and q

(n)

. Then

lim

n!1

1

n

log

p

(n)

(X

n

)

q

(n)

(X

n

)

=

X

i2X

�

i

X

j2X

p

ij

log

p

ij

q

ij

with probability 1 under p

(n)

, where � = (�

1

; : : : ; �

M

) is the unique stationary distri-

bution of P .

Proof: Note that the normalized log-likelihood ratio 
an be written as

1

n

log

p

(n)

(X

n

)

q

(n)

(X

n

)

=

1

n

log

p(X

1

)

q(X

1

)

+

n� 1

n

"

1

n� 1

n

X

i=2

log

p(X

i

jX

i�1

)

q(X

i

jX

i�1

)

#

:

In the limit, as n ! 1, the �rst term approa
hes 0, and the se
ond term whi
h is

the time average of log

p(X

i

jX

i�1

)

q(X

i

jX

i�1

)

approa
hes the statisti
al average with probability

1 under the probability distribution p

(n)

, by the ergodi
 theorem [10, p. 13℄. The

statisti
al average of this quantity with respe
t to p

(n)

is

E

�

log

p(X

i

jX

i�1

)

q(X

i

jX

i�1

)

�

=

X

x

n

2X

n

p(x

n

) log

p(x

i

jx

i�1

)

q(x

i

jx

i�1

)

=

X

x

i�1

;x

i

p(x

i�1

; x

i

) log

p(x

i

jx

i�1

)

q(x

i

jx

i�1

)

=

X

i2X

�

i

X

j2X

p

ij

log

p

ij

q

ij

;
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where the last equality follows by stationarity; hen
e we obtain the desired result.

Remark: By the previous lemma and Theorem 3.1, the following holds with proba-

bility 1 under p

(n)

.

lim

n!1

1

n

log

p

(n)

(X

n

)

q

(n)

(X

n

)

= lim

n!1

1

n

D(p

(n)

kq

(n)

)

=

X

i2X

�

i

X

j2X

p

ij

log

p

ij

q

ij

;

where � = (�

1

; : : : ; �

M

) is the unique stationary distribution of P . We now provide

a simple alternative proof for Proposition 3.2, whi
h goes along the same lines as in

[18, p. 309℄.

Proof of Proposition 3.2: We �rst 
onstru
t a sequen
e of a

eptan
e regions

A

n

2 X

n

su
h that �

n

< " for n suÆ
iently large and

lim

n!1

�

1

n

log�

n

= L;

where

L

4

= lim

n!1

1

n

D(p

(n)

kq

(n)

);

whi
h exists by Theorem 3.1. Fix Æ > 0 and let

A

n

=

�

x

n

2 X

n

: 2

n(L�Æ)

�

p

(n)

(x

n

)

q

(n)

(x

n

)

� 2

n(L+Æ)

�

:

Then p

(n)

(A

n

) ! 1 as n ! 1. This follows from the previous remark. Hen
e, for

Æ = " and suÆ
iently large n, �

n

= p

(n)

(A




n

) < ". By de�nition of A

n

, we have that
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�

n

= q

(n)

(A

n

) =

X

x

n

2A

n

q

(n)

(x

n

)

�

X

x

n

2A

n

p

(n)

(x

n

)2

�n(L�Æ)

= 2

�n(L�Æ)

X

x

n

2A

n

p

(n)

(x

n

)

= 2

�n(L�Æ)

(1� �

n

):

Similarly, it 
an be shown that

�

n

� 2

�n(L+Æ)

(1� �

n

):

Hen
e,

�

1

n

log �

n

� L� Æ �

1

n

log(1� �

n

);

and

�

1

n

log �

n

� L + Æ �

1

n

log(1� �

n

):

Thus

lim

n!1

�

1

n

log�

n

= L:

We now prove that no other sequen
e of a

eptan
e regions does better. Let B

n

� X

n

be any other sequen
e of a

eptan
e regions with type 1 error probability �

0

n

=

p

(n)

(B




n

) < ", and type 2 error probability �

0

n

= q

(n)

(B

n

). We will show that �

0

n

�

2

�n(L�Æ)

, where Æ > 0 is arbitrary. We have the following.
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�

0

n

= q

(n)

(B

n

) � q

(n)

(A

n

\ B

n

)

=

X

x

n

2A

n

\B

n

q

(n)

(x

n

)

�

X

x

n

2A

n

\B

n

p

(n)

(x

n

)2

�n(L+Æ)

= 2

�n(L+Æ)

X

x

n

2A

n

\B

n

p

(n)

(x

n

)

� (1� �

n

� �

0

n

)2

�n(L+Æ)

;

where the last inequality follows from the union bound as follows:

X

x

n

2A

n

\B

n

p

(n)

(x

n

) = p

(n)

(A

n

\B

n

)

= 1� p

(n)

(A




n

[ B




n

)

� 1� p

(n)

(A




n

)� p

(n)

(B




n

)

= 1� �

n

� �

0

n

:

Hen
e

1

n

log �

0

n

� �L� Æ +

1

n

log(1� �

n

� �

0

n

);

and sin
e Æ > 0 is arbitrary,

lim

n!1

�

1

n

log�

0

n

� L:

Thus, no sequen
e of sets B

n

has an exponent larger than L. Sin
e the sequen
e A

n

a
hieves the exponent L, A

n

is asymptoti
ally optimal, and the best error exponent

is L.
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Remark: Our approa
h generalizes in a straightforward manner for stationary Markov

sour
es that 
ontain one irredu
ible essential 
lass C

1

and an arbitrary number of

inessential 
lasses C

2

; : : : ; C

s

. Su
h a Markov sour
e is said to be inde
omposable [7℄.

In this 
ase, the stationary distribution is � = (�

1

; 0; : : : ; 0), where �

1

is the station-

ary distribution 
orresponding to C

1

and the zeros 
orrespond to inessential 
lasses.

We have the following result.

Corollary 3.4 Let fX

1

; X

2

; : : :g be a stationary Markov sour
e generated a

ording

to p

(n)

under H

1

and a

ording to q

(n)

under H

2

with respe
tive probability transition

matri
es P and Q. Suppose that the Markov sour
e has one essential 
lass C

1

with j

indi
es and an arbitrary number of inessential 
lasses C

2

; : : : ; C

s

. Also, suppose that

p and P are absolutely 
ontinuous with respe
t to q and Q respe
tively. Then

lim

n!1

�

1

n

log�

"

n

=

X

i2C

1

�

i

X

k2C

1

p

ik

log

p

ik

q

ik

;

where � = (�

1

; : : : ; �

j

) is the unique stationary distribution 
orresponding to C

1

.
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Chapter 4

R�enyi's Information Measure

Rates for Finite-Alphabet

Markov Sour
es

Let fX

1

; X

2

; : : :g be a �rst-order time-invariant Markov sour
e with �nite-alphabet

X = f1; : : : ;Mg. Consider the following two di�erent probability laws for this sour
e.

Under the �rst law,

PrfX

1

= ig =: p

i

and PrfX

k+1

= jjX

k

= ig =: p

ij

; i; j 2 X ;

so that

p

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � �p

i

n�1

i

n

; i

1

; : : : ; i

n

2 X ;

while under the se
ond law the initial probabilities are q

i

, the transition proba-

bilities are q

ij

, and the n-tuple probabilities are q

(n)

. Let p = (p

1

; : : : ; p

M

) and
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q = (q

1

; : : : ; q

M

) denote the initial distributions under p

(n)

and q

(n)

respe
tively.

The R�enyi divergen
e [52℄ of order � between two distributions p̂ and q̂ de�ned

on X is given by

D

�

(p̂kq̂) =

1

�� 1

log

 

X

i2X

p̂

�

i

q̂

1��

i

!

;

where 0 < � < 1. This de�nition 
an be extended to � > 1 if all q̂

i

> 0. The base of

the logarithm is arbitrary. Similarly, the R�enyi entropy of order � for p̂ is de�ned as

H

�

(p̂) =

1

1� �

log

 

X

i2X

p̂

�

i

!

;

where � > 0 and � 6= 1. As � ! 1, the R�enyi divergen
e approa
hes the Kullba
k-

Leibler divergen
e (relative entropy) given by

D(p̂kq̂) =

X

i2X

p̂

i

log

p̂

i

q̂

i

;

and the R�enyi entropy approa
hes the Shannon entropy. The above generalized in-

formation measures and their subsequent variations [57℄ were originally introdu
ed

for the analysis of memoryless sour
es. One natural dire
tion for further studies is

the investigation of the R�enyi divergen
e rate

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

);

where

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log

 

X

i

n

2X

n

[p

(n)

(i

n

)℄

�

[q

(n)

(i

n

)℄

1��

!

;

and of the R�enyi entropy rate

lim

n!1

1

n

H

�

(p

(n)

);

57



where

H

�

(p

(n)

) =

1

1� �

log

 

X

i

n

2X

n

[p

(n)

(i

n

)℄

�

!

;

for sour
es with memory, in parti
ular Markov sour
es. Nemetz addressed these

problems in [44℄, where he evaluated the R�enyi divergen
e rate lim

n!1

1

n

D

�

(p

(n)

kq

(n)

)

between two Markov sour
es 
hara
terized by p

(n)

and q

(n)

, respe
tively, under the

restri
tion that the initial probabilities p and q are stri
tly positive (i.e., all p

i

's and

q

i

's are stri
tly positive).

In this 
hapter, we provide a generalization of the Nemetz result by establishing

a 
omputable expression for the R�enyi divergen
e rate between Markov sour
es with

arbitrary initial distributions. We also investigate the questions of whether the R�enyi

divergen
e rate redu
es to the Kullba
k-Leibler divergen
e rate as � ! 1 and the

inter
hangeability of limits between n and � as n ! 1 and as � ! 0. We provide

suÆ
ient (but not ne
essary) 
onditions on the underlying Markov sour
e distribu-

tions p

(n)

and q

(n)

for whi
h the inter
hangeability of limits as n!1 and as �! 1

is valid. We also give an example of non-inter
hangeability of limits as n ! 1 and

as � ! 1. We also show that the inter
hangeability of limits as n ! 1 and � ! 0

always holds.

We next address the 
omputation and the existen
e of the R�enyi entropy rate

lim

n!1

1

n

H

�

(p

(n)

) for a Markov sour
e with distribution p

(n)

and examine its limits

as � ! 0 and as � ! 1. We also establish an operational 
hara
terization for

the R�enyi entropy rate by extending the variable-length sour
e 
oding theorem for

memoryless sour
es in [13℄ to Markov sour
es.
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4.1 R�enyi Divergen
e Rate

4.1.1 First-order Markov Sour
es

We assume �rst that the Markov sour
e fX

1

; X

2

; : : :g is of order one. Later, we

generalize the results for an arbitrary order k. The joint distributions of the random

variables (X

1

; : : : ; X

n

) under p

(n)

and q

(n)

are given respe
tively by

p

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = p

i

1

p

i

1

i

2

� � �p

i

n�1

i

n

;

and

q

(n)

(i

n

) := PrfX

1

= i

1

; : : : ; X

n

= i

n

g = q

i

1

q

i

1

i

2

� � � q

i

n�1

i

n

:

Let

V (n; �) =

X

i

n

2X

n

[p

(n)

(i

n

)℄

�

[q

(n)

(i

n

)℄

1��

:

Then

V (n; �) =

X

p

�

i

1

q

1��

i

1

p

�

i

1

i

2

q

1��

i

1

i

2

� � � p

�

i

n�1

i

n

q

1��

i

n�1

i

n

;

where the sum is over i

1

; : : : ; i

n

2 X . De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 1; : : : ;M:

Also, de�ne two new 1�M ve
tors s = (s

1

; : : : ; s

M

) and 1 by

s

i

= p

�

i

q

1��

i

; 1 = (1; : : : ; 1):

Then 
learly D

�

(p

(n)

kq

(n)

) 
an be written as

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log sR

n�1

1

t

; (4.1)
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where 1

t

denotes the transpose of the ve
tor 1. Without loss of generality, we will

herein assume that there exists at least one i 2 f1; : : : ;Mg for whi
h s

i

> 0, be
ause

otherwise (i.e., if s

i

= 0 8i), D

�

(p

(n)

kq

(n)

) is in�nite. We also assume that 0 < � < 1;

we 
an allow the 
ase of � > 1 if q > 0 and Q > 0. We obtain the following results.

Theorem 4.1 If the matrix R is irredu
ible, then the R�enyi divergen
e rate between

p

(n)

and q

(n)

is given by

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log�;

where � is the largest positive real eigenvalue of R, and 0 < � < 1. Furthermore, the

same result holds for � > 1 if q > 0 and Q > 0.

Proof: By Proposition 2.4, let � be the largest positive real eigenvalue of R with

asso
iated positive right eigenve
tor b > 0. Then

R

n�1

b = �

n�1

b: (4.2)

Let R

n�1

= (r

(n�1)

ij

) and b

t

= (b

1

; b

2

; : : : ; b

M

). Also, let b

L

= min

1�i�M

(b

i

) and b

U

=

max

1�i�M

(b

i

). Thus 0 < b

L

� b

i

� b

U

8i. Let R

n�1

1

t

= y

t

where y = (y

1

; : : : ; y

M

).

Then, by (4.2)

�

n�1

b

i

=

M

X

j=1

r

(n�1)

ij

b

j

�

M

X

j=1

r

(n�1)

ij

b

U

= b

U

y

i

; 8i = 1; : : : ;M:

Similarly, it 
an be shown that �

n�1

b

i

� b

L

y

i

, 8i = 1; : : : ;M . Therefore

b

i

b

U

�

y

i

�

n�1

�

b

i

b

L

; 8i = 1; : : : ;M: (4.3)
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Sin
e sR

n�1

1

t

=

P

M

i=1

s

i

y

i

, it follows dire
tly from (4.3) that

P

i

s

i

b

i

b

U

�

sR

n�1

1

t

�

n�1

�

P

i

s

i

b

i

b

L

;

or

1

n

log

�

P

i

s

i

b

i

b

U

�

�

1

n

log

�

sR

n�1

1

t

�

n�1

�

�

1

n

log

�

P

i

s

i

b

i

b

L

�

: (4.4)

Note that s

i

; b

i

; b

U

; b

L

do not depend on n. Therefore, by (4.4),

lim

n!1

1

n

log

�

sR

n�1

1

t

�

n�1

�

= 0;

sin
e it is upper and lower bounded by two quantities that approa
h 0 as n ! 1.

Hen
e

lim

n!1

1

n

log

�

sR

n�1

1

t

�

= lim

n!1

1

n

log�

n�1

+ lim

n!1

1

n

log

�

sR

n�1

1

t

�

n�1

�

= log�;

and thus

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = lim

n!1

1

n(�� 1)

log

�

sR

n�1

1

t

�

=

1

�� 1

log�:

Using the above theorem and the 
anoni
al form of R we prove the following general

result.
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Theorem 4.2 Let R

i

, i = 1; : : : ; g, be the irredu
ible matri
es along the diagonal of

the 
anoni
al form of the matrix R as shown in Proposition 2.2. Write the ve
tor s

as

s = (~s

1

; : : : ; ~s

h

; ~s

h+1

; : : : ; ~s

g

; s

g+1

; : : : ; s

l

);

where the ve
tor ~s

i


orresponds to R

i

, i = 1; : : : ; g. The s
alars s

g+1

; : : : ; s

l


orrespond

to non self-
ommuni
ating 
lasses.

� Let �

k

be the largest positive real eigenvalue of R

k

for whi
h the 
orresponding

ve
tor ~s

k

is di�erent from the zero ve
tor, k = 1; : : : ; g. Let �

?

be the maximum

over these �

k

's. If ~s

k

= 0, 8k = 1; : : : ; g, then let �

?

= 0.

� For ea
h inessential 
lass C

i

with 
orresponding ve
tor ~s

i

6= 0, i = h + 1; : : : ; g

or 
orresponding s
alar s

i

6= 0, i = g+1; : : : ; l, let �

j

be the largest positive real

eigenvalue of R

j

if 
lass C

j

is rea
hable from 
lass C

i

. Let �

y

be the maximum

over these �

j

's. If ~s

i

= 0 and s

i

= 0 for every inessential 
lass C

i

, then let

�

y

= 0.

Let � = maxf�

?

; �

y

g. Then the R�enyi divergen
e rate is given by

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log�;

where 0 < � < 1. Furthermore, the same result holds for � > 1 if q > 0 and Q > 0.

Proof: By Proposition 2.4, let �

i

be the largest positive real eigenvalue of R

i

with

asso
iated positive right eigenve
tor

~

b

i

> 0, i = 1; : : : ; g. Let

b

t

= (

~

b

1

; : : : ;

~

b

h

;

~

b

h+1

; : : : ;

~

b

g

; 0; : : : ; 0);
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where the zeros 
orrespond to non self-
ommuni
ating 
lasses. By Proposition 2.2 we

have that

R

n�1

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

n�1

1

: : : 0 0 : : : 0 : : : : : : 0

0 : : : 0 0 : : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : :

0 : : : R

n�1

h

0 : : : 0 : : : : : : 0

R

(n�1)

h+11

: : : R

(n�1)

h+1h

R

n�1

h+1

: : : 0 : : : : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : :

R

(n�1)

g1

: : : R

(n�1)

gh

R

(n�1)

gh+1

: : : R

n�1

g

: : : : : : 0

R

(n�1)

g+11

: : : R

(n�1)

g+1h

R

(n�1)

g+1h+1

: : : R

(n�1)

g+1g

0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : :

R

(n�1)

l1

: : : R

(n�1)

lh

R

(n�1)

lh+1

: : : R

(n�1)

lg

R

(n�1)

lg+1

: : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Then

sR

n�1

b =

g

X

i=1

~s

i

R

n�1

i

~

b

i

+

g

X

i=h+1

~s

i

�

R

(n�1)

i1

~

b

1

+ � � �+R

(n�1)

ii�1

~

b

i�1

�

+

l

X

i=g+1

s

i

�

R

(n�1)

i1

~

b

1

+ � � �+R

(n�1)

ig

~

b

g

�

:

Rewrite the ve
tor 1 as

1 = (

~

1

1

; : : : ;

~

1

h

;

~

1

h+1

; : : : ;

~

1

g

; 1; : : : ; 1);

where

~

1

i

, i = 1; : : : ; g 
orrespond to essential and inessential self-
ommuni
ating


lasses and the 1's 
orrespond to non self-
ommuni
ating 
lasses.

Let R

n�1

1

t

= y

t

where

y = (~y

1

; : : : ; ~y

h

; ~z

h+1

+ ~y

h+1

; : : : ; ~z

g

+ ~y

g

; ~z

g+1

; : : : ; ~z

l

);
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and

~y

i

= R

n�1

i

~

1

t

i

; i = 1; : : : ; g;

~z

i

=

i�1

X

j=1

R

(n�1)

ij

~

1

t

j

; i = h+ 1; : : : ; g; (4.5)

~z

i

=

g

X

j=1

R

(n�1)

ij

~

1

t

j

+

i�1

X

j=g+1

R

(n�1)

ij

; i = g + 1; : : : ; l:

Therefore

sR

n�1

1

t

=

g

X

i=1

~s

i

~y

i

+

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

: (4.6)

As in the proof of Theorem 4.1, sin
e R

i

~

b

i

= �

i

~

b

i

, we 
an write

R

n�1

i

~

b

i

= �

n�1

i

~

b

i

� b

U

~y

i

; i = 1; : : : ; g;

where b

U

= max

1�i�g

(b

U

i

) and b

U

i

is the largest 
omponent of

~

b

i

, i = 1; : : : ; g. Simi-

larly,

R

n�1

i

~

b

i

= �

n�1

i

~

b

i

� b

L

~y

i

; i = 1; : : : ; g;

where b

L

= min

1�i�g

(b

L

i

) and b

L

i

is the smallest 
omponent of

~

b

i

, i = 1; : : : ; g.

Therefore

�

n�1

i

~

b

i

b

U

� ~y

i

�

�

n�1

i

~

b

i

b

L

; i = 1; : : : ; g:

Hen
e

1

b

U

g

X

i=1

~s

i

�

n�1

i

~

b

i

�

g

X

i=1

~s

i

~y

i

�

1

b

L

g

X

i=1

~s

i

�

n�1

i

~

b

i

:

Therefore, by (4.6)

1

b

U

g

X

i=1

~s

i

�

n�1

i

~

b

i

+

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

� sR

n�1

1

t

�

1

b

L

g

X

i=1

~s

i

�

n�1

i

~

b

i

+

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

;
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or

1

n

log

0

�

1

b

U

g

X

i=1

~s

i

�

�

i

�

�

n�1

~

b

i

+

1

�

n�1

0

�

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

1

A

1

A

�

1

n

log

�

sR

n�1

1

t

�

n�1

�

(4.7)

and

1

n

log

�

sR

n�1

1

t

�

n�1

�

�

1

n

log

0

�

1

b

L

g

X

i=1

~s

i

�

�

i

�

�

n�1

~

b

i

+

1

�

n�1

0

�

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

1

A

1

A

; (4.8)

where � is as de�ned in the statement of the theorem. Our goal is to show that

1

n

log

�

sR

n�1

1

t

�

n�1

�


onverges to 0 as n ! 1. Let us �rst examine its lower bound in

(4.7). We will provide a simpler lower bound whi
h 
onverges to 0 as n ! 1. We

have the following three 
ases.

1. � = �

i

and ~s

i

6= 0 for some i = 1; : : : ; g. In this 
ase

1

n

log

0

�

1

b

U

g

X

i=1

~s

i

�

�

i

�

�

n�1

~

b

i

+

1

�

n�1

0

�

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

1

A

1

A

�

1

n

log

�

1

b

U

~s

i

~

b

i

�

whi
h 
learly 
onverges to 0 as n!1.

2. � = �

j

for some j = 1; : : : ; g and ~s

i

6= 0 for some i = h + 1; : : : ; g where the


lass C

j

is rea
hable from 
lass C

i

. By equating the entries of R

n�1

and R

n�2

R,

it follows dire
tly that R

(n�1)

ij

is equal to R

(n�2)

ij

R

j

plus a weighted sum of non-

negative sub-matri
es.

1

Hen
e R

(n�1)

ij

� R

(n�2)

ij

R

j

. By indu
tion on n � 3, it

follows dire
tly that R

(n�1)

ij

� R

ij

R

n�2

j

. Therefore

1

n

log

 

1

b

U

g

X

i=1

~s

i

�

�

i

�

�

n�1

~

b

i

+

1

�

n�1

 

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

!!

1

For example, if R =

2

6

4

R

1

0

R

21

R

2

3

7

5

; then R

(n�1)

21

= R

(n�2)

21

R

1

+R

n�2

2

R

21

.
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�

1

n

log

�

1

�

n�1

~s

i

z

i

�

�

1

n

log

�

1

�

n�1

~s

i

R

(n�1)

ij

~

1

t

j

�

(4.9)

�

1

n

log

�

1

�

n�1

~s

i

R

ij

R

n�2

j

~

1

t

j

�

(4.10)

where (4.9) follows from (4.5). Using similar te
hnique as in Theorem 4.1, it


an be veri�ed that the right-hand term of (4.10) 
onverges to 0 as n!1.

3. � = �

j

for some j = 1; : : : ; g and s

i

6= 0 for some i = g+1; : : : ; l where the 
lass

C

j

is rea
hable from 
lass C

i

. The proof for this 
ase is similar to that of 
ase

2.

Let us now examine the upper bound to

1

n

log

�

sR

n�1

1

t

�

n�1

�

in (4.8). By de�nition of �,

it is obvious that

�

i

�

� 1, for all i = 1; : : : ; g su
h that ~s

i

6= 0. Therefore

1

n

log

�

sR

n�1

1

t

�

n�1

�

�

1

n

log

 

1

b

L

g

X

i=1

~s

i

~

b

i

+

1

�

n�1

 

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

!!

: (4.11)

Note that

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

=

g

X

i=h+1

i�1

X

j=1

~s

i

R

(n�1)

ij

~

1

t

j

+

l

X

i=g+1

g

X

j=1

s

i

R

(n�1)

ij

~

1

t

j

+

l

X

i=g+1

i�1

X

j=g+1

s

i

R

(n�1)

ij

:

Our approa
h is to provide an upper bound to the bound in (4.11), simply by providing

an upper bound on R

(n�1)

ij

, i = h + 1; : : : ; l, j = 1; : : : ; g + 1. If R

(n�1)

ij

6= 0 for some

n, then 
lass C

j

is rea
hable from 
lass C

i

(it is enough to 
he
k for n = 2; : : : ; l,

sin
e the number of 
lasses is l). From the blo
k form of R, if R

(n�1)

ij

6= 0, then it is a
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weighted sum involving produ
ts of powers of R

i

and R

j

(whi
h are irredu
ible) and

possibly some other sub-matri
es (whi
h are irredu
ible) along the diagonal

2

of R. By

applying Proposition 2.6 to ea
h of these irredu
ible sub-matri
es if ~s

i

6= 0 or s

i

6= 0

(sin
e R

(n�1)

ij

is multiplied by ~s

i

or s

i

), R

(n�1)

ij

is upper bounded by linear 
ombinations

of powers of the largest eigenvalues of the sub-matri
es along the diagonal of R for

whi
h ~s

i

6= 0, i = h+ 1; : : : ; g, or for whi
h the 
orresponding 
lass is rea
hable from


lass C

i

, i = g + 1; : : : ; l. For example, in the 
ase of the R as given in the footnote,

R

(n�1)

21

� �

n�2

D, where D > 0 and its entries are independent of n. We have the

following (here g = l = 2 and h = 1).

1

n

log

 

1

b

L

g

X

i=1

~s

i

~

b

i

+

1

�

n�1

 

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

!!

=

1

n

log

 

1

b

L

2

X

i=1

~s

i

~

b

i

+

1

�

n�1

(~s

2

~z

2

)

!

=

1

n

log

 

1

b

L

2

X

i=1

~s

i

~

b

i

+

1

�

n�1

�

~s

2

R

n�1

21

~

1

t

1

�

!

�

1

n

log

 

1

b

L

2

X

i=1

~s

i

~

b

i

+

1

�

n�1

�

�

n�2

d

�

!

;

2

For example, if R =

2

6

4

R

1

0

R

21

R

2

3

7

5

; then R

(n�1)

21

= R

(n�2)

21

R

1

+ R

n�2

2

R

21

. By indu
tion, using

the previous re
ursive formula, and Proposition 2.6, it is straightforward that R

(n�1)

21

� �

n�2

D,

where D > 0 and its entries are independent of n. Indeed, by Proposition 2.6, R

n�2

2

� �

n�2

2

D

2

,

and R

1

� �

1

D

1

, where D

2

; D

1

> 0 and their entries are independent of n. By indu
tion, and by

de�nition of �, it follows that

R

(n�1)

21

� �

n�2

D

3

+ �

n�2

R

21

;

where D

3

> 0 and its entries are independent of n. Note also that R

21

has entries independent of

n. Hen
e, the desired result follows by taking D = D

3

+R

21

.
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where d = ~s

2

D

~

1

t

1

is a positive 
onstant. As n ! 1, the above limit is obviously 0.

Thus, the upper bound in (4.11) also 
onverges to 0 as n!1.

If R has three sub-matri
es along the diagonal, then from the blo
k form of R,

the matrix R

(n�1)

31

is given re
ursively by the following formula. R

(n�1)

31

= R

(n�2)

31

R

1

+

R

(n�2)

32

R

21

+R

n�2

3

R

31

. As in the previous example given in the footnote, by indu
tion

and Proposition 2.6, it is straightforward to show that R

(n�1)

31

� �

n�2

D

2

+ �

n�3

D

3

,

where D

2

; D

3

> 0 and their entries are independent of n. In this 
ase, by a reasoning

similar to the previous example, it is straightforward to verify that

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

is upper bounded by

d

2

�

n�2

+ d

3

�

n�3

;

where d

2

; d

3

are positive 
onstants. Hen
e, the upper bound in (4.11) 
onverges to 0

as n ! 1. In general, using the fa
t that R

n

= R

n�1

R, a simple indu
tion yields

that

R

n�1

ij

� d

2

�

n�2

+ � � �+ d

l

�

n�l

;

for all i = h + 1; : : : ; l, j = 1; : : : ; g + 1, where l is the number of 
lasses. Hen
e, the

expression

g

X

i=h+1

~s

i

~z

i

+

l

X

i=g+1

s

i

~z

i

is upper bounded by

d

2

�

n�2

+ � � �+ d

l

�

n�l

;

where d

2

; : : : ; d

l

are positive 
onstants. Hen
e, from (4.11), we obtain the following.
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~
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+
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+
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n
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+
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�
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�

n�l
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!

=
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log

 

1

b

L

g

X

i=1

~s

i

~

b

i

+

1

�

�

d

2

+

d

3

�

+ � � �+

d

l

�

l�2

�

!

=

1

n

log d;

where d is a positive 
onstant. Hen
e

lim

n!1

1

n

log

�

sR

n�1

1

t

�

n�1

�

= 0; (4.12)

sin
e it is sandwi
hed between a lower bound (4.7) and an upper bound (4.8) that


onverge to 0 as n!1. Finally, by (4.1) and (4.12), we get that

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log�:

Observation 1: In [44℄, Nemetz showed that the R�enyi divergen
e rate between two

time-invariant Markov sour
es with stri
tly positive initial distributions is given by

1

��1

log

~

�, where

~

� is the largest positive real eigenvalue of R. The key tools used

in establishing the Nemetz result [44℄ are Perron's formula and Perron-Frobenius

theory for an arbitrary (not ne
essarily irredu
ible) non-negative matrix [32℄, [54℄.

The assumption that the initial distributions are stri
tly positive is essential, sin
e as

mentioned by Nemetz, the �-divergen
e rate is not ne
essarily 
ontinuous at points

where the initial distributions vanish. In order to generalize the result for arbitrary
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initial distributions we used a di�erent approa
h. We 
onsidered the 
anoni
al form of

the matrix R and then used Perron-Frobenius theory on ea
h irredu
ible sub-matrix

along the diagonal of the 
anoni
al form instead of using Perron-Frobenius theory

on the whole matrix at on
e. Although, the proof seems quite involved, the idea is

very simple. As in Theorem 4.1, we employed a sandwi
h argument to show that the

expression

1

n

log

�

sR

n�1

1

t

�

n�1

�


onverges to 0 as n!1 by showing that a lower bound and an upper bound 
onverge

to 0. The lower bound 
onvergen
e is derived along the same lines as in Theorem

4.1. The key idea in deriving the 
onvergen
e of the upper bound is to provide upper

bounds to the sub-matri
es o� the diagonal of R

n�1

whi
h involve powers of positive

eigenvalues of the irredu
ible sub-matri
es along the diagonal of R. This is shown

by indu
tion with the aid of Proposition 2.6 applied to ea
h of the irredu
ible sub-

matri
es along the diagonal of R

n�1

. It is 
lear from our proof that no assumption of

positivity is required on the initial distributions.

Observation 2: Note that by Theorem 4.2, the R�enyi divergen
e rate between

Markov sour
es with arbitrary initial distributions is not ne
essarily equal to

1

��1

log

~

�,

where

~

� is the largest positive real eigenvalue of R. However, if the initial distributions

are stri
tly positive, whi
h implies dire
tly that s > 0, then Theorem 4.2 redu
es to

the Nemetz result. This follows dire
tly from the fa
t that, in this 
ase, � = �

?

=

maxf�

k

g, k = 1; : : : ; g, and the fa
t that the determinant of a blo
k lower triangular

matrix is equal to the produ
t of the determinants of the sub-matri
es along the

diagonal (thus the largest eigenvalue of this matrix is given by maxf�

k

g).
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Theorem 4.3 The rate of 
onvergen
e of the �-divergen
e rate between p

(n)

and q

(n)

is of the order 1=n.

Proof: Note �rst that if p

(n)

and q

(n)

are irredu
ible, then by (4.4), the rate of


onvergen
e of the �-divergen
e rate is 
learly of the order 1=n sin
e s

i

; b

i

; B

U

; b

L

do

not depend on n. For arbitrary p

(n)

and q

(n)

(not ne
essarily irredu
ible, stationary,

et
.), from the proof of Theorem 4.2, it follows dire
tly that the rate of 
onvergen
e

is also of the order 1=n.

4.1.2 k-th Order Markov Sour
es

Now, suppose that the Markov sour
e has an arbitrary order k. De�ne fW

n

g as the

pro
ess obtained by k-step blo
king the Markov sour
e fX

n

g; i.e.,

W

n

4

= (X

n

; X

n+1

; : : : ; X

n+k�1

):

Then

Pr(W

n

= w

n

jW

n�1

= w

n�1

; : : : ;W

1

= w

1

) = Pr(W

n

= w

n

jW

n�1

= w

n�1

);

and fW

n

g is a �rst order Markov sour
e with M

k

states. Let p

w

n�1

w

n

4

= Pr(W

n

=

w

n

jW

n�1

= w

n�1

). We next write the joint distributions of fX

n

g in terms of the


onditional probabilities of fW

n

g. For n � k, V (n; �), as de�ned before, is given by

V (n; �) =

X

p

�

w

1

q

1��

w

1

p

�

w

1

w

2

q

1��

w

1

w

2

: : : p

�

w

n�k

w

n�k+1

q

1��

w

n�k

w

n�k+1

;
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where the sum is over w

1

; w

2

; : : : ; w

n�k+1

2 X

k

. For simpli
ity of notation, let

(p

1

; : : : ; p

M

k) and (q

1

; : : : ; q

M

k) denote the arbitrary initial distributions of W

1

un-

der p

(n)

and q

(n)

respe
tively. Also let p

ij

and q

ij

denote the transition probability

thatW

n

goes from index i to index j under p

(n)

and q

(n)

respe
tively, i; j = 1; : : : ;M

k

.

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 1; : : : ;M

k

: (4.13)

Also, de�ne two new 1�M

k

ve
tors s = (s

1

; : : : ; s

M

k
) and 1 by

s

i

= p

�

i

q

1��

i

; 1 = (1; : : : ; 1):

Then 
learly D

�

(p

(n)

kq

(n)

) 
an be written as

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log sR

n�k

1

t

;

where 1

t

denotes the transpose of the ve
tor 1. It follows dire
tly that with the new

matrix R as de�ned in (4.13), all the previous results also hold for a Markov sour
e

of arbitrary order.

4.1.3 Numeri
al Examples

In this se
tion, we use the natural logarithm.

Example 1: Let P and Q be two possible probability transition matri
es for a �rst

order Markov sour
e fX

1

; X

2

; : : :g de�ned as follows:
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P =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1=4 3=4 0 0 0

1=3 2=3 0 0 0

0 0 1=2 1=2 0

0 0 1=5 4=5 0

0 1=6 1=2 0 1=3

3

7

7

7

7

7

7

7

7

7

7

7

7

5

; Q =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1=5 4=5 0 0 0

1=6 5=6 0 0 0

0 0 1=4 3=4 0

0 0 1=2 1=2 0

0 1=2 1=3 0 1=6

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Note that P and Q are not irredu
ible. Indeed, P and Q have two essential 
lasses

and 1 inessential self-
ommuni
ating 
lass. Let the parameter � = 1=3. The largest

eigenvalues of the three sub-matri
es along the diagonal of R are respe
tively: �

1

=

0:98676, �

2

= 0:95937, and �

3

= 0:20998. Let p = (0; 0; 3=4; 1=4; 0) and q =

(0; 0; 1=3; 2=3; 0) be two possible initial distributions under p

(n)

and q

(n)

respe
tively.

It is straightforward to 
he
k that p

(n)

and q

(n)

are not stationary. For these given

initial distributions, we get by Theorem 4.2 that �

?

= �

2

and �

y

= 0. Therefore,

the R�enyi divergen
e rate is ln(�

2

)=(�� 1) = 0:0622. Note that �

2

is not the largest

eigenvalue of R. We also obtain the following.

n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.0686

50 0.0635

100 0.0628

1000 0.06227

2000 0.06224

3000 0.06223

Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is 
loser to the R�enyi divergen
e rate. Note
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however that, in general, the fun
tion

1

n

D

�

(p

(n)

kq

(n)

) is not monotoni
 in n. Sup-

pose that s has zero 
omponents on the �rst two 
lasses. For example, let p =

(0; 1=4; 1=4; 0; 1=2) and q = (1=4; 0; 0; 1=4; 1=2). In this 
ase, �

?

= �

3

, and �

y

=

maxf�

1

; �

2

g (the �rst and se
ond 
lasses are rea
hable from the third). Therefore,

the R�enyi divergen
e rate is ln(�

1

)=(�� 1) = 0:0199. We also get the following.

n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.1473

50 0.0570

100 0.0413

1000 0.02223

2000 0.02111

3000 0.02074

Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is 
loser to the R�enyi divergen
e rate.

Suppose now that s has stri
tly positive 
omponents (as required in the Nemetz

result). For example, let p = (1=8; 1=4; 1=8; 1=4; 1=4) and q = (1=10; 3=10; 2=10; 2=10;

2=10). In this 
ase, �

?

= �

y

= maxf�

1

; �

2

; �

3

g = �

1

. Therefore, the R�enyi divergen
e

rate is ln(�

1

)=(�� 1) = 0:01999. Note that �

1

is the largest eigenvalue of R whi
h is

expe
ted sin
e the 
omponents of s are stri
tly positive. We also get the following.
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n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.0384

50 0.0343

100 0.0297

1000 0.02105

2000 0.02052

3000 0.02034

Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is 
loser to the R�enyi divergen
e rate.

Example 2: Suppose that the Markov sour
e is of order 2 under p

(n)

and q

(n)

re-

spe
tively. Let fW

1

;W

2

; : : :g be the pro
ess obtained by 2-step blo
king the Markov

sour
e. Let P and Q be two possible transition matri
es for fW

1

;W

2

; : : :g de�ned as

follows:

P =

2

6

6

6

6

6

6

6

6

4

1=4 3=4 0 0

0 0 1 0

3=5 2=5 0 0

0 0 1=5 4=5

3

7

7

7

7

7

7

7

7

5

;

and

Q =

2

6

6

6

6

6

6

6

6

4

2=3 1=3 0 0

0 0 1 0

7=8 1=8 0 0

0 0 5=6 1=6

3

7

7

7

7

7

7

7

7

5

:
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Note that both P and Q are not irredu
ible. The set of indi
es f1; 2; 3g forms an

essential 
lass, while the singleton set f4g forms an inessential self-
ommuni
ating


lass. Let the parameter � = 0:5. The largest positive real eigenvalues of the two

sub-matri
es along the diagonal of R are respe
tively: �

1

= 0:9467, �

2

= 0:3651. Let

p = (1=4; 3=4; 0; 0) and q = (1=5; 4=5; 0; 0) denote two possible initial distributions of

W

1

under p

(n)

and q

(n)

respe
tively. Note that p

(n)

and q

(n)

are not stationary. For

these given initial distributions, we get by Theorem 4.2 that �

�

= �

1

and �

y

= 0.

Therefore, the R�enyi divergen
e rate is ln(�

1

)=(�� 1) = 0:1095. We also obtain the

following.

n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.0817

50 0.1039

100 0.1066

Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is 
loser to the R�enyi divergen
e rate.

Let us now suppose that p = (1=4; 0; 0; 3=4) and q = (1=3; 0; 0; 2=3). For these

given initial distributions, we get by Theorem 4.2 that �

�

= �

1

and �

y

= �

1

. There-

fore, the R�enyi divergen
e rate is ln(�

1

)=(� � 1) = 0:1095. We also obtain the

following.

n

1

n

D

�

(p

(n)

kq

(n)

)

10 0.1389

50 0.1153

100 0.1123
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Clearly, as n gets large

1

n

D

�

(p

(n)

kq

(n)

) is 
loser to the R�enyi divergen
e rate.

4.2 Inter
hangeability of Limits

4.2.1 Limit as �! 1

We herein show that although the R�enyi divergen
e redu
es to the Kullba
k-Leibler

divergen
e as � ! 1, the R�enyi divergen
e rate does not ne
essarily redu
e to the

Kullba
k-Leibler divergen
e rate. Without loss of generality, we will herein deal with

�rst-order Markov sour
es sin
e any k-th order Markov sour
e 
an be 
onverted to a

�rst-order Markov sour
e by k-step blo
king it. We �rst show the following lemma.

Lemma 4.1 Let A = (a

ij

) be an n� n matrix of rank n� 1 with the property that

P

j

a

ij

= 0 for ea
h i. De�ne 


i

to be the 
ofa
tor of a

ii

; i.e., the determinant of

the matrix obtained from A by deleting the i-th row and the i-th 
olumn and let


 = (


1

; 


2

; : : : ; 


n

). Then 
 is a non-zero ve
tor and satis�es 
A = 0.

Proof:

Step 1: First we prove that 
 6= 0. The �rst n � 1 
olumns of A are linearly

independent, be
ause otherwise, the rank of A is less than or equal to n� 2 sin
e the

sum of the 
olumns of A is 0. Thus there is at least one non-zero determinant � of

size (n� 1)� (n� 1) whi
h 
an be formed by deleting one row and the n-th 
olumn

of A whi
h follows from the fa
t that the determinant of a matrix is 0 i� the 
olumns

are linearly dependent. Let the deleted row be the k-th row. If k = n, � = 


n

and so
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 6= 0. If k < n, add all the 
olumns ex
ept the n-th 
olumn to the k-th 
olumn; this

does not 
hange the value of the determinant �. Be
ause

P

j

a

ij

= 0, the elements of

the k-th 
olumn are now �a

1n

;�a

2n

; : : : ;�a

nn

. Multiply the elements of this 
olumn

by �1 and move this 
olumn to the rightmost position. This yields a new determi-

nant with value �� be
ause these operations a�e
t only the sign of the determinant.

However, the new determinant is just 


k

, so that on
e again, 
 6= 0. Thus at least one

of the 
ofa
tors 


i

is non-zero. Without loss of generality assume that 


n

6= 0. Next

we prove that 
A = 0.

Step 2: Consider the n� 1 equations

n

X

i=1

a

ij

x

i

= 0 j 2 f1; 2; : : : ; n� 1g: (4.14)

Note that

P

n

i=1

a

ij

x

i

= 0 is equivalent to

P

n�1

i=1

a

ij

x

i

= �a

nj

x

n

. Sin
e 


n

6= 0, we 
an

use Cramer's rule [41, p. 60℄ to solve these equations for x

1

; : : : ; x

n�1

in terms of x

n

as follows:

x

k

= �x

n

D

k




n

; (4.15)

where

D

k

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

a

11

a

21

� � � a

k�1;1

a

n1

a

k+1;1

� � � a

n�1;1

a

12

a

22

� � � a

k�1;2

a

n2

a

k+1;2

� � � a

n�1;2

� � � � � � � � � � � � � � � � � � � � � � � �

a

1;n�1

a

2;n�1

� � � a

k�1;n�1

a

n;n�1

a

k+1;n�1

� � � a

n�1;n�1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

;

and the elements from the n-th 
olumn have repla
ed the elements of the k-th 
olumn.

If we add the other rows to the k-th row (note that the determinants are transposed
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here) and use the fa
t that

P

j

a

ij

= 0 we get a new k-th row

�a

1n

;�a

2n

; : : : ;�a

k�1;n

;�a

nn

;�a

k+1;n

; : : : ;�a

n�1;n

:

After moving the k-th row and the k-th 
olumn to the last row and 
olumn position

respe
tively, it follows that D

k

= �


k

. From (4.15), if we put x

n

= 


n

, then x

k

= 


k

for all k 2 f1; 2; : : : ; ng. Be
ause

P

j

a

ij

= 0, any solution of (4.14) is a solution of

the same equation for j = n. Thus 
 = (


1

; : : : ; 


n

) satis�es 
A = 0.

Remark: A dire
t 
onsequen
e of the above lemma generalizes Proposition 2.16 from

ergodi
 Markov sour
es to irredu
ible Markov sour
es; this is a
hieved by setting

A = P � I, where P is sto
hasti
 irredu
ible, and I is the identity matrix with the

same dimension.

We next prove the following theorem.

Theorem 4.4 Given that � 2 (0; 1), 
onsider a Markov sour
e fX

1

; X

2

; : : :g with

two possible distributions p

(n)

and q

(n)

on X

n

. Let P and Q be the probability

transition matri
es asso
iated with p

(n)

and q

(n)

respe
tively. Suppose that P and Q

are irredu
ible and that P is absolutely 
ontinuous with respe
t to Q. Also, suppose

that p is absolutely 
ontinuous with respe
t to q. Then

lim

�"1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = lim

n!1

lim

�"1

1

n

D

�

(p

(n)

kq

(n)

)

=

X

i;j

�

i

p

ij

log

p

ij

q

ij

;
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and therefore, the R�enyi divergen
e rate redu
es to the Kullba
k-Leibler divergen
e

rate as � " 1.

Proof: Under the above assumptions, the matrix R (as de�ned in Subse
tion 4.1.1) is

irredu
ible. For 
onvenien
e of notation denote the largest positive real eigenvalue of

R by �(�;R). We know by Proposition 2.8 that ea
h eigenvalue of R is a 
ontinuous

fun
tion of elements of R. Note that R ! P as � " 1, and the largest positive real

eigenvalue of the sto
hasti
 matrix P is 1. Hen
e

lim

�"1

�(�;R) = 1:

Let a denote an arbitrary base of the logarithm. Then, by l'Hôpital's rule, we �nd

that

lim

�"1

log�(�;R)

�� 1

=

1

ln a

�

0

(1; R)

4

=

1

ln a

��(�;R)

��

�

�

�

�

�=1

(4.16)

whi
h is well de�ned by Proposition 2.9 sin
e the algebrai
 multipli
ity of �(�;R)

is 1 (R is irredu
ible) by Proposition 2.7. The equation de�ning the largest positive

eigenvalue �(�;R) = � of R is

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

�

11

q

1��

11

� � p

�

12

q

1��

12

� � � p

�

1M

q

1��

1M

p

�

21

q

1��

21

p

�

22

q

1��

22

� � � � � p

�

2M

q

1��

2M

.

.

.

.

.

.

.

.

.

.

.

.

p

�

M1

q

1��

M1

p

�

M2

q

1��

M2

� � � p

�

MM

q

1��

MM

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 0; (4.17)

where M = jX j. By Lemma 2.4, di�erentiating this equation with respe
t to �, we

get that

D

1

+D

2

+ � � �+D

M

= 0; (4.18)
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where D

i

is the determinant obtained from (4.17) by repla
ing the i-th row by

(p

�

i1

q

1��

i1

ln

p

i1

q

i1

; : : : ; p

�

ii

q

1��

ii

ln

p

ii

q

ii

� �

0

(�); : : : ; p

�

iM

q

1��

iM

ln

p

iM

q

iM

):

and leaving the other M � 1 rows un
hanged. In this equation, �

0

denotes the deriva-

tive of � with respe
t to �. Note that if we add in D

i

all the other 
olumns to the

i-th 
olumn, the value of the determinant remains un
hanged. Therefore, for � = 1

and hen
e � = 1, D

i

is the determinant

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

11

� 1 : : : 0 : : : p

1M

p

21

: : : 0 : : : p

2M

.

.

.

.

.

. 0 : : :

.

.

.

p

i�1;1

: : : 0 : : : p

i�1;M

p

i1

ln

p

i1

q

i1

: : : S(Xji)� �

0

: : : p

iM

ln

p

iM

q

iM

p

i+1;1

: : : 0 : : : p

i+1;M

.

.

.

.

.

. 0 : : :

.

.

.

p

M1

: : : 0 : : : p

MM

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

;

where

S(Xji) =

M

X

j=1

p

ij

ln

p

ij

q

ij

:

A zero o

urs in all the entries of the i-th 
olumn ex
ept for the i-th entry, sin
e

P

M

j=1

p

lj

= 1. We 
on
lude that

D

i

= (S(Xji)� �

0

(1))


i

; (4.19)

where 


i

is the M � 1 �M � 1 
ofa
tor of p

ii

� 1 in the above determinant for the


ase � = 1, given by
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i

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

11

� 1 : : : p

1;i�1

: : : p

1M

p

21

: : : p

2;i�1

: : : p

2M

.

.

. : : : : : : : : :

.

.

.

p

i�1;1

: : : p

i�1;i�1

� 1 : : : p

i�1;M

p

i+1;1

: : : p

i+1;i�1

: : : p

i+1;M

.

.

. : : : : : : : : :

.

.

.

p

M1

: : : p

M;i�1

: : : p

MM

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

After substituting (4.19) in (4.18) and solving for �

0

(1), we obtain by (4.16) that

lim

�"1

log�(�;R)

�� 1

=

1

ln a

�

0

(1; R) =

1

ln a

M

X

i=1

�

i

S(Xji); (4.20)

where

�

i

=




i

P

j




j

:

As � " 1, R! P ; let A = P � I. Sin
e the stationary distribution of the irredu
ible

matrix R is unique, the rank of A is n � 1 be
ause the nullity of A is 1 in this


ase. Hen
e, the 
onditions in Lemma 4.1 are satis�ed. Therefore, 
A = 0, whi
h is

equivalent to 
P = 
. Note that 
 is the non-normalized stationary distribution of P

and (4.20) is just the Kullba
k-Leibler divergen
e rate between P and Q by Theorem

3.1.

For the 
ase � 2 (1;1), we 
an obtain a similar result under the 
onditions that the

matrix Q and the initial distribution q are positive. This is stated in the following


orollary (whose proof is identi
al to the proof of Theorem 4.4).
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Corollary 4.1 Given that � 2 (1;1), 
onsider a Markov sour
e fX

1

; X

2

; : : :g with

two possible distributions p

(n)

and q

(n)

on X

n

. Let P and Q be the probability

transition matri
es asso
iated with p

(n)

and q

(n)

respe
tively. If the matrix P is

irredu
ible, the matrix Q is positive, and the initial distribution q with respe
t to q

(n)

is positive, then

lim

�#1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = lim

n!1

lim

�#1

1

n

D

�

(p

(n)

kq

(n)

)

=

X

i;j

�

i

p

ij

log

p

ij

q

ij

;

and therefore, the R�enyi divergen
e rate redu
es to the Kullba
k-Leibler divergen
e

rate as � # 1.

The following example illustrates that the R�enyi divergen
e rate does not ne
essar-

ily redu
e to the Kullba
k-Leibler divergen
e rate if the 
onditions of the previous

theorem are not satis�ed.

Example: Given that � 2 (0; 1) [ (1;1), let P and Q be the following:

P =

2

6

6

6

6

6

4

1=4 3=4 0

3=4 1=4 0

0 0 1

3

7

7

7

7

7

5

; Q =

2

6

6

6

6

6

4

1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

3

7

7

7

7

7

5

:

Suppose that p

(n)

is stationary with stationary distribution (b=2; b=2; 1 � b), where

0 < b < 1 is arbitrary. Also, suppose that the initial distribution q is positive.

By Theorem 3.2, a simple 
omputation yields that the Kullba
k-Leibler divergen
e

rate is given by log

2

3 � 2b + (3b=4) log

2

3, where the logarithm is to the base 2.

The eigenvalues of R are: �

1

= 1=(3

1��

), �

2

= 4

��

=(3

1��

) + 4

��

=(3

1�2�

); and �

3

=
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4

��

=(3

1��

)�4

��

=(3

1�2�

). Note that s > 0 and that, if 0 < � < 1, max

1�i�3

f�

i

g = �

2

.

By Theorem 4.2, the R�enyi divergen
e rate is (� � 1)

�1

log

2

�

2

. By l'Hôpital's rule,

we get that lim

�"1

(�� 1)

�1

log

2

�

2

= (7=4) log

2

3� 2. Therefore

lim

�"1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = (7=4) log

2

3� 2:

On the other hand, if � > 1, max

1�i�3

f�

i

g = �

1

. Therefore, the R�enyi divergen
e

rate is given by (�� 1)

�1

log

2

�

1

. Clearly, lim

�#1

(�� 1)

�1

log

2

�

1

= log

2

3. Hen
e

lim

�#1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = log

2

3:

Therefore, the inter
hangeability of limits is not valid sin
e

lim

�"1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) < lim

n!1

lim

�!1

1

n

D

�

(p

(n)

kq

(n)

) < lim

�#1

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

):

4.2.2 Limit as � # 0

We obtain the following result.

Theorem 4.5 Let � 2 (0; 1). Consider a Markov sour
e fX

1

; X

2

; : : :g with two

possible distributions p

(n)

and q

(n)

on X

n

. Let P and Q be the probability transition

matri
es on X asso
iated with p

(n)

and q

(n)

, respe
tively. Then

lim

�#0

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = lim

n!1

lim

�#0

1

n

D

�

(p

(n)

kq

(n)

):

Proof: By Theorem 4.2, we have

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) =

1

�� 1

log�(�;R):
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By Proposition 2.8, �(�;R)! �(0; R) as � # 0. Hen
e

lim

�#0

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = � log�(0; R):

On the other hand

lim

�#0

1

n

D

�

(p

(n)

kq

(n)

) =

1

n

log
^
sY 1

t

;

where
^
s = lim

�#0

s and Y = lim

�#0

R. Therefore by again applying Theorem 4.2 to Y

we get

lim

n!1

lim

�#0

1

n

D

�

(p

(n)

kq

(n)

) = � log�(0; R):

Hen
e the inter
hangeability of limits is always valid between n and � as n!1 and

as � # 0.

4.3 R�enyi's Entropy Rate

The existen
e and the 
omputation of the R�enyi entropy rate of a Markov sour
e 
an

be dedu
ed from the existen
e and the 
omputation of the R�enyi divergen
e rate.

Indeed, if q

(n)

is stationary memoryless with uniform marginal distribution then for

any � > 0, � 6= 1,

D

�

(p

(n)

kq

(n)

) = n logM �H

�

(p

(n)

):

Therefore

lim

n!1

1

n

D

�

(p

(n)

kq

(n)

) = logM � lim

n!1

1

n

H

�

(p

(n)

): (4.21)

Hen
e, the existen
e and the 
omputation of the R�enyi entropy rate follows dire
tly

from Theorem 4.1 if the Markov sour
e is irredu
ible, and from Theorem 4.2 if the
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Markov sour
e is arbitrary (not ne
essarily irredu
ible). A
tually, lim

n!1

1

n

H

�

(p

(n)

)


an be 
omputed dire
tly from Theorem 4.1 or from Theorem 4.2 by determining �

with R = (p

�

ij

) and s

i

= p

�

i

, and setting lim

n!1

1

n

H

�

(p

(n)

) =

1

1��

log�. A formula

for the R�enyi entropy rate was established earlier in [46℄ and [47℄, but only for the

parti
ular 
ase of ergodi
 Markov sour
es. We have the following 
orollaries. The

proof follows along the same lines as for the R�enyi divergen
e rate or by using (4.21)

with q

(n)

stationary memoryless and uniformly distributed.

Corollary 4.2 If the Markov sour
e under p

(n)

is irredu
ible, then the R�enyi entropy

rate is given by

lim

n!1

1

n

H

�

(p

(n)

) =

1

1� �

log�;

where � is the largest positive real eigenvalue of R, and 0 < �, � 6= 1.

Corollary 4.3 Let R

i

, i = 1; : : : ; g, be the irredu
ible matri
es along the diagonal

of the 
anoni
al form of the matrix R as shown in Proposition 2.2. Write the ve
tor

s as

s = (~s

1

; : : : ; ~s

h

; ~s

h+1

; : : : ; ~s

g

; s

g+1

; : : : ; s

l

);

where the ve
tor ~s

i


orresponds to R

i

, i = 1; : : : ; g. The s
alars s

g+1

; : : : ; s

l


orrespond

to non self-
ommuni
ating 
lasses.

� Let �

k

be the largest positive real eigenvalue of R

k

for whi
h the 
orresponding

ve
tor ~s

k

is di�erent from the zero ve
tor, k = 1; : : : ; g. Let �

?

be the maximum

over these �

k

's. If ~s

k

= 0, 8k = 1; : : : ; g, then let �

?

= 0.
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� For ea
h inessential 
lass C

i

with 
orresponding ve
tor ~s

i

6= 0, i = h + 1; : : : ; g

or 
orresponding s
alar s

i

6= 0, i = g+1; : : : ; l, let �

j

be the largest positive real

eigenvalue of R

j

if 
lass C

j

is rea
hable from 
lass C

i

. Let �

y

be the maximum

over these �

j

's. If ~s

i

= 0 and s

i

= 0 for every inessential 
lass C

i

, then let

�

y

= 0.

Let � = maxf�

?

; �

y

g. Then the R�enyi entropy rate is given by

lim

n!1

1

n

H

�

(p

(n)

) =

1

1� �

log�;

where 0 < �, � 6= 1.

Corollary 4.4 The rate of 
onvergen
e of the R�enyi entropy rate of p

(n)

is of the

order 1=n.

Although the R�enyi entropy redu
es to the Shannon entropy, the R�enyi entropy

rate does not ne
essarily redu
e to the Shannon entropy rate as �! 1. From the re-

sults about the inter
hangeability of limits for the R�enyi divergen
e rate as derived in

Se
tion 4.2, it follows easily that the R�enyi entropy rate always redu
es to the Hartley

entropy rate as � # 0 (lim

n!1

1

n

H

0

(p

(n)

)), and if the Markov sour
e is irredu
ible, it

redu
es to the Shannon entropy rate as �! 1. We have the following 
orollaries.

Corollary 4.5 Let � > 0, � 6= 1. Suppose that the Markov sour
e under p

(n)

is

irredu
ible. Then

lim

�!1

lim

n!1

1

n

H

�

(p

(n)

) = lim

n!1

lim

�!1

1

n

H

�

(p

(n)

)

= �

X

i;j

�

i

p

ij

log p

ij

;
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and therefore, the R�enyi entropy rate redu
es to the Shannon entropy rate as �! 1.

Corollary 4.6 Let � > 0, � 6= 1. Suppose that the Markov sour
e under p

(n)

is

arbitrary (not ne
essarily stationary, irredu
ible, et
.). Then

lim

�#0

lim

n!1

1

n

H

�

(p

(n)

) = lim

n!1

lim

�#0

1

n

H

�

(p

(n)

):

Let us now illustrate the 
omputation of the R�enyi entropy rate by several exam-

ples. We use the natural logarithm.

Example 1: Let P be a possible probability transition matrix for fX

1

; X

2

; : : :g

de�ned as follows:

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1=4 3=4 0 0 0

1=3 2=3 0 0 0

0 0 1=2 1=2 0

0 0 1=5 4=5 0

0 1=6 1=2 0 1=3

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Note that P is not irredu
ible. Indeed, P has two essential 
lasses and 1 inessential

self-
ommuni
ating 
lass. Let the parameter � = 1=3. The largest eigenvalues of

the three sub-matri
es along the diagonal of R are respe
tively: �

1

= 1:55476, �

2

=

1:54561, and �

3

= 0:69336. Let p = (0; 0; 3=4; 1=4; 0) be a possible initial distribution

under p

(n)

. It is straightforward to 
he
k that p

(n)

is not stationary. For this given

initial distribution, we get by Corollary 4.3 that �

?

= �

2

and �

y

= 0. Therefore,

the R�enyi entropy rate is ln(�

2

)=(1 � �) = 0:6531. Note that �

2

is not the largest

eigenvalue of R. We also obtain the following.
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n

1

n

H

�

(p

(n)

)

10 0.65368

50 0.65324

100 0.65319

Clearly, as n gets large

1

n

H

�

(p

(n)

) is 
loser to the R�enyi entropy rate. Note however

that, in general, the fun
tion

1

n

H

�

(p

(n)

) is not monotoni
 in n. Suppose that s has

zero 
omponents on the �rst two 
lasses, i.e., let p = (0; 0; 0; 0; 1). In this 
ase,

�

?

= �

3

, and �

y

= maxf�

1

; �

2

g (the �rst and se
ond 
lasses are rea
hable from the

third). Therefore, the R�enyi entropy rate is ln(�

1

)=(1 � �) = 0:66198. We also get

the following.

n

1

n

H

�

(p

(n)

)

10 0.6618

50 0.6580

100 0.6578

200 0.6582

500 0.6596

Clearly, as n gets large

1

n

H

�

(p

(n)

) is 
loser to the R�enyi entropy rate.

Suppose now that s has stri
tly positive 
omponents (as required in the Nemetz

result). For example, let p = (1=8; 1=4; 1=8; 1=4; 1=4). In this 
ase, �

?

= �

y

=

maxf�

1

; �

2

; �

3

g = �

1

. Therefore, the R�enyi entropy rate is ln(�

1

)=(1� �) = 0:66198.

Note that �

1

is the largest eigenvalue of R whi
h is expe
ted sin
e the 
omponents

of s are stri
tly positive. We also get the following.
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n

1

n

H

�

(p

(n)

)

10 0.7693

50 0.6800

100 0.6691

Clearly, as n gets large

1

n

H

�

(p

(n)

) is 
loser to the R�enyi entropy rate.

Example 2: Suppose that the Markov sour
e is of order 2 under p

(n)

and q

(n)

re-

spe
tively. Let fW

1

;W

2

; : : :g be the pro
ess obtained by 2-step blo
king the Markov

sour
e. Let P be a possible transition matrix for fW

1

;W

2

; : : :g de�ned as follows:

P =

2

6

6

6

6

6

6

6

6

4

1=4 3=4 0 0

0 0 1 0

3=5 2=5 0 0

0 0 1=5 4=5

3

7

7

7

7

7

7

7

7

5

:

Note that P is not irredu
ible. The set of indi
es f1; 2; 3g forms an essential 
lass,

while the singleton set f4g forms a self-
ommuni
ating non-essential 
lass. Let the

parameter � = 0:5. The largest positive real eigenvalues of the two sub-matri
es

along the diagonal of R are respe
tively: �

1

= 1:24037, �

2

= 0:89442. Let p =

(1=4; 3=4; 0; 0) denote a possible initial distribution of W

1

under p

(n)

. Note that p

(n)

is not stationary. For this given initial distribution, we get by Corollary 4.3 that

�

�

= �

1

and �

y

= 0. Therefore, the R�enyi entropy rate is ln(�

1

)=(1 � �) = 0:4308.

We also obtain the following.
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n

1

n

H

�

(p

(n)

)

10 0.3951

50 0.4236

100 0.4272

Clearly, as n gets large

1

n

H

�

(p

(n)

) is 
loser to the R�enyi entropy rate.

Let us now suppose that p = (1=4; 0; 0; 3=4). For this given initial distribution,

we get by Corollary 4.3 that �

�

= �

1

and �

y

= �

1

. Therefore, the R�enyi entropy rate

is ln(�

1

)=(1� �) = 0:4308. We also obtain the following.

n

1

n

H

�

(p

(n)

)

10 0.4533

50 0.4359

100 0.4334

Clearly, as n gets large

1

n

H

�

(p

(n)

) is 
loser to the R�enyi entropy rate.

4.4 A Variable-Length Sour
e Coding Theorem

Following [13℄, let the average 
ode length of order t be de�ned by

L(t) =

1

t

log

D

 

X

i

p

i

D

tl

i

!

;

where 0 < t <1, and l

i

is the length of the 
odeword (or 
ode sequen
e) for the i-th

sour
e symbol. L(t) is an interesting measure of 
ode length whi
h implies that the
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ost of representing a sour
e symbol varies exponentially with 
ode length, as opposed

to Shannon's expe
ted 
ode length measure

l

4

=

M

X

i=1

p

i

l

i

in whi
h the 
ost varies linearly with 
ode length [13℄. A simple 
al
ulation shows

that L(t) redu
es to l when t ! 0; thus L(t) 
an be regarded as a more general

measure. Furthermore, in many appli
ations where the pro
essing 
ost of de
oding is

high or the bu�er over
ow due to long 
odewords is important, an exponential 
ost

fun
tion 
an be more appropriate than a linear 
ost fun
tion [11℄, [13℄.

Consider a sour
e sequen
e s of length n that we wish to en
ode via a D-ary

uniquely de
odable 
ode. Let p(s) be the probability of s, and l(s) be the length of

the 
odeword for s. Then the average 
ode length of order t for the n-sequen
es is

L

n

(t) =

1

t

log

D

 

X

s

p(s)D

tl(s)

!

;

where the summation extends over the M

n

sequen
es s. In [13℄, Campbell demon-

strated the following variable-length sour
e 
oding theorem for a DMS (dis
rete mem-

oryless sour
e), in whi
h the R�enyi entropy (H

�

(p)) plays a role analogous to the

Shannon entropy when the 
ost fun
tion in the 
oding problem is exponential as

opposed to linear.

Proposition 4.1 [13℄ Let � = 1=(1 + t). By en
oding suÆ
iently long sequen
es of

input symbols of a DMS, it is possible to make the average 
ode length of order t per

input symbol

1

n

L

n

(t) as 
lose to H

�

(p) as desired. Also, it is not possible to �nd a

uniquely de
odable 
ode whose average length of order t is less than H

�

(p).
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We next establish an operational 
hara
terization for the R�enyi entropy rate by

extending this theorem to Markov sour
es.

Theorem 4.6 Let � = 1=(1 + t). There exists a uniquely de
odable 
ode for a

Markov sour
e with an asymptoti
 average 
ode length of order t per input symbol

satisfying

lim

n!1

1

n

L

n

(t) =

1

1� �

log�;

where � denotes the positive eigenvalue of the matrix R = (p

�

ij

) as de�ned in Corollary

4.3. Conversely, any uniquely de
odable 
ode for the sour
e has an asymptoti
 average


ode length of order t per input symbol satisfying

lim

n!1

1

n

L

n

(t) �

1

1� �

log�:

Proof: Let s be a sequen
e of input symbols of length n from the sour
e. We 
an


onsider su
h sequen
e as an element from the alphabet X

M

. Pro
eeding exa
tly as

in the proof of [13, Theorem 1℄, we 
an similarly establish the existen
e of a uniquely

de
odable 
ode satisfying

1

n

H

�

(p

(n)

) �

1

n

L

n

(t) <

1

n

H

�

(p

(n)

) +

1

n

:

From Corollary 4.3, we have

lim

n!1

1

n

H

�

(p

(n)

) =

1

1� �

log�: (4.22)

Therefore

lim

n!1

1

n

L

n

(t) =

1

1� �

log�:

93



This 
ompletes the proof of the forward part. By [13, Lemma 1℄, every uniquely

de
odable 
ode satis�es L

n

(t) � H

�

(p

(n)

). Hen
e, the proof of the 
onverse part

follows dire
tly from (4.22).

Remark: By Corollary 4.5, the above theorem does not ne
essarily redu
e to the

Shannon lossless sour
e 
oding theorem as � ! 1 and n ! 1. It redu
es to the

Shannon 
oding theorem if for example the Markov sour
e is irredu
ible.

Let us now illustrate numeri
ally using a generalized Hu�man 
ode for the Markov

sour
e that

1

n

H

�

(p

(n)

) is 
lose to the R�enyi entropy rate and that

1

n

H

�

(p

(n)

) is 
lose

to

1

n

L

n

(t) for several values of n. Following [11℄, the R�enyi redundan
y of a 
ode for

a sour
e sequen
e of length n is de�ned as

�

n

=

1

n

L

n

(t)�

1

n

H

�

(p

(n)

):

In [33, Theorem 1

0

℄, a simple generalization of Hu�man's algorithm whi
h minimizes

�

n

is given. In Hu�man's algorithm, ea
h new node is assigned the weight p

i

+ p

j

,

where p

i

and p

j

are the lowest weights on available nodes. In the generalized algo-

rithm, the new node is assigned the weight 2

t

(p

i

+ p

j

). The base of the logarithm is

2, so the entropies are measured in bits.

Example: Let fX

1

; X

2

; : : :g be a binary �rst-order Markov sour
e with initial distri-

bution (0:8; 0:2) and probability transition matrix

P =

0

B

�

0:4 0:6

0:7 0:3

1

C

A

:
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Let � = 0:5, then t = 1. The largest eigenvalue of R = (p

�

ij

) is found to be � = 1:396.

By Corollary 4.2, the R�enyi entropy rate is equal to 0.963. Using the generalized

Hu�man's algorithm we get the following.

n

1

n

H

�

(p

(n)

)

1

n

L

n

(t)

1 0.848 1.000

2 0.909 0.9705

3 0.927 0.945

The sets of 
odewords are (0,1), (0,10,110,111) and (10,000,001,010,110,111,0110,

0111) for n = 1; 2 and 3 respe
tively. As n gets large,

1

n

H

�

(p

(n)

) is 
loser to the R�enyi

entropy rate. Also,

1

n

L

n

(t) is 
lose to

1

n

H

�

(p

(n)

).
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Chapter 5

Csisz�ar's Forward Cuto� Rate for

Hypothesis Testing Between

General Sour
es with Memory

In [20℄, Csisz�ar established the 
on
ept of forward �-
uto� rate for the hypothesis

testing problem based on independent and identi
ally distributed (i.i.d.) observa-

tions. Given � < 0, he de�nes the forward �-
uto� rate as the number R

0

� 0 that

provides the best possible lower bound in the form �(E � R

0

) to the type 1 error

exponent fun
tion for hypothesis testing where 0 < E < R

0

is the rate of exponen-

tial 
onvergen
e to 0 of the type 2 error probability. He then demonstrated that

the forward �-
uto� rate is given by D

1=(1��)

(Xk

�

X), where D

�

(Xk

�

X) denotes the

�-divergen
e, � > 0, � 6= 1. This result provides a new operational signi�
an
e for

the �-divergen
e.
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The error exponent for the binary hypothesis testing problem has been thoroughly

studied for �nite state i.i.d. sour
es and Markov 
hains. The results for i.i.d. sour
es


an be found in [21℄, [31℄, [35℄, and for irredu
ible Markov sour
es in [5℄, [43℄. The error

exponent for testing between ergodi
 Markov sour
es with 
ontinuous state-spa
e

under 
ertain additional restri
tions was established in [39℄. In its full generality, i.e.,

for arbitrary sour
es (not ne
essarily, stationary, ergodi
, et
.), the error exponent

was studied in [15℄, [29℄, [30℄.

In the sequel, we extend Csisz�ar's result [20℄ by investigating the forward �-
uto�

rate for the hypothesis testing between two arbitrary sour
es. Our proof relies in part

on the formulas established in [29℄, and extensions of the te
hniques used in [14℄ to

generalize Csisz�ar's results for arbitrary dis
rete sour
es with memory. Unlike [14℄

where the sour
e alphabet was assumed to be �nite, we assume arbitrary (
ountable

or 
ontinuous) sour
e alphabet. The te
hniques used in our proof are a mixture

of the te
hniques used in deriving the forward and reverse �-
uto� rates for sour
e


oding [14℄. However, some new te
hniques are also needed to obtain the result. We

demonstrate that the liminf �-divergen
e rate provides the expression for the forward

�-
uto� rate.

5.1 Preliminaries

In this se
tion, we brie
y review previous results by Han [29℄ on the general ex-

pression for the Neyman-Pearson type 2 error subje
t to an exponential bound on

the type 1 error. Let us �rst de�ne the general sour
e as an in�nite sequen
e
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X = fX

n

g

1

n=1

4

=

n

X

n

=

�

X

(n)

1

; : : : ; X

(n)

n

�o

1

n=1

of n-dimensional random variablesX

n

where ea
h 
omponent random variable X

(n)

i

(1 � i � n) takes values in an arbitrary

set X that we 
all the sour
e alphabet. Given two arbitrary sour
es X = fX

n

g

1

n=1

and

�

X = f

�

X

n

g

1

n=1

taking values in the same sour
e alphabet fX

n

g

1

n=1

, we may de�ne

the general hypothesis testing problem with X = fX

n

g

1

n=1

as the null hypothesis and

�

X = f

�

X

n

g

1

n=1

as the alternative hypothesis.

Let A

n

be any subset of X

n

, n = 1; 2; : : : that we 
all the a

eptan
e region of the

hypothesis test, and de�ne

�

n

4

= PrfX

n

62 A

n

g and �

n

4

= Prf

�

X

n

2 A

n

g

where �

n

; �

n

are 
alled type 1 error probability and type 2 error probability, respe
-

tively.

De�nition 5.1 Fix r > 0. A rate E is 
alled r-a
hievable if there exists a sequen
e

of a

eptan
e regions A

n

su
h that

1

lim inf

n!1

�

1

n

log�

n

� r and lim inf

n!1

�

1

n

log�

n

� E:

1

Let (a

n

) be a sequen
e in R [ f�1;+1g. The limit inferior is given by

lim inf

n!1

a

n

= sup

n�1

inf

k�n

a

k

= lim

n!1

inf

k�n

a

k

:

Similarly, the limit superior is given by

lim sup

n!1

a

n

= inf

n�1

sup

k�n

a

k

= lim

n!1

sup

k�n

a

k

:
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De�nition 5.2 The supremum of all r-a
hievable rates is denoted by B

e

(rjXk

�

X):

B

e

(rjXk

�

X)

4

= supfE > 0 : E is r-a
hievableg;

and B

e

(rjXk

�

X) = 0 if the above set is empty.

The dual of this fun
tion is de�ned as:

D

e

(EjXk

�

X)

4

= supfr > 0 : E is r-a
hievableg;

and D

e

(EjXk

�

X) = 0 if the above set is empty.

Proposition 5.1 [29℄ Fix r > 0. For the general hypothesis testing problem, we

have that

B

e

(rjXk

�

X) = inf

R2R

fR + �(R) : �(R) < rg;

where

2

�(R)

4

= lim inf

n!1

�

1

n

logPr

�

1

n

log

P

X

n

(X

n

)

P

�

X

n

(X

n

)

� R

�

;

is the large deviation spe
trum of the normalized log-likelihood ratio.

We herein assume that the sour
e alphabet is 
ountable. However, we will point

out the ne
essary modi�
ations in the proofs for the 
ase of a 
ontinuous alphabet.

The above proposition is the main tool for our key lemma in the following se
tion.

2

If the sour
e alphabet X is (absolutely) 
ontinuous, then P

X

n

(X

n

) plays the role of the density

fun
tion f

X

n

(X

n

).
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5.2 Hypothesis Testing Forward �-Cuto� Rate

De�nition 5.3 Fix � < 0. R

0

� 0 is a forward �-a
hievable rate for the general

hypothesis testing problem if

D

e

(EjXk

�

X) � �(E � R

0

)

for every E > 0, or equivalently,

B

e

(rjXk

�

X) � R

0

+

r

�

;

for every r > 0. The forward �-
uto� rate is de�ned as the supremum of all forward

�-a
hievable rates, and is denoted by R

(f)

0

(�jXk

�

X).

Note that in the degenerate and uninteresting 
ase where D

e

(EjXk

�

X) is identi
ally

0, we have that R

(f)

0

(�jXk

�

X) = 0. We herein assume that D

e

(EjXk

�

X) is not 0 for

all values of E. A graphi
al illustration of R

(f)

0

(�jXk

�

X) is presented in Figure 5.1.
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t

t

d

d

-�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

R

(f)

0

(�jXk

�

X)

E

�(E �R

(f)

0

(�jXk

�

X))

D

e

(EjXk

�

X)

Figure 5.1: A graphi
al illustration of the forward �-
uto� rate, R

(f)

0

(�jXk

�

X), for

testing between two arbitrary sour
es X and

�

X.
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Before stating our main result, we �rst observe in the next lemma that the forward

�-
uto� rate R

(f)

0

(�jXk

�

X) is indeed the R-axis inter
ept of a support line of slope

�

1��

to the large deviation spe
trum �(R).

Lemma 5.1 Fix � < 0. The following 
onditions are equivalent.

(8R 2 R) �(R) �

�

� � 1

(R

0

� R) (5.1)

and

(8r > 0) B

e

(rjXk

�

X) � R

0

+

r

�

: (5.2)

Proof:

a) (5.1) ) (5.2).

For any r > 0, we obtain by Proposition 5.1 that

(8Æ > 0)(9R

Æ

with �(R

Æ

) < r) B

e

(rjXk

�

X) + Æ � R

Æ

+ �(R

Æ

):

Therefore

B

e

(rjXk

�

X) � R

Æ

+ �(R

Æ

)� Æ

� R

Æ

� Æ +

�

� � 1

(R

0

� R

Æ

) (5.3)

= �Æ +

�

� � 1

R

0

�

R

Æ

� � 1

� �Æ +

�

� � 1

R

0

�

R

0

� � 1

+

r

�

(5.4)

=

r

�

+R

0

� Æ;

where (5.3) follows from (5.1), and (5.4) holds be
ause

r > �(R

Æ

) �

�

� � 1

(R

0

� R

Æ

):

102



Sin
e Æ 
an be made arbitrarily small, the proof of the forward part is 
ompleted.

b) (5.2) ) (5.1).

(5.1) holds trivially for those R satisfying �(R) = 1. For any R 2 R with

�(R) <1, let r

Æ

4

= �(R) + Æ for some Æ > 0. Then (by Proposition 5.1)

B

e

(r

Æ

jXk

�

X) � R + �(R):

Therefore

�(R) � B

e

(r

Æ

jXk

�

X)� R

� R

0

+

r

Æ

�

� R (5.5)

= R

0

+

�(R)

�

+

Æ

�

�R;

where (5.5) follows by (5.2). Thus,

�(R) �

�

� � 1

(R

0

� R) +

Æ

� � 1

:

Sin
e Æ 
an be made arbitrarily small, the proof of the 
onverse part is 
ompleted.
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Theorem 5.1 (Forward �-
uto� rate formula). Fix � < 0. For the general

hypothesis testing problem,

R

(f)

0

(�jXk

�

X) = lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

);

where

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

�

[P

�

X

n

(x

n

)℄

1��

!

is the n-dimensional �-divergen
e

3

.

Proof: Note that �(R) > 0 for some

4

R 2 R.

1. Forward part: R

(f)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

). By the equivalen
e of


onditions (5.1) and (5.2), it suÆ
es to show that

(8R 2 R) �(R) �

�

� � 1

�

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)� R

�

:

Indeed, we have the following.

3

If the sour
e alphabet is (absolutely) 
ontinuous, i.e., it admits a density f

X

n

(�), then the n-

dimensional �-divergen
e is given by

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

�

Z

[f

X

n

(x

n

)℄

�

[f

�

X

n

(x

n

)℄

1��

dx

n

�

:

4

If �(R) = 0 for all R 2 R, then

B

e

(rjXk

�

X) = inf

R2R

fR+ �(R)j�(R) < rg = inf

R2R

fRg = �1;


ontradi
ting that B

e

(rjXk

�

X) is, by de�nition, an exponent and should be always non-negative.
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Pr

�

1

n

log

P

X

n

(X

n

)

P

�

X

n

(X

n

)

� R

�

= Pr

�

e

�t log

P

X

n

(X

n

)

P

�

X

n

(X

n

)

� e

�ntR

�

; for t > 0

� e

ntR

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

1�t

[P

�

X

n

(x

n

)℄

t

!

(5.6)

= exp

�

�nt

�

1

n

D

1�t

(X

n

k

�

X

n

)� R

��

;

for 0 < t < 1, where (5.6) follows by Markov's inequality. Therefore

�(R) � t

�

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)�R

�

=

�

� � 1

�

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)�R

�

; for �

4

=

t

t� 1

< 0:

2. Converse part: R

(f)

0

(�jXk

�

X) � lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

).

The 
onverse holds trivially if lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

) is in�nite. Hen
e we


an assume that lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

) < K, where K is some 
onstant. By

the equivalen
e of 
onditions (5.1) and (5.2), it suÆ
es to show that for any Æ > 0

arbitrarily small, there exists R = R(Æ) 2 R su
h that

�(R) �

�

� � 1

�

3Æ + lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)�R

�

:

Consider the twisted distribution de�ned as:

P

(t)

X

n

(x

n

)

4

=

[P

�

X

n

(x

n

)℄

t

[P

X

n

(x

n

)℄

1�t

P

x̂

n

2X

n

[P

�

X

n

(x̂

n

)℄

t

[P

X

n

(x̂

n

)℄

1�t

= exp

�

t

�

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

��

P

X

n

(x

n

); (5.7)

where t = �=(� � 1). Note that 0 < t < 1. Let N be a set of positive integers su
h

that

lim

n2N ;n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

);
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and de�ne

�

4

= supfR 2 R : �

(t)

(R) > 0g;

where

�

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� R

�

;

is the twisted large deviation spe
trum of the normalized log-likelihood ratio with

parameter t, and � satis�es (
f. Lemmas 5.2 and 5.3 in Se
tion 5.4) that

�1 < � � lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) < K:

We then note by de�nition of �

(t)

(�) and the �niteness property of � that for any

Æ > 0, there exists " > 0 su
h that:

�

(t)

(� � Æ) = lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� � � Æ

�

> " > 0:

As a result,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

� 1� e

�n"

for n 2 N suÆ
iently large:

On the other hand, de�ne

��

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

and

��

4

= inffR 2 R : ��

(t)

(R) > 0g:

Then by noting that

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

= D

1�t

(X

n

k

�

X

n

)�

1

t

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

;
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we have:

��

(t)

(R) = �

�

�tR +

t

n

D

1�t

(X

n

k

�

X

n

)

�

and

�� = �

1

t

supfR 2 R : � (R) > 0g+

1

n

D

1�t

(X

n

k

�

X

n

)

�

1

n

D

1�t

(X

n

k

�

X

n

) (5.8)

< K for n 2 N suÆ
iently large; (5.9)

where

�(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� R

)

;

(5.8) follows from Lemma 5.4 in Se
tion 5.4, and (5.9) holds by de�nition of K. This

indi
ates the existen
e of �" > 0 su
h that ��

(t)

(K) > �", whi
h immediately gives that

for n 2 N suÆ
iently large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

� e

�n�"

:

Therefore, for n 2 N suÆ
iently large,

P

(t)

X

n

�

x

n

2 X

n

: K >

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> � � Æ

�

= P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

> � � Æ

�

�P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� K

�

� 1� e

�n"

� e

�n�"

: (5.10)

Let I

1

4

= (� � Æ; b

1

); and

I

k

4

= [b

k�1

; b

k

) for 2 � k � L

4

=

�

K � � + Æ

2Æ

�

;
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where b

k

4

= (� � Æ) + 2kÆ for 1 � k < L, and b

L

4

= K. By (5.10), there exists

1 � k(n) � L su
h that

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

2 I

k(n)

�

�

1� e

�n"

� e

�n�"

L

; (5.11)

for n 2 N suÆ
iently large. Then, by letting R

1

4

= lim sup

n2N ;n!1

b

k(n)

+ Æ, we

obtain that for n 2 N suÆ
iently large

P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

1

�

� P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

:

However, for suÆ
iently large n 2 N , we have that

P

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

2 I

k(n)

�

=

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

P

X

n

(x

n

)

=

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

e

�t

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

P

(t)

X

n

(x

n

) (5.12)

� e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

X

�

x

n

2X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2I

k(n)

�

P

(t)

X

n

(x

n

)

= e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

2 I

k(n)

�

�

1� e

�n"

� e

�n�"

L

e

�nt

(

�b

k(n)�1

+

1

n

D

1�t

(X

n

k

�

X

n

)

)

; (5.13)

where (5.12) follows from (5.7), and (5.13) follows from (5.11). Consequently
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�(R

1

) = lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� R

1

�

� lim inf

n2N ;n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

1

�

� t

�

� lim sup

n2N ;n!1

b

k(n)�1

+ lim inf

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)

�

� t

�

� lim sup

n2N ;n!1

b

k(n)

+ 2Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

�

= t

�

3Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� R

1

�

:

Sin
e Æ 
an be made arbitrarily small, the proof is 
ompleted.

Observations:

A. While the proof of the forward part is straightforward, the proof of the 
onverse

part is 
onsiderably more 
omplex. The obje
tive of the 
onverse part is to demon-

strate that if lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) is slightly shifted to the right (by a fa
tor

of 3Æ), then there exists a 
oordinate R su
h that a straight line of slope �=(1� �)

given by

y =

�

� � 1

�

3Æ + lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

)� R

�

lies above the 
urve of �(R) at R = R, thus violating its status of support line for

�(R).

This proof is established by observing that the desired 
oordinate R lies in a small

neighborhood of � , where � is the smallest point for whi
h �

(t)

(R) vanishes. A key
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point is to 
hoose the twisted parameter t to be equal to �=(� � 1) whi
h is the

negative slope of the support line to �(R). We graphi
ally illustrate this observation

(based on a true example) in Figure 5.2. The 
omputational details are des
ribed in

Example 1 (
f. Se
tion 5.3).

B. Note also that the proof holds if the alphabet is 
ountable or 
ontinuous as opposed

to the sour
e 
oding 
uto� rate [14℄ where the �niteness property of the alphabet is

ne
essary. The modi�
ations in the proof for the 
ontinuous 
ase are 
lear. Simply,

repla
e the probability mass fun
tion by the probability density fun
tion and the

summation by integration. We graphi
ally illustrate this observation (based on a true

example involving memoryless Gaussian sour
es) in Figure 5.3. The 
omputational

details are des
ribed in Example 2 (
f. Se
tion 5.3).

C. The proof of the hypothesis testing 
uto� rate is more involved than the proof of

the sour
e 
oding 
uto� rate given in [14℄. The main diÆ
ulty arises from the formula

in Theorem 5.1 where the in�mum for R is taken over the entire real line 
ontrary to

Theorem 1 in [14℄ for sour
e 
oding where R ranges from 0 to 1. This requires us

to deal separately with the degenerate 
ase � = �1 (
f. Lemma 5.3 in Se
tion 5.4).

Also, the te
hnique used to prove the forward 
uto� rate for hypothesis testing relies

on the proofs of both the sour
e 
oding forward and reverse 
uto� rates, but in major

parts though similar to the reverse sour
e 
oding 
uto� rate.
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D. If the sour
es X and

�

X are arbitrary (not ne
essarily stationary, irredu
ible)

Markov sour
es of arbitrary order, then we know from Chapter 4 that the �-divergen
e

rate exists and 
an be 
omputed. Thus in this 
ase, the forward �-
uto� rate for test-

ing between Markov sour
es 
an be obtained. Also, from the de�nition ofD

e

(EjXk

�

X),

it follows dire
tly that for all E > 0,

D

e

(EjXk

�

X) � sup

�<0

h

�(E �R

(f)

0

(�jXk

�

X))

i

:

Note that this 
onvex lower bound is 
omputable for the entire 
lass of Markov sour
es,

while D

e

(EjXk

�

X) is not ne
essarily 
omputable in general (it is 
omputable for ir-

redu
ible Markov sour
es [5℄, [43℄, see Figure 5.4). We graphi
ally illustrate this

observation for testing between irredu
ible Markov sour
es in Figure 5.4 and arbi-

trary Markov sour
es (not ne
essarily stationary, irredu
ible) in Figure 5.5. The


omputational details are des
ribed in Examples 3 and 4 (
f. Se
tion 5.3).
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Figure 5.2: Fun
tions �(R), �

(t)

(R) and (�=(��1))

h

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)� R

i

for testing between two binary memoryless sour
es X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the distributions (1=2; 1=2) and (1=4; 3=4) respe
tively, and with � = �7.

When R < � log(3=2), �(R) = �

(t)

(R) =1.
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(R) and (�=(��1))

h

lim inf

n!1

1

n

D

1

1��

(X

n

k

�

X

n

)� R

i

for testing between two memoryless sour
es X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the

Gaussian distributions N(�; 1) and N(��; 1) respe
tively, and with � = �0:5.

113



-

6

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

O E

R

(f)

0

(�jXk

�

X)

Figure 5.4: Convex lower bound for testing between irredu
ible Markov sour
es. Ea
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line of slope � interse
ts the E-axis at R

(f)

0

(�jXk
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X). Pro
eeding from left to right,

the values of � are: �5;�3;�2;�4=3;�1;�2=3;�1=2;�2=5.
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Figure 5.5: Convex lower bound for testing between arbitrary Markov sour
es. Ea
h

line of slope � interse
ts the E-axis at R

(f)

0
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X). Pro
eeding from left to right,

the values of � are: �5;�3;�2;�1;�2=3;�1=2;�2=5;�1=6.
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5.3 Numeri
al Examples

Throughout this se
tion, the natural logarithm is used.

Example 1 Finite-alphabet memoryless sour
es: Consider the binary hypothesis test-

ing between two memoryless sour
es X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under the

distributions (1=2; 1=2) and (1=4; 3=4) respe
tively. Then the log-likelihood ratio

Z = log

P

X

(X)

P

�

X

(X)

has the following distribution:

PrfZ = log(2)g = 1� PrfZ = log(2=3)g = 1=2:

Let M

Z

(�) denote the moment generating fun
tion of the random variable Z. By

Cramer's Theorem

5

[12, p. 9℄, we get that

5

Let fY

1

; Y

2

; : : :g be an i.i.d. sequen
e of random variables. Suppose that the expe
ted value of

Y

1

, E[Y

1

℄, exists and is �nite. Consider the fun
tion

I(y)

4

= sup

�2R

[�y � logM(�)℄;

where M(�)

4

= Efexp[�Y

1

℄g is the moment generating fun
tion of Y

1

. The fun
tion I(y) is known

as the large deviation rate fun
tion. A simple version of Cramer's Theorem is as follows. Assume

that M(�) <1 for all �. For a � E[Y

1

℄,

lim inf

n!1

�

1

n

logPrfS

n

� ag = lim sup

n!1

�

1

n

logPrfS

n

� ag = 0

where S

n

4

=

Y

1

+���+Y

n

n

is the sample average. This follows dire
tly from the law of large numbers.

For a < E[Y

1

℄,

lim inf

n!1

�

1

n

logPrfS

n

� ag = lim sup

n!1

�

1

n

logPrfS

n

� ag = I(a):
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�(R) = inf

�2(�1;R℄

I

Z

(�)

=

8

>

<

>

:

I

Z

(R); R < E[Z℄ = log(2)� log(3)=2;

0; otherwise;

where E[Z℄ denotes the expe
tation of the random variable Z and

I

Z

(�) = sup

�2R

(��� logM

Z

(�))

= sup

�2R

�

��� (� � 1) log(2)� log(1 + 3

��

)

�

=

log(log(3=2) + �)� log(log(2)� �)

log(3)

(�� log(2)) + log(2)

� log(1 +

log(2)� �

log(3=2) + �

)

=

log(log(3=2) + �)� log(log(2)� �)

log(3)

�+

log(3=2)

log(3)

log(log(3=2) + �)

+

log(2)

log(3)

log(log(2)� �) + log(2)� log(log(3)):

Consequently,

�(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1; R < � log(3=2)

log(2); R = � log(3=2)

log(log(3=2)+R)�log(log(2)�R)

log(3)

R

+

log(3=2)

log(3)

log(log(3=2) +R)

+

log(2)

log(3)

log(log(2)� R)

+ log(2)� log(log(3)); � log(3=2) < R < log(2)� log(3)=2

0; otherwise:

Let R

0

be the rate at whi
h the line of slope �=(1� �) is tangent to �(R). We have
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that �

0

(R)j

R=R

0

= �=(1� �). Note that

�

0

(R) =

R

log 3

�

1

R + log(3=2)

+

1

log 2� R

�

+

log(3=2)

log 3

1

R + log(3=2)

+

1

log 3

(log(log(3=2) +R)� log(log 2� R))�

log 2

log 3

1

log 2� R

=

1

log 3

R + log(3=2)

log 2� R

:

Hen
e

1

log 3

R

0

+ log(3=2)

log 2�R

0

=

�

1� �

;

whi
h yields

R

0

= log 2� log

3

1 + 3

�

1��

:

By straightforward 
al
ulations we get that

�(R

0

) =

 

1�

1

1 + 3

�

1��

!

log 3

�

1��

+ log 2� log

�

1 + 3

�

1��

�

:

Thus, the forward 
uto� rate R

(f)

0

(�jXk

�

X), whi
h is the R-axis inter
ept of the line

of slope �=(1� �), is given by

R

(f)

0

(�jXk

�

X) =

� � 1

�

�(R

0

) +R

0

=

2� � 1

�

log 2�

� � 1

�

log

�

1 + 3

�

1��

�

� log 3:

On the other hand, the �-divergen
e between X and

�

X is given by

D

�

(Xk

�

X) =

1

�� 1

log

 

�

1

2

�

�

�

1

4

�

1��

+

�

1

2

�

�

�

3

4

�

1��

!

=

1

�� 1

�

(�� 2) log 2 + log(1 + 3

1��

)

�

;

whi
h yields

D

1

1��

(Xk

�

X) =

2� � 1

�

log 2�

� � 1

�

log

�

1 + 3

�

1��

�

� log 3:
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Note that the forward 
uto� rate R

(f)

0

(�jXk

�

X) and the lim inf �-divergen
e rate

(whi
h is equal to the �-divergen
e sin
e the sour
es are DMS) of order � = 1=(1��)

are equal as expe
ted from Theorem 5.1. Let us now derive � in order to 
he
k that

� = R

0

. First, we need to 
ompute �

(t)

(R). The set N is equal to the set of natural

numbers in this 
ase. Note that the distribution of the random variable Z

(t)

under

the twisted distribution with parameter 0 < t < 1 is given by

P

(t)

fZ = log 2g = 1=(1 + 3

t

) and P

(t)

fZ = log(2=3)g = 3

t

=(1 + 3

t

):

By Cramer's theorem [12, p. 9℄, we get that

�

(t)

(R) = inf

�2(�1;R℄

I

Z

(t)

(�)

=

8

>

<

>

:

I

(t)

Z

(R); R < E

P

(t)

[Z

(t)

℄ =

log 2

1+3

t

+ log(2=3)

3

t

1+3

t

;

0; otherwise;

where E

P

(t)

[Z

(t)

℄ denotes the expe
tation of the random variableZ

(t)

under the twisted

distribution and

I

(t)

Z

(�) = sup

�2R

�

��� logM

(t)

Z

(�)

�

= sup

�2R

�

��� � log(2)� log(1 + 3

t��

) + log(1 + 3

t

)

�

=

�

t +

1

log 3

[log(�+ log(3=2))� log(log 2� �)℄

�

(�� log 2)

+ log(1 + 3

t

)� log

�

1 +

log 2� �

�� log 2 + log 3

�

:
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Finally, we get that

�

(t)

(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1; R < � log(3=2)

log(1 + 3

t

); R = � log(3=2)

t(R � log 2)

+

log(log(3=2)+R)�log(log(2)�R)

log(3)

R

+

log(3=2)

log(3)

log(log(3=2) +R)

+

log(2)

log(3)

log(log(2)� R)

+ log(1 + 3

t

)� log(log(3)); � log(3=2) < R <

log 2

1+3

t

+ log(2=3)

3

t

1+3

t

0; otherwise:

Therefore

� =

log 2

1 + 3

t

+ log(2=3)

3

t

1 + 3

t

�

It is easy to 
he
k that indeed we have � = R

0

when the twisted parameter t is 
hosen

to be �=(� � 1). This example is illustrated in Figure 5.2 for � = �7.

Example 2 Continuous alphabet memoryless sour
es: Consider the hypothesis test-

ing problem between two memoryless sour
es X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

under

the Gaussian distributions N(�; 1) and N(��; 1) respe
tively. It is easy to 
he
k that

the log-likelihood ratio Z is Gaussian distributed with mean 2�

2

and varian
e 4�

2

,

whi
h gives that the moment generating fun
tion of Z is E[e

�Z

℄ = e

2�

2

�+2�

2

�

2

. So,

I

Z

(�) = sup

�2R

(��� 2�

2

�� 2�

2

�

2

) = (�� 2�

2

)

2

=(8�

2

). By Cramer's theorem, we get

that

�(R) =

8

>

<

>

:

1

8�

2

(R� 2�

2

)

2

; R < 2�

2

0; otherwise:
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Let R

0

be the rate at whi
h the line of slope �=(1� �) is tangent to �(R). We have

that �

0

(R)j

R=R

0

= �=(1� �). Note that

�

0

(R) =

1

4�

2

(R � 2�

2

):

Hen
e

1

4�

2

(R

0

� 2�

2

) =

�

� � 1

;

whi
h yields

R

0

= 2�

2

1 + �

1� �

�

By straightforward 
al
ulations we get that

�(R

0

) =

2�

2

�

2

(1� �)

2

�

Thus, the forward 
uto� rate R

(f)

0

(�jXk

�

X), whi
h is the R-axis inter
ept of the line

of slope �=(1� �), is given by

R

(f)

0

(�jXk

�

X) =

� � 1

�

�(R

0

) +R

0

= 2�

2

1

1� �

�

On the other hand, the �-divergen
e between X and

�

X is given by

D

�

(Xk

�

X) =

1

�� 1

log

Z

1

p

2�

e

�

1

2

�(x��)

2

�

1

2

(1��)(x+�)

2

dx

=

1

�� 1

log e

�

1

2

(�

2

�(2����)

2

)

Z

1

p

2�

e

�

1

2

(x�(2����)

2

)

dx

=

1

�� 1

log e

�

1

2

(�

2

�(2����)

2

)

= 2�

2

�
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whi
h yields

D

1

1��

(Xk

�

X) = 2�

2

1

1� �

�

Note that the forward 
uto� rate R

(f)

0

(�jXk

�

X) and the lim inf �-divergen
e rate

(whi
h is equal to the �-divergen
e sin
e the sour
es are DMS) of order � = 1=(1��)

are equal as expe
ted from Theorem 5.1.

Now, let us 
ompute �

(t)

(R). The set N in this 
ase is equal to the set of natural

numbers. For some normalization 
onstant C,

P

(t)

X

n

(x

n

) = C � exp

(

�

t

2

n

X

i=1

(x

i

+ �)

2

)

exp

(

�

1� t

2

n

X

i=1

(x

i

� �)

2

)

= C � exp

(

�

1

2

n

X

i=1

[t(x

i

+ �)

2

+ (1� t)(x

i

� �)

2

℄

)

= C � exp

(

�

1

2

n

X

i=1

(x

2

i

+ 2(2t� 1)�x

i

+ �

2

)

)

;

whi
h is a Gaussian distribution with mean (1 � 2t)� and unit varian
e. Similarly,

by invoking Cramer's theorem, we get that,

�

(t)

(R) =

8

>

<

>

:

1

8�

2

(R + (2t� 1)2�

2

)

2

; R < (1� 2t)2�

2

0; otherwise:

Hen
e, � = (1� 2t)2�

2

. It is straightforward to 
he
k that � = R

0

when the twisted

parameter t is 
hosen to be �=(� � 1). This example is depi
ted in Figure 5.3 for

� = �0:5.
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Example 3 Irredu
ible �nite-alphabet Markov sour
es: Suppose that X and

�

X are

two irredu
ible Markov sour
es with arbitrary initial distributions and probability

transition matri
es P and Q de�ned as follows:

P =

0

B

�

1=3 2=3

1=4 3=4

1

C

A

; Q =

0

B

�

1=5 4=5

5=6 1=6

1

C

A

:

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 0; 1:

By Theorem 4.1, the �-divergen
e rate between X and

�

X exists and is given by

lim

n!1

1

n

D

�

(X

n

k

�

X

n

) =

1

�� 1

log�;

where � is the largest positive real eigenvalue of R. Hen
e the 
omputation of the


onvex lower bound for D

e

(EjXk

�

X) is easily obtained as shown in Figure 5.4 for the

values � = �5;�3;�2;�4=3;�1; �2=3;�1=2;�2=5 (pro
eeding from left to right),

where � =

1

1��

. Note that in this 
ase the bound is tight [5℄, [43℄.

Example 4 Arbitrary �nite-alphabet Markov sour
es: Suppose that X and

�

X are two

arbitrary Markov sour
es with arbitrary initial distributions and probability transition

matri
es P and Q de�ned as follows:
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P =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1=2 1=2 0 0 0

1=4 3=4 0 0 0

0 0 3=5 2=5 0

0 1=6 5=6 0 0

1=4 0 1=4 0 1=2

1

C

C

C

C

C

C

C

C

C

C

C

C

A

; Q =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1=5 4=5 0 0 0

2=3 1=3 0 0 0

0 0 1=2 1=2 0

0 1=6 5=6 0 0

1=8 0 1=2 0 3=8

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

De�ne a new matrix R = (r

ij

) by

r

ij

= p

�

ij

q

1��

ij

; i; j = 0; 1; 2; 3; 4:

By Theorem 4.2, the �-divergen
e rate between X and

�

X 
an be 
omputed. Hen
e,

the 
onvex lower bound for D

e

(EjXk

�

X) 
an be easily derived as shown in Figure 5.5

for the values � = �5;�3;�2;�1;�2=3;�1=2;�2=5;�1=6 (pro
eeding from left to

right), where � =

1

1��

.

5.4 Properties of � and �(R)

Lemma 5.2 For 0 < t < 1,

�

4

= supfR : �

(t)

(R) > 0g � lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

):

Proof: For any � > 0,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

>

1

n

D

1�t

(X

n

k

�

X

n

) + �

�
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for suÆ
iently large n 2 N . But

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

>

1

n

D

1�t

(X

n

k

�

X

n

) + �

�

= P

(t)

X

n

�

x

n

2 X

n

: �

1

n

�

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

> �

�

= P

(t)

X

n

�

x

n

2 X

n

:

t

n

�

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+D

1�t

(X

n

k

�

X

n

)

�

< ��t

�

= P

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

< ��t

)

(5.14)

= P

(t)

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) < e

�n�t

P

X

n

(x

n

)

o

� e

�n�t

P

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) < e

�n�t

P

X

n

(x

n

)

o

� e

�n�t

;

where (5.14) follows from (5.7). Thus for suÆ
iently large n 2 N ,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� 1� e

�n�t

;

whi
h implies

�

(t)

�

lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�

�

� lim sup

n2N ;n!1

�

1

n

log

�

1� e

�n�t

�

= 0:

Consequently,

sup

�

R : �

(t)

(R) > 0

	

� lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) + 2�:

The proof is 
ompleted by noting that � 
an be made arbitrarily small.
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Lemma 5.3 For 0 < t < 1, if lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) < K, then

�

4

= supfR : �

(t)

(R) > 0g > �1:

Proof: By (5.7), we get that

P

(t)

X

n

(x

n

) = e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t) log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

P

�

X

n

(x

n

):

Hen
e,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

� e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nR

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� R

�

� e

tD

1�t

(X

n

k

�

X

n

)

e

(1�t)nR

;

whi
h implies that

�

(t)

(R) � �t lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t)R:

Therefore,

� � �

t

1� t

lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

):

This shows that � = �1 implies that

lim sup

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim inf

n!1

1

n

D

1�t

(X

n

k

�

X

n

) =1;


ontradi
ting the assumption that lim inf

n!1

(1=n)D

1�t

(X

n

k

�

X

n

) < K.
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Lemma 5.4 We have the following:

supfR 2 R : � (R) > 0g � 0:

Proof: For any � > 0,

P

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� ��

)

= P

(t)

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) � e

�n�

P

X

n

(x

n

)

o

� e

�n�

P

X

n

n

x

n

2 X

n

: P

(t)

X

n

(x

n

) � e

�n�

P

X

n

(x

n

)

o

� e

�n�

;

whi
h implies �(��) � �. Hen
e, the lemma holds.
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Chapter 6

Csisz�ar's Reverse Cuto� Rate for

Hypothesis Testing Between

General Sour
es with Memory

In [20℄, Csisz�ar established the 
on
ept of reverse �-
uto� rate for the hypothesis

testing problem based on i.i.d. observations. Given � > 0, he de�nes the reverse �-


uto� rate as the number R

0

� 0 that provides the best possible lower bound in the

form �(E�R

0

) to the type 1 
orre
t exponent (or reliability) fun
tion for hypothesis

testing where 0 < R

0

< E is the rate of exponential 
onvergen
e to 0 of the type

2 error probability. He then demonstrated that the reverse �-
uto� rate is given by

D

1=(1��)

(Xk

�

X), where D

�

(Xk

�

X) denotes the �-divergen
e, � > 0, � 6= 1. This result

provides a new operational signi�
an
e for the �-divergen
e.

In this 
hapter, we extend Csisz�ar's result [20℄ by investigating the reverse �-
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uto� rate for hypothesis testing between two arbitrary sour
es. Our proof relies in

part on the formulas established in [29℄, and extensions of the te
hniques used in [14℄

to generalize Csisz�ar's sour
e 
oding result for arbitrary dis
rete sour
es. Unlike [14℄

where the sour
e alphabet was assumed to be �nite, we assume arbitrary (
ountable or


ontinuous) sour
e alphabet. We show that if the log-likelihood ratio large deviation

spe
trum �(R) is 
onvex and if there exists an R 2 R su
h that �(R) + R = 0, then

the limsup �-divergen
e rate with � =

1

1��

provides the expression for the reverse

�-
uto� rate for 0 < � < �

max

, where �

max

is the largest � < 1 for whi
h the lim sup

1

1��

-divergen
e rate is �nite. For 1 > � � �

max

, we only provide an upper bound

on the reverse 
uto� rate. However, our result does redu
e to Csisz�ar's result for

�nite-alphabet i.i.d. observations for 0 < � < 1. In the following se
tion, relevant

previous results by Han on the probability of 
orre
t testing are brie
y reviewed and

the problem setup is presented.

6.1 Preliminaries and Problem Formulation

De�ne the general sour
e [29℄ as an in�nite sequen
e X = fX

n

g

1

n=1

4

=

n

X

n

=

�

X

(n)

1

;

: : : ; X

(n)

n

�o

1

n=1

of n-dimensional random variablesX

n

where ea
h 
omponent random

variable X

(n)

i

(1 � i � n) takes values in an arbitrary set X that we 
all the sour
e

alphabet. Given two arbitrary sour
es X = fX

n

g

1

n=1

and

�

X = f

�

X

n

g

1

n=1

taking

values in the same sour
e alphabet fX

n

g

1

n=1

, we may de�ne the general hypothesis

testing problem with X = fX

n

g

1

n=1

as the null hypothesis and

�

X = f

�

X

n

g

1

n=1

as the

alternative hypothesis.
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Let A

n

be any subset of X

n

, n = 1; 2; : : : that we 
all the a

eptan
e region of the

hypothesis test, and de�ne

�

n

4

= PrfX

n

62 A

n

g and �

n

4

= Prf

�

X

n

2 A

n

g

where �

n

; �

n

are 
alled type 1 error probability and type 2 error probability, respe
-

tively.

In [20℄, Csisz�ar investigated the hypothesis testing problem between i.i.d. observa-

tions by 
onsidering the �-
uto� rate for the exponent of the best 
orre
t probability

of type 1 with exponential 
onstraint on the probability of type 2 error. More formally,

he used the following de�nitions.

De�nition 6.1 Fix E > 0. A rate r is 
alled E-una
hievable if there exists a se-

quen
e of a

eptan
e regions A

n

su
h that

lim sup

n!1

�

1

n

log(1� �

n

) � r and lim inf

n!1

�

1

n

log�

n

� E:

De�nition 6.2 The in�mum of all E-una
hievable rates is de�ned as:

D

�

e

(EjXk

�

X)

4

= inffr > 0 : r is E-una
hievableg;

and D

�

e

(EjXk

�

X) = 0 if the above set is empty.

For 0 < r < D

�

e

(EjXk

�

X), every a

eptable regionA

n

with lim inf

n!1

�

1

n

log�

n

�

E satis�es �

n

> 1� e

�nr

for n in�nitely often.
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De�nition 6.3 Fix � > 0. R

0

� 0 is a reverse �-a
hievable rate for the general

hypothesis testing problem if

D

�

e

(EjXk

�

X) � �(E �R

0

)

for every E > 0. The reverse �-
uto� rate is de�ned as the in�mum of all reverse

�-a
hievable rates, and is denoted by R

(r)

0

(�jXk

�

X).

However, in [29℄, Han investigated the general hypothesis testing problem between

arbitrary sour
es with memory by 
onsidering the exponent of the best 
orre
t prob-

ability of type 2 with exponential 
onstraint on the probability of type 1 error. More

formally, he used the following de�nitions.

De�nition 6.4 [29℄ Fix r > 0. A rate E is 
alled r-una
hievable if there exists a

sequen
e of a

eptan
e regions A

n

su
h that

lim inf

n!1

�

1

n

log�

n

� r and lim sup

n!1

�

1

n

log(1� �

n

) � E:

De�nition 6.5 [29℄ The in�mum of all r-una
hievable rates is denoted byB

�

e

(rjXk

�

X):

B

�

e

(rjXk

�

X)

4

= inffE > 0 : E is r-una
hievableg;

and B

�

e

(rjXk

�

X) = 0 if the above set is empty.

Proposition 6.1 [29℄ Fix r > 0. For the general hypothesis testing problem, we

have that

B

�

e

(rjXk

�

X) = inf

R2R

fR + ��(R) + [r � ��(R)℄

+

g;
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where

��(R)

4

= lim

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� R

�

;

and [x℄

+

= maxfx; 0g, provided the limit de�ning ��(R) exists, and for any M > 0,

there exists K > 0 su
h that

lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� K

�

�M:

Remark 1: Note that Csisz�ar's and Han's de�nitions seem di�erent at �rst glan
e.

In our investigation, we realized that in order to establish our results on the reverse


uto� rate for general sour
es with memory, a formula for the reliability fun
tion of

the type 1 probability of 
orre
t de
oding, D

�

e

(EjXk

�

X), is needed. However, in [29℄,

Han provided a formula for the reliability fun
tion of the type 2 probability of 
orre
t

de
oding, B

�

e

(rjXk

�

X). This turned out to be an obsta
le, sin
e we were not able to

derive the reverse 
uto� rate formula by dire
tly using the formula for B

�

e

(rjXk

�

X).

To over
ome this obsta
le, we observed that if we inter
hange the role of the null and

alternative hypotheses distributions (i.e., X $

�

X), and also r with E (i.e., r $ E)

in Han's de�nitions (De�nitions 6.4 and 6.5), then a formula for D

�

e

(EjXk

�

X) 
an be

readily obtained from Han's result. More spe
i�
ally, we have the following.

De�nition 6.6 Fix E > 0. A rate r is 
alled E-una
hievable if there exists a se-

quen
e of a

eptan
e regions A

0

n

= A




n

(
omplement of A

n

) su
h that

lim inf

n!1

�

1

n

log�

n

� E and lim sup

n!1

�

1

n

log(1� �

n

) � r;

where

�

n

= Prf

�

X

n

62 A

0

n

g = Prf

�

X

n

2 A

n

g and �

n

= PrfX

n

2 A

0

n

g = PrfX

n

62 A

n

g:
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De�nition 6.7 The in�mum of all E-una
hievable rates is given by

B

�

e

(Ej

�

XkX) = inffr > 0 : r is E-una
hievableg;

and B

�

e

(Ej

�

XkX) = 0 if the above set is empty.

With De�nitions 6.6 and 6.7, Proposition 6.1 be
omes as follows.

Proposition 6.2 For any E > 0,

B

�

e

(Ej

�

XkX) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

;

where

�(R)

4

= lim

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

provided the limit de�ning �(R) exists, and for any M > 0, there exists K > 0 su
h

that

lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� K

�

�M:

Remark 2: We 
an now 
learly observe that De�nitions 6.6 and 6.1 are identi
al.

This indi
ates that Han's B

�

e

(Ej

�

XkX) is in fa
t Csisz�ar's D

�

e

(EjXk

�

X). Hen
e, using

De�nitions 6.1 and 6.2, Proposition 6.2 should be as follows.
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Proposition 6.3 For any E > 0,

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

;

where

�(R) = lim

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

provided the limit de�ning �(R) exists, and for any M > 0, there exists K > 0 su
h

that

lim inf

n!1

�

1

n

logP

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

� K

�

�M: (6.1)

The above proposition is a key ingredient for our main results in the following

se
tion.

6.2 Hypothesis Testing Reverse �-Cuto� Rate

For 
larity of presentation, we herein restate the de�nition of the reverse �-
uto� rate

(whi
h was already given in De�nition 6.3).

De�nition 6.8 Fix � > 0. R

0

� 0 is a reverse �-a
hievable rate for the general

hypothesis testing problem if

D

�

e

(EjXk

�

X) � �(E �R

0

)

for every E > 0. The reverse �-
uto� rate is de�ned as the in�mum of all reverse

�-a
hievable rates, and is denoted by R

(r)

0

(�jXk

�

X).
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In the degenerate 
ase where D

�

e

(EjXk

�

X) = 0, we have that R

(r)

0

(�jXk

�

X) = 1.

We herein assume that D

�

e

(EjXk

�

X) is not identi
ally 0 for all values of E and that the


onditions of Proposition 6.3 are satis�ed. A graphi
al illustration of R

(r)

0

(�jXk

�

X) is

given in Figure 6.1.

d

t

d

t

-�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

R

(r)

0

(�jXk

�

X)

E

�(E � R

(r)

0

(�jXk

�

X))

D

�

e

(EjXk

�

X)

Figure 6.1: A graphi
al illustration of the reverse �-
uto� rate, R

(r)

0

(�jXk

�

X), for

testing between two arbitrary sour
es X and

�

X.
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We �rst show the following lemmas, whi
h will provide us the key me
hanism to

establish our reverse 
uto� rate result.

Lemma 6.1 For all E > 0, we have that

D

�

e

(EjXk

�

X) � E + inffR 2 R : �(R) � Eg:

Proof: We have the following.

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

(by Proposition 6.3)

= min

�

inf

�(R)�E

fR + Eg; inf

�(R)>E

fR + �(R)g

�

� inf

�(R)�E

fR + Eg

= E + inffR 2 R : �(R) � Eg:

Lemma 6.2 Assume that �(R) is 
onvex, and also assume that there exists an R

su
h that R + �(R) = 0. Then for those E satisfying D

�

e

(EjXk

�

X) > 0,

D

�

e

(EjXk

�

X) = E + inffR 2 R : �(R) � Eg:

Proof: Sin
e �(R) is de
reasing by de�nition and it is assumed to be 
onvex, then

it is 
ontinuous and stri
tly de
reasing. Let R

�

be the smallest one that satis�es

R + �(R) = 0. Then for E � �(R

�

),

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

(by Proposition 6.3)

� R

�

+ �(R

�

) + [E � �(R

�

)℄

+

= 0:
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Hen
e, the set of values of E su
h that D

�

e

(EjXk

�

X) > 0 does not in
lude E � �(R

�

).

Now as �(R) is assumed 
onvex, its slope is stri
tly in
reasing, whi
h implies that

the slope of �(R) is less than �1 for R < R

�

. This immediately gives that the slope

of the fun
tion R + �(R) is negative for R < R

�

. Consequently, for any E > �(R

�

)

(whi
h 
orresponds to R < R

�

sin
e �(R) is stri
tly de
reasing),

inf

fR:�(R)>Eg

fR + �(R)g = fR + �(R)gj

R=�

�1

(E)

= �

�1

(E) + E = inf

�(R)�E

fR + Eg ;

where

�

�1

(E)

4

= inffa : �(a) � Eg;

is the quantile or inverse of �(�). Thus,

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

= min

�

inf

�(R)�E

fR + Eg; inf

�(R)>E

fR + �(R)g

�

= inf

�(R)�E

fR + Eg

= E + inffR 2 R : �(R) � Eg:

It is important to note that the above lemma does not ne
essarily hold in general;

this is illustrated in the following example for the 
ase where �(R) is not 
onvex.

137



Example 1: Let

�(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

0; R > 2;

�

1

2

R + 1; �2 � R < 2;

�2R� 2; �4 � R < �2;

�

1

2

R + 4; �6 � R < �4;

�R + 1; R < �6;

whi
h is 
ontinuous and de
reasing but not 
onvex. Hen
e,

R + �(R) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

0; R > 2;

1

2

R + 1; �2 � R < 2;

�R � 2; �4 � R < �2;

1

2

R + 4; �6 � R < �4;

1; R < �6;

Then indeed,

D

�

e

(EjXk

�

X) = min

�

inf

�(R)�E

[R + E℄; inf

�(R)>E

[R + �(R)℄

�

= inf

�(R)>E

fR + �(R)g =

8

>

>

>

>

>

<

>

>

>

>

>

:

0; 0 < E � 2;

1

2

E � 1; 2 < E � 4;

1; E > 4;

and

E + inffR : �(R) � Eg =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�E + 2; 0 < E � 2;

1

2

E � 1; 2 < E � 6;

�E + 8; 6 < E � 7;

1; E > 7:
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Lemma 6.3 Fix t < 0. Also, assume that �(R) is 
onvex, and suppose that there

exists an R su
h that R + �(R) = 0. The following two 
onditions are equivalent.

(8 R 2 R) �(R) � �R(1� t) + tR

0

(6.2)

and

(8 E > 0) D

�

e

(EjXk

�

X) �

t

t� 1

(E �R

0

): (6.3)

Proof:

a) (6.2))(6.3). By Lemma 6.2, for those E satisfying D

�

e

(EjXk

�

X) > 0, we have

that

D

�

e

(EjXk

�

X) = E + inffR 2 R : �(R) � Eg

� E + inffR 2 R : �R(1� t) + tR

0

� Eg

=

t

t� 1

(E � R

0

) ;

where the inequality follows from (6.2). This implies that

inffE > 0 : D

�

e

(EjXk

�

X) > 0g � R

0

:

Hen
e, for these E satisfying D

�

e

(EjXk

�

X) = 0, the 
laim also holds sin
e D

�

e

(EjXk

�

X)

is in
reasing.

b) (6.3))(6.2). By Lemma 6.1 and (6.3), for E > 0, we have that

inffR 2 R : �(R) � Eg �

t

t� 1

(E �R

0

)� E =

1

t� 1

E �

t

t� 1

R

0

:

Thus

E � �

�

1

t� 1

E �

t

t� 1

R

0

�

;
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sin
e �(�) is stri
tly de
reasing. Letting

R =

1

t� 1

E �

t

t� 1

R

0

;

or

E = �R(1� t) + tR

0

;

the above inequality 
an be rewritten as

�(R) � �R(1� t) + tR

0

;

where R 2 R.

We next employ Lemma 6.3 to show our main result regarding the reverse 
uto�

rate.
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Theorem 6.1 (Reverse �-
uto� rate formula). Assume that �(R) is 
onvex, and

suppose that there exists an R su
h that R + �(R) = 0. For the general hypothesis

testing problem,

R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1;

and

R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < �

max

;

where

�

max

= sup

�

� 2 (0; 1) : lim sup

n!1

1

n

D

1=(1�
)

(X

n

k

�

X

n

) <1 for every 0 < 
 < �

�

;

and

D

�

(X

n

k

�

X

n

)

4

=

1

�� 1

log

 

X

x

n

2X

n

[P

X

n

(x

n

)℄

�

[P

�

X

n
(x

n

)℄

1��

!

is the n-dimensional R�enyi �-divergen
e. Note that from the above two inequalities,

R

(r)

0

(�jXk

�

X) is indeed equal to the limsup

1

1��

-divergen
e rate for 0 < � < �

max

.

Proof:

1

1. Forward part: R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1.

By the equivalen
e of 
onditions (6.2) and (6.3), it suÆ
es to show that

(8R 2 R) �(R) � �R(1� t) + t � lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

):

1

For the proof of the 
ontinuous alphabet 
ase, the same remark given in Observation B (
f.

Se
tion 5.2) applies.
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Consider the twisted distribution de�ned as:

P

(t)

X

n

(x

n

)

4

=

[P

�

X

(x

n

)℄

t

[P

X

n

(x

n

)℄

1�t

P

x̂

n

2X

n

[P

�

X

(x̂

n

)℄

t

[P

X

n

(x̂

n

)℄

1�t

= exp

�

(t� 1) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

+ tD

1�t

(X

n

k

�

X

n

)

�

P

�

X

n

(x

n

): (6.4)

Then for t < 0,

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

P

�

X

n

(x

n

)

=

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

exp

�

(1� t) log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� tD

1�t

(X

n

k

�

X

n

)

�

P

(t)

X

n

(x

n

)

� exp

�

nR(1� t)� tD

1�t

(X

n

k

�

X

n

)

	

X

n

x

n

2X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

�R

o

P

(t)

X

n

(x

n

)

� exp

�

nR(1� t)� tD

1�t

(X

n

k

�

X

n

)

	

:

So,

�(R) = lim inf

n!1

�

1

n

logP

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

�

� �R(1� t) + t � lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

= �R(1� t) + t � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

); for �

4

=

t

t� 1

2 (0; 1):

2. Converse part: R

(r)

0

(�jXk

�

X) � lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < �

max

.

By the equivalen
e of (6.2) and (6.3), it suÆ
es to show the existen
e of

�

R for any

Æ > 0 su
h that

�(

�

R) � �

�

R(1� t) + t

�

lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

) +

(1� t)

t

3Æ

�

;
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where t = �=(� � 1) < 0. Let N be a set of positive integers su
h that

lim

n2N ;n!1

1

n

D

1�t

(X

n

k

�

X

n

) = lim sup

n!1

1

n

D

1�t

(X

n

k

�

X

n

)

and de�ne

�

4

= supfR 2 R : �

(t)

(R) > 0g;

where

�

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

;

is the twisted large deviation spe
trum of the normalized log-likelihood ratio with

parameter t. It 
an be shown that � satis�es �1 < � � 0 (
f. Lemmas 6.4 and 6.5

in Se
tion 6.3). We then note by de�nition of �

(t)

(�) and the �niteness property of �

that for any Æ > 0, there exists � > 0 su
h that

�

(t)

(�� Æ) = lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� �� Æ

�

> � > 0:

As a result,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

> �� Æ

�

� 1� e

�n�

for n 2 N suÆ
iently large:

On the other hand, de�ne

��

(t)

(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

� R

�

and

�

�

4

= inffR 2 R : ��

(t)

(R) > 0g:

Then by noting that

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

= �D

1�t

(X

n

k

�

X

n

) +

1

t

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

;
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we have:

��

(t)

(R) = �

�

tR +

t

n

D

1�t

(X

n

k

�

X

n

)

�

;

where

�(R)

4

= lim inf

n2N ;n!1

�

1

n

logP

(t)

X

n

(

x

n

2 X

n

:

1

n

log

P

(t)

X

n

(x

n

)

P

X

n

(x

n

)

� R

)

;

and

�

� =

1

t

supfR 2 R : � (R) > 0g �

1

n

D

1�t

(X

n

k

�

X

n

)

� 0; (6.5)

where (6.5) follows from Lemma 5.4 in Se
tion 5.4, and the non-negativity [20℄ of

the R�enyi divergen
e D

1�t

(X

n

k

�

X

n

). This indi
ates the existen
e of �� > 0 su
h that

��

(t)

(Æ) > ��, whi
h immediately gives that for n 2 N suÆ
iently large,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� Æ

�

� e

�n��

:

Therefore, for n 2 N suÆ
iently large,

P

(t)

X

n

�

x

n

2 X

n

: Æ >

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> �� Æ

�

� P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n
(x

n

)

> �� Æ

�

�P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

X

n

(x

n

)

P

�

X

n

(x

n

)

� Æ

�

� 1� e

�n�

� e

�n��

: (6.6)

Let I

1

4

= (�� Æ; b

1

), and

2

2

Note that when � < 0, L � 2; so the de�nition is well-established. However, in 
ase � = 0, we

just take L = 1, and I

1

= (�Æ; Æ).
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I

k

4

= [b

k�1

; b

k

) for 2 � k � L

4

=

�

2Æ � �

2Æ

�

;

where b

k

4

= (� � Æ) + 2kÆ for 1 � k < L, and b

L

4

= Æ. By (6.6), there exists

1 � k(n) � L su
h that

P

(t)

X

n

�

x

n

2 X

n

:

1

n
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P

�

X

n

(x

n
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P
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n
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n

)

2 I

k(n)

�

�

1� e

�n�

� e

�n��

L

; (6.7)

for n 2 N suÆ
iently large. Then, by letting R

1

4

= lim sup

n2N ;n!1

b

k(n)

+ Æ, we

obtain that for n 2 N suÆ
iently large,

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n
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n

)
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1

�
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�
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�
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n
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:
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n
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�
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n
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P
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�

:

However, for suÆ
iently large n 2 N , we have that:

P
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n

�

x

n
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�
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n
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�

=
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n
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=
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o
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�
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)

e
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P

�
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P
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n

)

P
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�
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P

�
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�tD

1�t

(X

n

k

�
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e
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P
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n

�
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�
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�
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Consequently,
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1

) = lim inf

n!1

�
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P

�
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�
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�
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:
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log

P

�
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�
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n2N ;n!1

1

n

D

1�t
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n

k

�
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n
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n2N ;n!1

b
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n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t) lim sup

n2N ;n!1

b

k(n)

+ 2Æ(1� t)
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n!1

1

n

D

1�t

(X

n

k

�

X

n

)� (1� t)R

1

+ 3Æ(1� t):

Sin
e Æ 
an be made arbitrarily small, the proof is 
ompleted.

We observe that the 
onditions given in the above theorem are not ne
essary for

the expression of the reverse �-
uto� rate to be given by the lim sup

1

1��

-divergen
e

rate. This is illustrated in the following example, where we show that �(R) is not


onvex while

R

(r)

0

(�jXk

�

X) = lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Example 2: Let P

�

X

n

(a

n

) = 1 � e

�2n

and P

�

X

n

(b

n

) = e

�2n

, where a

n

6= b

n

and

a

n

; b

n

2 X

n

. Also, let P

X

n

(a

n

) = 1 � e

�
n

and P

X

n

(b

n

) = e

�
n

, where 0 < 
 < 2.

Then, the log-likelihood ratio, Z

n

, is given by

Z

n

= log

P

�

X

n

(X

n

)

P

X

n

(X

n

)

=

8

>

>

>

<

>

>

>

:

log

1� e

�2n

1� e

�
n

; with probability (in P

�

X

n
) 1� e

�2n

�(2� 
)n; with probability (in P

�

X

n

) e

�2n

;
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whi
h implies that

�(R) = lim

n!1

�

1

n

logPr

�

1

n

Z

n

� R

�

=

8

>

>

>

>

>

<

>

>

>

>

>

:

0; for R � 0

2; for � (2� 
) � R < 0

1; for R < �(2� 
):

Note that �(R) in not 
onvex but R + �(R) = 0 for R = 0. Note also that Han's


ondition (6.1) is satis�ed sin
e P

X

n

(�) and P

�

X

n

(�) are absolutely 
ontinuous with

respe
t to ea
h other. Let us �rst 
ompute the �-divergen
e rate between X

n

and

�

X

n

, where � > 1. The normalized n-dimensional �-divergen
e is given by

1

n

D

�

(X

n

k

�

X

n

) =

1

n(�� 1)

log

�

(1� e

�
n

)

�

(1� e

�2n

)

1��

+ e

�
n�

e

�2n(1��)

�

:

We have the following three 
ases.

1. 
� + 2 � 2� > 0. Note that e

�
n

and e

�2n

approa
h 0 as n ! 1 and that

e

�
n�

e

�2n(1��)

= e

�n(
�+2�2�)

; whi
h also approa
hes 0 as n ! 1. Hen
e, the

�-divergen
e rate is equal to 0 sin
e the argument of the logarithm ! 1 as

n!1.

2. 
�+2� 2� < 0. In this 
ase, sin
e e

�n(
�+2�2�)

!1 as n!1, the argument

of the logarithm, for large n, is dominated by e

�n(
�+2�2�)

. Hen
e

lim

n!1

1

n

D

�

(X

n

k

�

X

n

) = lim

n!1

�

n(
� + 2� 2�)

n(�� 1)

=


� + 2� 2�

1� �

�

3. 
�+ 2� 2� = 0. Clearly, the �-divergen
e rate is equal to 0 in this 
ase.
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Let us now 
ompute the reverse �-
uto� rate. First, we need to 
omputeD

�

e

(EjXk

�

X)

using Proposition 6.3. We have the following 
ases.

� E > 2. We have that

R + �(R) + [E � �(R)℄

+

=

8

>

>

>

>

>

<

>

>

>

>

>

:

R + E; for R � 0

R + E; for � (2� 
) � R < 0

1; for R < �(2� 
):

Hen
e

D

�

e

(EjXk

�

X) = inf

R2R

�

R + �(R) + [E � �(R)℄

+

	

= E � 2 + 
:

� 0 < 
 < E � 2. In this 
ase

R + �(R) + [E � �(R)℄

+

=

8

>

>

>

>

>

<

>

>

>

>

>

:

R + E; for R � 0

R + 2; for � (2� 
) � R < 0

1; for R < �(2� 
):

Hen
e, D

�

e

(EjXk

�

X) = 
.

� 0 < E � 
. In this 
ase

R + �(R) + [E � �(R)℄

+

=

8

>

>

>

>

>

<

>

>

>

>

>

:

R + E; for R � 0

R + 2; for � (2� 
) � R < 0

1; for R < �(2� 
):

Hen
e, D

�

e

(EjXk

�

X) = E.
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The reverse �-
uto� rate is the E-axis inter
ept of the line of slope � passing by

the point (2; 
) as illustrated in Figure 6.2. By straightforward 
al
ulation, we get

that

R

(r)

0

(�jXk

�

X) = �




�

+ 2:

For � = 1=(1� �), we get that

R

(r)

0

(�jXk

�

X) =


� + 2� 2�

1� �

�

Sin
e, by de�nition, R

(r)

0

(�jXk

�

X) � 0, it is straightforward to 
he
k that

R

(r)

0

(�jXk

�

X) = lim sup

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Note that for this example, sin
e the �-divergen
e rate is always �nite , it follows

dire
tly that �

max

= 1.
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Figure 6.2: Reliability fun
tion of the type 1 probability of 
orre
t de
oding for testing

between the two sour
es P

X

n

(�) and P

�

X

n

(�) as given in Example 1.
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We next show that in the 
ase of i.i.d. �nite-alphabet observations, our result in

Theorem 6.1 redu
es to Csisz�ar's result [20℄; i.e., the reverse �-
uto� rate is given by

the R�enyi divergen
e with parameter

1

1��

, for 0 < � < 1.

Corollary 6.1 For the hypothesis testing problem between two �nite-alphabet mem-

oryless sour
es X = fX

i

g

1

i=1

and

�

X = f

�

X

i

g

1

i=1

, we have that

R

(r)

0

(�jXk

�

X) = D

1=(1��)

(Xk

�

X) for 0 < � < 1:

Proof: By Cramer's theorem [12, p. 9℄, we get that

�(R) = inf

s2(�1;R℄

I

Z

(s)

=

8

>

<

>

:

I

Z

(R); R < E

P

�

X

[Z℄

0; otherwise;

where E

P

�

X

[Z℄ denotes the expe
tation of the log-likelihood ratio Z = log

P

�

X

(

�

X)

P

X

(

�

X)

with

respe
t to P

�

X

, and

I

Z

(s) = sup

�2R

(�s� logM

Z

(�)) ;

where M

Z

(�) = E

P

�

X

[expf�Zg℄ is the moment generating fun
tion of the random

variable Z. Clearly, �(R) is 
onvex [12, p. 9℄, and it is in�nite

3

when R < logm,

where

m

4

= min

�

P

�

X

(x)

P

X

(x)

; x 2 X

�

:

3

Indeed, let R = logm� Æ, for some positive 
onstant Æ. Then

�R� logM

Z

(�) = ��Æ + log

m

�

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

;

whi
h diverges to +1 when � ! �1, sin
e the last term 
onverges to a 
onstant.
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Let us now prove that there exists an R su
h that �(R) + R = 0. If we di�erentiate

(�R� logM

Z

(�)) with respe
t to �, and set the result to 0, we get that

R =

M

0

Z

(�)

M

Z

(�)

4

= f(�): (6.8)

By S
hwarz inequality, it is straightforward to verify that the fun
tion f(�) is stri
tly

in
reasing

4

. Hen
e, f

�1

exists and is di�erentiable (f

0

(�) > 0, for all � 2 R). Note

that

f(�) 2 I

4

= [logm; logM ℄;

where

M

4

= max

�

P

�

X

(x)

P

X

(x)

; x 2 X

�

:

Note also that E

P

�

X

[Z℄ � logM . Therefore, for every R 2 [logm;E

P

�

X

[Z℄℄, there exists

a unique � whi
h satis�es equation (6.8). Hen
e,

�(R) = f

�1

(R)R � logM

Z

(f

�1

(R));

whi
h yields that �(R) is di�erentiable. Sin
e �(R) is in�nite when R < logm and

is equal to 0 for R � E[Z℄, the set of slopes of tangent lines to �(R) is between �1

4

We have that

f(�) =

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

log

P

�

X

(x)

P

X

(x)

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

;

and hen
e

f

0

(�) =

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

�

log

P

�

X

(x)

P

X

(x)

�

2

�

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

�

�

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

log

P

�

X

(x)

P

X

(x)

�

2

�

P

x

P

�

X

(x)

h

P

�

X

(x)

P

X

(x)

i

�

�

2

:

By S
hwarz inequality, f

0

(�) � 0 with equality i� P

�

X

(x) = 
P

X

(x) for all x 2 X where 
 is some

positive 
onstant. Thus, f

0

(�) > 0, sin
e in the hypothesis testing problem it is assumed that the

sour
es are di�erent.
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and 0. Hen
e, there exists a tangent line with slope �1 to �(R). Let R

�

be the point

where the line of slope �1 is tangent to �(R). By de�nition

�(R

�

) = sup

�2R

(�R

�

� logM

Z

(�)) :

If this supremum is a
hieved by some �

�

6= �1, it would 
ontradi
t the fa
t that

�R

�

� logM

Z

(�) is a lower bound for �(R

�

) for ea
h � (any line with slope di�erent of

�1 passing through the point (R

�

; �(R

�

)) 
annot be a lower bound to �(R

�

)). Hen
e

�(R

�

) = �R

�

� logM

Z

(�)j

�=�1

:

But M

Z

(�) = 1 for � = �1, hen
e �(R

�

) = �R

�

. Hen
e, there exists an R su
h that

R + �(R) = 0. Finally, we show that �

max

= 1. Note �rst that

lim sup

n!1

1

n

D

�

(X

n

k

�

X

n

) = D

�

(Xk

�

X):

If �

max

< 1, then there exists some � > 1 su
h that D

�

(Xk

�

X) = 1. Sin
e the

alphabet X is �nite, this implies that

P

x

p

�

X

(x)p

1��

�

X

(x) is in�nite. Hen
e, there

exists at least an x 2 X su
h that P

X

(x) 6= 0 and P

�

X

(x) = 0. But this 
ertainly

violates Han's 
ondition (6.1) in Theorem 6.3. Hen
e �

max

= 1 and the 
orollary is

proved.

We �nally present a 
lass of sour
es with memory for whi
h the reverse �-
uto�

rate is given by the R�enyi

1

1��

-divergen
e rate for all 0 < � < 1.
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Corollary 6.2 Consider the hypothesis testing problem between �nite-alphabet sour
es

with memory su
h that the log-likelihood ratio pro
ess fZ

n

g, where Z

n

= log

P

�

X

n

(

�

X

n

)

P

X

n
(

�

X

n

)

,

satis�es both hypotheses of the G�artner-Ellis Theorem [12, p. 15℄:

� �(�)

4

= lim

n!1

1

n

�

n

(�) exists for all � 2 R,

� � is di�erentiable on d

'

, where d

'

4

= f� : �(�) <1g;

where �

n

(�)

4

= logE

P

�

X

n

[exp(�Z

n

)℄: Also, suppose that

1

n

�

n

(�) 
onverges uniformly in

n to �(�). Then the reverse �-
uto� rate satis�es

R

(r)

0

(�jXk

�

X) = lim

n!1

1

n

D

1=(1��)

(X

n

k

�

X

n

) for 0 < � < 1:

Proof: To prove the result, we need to show that for sour
es satisfying the G�artner-

Ellis Theorem, the R�enyi divergen
e rate exists, that the 
onditions of Theorem

6.1 hold and that �

max

= 1. First, the R�enyi divergen
e rate exists from the �rst

hypothesis of the G�artner-Ellis Theorem and the fa
t that

1

n

D

1

1��

(X

n

k

�

X

n

) =

1� �

�

1

n

�

n

�

1

� � 1

�

:

Next, by the G�artner-Ellis Theorem, we have that

�(R) = sup

�2R

f�R� �(�)g :

Clearly, �(R) is 
onvex in R. Let us show that there exists an R su
h that R+�(R) =

0. In order to employ the previous 
orollary, we let

�

n

(R)

4

= sup

�2R

�

�R �

1

n

�

n

(�)

�

;
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for n = 1; 2; : : :. Along the same lines as in the previous 
orollary, it 
an be shown

that there exists an R

�

n

su
h that R

�

n

+ �

n

(R

�

n

) = 0, n = 1; 2; : : : On the other hand,

j�(�) �

1

n

�

n

(�)j < Æ

n

for n suÆ
iently large, where Æ

n

> 0 is independent of � by

the uniform 
onvergen
e assumption, and 
onverges to 0 as n ! 1 for all � 2 R.

Therefore

j�

n

(R)� �(R)j < sup

�2R

Æ

n

= Æ

n

; (6.9)

for all R 2 R. In parti
ular, (6.9) holds for R = R

�

n

:

j�

n

(R

�

n

)� �(R

�

n

)j < Æ

n

:

But �

n

(R

�

n

) +R

�

n

= 0, therefore j�(R

�

n

) +R

�

n

j < Æ

n

. De�ne

R

�

4

= lim sup

n!1

R

�

n

:

We 
on
lude that �(R

�

) + R

�

= 0. Finally, the fa
t that �

max

= 1 follows dire
tly

from the �rst hypothesis of the G�artner-Ellis Theorem.

Numeri
al Examples: We brie
y present two examples of memoryless sour
es

where we expli
itly verify the existen
e of R su
h that R + �(R) = 0.

Example 3: Finite-alphabet memoryless sour
es: Consider Example 1 in Se
tion 5.3

where X and

�

X are inter
hanged. Note that �(R) is equal to �(R) in this 
ase. It is

straightforward to 
he
k that R + �(R) = 0 for R approximately �0:13.

Example 4: Continuous alphabet memoryless sour
es: Consider Example 2 in Se
-

tion 5.3 where X and

�

X are inter
hanged. Note that �(R) is equal to �(R) in this
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ase. By straightforward 
al
ulation we get that R + �(R) = 0 for R = �2�

2

.

6.3 Properties of �

Lemma 6.4 For t < 0, � � 0.

Proof: Observe that for R > 0,

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

> R

�

� e

�nR(1�t)+tD

1�t

(X

n

k

�

X

n

)

P

�

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n
(x

n

)

P

X

n

(x

n

)

> R

�

� e

�nR(1�t)+tD

1�t

(X

n

k

�

X

n

)

� e

�nR(1�t)

;

where the last inequality follows from the non-negativity of D

1�t

(X

n

k

�

X

n

). This

implies that for R > 0,

�

(t)

(R) � lim inf

n2N ;n!1

�

1

n

log

�

1� e

�nR(1�t)

�

= 0;

whi
h immediately implies that � � 0.
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Lemma 6.5 For 0 > t > �

max

=(�

max

� 1), � > �1.

Proof: If � = �1, then �

(t)

(R) = 0 for every R 2 R. Hen
e, by 
hoosing any Æ > 0

satisfying t > t� Æ > �

max

=(�

max

� 1), we have:

P

(t)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

� e

tD

1�t

(X

n

k

�

X

n

)�(t�Æ)D

1�(t�Æ)

(X

n

k

�

X

n

)+ÆnR

P

(t�Æ)

X

n

�

x

n

2 X

n

:

1

n

log

P

�

X

n

(x

n

)

P

X

n

(x

n

)

� R

�

� e

�(t�Æ)D

1�(t�Æ)

(X

n

k

�

X

n

)+ÆnR

;

whi
h implies that

0 = �

(t)

(R) � (t� Æ) lim sup

n2N ;n!1

1

n

D

1�(t�Æ)

(X

n

k

�

X

n

)� ÆR:

This indi
ates that

lim sup

n!1

1

n

D

1�(t�Æ)

(X

n

k

�

X

n

) � lim sup

n2N ;n!1

1

n

D

1�(t�Æ)

(X

n

k

�

X

n

) �

Æ

t� Æ

R for every R 2 R;

or equivalently,

lim sup

n!1

1

n

D

1�(t�Æ)

(X

n

k

�

X

n

) =1;

whi
h 
ontradi
ts the assumption on �

max

.
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Chapter 7

Con
lusion and Future Work

7.1 Summary

This thesis 
onsists of two major parts.

In the �rst part, we studied Shannon's and R�enyi's measure rates for �nite-

alphabet time-invariant Markov sour
es of arbitrary order and arbitrary initial dis-

tributions. We obtained 
omputable expressions for the Kullba
k-Leibler divergen
e

rate and the �-divergen
e rate between Markov sour
es. We also showed that their

rate of 
onvergen
e is of the order 1=n. We also provided suÆ
ient 
onditions un-

der whi
h the �-divergen
e rate redu
es to the Kullba
k-Leibler divergen
e rate as

n ! 1 and � ! 1. We obtained similar results for the Shannon entropy rate and

the R�enyi entropy rate. The main tools used in obtaining these results are the theory

of non-negative matri
es and Perron-Frobenius theory. As an appli
ation to hypoth-

esis testing, we provided a simple proof of Stein's Lemma for irredu
ible stationary
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Markov sour
es whi
h goes along the same lines as in the i.i.d. 
ase. As an appli
ation

to sour
e 
oding, we generalized Campbell's variable-length sour
e 
oding theorem

for i.i.d. sour
es to Markov sour
es.

In the se
ond part, we examined the forward and reverse �-
uto� rates for the

hypothesis testing problem between arbitrary sour
es with memory (not ne
essarily

Markovian, ergodi
, stationary, et
.) of arbitrary alphabet (
ountable or un
ount-

able). We showed that the forward �-
uto� rate is given by the lim inf �-divergen
e

rate, where � =

1

1��

and � < 0. Under two 
onditions on the log likelihood ratio

large deviation spe
trum, �(R), we showed that the reverse �-
uto� rate is given by

the lim sup �-divergen
e rate, where � =

1

1��

and 0 < � < �

max

. For �

max

� � < 1,

we provided an upper bound on the reverse 
uto� rate. In parti
ular, we examined

i.i.d. observations and sour
es that satisfy the hypotheses of the G�artner-Ellis The-

orem. We showed that in these 
ases, the 
onditions on �(R) are satis�ed and that

the reverse 
uto� rate admits a simple form. We also provided several numeri
al ex-

amples to illustrate our forward and reverse 
uto� rate results. The main tools used

in obtaining these results are large deviation theory and the information spe
trum

approa
h.

7.2 Future Work

One possible dire
tion for future work is the investigation of Shannon's and R�enyi's

information measure rates for general sour
es with memory (not ne
essarily Marko-

vian), in
luding hidden Markov sour
es. For instan
e, to the best of our knowledge,
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it is not known whether the R�enyi entropy rate for �nite-alphabet stationary ergodi


sour
es exists or not. Further investigation of the reverse 
uto� rate is also of interest.

One aim is to investigate if the reverse �-
uto� rate result of Theorem 6.1 holds with-

out any restri
tion on �(R). Another dire
tion is to study Csisz�ar's 
hannel 
oding


uto� rates [20℄ for arbitrary dis
rete 
hannels with memory using our information

spe
trum te
hniques.
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