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Abstract

In this work, a R�enyi variable length source coding theorem for memoryless sources

[5] for which Shannon's source coding theorem is a particular case, is studied in detail.

A natural question to ask is whether this theorem can be extended to more general

sources. This question is addressed by solving the formula for the R�enyi entropy rate

of ergodic Markov sources of arbitrary order. This leads to an extension of the R�enyi

source coding theorem for ergodic Markov sources. The main tool used to obtain the

R�enyi entropy rate result is Perron-Frobenius theory.
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Chapter 1

Introduction

In this chapter we present the literature review of articles upon which our research

is based. We then specify the main contributions of this project. Finally, we outline

the general 
ow of the project.

1.1 Literature review

A detailed analysis of Campbell's variable length source coding theorem for memo-

ryless sources associated with R�enyi's entropy is given [5,6]. We also examine several

topics from matrix algebra speci�cally Perron-Frobenius theory [11],[13],[12].
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1.2 Contributions

The contributions of this project are as follows:

� A formula for the R�enyi entropy rate of ergodic Markov sources of �rst order.

� A R�enyi's variable length source coding theorem for 1

st

order ergodic Markov

sources.

� The extension of these results for ergodic Markov sources of arbitrary order.

1.3 Thesis overview

This project consist mainly of two major parts.

The �rst part given in Chapter 2 is a detailed analysis of [5] which is a generaliza-

tion of the source coding theorem to the case of R�enyi's entropy where an exponen-

tial length function is taken into consideration rather then the usual expected mean

length. The main tool in accomplishing this result is H�older's inequality.

The second part consists of Chapters 3 and 4. Primarily, a general review of

Markov chains, entropy rate, determinants, and Perron-Frobenius theory is �rst pro-

vided in Chapter 3 . Then, we calculate the R�enyi entropy rate for 1

st

order ergodic

Markov sources when the probability transition matrix is positive. Also we look into

the case when the probability transition matrix is non-negative. The last section

2



illustrates the theory with some examples.

Chapter 4 is an extension of the results of Chapter 3 for ergodic Markov chains of

order k. In this case, the probability transition matrix is non-negative. Finally, some

numerical examples are given.
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Chapter 2

A R�enyi source coding theorem for

memoryless sources

2.1 Preliminaries [8]

We will �rst introduce the concept of entropy, which is a measure of uncertainty of

a random variable. Let X be a discrete random variable with �nite alphabet X and

probability mass function p(x)

4

= PrfX = xg, 8x 2 X .

De�nition: The entropy H(X) of a discrete random variable X is de�ned by

H(X) = �

X

x2X

p(x) log p(x):

The log is usually in base 2 and entropy is expressed in bits. If the base of the

logarithm is e, then the entropy is measured in nats. If the log is in base D, then the

4



entropy is denoted by H

D

(X).

De�nition: The joint entropy H(X; Y ) of a pair of discrete random variables (X; Y )

with a joint distribution p(x; y) is de�ned as

H(X; Y ) = �

X

x2X

X

y2Y

p(x; y) log p(x; y):

De�nition: The conditional entropy H(Y jX) is de�ned as

H(Y jX) = �

X

x2X

X

y2Y

p(x; y) log p(yjx):

De�nition: The joint entropy H(X

1

; X

2

; : : : ; X

n

) of a sequence of random variables

X

1

; X

2

; : : : ; X

n

with a joint distribution p(x

1

; x

2

; : : : ; x

n

) is de�ned as

H(X

1

; X

2

; : : : ; X

n

) = �

X

x

1

;x

2

;:::;x

n

p(x

1

; x

2

; : : : ; x

n

) log p(x

1

; x

2

; : : : ; x

n

)

Now, we will introduce some de�nitions and theorems about source coding.

De�nition: A variable length source code C for a random variable X is a mapping

from X , the range of X, to D

�

, the set of �nite length strings of symbols from a D-ary

alphabet. Let C(x) denote the codeword corresponding to x and let l(x) denote the

length of C(x).

De�nition: The expected length L(C) of a source code C(x) for a random variable

X with probability mass function p(x) is given by

L(C) =

X

x2X

p(x)l(x);

where l(x) is the length of the codeword associated with x.

5



Without loss of generality, we can assume that the D-ary alphabet is

D = f0; 1; : : : ; D � 1g.

De�nition: A variable length code is said to be non-singular if every element of X

maps into a di�erent string in D

�

, i.e.,

x

i

6= x

j

) C(x

i

) 6= C(x

j

):

De�nition: The extension C

�

of a code C is the mapping from �nite length strings

of X to �nite length strings of D, de�ned by

C(x

1

x

2

� � �x

n

) = C(x

1

)C(x

2

) � � �C(x

n

);

where C(x

1

)C(x

2

) � � �C(x

n

) indicates concatenation of the corresponding codewords.

De�nition: A code is called uniquely decodable if its extension is non-singular.

Theorem 2.1.1 (Kraft inequality) The codeword lengths l

1

; l

2

; : : : ; l

m

of any uniquely

decodable code must satisfy the Kraft inequality

X

i

D

�l

i

� 1:

Conversely, given a set of codeword lengths that satisfy this inequality, it is possible

to construct a uniquely decodable code with these codeword lengths.

Theorem 2.1.2 The expected length L of any uniquely decodable D-ary code for a

random variable X is greater than or equal to the entropy H

D

(X), i.e.,

L � H

D

(X)

6



with equality i� D

�l

i

= p

i

for each i.

Theorem 2.1.3 If L

�

is the minimum expected length, then

H

D

(X) � L

�

< H

D

(X) + 1:

The following inequalities are useful in order to prove the lemma in the next

section and some lemmas in Section 2.3.

De�nition: A function f(x) is said to be convex over an interval (a; b) if for every

x

1

; x

2

2 (a; b) and 0 � � � 1,

f(�x

1

+ (1� �)x

2

) � �f(x

1

) + (1� �)f(x

2

):

De�nition: A function f is concave if �f is convex.

Theorem 2.1.4 If the function f has a second derivative which is non-negative ev-

erywhere, then the function is convex.

Theorem 2.1.5 (Jensen's inequality): If f is a convex function and X is a random

variable , then

E[f(X)] � f(E[X]);

where E denote expectation.

Theorem 2.1.6 (Log sum inequality ): For non-negative numbers, a

1

; a

2

; : : : ; a

n

and

b

1

; b

2

; : : : ; b

n

,

n

X

i=1

a

i

log

a

i

b

i

�

 

n

X

i=1

a

i

!

log

P

n

i=1

a

i

P

n

i=1

b

i

7



with equality if and only if

a

i

b

i

= constant:

Theorem 2.1.7 H(X) � log jX j, where jX j denotes the number of elements in the

range of X , with equality i� X has a uniform distribution over X.

De�nition: A discrete memoryless source (DMS) is a source for which the symbols

are independently generated and identically distributed.

2.2 A measure of length [5]

Consider a DMS with alphabet X = fx

1

; x

2

; : : : ; x

N

g and distribution

p = (p

1

; p

2

; : : : ; p

N

) where we assume that the probability of x

i

is p

i

> 0 8i from

now until the end of this chapter. Suppose that we wish to represent the letters in X

by �nite sequences of symbols from the set f0; 1; : : : ; D�1g where D > 1. It is known

that there exists a uniquely decodable code which represents each x

i

by a sequence

of l

i

D-ary symbols i� the lengths l

i

satisfy the Kraft inequality

N

X

i=1

D

�l

i

� 1: (2.1)

An interesting problem is to minimize the average code length subject to (2.1). This

is a good procedure if the cost of using a sequence of length l

i

is directly proportional

to l

i

. But, this is not always the case. In some occasions, the cost can be a non-linear

function. For example, an exponential cost occurs frequently in many interesting

8



applications. This could be the case for example if the cost of encoding and decoding

equipment were an important factor, or, if bu�er over
ow caused by long codewords

is important. Therefore, for these kinds of applications, a better procedure is to

minimize the quantity

C =

N

X

i=1

p

i

D

tl

i

;

where t 6= 0 is some parameter related to the cost.

For arbitrary cost functions refer to [6].

De�nition: A code length of order t is de�ned by

L(t) =

1

t

log

D

(

N

X

i=1

p

i

D

tl

i

) (0 < t <1): (2.2)

Since L(t) is clearly a monotonic function of C, minimizing C is equivalent to

minimizing L(t).

The code length of order t has several properties.

By l'Hospital's rule

L(0)

4

= lim

t!0

L(t) =

N

X

i=1

l

i

p

i

; (2.3)

which is the expected length of the source X.

When t is large the sum

P

N

i=1

p

i

D

tl

i

is dominated by the term p

j

D

tl

j

, where l

j

is the

largest of the numbers l

1

; l

2

; : : : ; l

N

. Therefore

L(1)

4

= lim

t!1

L(t) = max

1�i�N

l

i

: (2.4)

Lemma 2.2.1 ([4], p. 16) L(t) is monotonic nondecreasing function of t.

9



Proof: Since the logarithm is a monotonic nondecreasing function, it is equivalent

to prove that the function f(t) = (

P

N

i=1

p

i

D

tl

i

)

1

t

. Let f

0

(t) denotes the derivative of

f(t) with respect to t. Then

f

0

(t) =

f(t)

t

2

P

i

p

i

D

tl

i

(

X

i

p

i

D

tl

i

lnD

tl

i

�

X

i

p

i

D

tl

i

ln(

X

i

p

i

D

tl

i

)):

By Theorem 2.1.6 (Log sum inequality), if a

i

= p

i

D

tl

i

and b

i

= p

i

then

X

i

p

i

D

tl

i

lnD

tl

i

�

X

i

p

i

D

tl

i

ln(

X

i

p

i

D

tl

i

) � 0:

Since f(t) > 0, then f

0

(t) � 0. Hence, f(t) is monotonic nondecreasing function of t

which yields that L(t) is also monotonic nondecreasing function of t.

Note that when the maximum length is an important factor, L(1) is a good measure

of the cost. L(0) is used when the cost is linear. Intermediate values of t provide a

measure of length which lies between these limits.

Note also that when l

i

= l for all i = 1; 2; : : : ; N , then L(t) = l. This is a reasonable

property for any measure of length to possess.

2.3 R�enyi's entropy

In this section we introduce R�enyi's entropy and examine its properties [3],[5],[7],[9].

De�nition: R�enyi's entropy of order � for a random variable X with distribution

(p

1

; : : : ; p

N

) is de�ned by

H

�

=

1

1� �

log

D

(

N

X

i=1

p

�

i

); (2.5)

10



where � � 0 and � 6= 1.

R�enyi's entropy has several important properties. Some of these properties are clear,

so we just declare them without proof.

L'Hospital's rule shows that

H

1

4

= lim

�!1

H

�

= �

N

X

i=1

p

i

log

D

p

i

: (2.6)

Thus H

1

is the ordinary Shannon entropy. The entropy of order � behaves in much

the same way as H

1

. For example, H

�

is a continuous and symmetric function of

p

1

; : : : ; p

N

. If p

i

= N

�1

for each i, H

�

= log

D

N .

Lemma 2.3.1 If X

1

; X

2

; : : : ; X

M

is a sequence of independent and identically ran-

dom variables with alphabet X = fx

1

; x

2

; : : : ; x

N

g, then

H

�

(X

1

; X

2

; : : : ; X

M

)

4

= H

�

(M) =MH

�

: (2.7)

Proof: Consider a typical sequence of length M , say s = (i

1

; i

2

; : : : ; i

M

). The prob-

ability of s is

P (s) = p

i

1

p

i

2

� � � p

i

M

: (2.8)

Then

H

�

(M) =

1

1� �

log

D

Q;

where

Q =

X

s2X

M

P (s)

�

:

11



It follows directly from (2.8) that

Q = (

N

X

i=1

p

�

i

)

M

and hence that

H

�

(M) =MH

�

: (2.9)

Lemma 2.3.2 The R�enyi's entropy of order � is a decreasing function of �.

Proof: The derivative of H

�

with respect to � is given by

H

0

�

=

(1� �)

P

i

p

�

i

log p

i

+ (

P

i

p

�

i

) log(

P

i

p

�

i

)

P

i

p

�

i

(1� �)

2

:

The denominator is clearly positive.

Using Theorem 2.1.4, it can be veri�ed that the function f(x) = x log x is a convex

function 8x > 0. If we denote by E[X] the expected value of the random variable X

then

X

i

p

i

p

��1

i

log p

��1

i

= E[p

��1

i

log p

��1

i

]:

By Jensen's inequality (Theorem 2.1.5) we obtain that

E[p

��1

i

log p

��1

i

] � E[p

��1

i

] logE[p

��1

i

] =

X

i

p

�

i

log

X

i

p

�

i

:

Therefore

X

i

p

�

i

log p

��1

i

�

X

i

p

�

i

log

X

i

p

�

i

;

12



and thus

(1� �)

X

i

p

�

i

log p

i

+

X

i

p

�

i

log

X

i

p

�

i

� 0:

We conclude that H

0

�

� 0, hence, H

�

is a decreasing function of �.

Note thatH

0

�

= 0 i� p

i

= N

�1

8i by direct calculation. HenceH

0

�

is strictly decreasing

unless p is the uniform distribution.

Lemma 2.3.3 If �!1, then, H

1

4

= lim

�!1

H

�

= � log

D

�p, where �p = max(p

1

; : : : ; p

N

):

Proof: Since 0 < p

i

< 1, as � ! 1, the sum

P

i

p

�

i

is clearly dominated by �p

�

.

Therefore

H

1

= lim

�!1

1

1� �

log

D

�p

�

= �log

D

�p:

Lemma 2.3.4 The R�enyi entropy H

�

is non-negative.

Proof: If 0 < � < 1, then p

�

i

� p

i

8i. Hence,

P

i

p

�

i

�

P

i

p

i

= 1. Therefore,

log(

P

i

p

�

i

) � 0. Since 1� � > 0, we get that H

�

� 0.

If � > 1, then p

�

i

� p

i

8i. Hence,

P

i

p

�

i

�

P

i

p

i

= 1. Therefore, log(

P

i

p

�

i

) � 0.

Since 1� � < 0, we get that H

�

� 0.

Note that H

�

= 0 i� the distribution is a point mass.

Lemma 2.3.5 H

�

� log jX j with equality i� (p

1

; : : : ; p

N

) is uniform.

13



Proof: Consider �rst the case � > 1. By Lemma 2.3.2, H

�

� H

1

. But H

1

= H by

(2.6). Also by Theorem 2.1.7, H � log jX j. Therefore, H

�

� log jX j.

If 0 < � < 1 we need the following observation.

Let p

i

; q

i

be non-negative numbers de�ned over a �nite set of i with

P

i

q

i

=

P

i

p

i

= 1.

Then

X

i

p

�

i

q

1��

i

� 1:

The function f(x) = x

�

is concave by Theorem 2.1.4 since its second derivative is

negative.

Note that

X

i

p

�

i

q

1��

i

=

X

i

 

p

i

q

i

!

�

q

i

= E

" 

p

i

q

i

!

�

#

;

where E denote the expectation with respect to the probability distribution q

i

.

Applying Jensen's inequality to the function X

�

where X is a random variable taking

on the values p

i

=q

i

, we get

E

" 

p

i

q

i

!

�

#

�

 

E

"

p

i

q

i

#!

�

=

 

X

i

p

i

q

i

q

i

!

�

= (

X

i

p

i

)

�

= 1:

Therefore

X

i

p

�

i

q

1��

i

� 1;

and the observation is proved.

Let q

i

= 1=jX j. This substitution is valid since

X

x2X

1

jX j

= 1:

14



Therefore

X

i

p

�

i

 

1

jX j

!

1��

� 1;

or equivalently

(

X

i

p

�

i

)�jX j

1��

:

Taking the logarithms of both sides of the last inequality, and then dividing by 1��

yield the desired result.

Note that by direct calculation H

�

= log jX j i� p is uniform on X .

2.4 A source coding theorem [5]

Lemma 2.4.1 Let l

1

; l

2

; : : : ; l

N

satisfy Kraft's inequality. Then

L(t) � H

�

; (2.10)

where � = 1=(t+ 1).

Proof: If t = 0, the result is given in Theorem 2.1.2.

If t = 1, we have L(1) = max(l

i

) by (2.4). Also, by simple calculation,

H

0

= log

D

N . If the l

0

i

s satisfy Kraft's inequality we must have

D

�l

i

� N

�1

for at least one value of i and hence for the maximum l

i

. Otherwise, if D

�l

i

> N

�1

for all i, then

P

i

D

�l

i

>

P

i

N

�1

= 1. This yields that

P

i

D

�l

i

> 1 which contradicts
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Kraft's inequality. Taking the log on both sides of the inequality D

�max(l

i

)

� N

�1

yields max(l

i

) � log

D

N , and hence L(1) � H

0

.

It remains to prove the lemma for 0 < t <1. By H�older's inequality ([4] p. 19),

(

N

X

i=1

x

p

i

)

1=p

(

N

X

i=1

y

q

i

)

1=q

�

N

X

i=1

x

i

y

i

(2.11)

where p

�1

+ q

�1

= 1 and p < 1. In (2.11), let p = �t, q = 1� �, x

i

= p

�1=t

i

D

�l

i

, and

y

i

= p

1=t

i

. Substituting p and q by their values in the equation p

�1

+ q

�1

= 1, yields

� = (t+ 1)

�1

. With these substitutions (2.11) becomes

(

X

i

p

i

D

tl

i

)

�1=t

(

X

i

p

�

i

)

1=(1��)

�

X

i

D

�l

i

:

Therefore

(

X

i

p

i

D

tl

i

)

1=t

�

(

P

i

p

�

i

)

1=(1��)

P

i

D

�l

i

� (

X

i

p

�

i

)

1=(1��)

; (2.12)

where the last inequality follows from the assumption that Kraft's inequality is sat-

is�ed. Taking logarithms of the �rst and last member of (2.12) proves the statement

of the lemma.

Lemma 2.4.2 Under the same assumptions of the previous lemma, there exists some

l

i

's, i = 1; : : : ; N such that

H

�

� L(t) < H

�

+ 1: (2.13)

Proof: We observe �rst that we have an equality in (2.10) and (2.12) if and only if

we have an equality in (2.1) and (2.11). By ([4] p. 19), equality in H�older's inequality
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occurs when x

p

i

= ay

q

i

, i = 1; : : : ; N , for some real number a. If we replace x

i

and y

i

by their values from the previous lemma we get

D

�l

i

= a

1

p

p

q

tp

i

p

1

t

i

= a

1

p

p

q

t

i

(1=p+ 1=q = 1)

= a

1

p

p

1��

t

i

(� = 1=(1 + t))

= a

1

p

p

�

i

:

Equality in (2.1) occurs when

P

i

D

�l

i

= 1. This yields

a

1

p

=

1

P

i

p

�

i

:

Therefore, we conclude that

D

�l

i

=

p

�

i

P

j

p

�

j

:

Thus,

log

D

D

�l

i

= log

D

p

�

i

� log

D

(

X

j

p

�

j

);

yielding

l

i

= d�� log

D

p

i

+ log

D

(

N

X

j=1

p

�

j

)e;

since l

i

the length of the i

th

codeword must be an integer. If we choose the l

i

's to

satisfy the above equality, letting

W =

N

X

j=1

p

�

j

;

17



yields

�� log

D

p

i

+ log

D

W � l

i

< 1� � log

D

p

i

+ log

D

W;

or equivalently

p

��t

i

W

t

� D

tl

i

< D

t

p

��t

i

W

t

:

Now, if we multiply each member by p

i

, sum over all i, and use the fact that �t = 1��,

we get

W

1+t

�

X

i

p

i

D

tl

i

< D

t

W

1+t

:

By taking logarithms, dividing by t, and using the relations 1+t = �

�1

and �t = 1��,

we get

H

�

� L(t) < H

�

+ 1: (2.14)

We can now prove a coding theorem for a DMS.

Theorem 2.4.1 Let � = (1 + t)

�1

. By encoding su�ciently long sequences of input

symbols of a DMS it is possible to make the average code length of order t per input

symbol as close to H

�

as desired. Also, it is not possible to �nd a uniquely decodable

code whose average length of order t is less than H

�

.

Proof: Let a sequence s of input symbols of length M be generated independently,

where each symbol is governed by the probability distribution (p

1

; : : : ; p

N

). We

18



can consider these sequences as supersymbols from the alphabet X

M

. Hence by

Lemma 2.4.2

H

�

(M) � L

M

(t) < H

�

(M) + 1: (2.15)

Let L

M

(t) denote the length of order t for the M -sequences given by

L

M

(t) =

1

t

log

D

X

P (s)D

tl(s)

;

where the summation extends over the N

M

sequences s. Let l(s) denote the length

of the codeword associated with the sequence s.

Now, by Lemma 2.3.1, if we divide (2.15) by M , we get

H

�

�

L

M

(t)

M

< H

�

+

1

M

: (2.16)

By (2.16), if we choose M su�ciently large the average length can be made as close

to H

�

as desired.

Remark 1: Note that when t = 0, this theorem is just the extension of Theorem 2.1.3

to supersymbols from X

M

.

Remark 2: Note also that the theorem holds when t =1. By Kraft's inequality,

X

s

D

�l(s)

� 1;

where the summation extends over the N

M

sequences s.

Clearly, D

�l(s)

� N

�M

for at least one sequence s. Otherwise, if D

�l(s)

> N

�M

for

all s then

P

s

D

�l(s)

>

P

s

N

�M

= 1 which contradicts Kraft's inequality. Therefore

l(s) � M log

D

N;
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and hence

max(l(s)) � M log

D

N:

Taking into consideration the integer restriction of l(s) we must have,

M log

D

N � l(s) < M log

D

N + 1:

Since H

0

= log

D

N and L

M

(1) = max(l(s)), dividing by M we get

H

0

�

L

M

(1)

M

< H

0

+

1

M

:

Thus the theorem follows as before.
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Chapter 3

R�enyi's entropy for 1

st

order

ergodic Markov sources

3.1 Markov chains [8]

A stochastic process is an indexed sequence of random variables. In general, there can

be an arbitrary dependence among the random variables. The process is characterized

by the joint probability mass functions Prf(X

1

; X

2

; : : : ; X

n

) = (x

1

; x

2

; : : : ; x

n

)g

4

=

p(x

1

; x

2

; : : : ; x

n

); (x

1

; x

2

; : : : ; x

n

) 2 X

n

for n = 1; 2; : : : :

De�nition: A stochastic process is said to be stationary if the joint distribution of

any subset of the sequence of random variables is invariant with respect to shifts in
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the time index, i.e.,

PrfX

1

= x

1

; X

2

= x

2

; : : : ; X

n

= x

n

g = PrfX

1+l

= x

1

; X

2+l

= x

2

; : : : ; X

n+l

= x

n

g

for every shift l and for all x

1

; x

2

; : : : ; x

n

2 X :

De�nition: A discrete stochastic process X

1

; X

2

; : : : is said to be a Markov chain or

a Markov process if, for n = 1; 2; : : :,

Pr(X

n+1

= x

n+1

jX

n

= x

n

; X

n�1

= x

n�1

; : : : ; X

1

= x

1

) = Pr(X

n+1

= x

n+1

jX

n

= x

n

)

for all x

1

; x

2

; : : : ; x

n

; x

n+1

2 X :

In this case, the joint probability mass function of the random variables can be

written as

p(x

1

; x

2

; : : : ; x

n

) = p(x

1

)p(x

2

jx

1

)p(x

3

jx

2

) � � � p(x

n

jx

n�1

):

De�nition: The Markov chain is said to be time invariant or homogeneous if the

conditional probability p(x

n+1

jx

n

) does not depend on n; i.e., for n = 1; 2; : : :

P rfX

n+1

= bjX

n

= ag = PrfX

2

= bjX

1

= ag; for all a; b 2 X :

From now on all Markov chains are time invariant. If fX

i

g is a Markov chain,

then X

n

is called the state at time n. A time invariant Markov chain is characterized

by its initial state and a probability transition matrix P = [p

ij

], i; j 2 f1; 2; : : : ; mg,

where p

ij

= PrfX

n+1

= jjX

n

= ig:
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De�nition: If it is possible to go with positive probability from any state of the

Markov chain to any other state in a �nite number of steps, then the Markov chain

is said to be irreducible.

De�nition: A distribution on the states such that the distribution at time n + 1 is

the same as the distribution at time n is called a stationary distribution.

The stationary distribution draws its name from the fact that if the initial state

of a Markov chain is drawn according to the stationary distribution, then the Markov

chain forms a stationary process.

De�nition: The period of a state i is de�ned as the greatest common divisor of those

values of n for which p

n

ii

> 0 where p

n

ij

denotes the ij

th

element of the n

th

power of

the transition matrix P. If the period is 1, the state is said to be aperiodic. If the

period is 2 or more, the state is said to be periodic. An irreducible Markov chain is

aperiodic if the period of any of its states is 1.

De�nition: An irreducible and aperiodic Markov chain is called ergodic.

Theorem 3.1.1 If the �nite state Markov chain is ergodic, then the stationary dis-

tribution is unique, and from any starting distribution, the distribution of X

n

tends

to the stationary distribution as n!1.

Theorem 3.1.2 ([11], page 108) If a �nite state Markov chain is ergodic and has N

states, then p

m

ij

> 0 for all i; j, and all m � N(N � 1).
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3.2 Entropy rate [8]

De�nition: The entropy rate of a stochastic process fX

i

g is de�ned by

H(X ) = lim

n!1

H(X

1

; X

2

; : : : ; X

n

)

n

when the limit exists.

Example: If X

1

; X

2

; : : : are i.i.d. random variables, i.e., independent and identical,

then

H(X ) = lim

n!1

H(X

1

; X

2

; : : : ; X

n

)

n

= lim

n!

nH(X

1

)

n

= H(X

1

);

which is what one would expect for the entropy rate per symbol.

We can also de�ne a related quantity for entropy rate:

H

0

(X ) = lim

n!1

H(X

n

jX

n�1

; X

n�2

; : : : ; X

1

);

when the limit exists.

The two quantitiesH(X ) andH

0

(X ) correspond to two di�erent notions of entropy

rate. The �rst is the per symbol entropy of the n random variables, and the second

is the conditional entropy of the last random variable given the past. An important

result is that for a stationary process both limits exists and are equal.

Theorem 3.2.1 For a stationary stochastic process, H(X ) = H

0

(X ).

Corollary 3.2.1 For a stationary Markov chain, the entropy rate is given by

H(X ) = H

0

(X ) = lim

n!1

H(X

n

jX

n�1

; : : : ; X

1

) = lim

n!1

H(X

n

jX

n�1

) = H(X

2

jX

1

);
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where the conditional entropy is calculated using the stationary distribution.

Corollary 3.2.2 Let fX

i

g be a stationary Markov chain with stationary distribution

q and transition matrix P . Then the entropy rate is

H(X ) = H(X

2

jX

1

) =

X

ij

q

i

p

ij

log p

ij

:

Remark: If the Markov chain is ergodic, then it has a unique stationary distribution

on the states, and any initial distribution tends to the stationary distribution as

n ! 1. In this case, even though the initial distribution is not the stationary

distribution, the entropy rate, which is de�ned in terms of long term behavior, is

H(X ) as remarked in the two previous corollaries.

3.3 Perron{Frobenius theory [11]

De�nition: A real vector x is de�ned to be positive, denoted x > 0 if x

i

> 0 for each

component i.

De�nition: A real matrix P is positive, denoted P > 0, if p

ij

> 0 for each i; j.

De�nition: x is non-negative, denoted x � 0, if x

i

� 0 for all i.

De�nition: P is non-negative, denoted P � 0, if p

ij

� 0 for all i; j.

Remark: Note that it is possible to have x � 0 and x 6= 0 without having x > 0,

since x > 0 means that all components of x are positive and x � 0, x 6= 0 means that
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at least one component of x is positive and all are non-negative.

De�nition: The row vector a is a left eigenvector of P of eigenvalue � if a 6= 0 and

aP = �a.

De�nition: The column vector b is a right eigenvector of eigenvalue � if b 6= 0 and

Pb = �b.

Theorem 3.3.1 (Perron) Let P > 0 be a square matrix. Then P has a positive

eigenvalue � that exceeds the magnitude of each other eigenvalue. There is a positive

right eigenvector, b > 0, corresponding to �, and the following properties hold for �

and b:

1. If �x � Px for x � 0, then �x = Px.

2. If �x = Px, then x = �b for some scalar �.

De�nition: Let P be an N � N non-negative square matrix. A directed graph

is associated with P by drawing a directed edge that goes from i to j if p

ij

> 0,

i; j = 1; 2; : : : ; N . P is irreducible if for every pair of nodes i; j in this graph, there is

a walk from i to j.

Denote a typical element of P

m

by p

m

ij

. If P is irreducible, a walk exists from

any i to any j 6= i with length at most N � 1, since the walk needs to go through

at most each of the other nodes. Thus p

m

ij

> 0 for some m, 1 � m � N � 1, and

P

N�1

m=1

p

m

ij

> 0. The key to analyzing irreducible matrices is the fact that the matrix
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P

N�1

m=0

P

m

is positive. The m = 0 term, P

0

is just the identity matrix, which covers

the case i = j.

Theorem 3.3.2 (Frobenius) Let P � 0 be an irreducible square matrix. Then P

has a positive eigenvalue � that is greater than or equal to the magnitude of each other

eigenvalue. There is a positive right eigenvector, b > 0 corresponding to �, and the

following properties hold for � and b:

1. For any non-zero x � 0, if �x � Px, then �x = Px:

2. If �x = Px, then x = �b for some scalar �.

Corollary 3.3.1 The largest real eigenvalue � of an irreducible matrix P � 0 has a

positive left eigenvector a. a is unique (within a scale factor) and is the only non-

negative non-zero vector (within a scale factor) that satis�es �a � aP .

Corollary 3.3.2 Let � be the largest real eigenvalue of an irreducible matrix and

let the right and left eigenvectors of � be b > 0 and a > 0. Then, within a scale

factor, b is the only non-negative right eigenvector of P (i.e., no other eigenvalues

have non-negative eigenvectors). Similarly, a is the only non-negative left eigenvector

of P .

Corollary 3.3.3 Let P be the transition matrix of an irreducible Markov chain. Then

� = 1 is the largest real eigenvalue of P , e = (1; 1; : : : ; 1)

T

is the right eigenvector of
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� = 1 unique within a scale factor, and there is a unique probability vector a > 0 that

is a left eigenvector of � = 1.

Corollary 3.3.4 The largest real eigenvalue � of an irreducible matrix P � 0 is a

strictly increasing function of each component of P .

Corollary 3.3.5 Let � be the largest eigenvalue of P > 0 and let a(b) be the positive

left (right) eigenvector of � normalized so that ab = 1. Then

lim

n!1

P

n

�

n

= ba

Theorem 3.3.3 Let P be the transition matrix of an ergodic �nite state Markov

chain. Then � = 1 is the largest real eigenvalue of P , and � > j�

0

j for every other

eigenvalue �

0

. Furthermore, lim

m!1

P

m

= ea, where a > 0 is the unique probability

vector satisfying aP = a and e = (1; 1; : : : ; 1)

T

is the unique b (within a scale factor)

satisfying Pe = e.

3.4 Some determinant properties [12]

Some important properties about determinants are useful for the last section. Let A

be an n� n square matrix. We start by de�ning a diagonal of A.

De�nition: A diagonal of A is a sequence of n elements of the matrix containing one

and only one element from each row of A and one and only one element from each
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column of A. A diagonal of A is always assumed to be ordered according to the row

indices; therefore it can be written in the form

a

1j

1

; a

2j

2

; : : : ; a

nj

n

;

where (j

1

; j

2

; : : : ; j

n

) is a permutation of the numbers 1; 2; : : : ; n. In particular, if

(j

1

; j

2

; : : : ; j

n

) = (1; 2; : : : ; n); we obtain the main diagonal of A. Clearly, A has

exactly n! distinct diagonals.

De�nition: We say that a pair of numbers j

k

and j

p

in the permutation (j

1

; j

2

; : : : ; j

n

)

form an inversion if j

k

> j

p

while k < p, that is, if a larger number in the permutation

precedes a smaller one. Each permutation j = (j

1

; j

2

; : : : ; j

n

) has a certain number of

inversions associated with it, denoted brie
y by t(j).

De�nition: The permutation is called odd or even according to whether the number

t(j) is odd or even. This property is known as the parity of the permutation.

De�nition: The determinant of A, denoted det A or jAj, is de�ned by

jAj =

X

j

(�1)

t(j)

a

1j

1

a

2j

2

� � �a

nj

n

; (�)

where j varies over all n! permutations of 1; 2; : : : ; n.

In other words, jAj is a sum of n! products. Each product involves n elements of

A belonging to the same diagonal. The product is multiplied by +1 or �1 according

to whether the permutation (j

1

; j

2

; : : : ; j

n

) that de�nes the diagonal is even or odd,

respectively.
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Lemma 3.4.1 If B denotes a matrix obtained from A by multiplying one of its rows

(or columns) by a scalar k, then jBj = kjAj.

Lemma 3.4.2 If the matrix B is obtained by interchanging two rows (or columns)

of A, then jBj = �jAj.

Lemma 3.4.3 Let B be the matrix obtained from A by adding the elements of its i

th

row (or column) to the corresponding elements of its j

th

row (or column) multiplied

by a scalar � (j 6= i). Then jBj = jAj.

Lemma 3.4.4 Suppose that the entries of A are functions of some parameter �. Let

jAj

i

be the determinant obtained from jAj by replacing the elements in the i

th

row by

their derivatives with respect to � and leaving the other rows unchanged. Then

jAj

0

=

n

X

i=1

jAj

i

:

Proof: If we di�erentiate (�), then by the sum rule of derivatives

jAj

0

=

X

i

(�1)

t(j)

(a

1j

1

a

2j

2

: : : a

nj

n

)

0

;

where j varies over all n! permutations of 1; 2; : : : ; n. By the product rule of derivatives

(a

1j

1

a

2j

2

: : : a

nj

n

)

0

= a

0

1j

1

a

2j

2

: : : a

nj

n

+ a

1j

1

a

0

2j

2

: : : a

nj

n

+ � � �+ a

1j

1

a

2j

2

: : : a

0

nj

n

:

Therefore

jAj

0

=

X

j

(�1)

t(j)

a

0

1j

1

a

2j

2

� � �a

nj

n

+

X

j

(�1)

t(j)

a

1j

1

a

0

2j

2

� � �a

nj

n

+ � � �+

X

j

(�1)

t(j)

a

1j

1

a

2j

2

� � �a

0

nj

n

:
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Hence, we conclude that

jAj

0

=

X

i

jAj

i

:

De�nition: A Minor of order n � 1 of A is de�ned to be the determinant of a

submatrix of A obtained by striking out one row and one column from A. The minor

obtained by striking out the i

th

row and j

th

column is written M

ij

(1 � i; j � n).

The cofactor A

ij

of an element a

ij

is given by: A

ij

= (�1)

i+j

M

ij

.

Theorem 3.4.1 (Cofactor expansion). The determinant of A can be computed as

follows:

jAj = a

i1

A

i1

+ a

i2

A

i2

+ � � �+ a

in

A

in

;

or similarly,

jAj = a

1j

A

1j

+ a

2j

A

2j

+ � � �+ a

nj

A

nj

For the following two lemmas refer to ([13], page 10).

Lemma 3.4.5 Let A(�) = j�I�Aj. Denote by A

ij

(�) the cofactor of the ij

th

element

of the matrix �I � A. I is the n� n identity matrix. Then

dA(�)

d�

=

n

X

i=1

A

ii

(�):

Proof: By applying Lemma 3.4.4 to the determinant A(�), the i

th

row of A

i

(�)

consists of zeroes except the i

th

position which is 1. Then expanding each A

i

(�)

along this row by the previous theorem yields the desired result.
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Lemma 3.4.6 Suppose in addition to the previous lemma that � = 1 and each row

of A sums to 1. Then

A

i1

(1) = A

i2

(1) = � � � = A

in

(1);

for all i = 1; 2; : : : ; n.

Proof: This statement follows by using the properties of determinants in Lemma

3.4.1, Lemma 3.4.2, and Lemma 3.4.3.

3.5 Perron's formula and some applications

Let A denote an n�n square matrix. Perron's formula permits to express an arbitrary

element a

k

ij

of the matrix A

k

in terms of the eigenvalues of A and the cofactors of the

matrix �I � A.

Theorem 3.5.1 (Perron's formula) Let �

0

; �

1

; : : : ; �

r

be the eigenvalues of A, with

algebraic multiplicities m

0

; m

1

; : : : ; m

r

, respectively. De�ne  

t

(�) by

A(�) = j�I � Aj = (�� �

t

)

m

t

 

t

(�); t = 0; : : : ; r;

such that  

t

(�) are polynomials of degree n �m

t

which di�er from zero for � = �

t

.

Then, we have identically for all i; j = 1; : : : ; n and k = 1; 2; 3; : : :

a

k

ij

=

r

X

t=0

1

(m

t

� 1)!

D

m

t

�1

�

"

�

k

A

ij

(�)

 

t

(�)

#

�=�

t

;
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where A

ij

(�) is the cofactor of the ij'th element of �I � A. In this equation, D

m

t

�1

�

denotes the derivative of order m

t

� 1 with respect to �, evaluated at � = �

t

For a proof of this result refer to ([13], Section 5.). The proof is not included

because it is not directly relevant to this work. What is important for this project

is the applications of Perron's formula to the probability transition matrix P for an

ergodic �nite state Markov source. For the remaining of this section refer to ([13],

Section 6.).

Note �rst that the largest eigenvalue of P is equal to 1 by Theorem 3.3.3. Applying

Perron's formula to P yields

p

k

ij

=

1

(m

0

� 1)!

D

m

0

�1

�

"

�

k

P

ij

(�)

p

0

(�)

#

�=1

+

r

X

t=1

1

(m

t

� 1)!

D

m

t

�1

�

"

�

k

P

ij

(�)

p

t

(�)

#

�=�

t

; (�)

in which �

0

= 1; �

1

; : : : ; �

r

are the eigenvalues of P and m

0

; m

1

; : : : ; m

r

their respec-

tive multiplicities, so thatm

0

+m

1

+� � �+m

r

= n. The polynomials p

0

(�); p

1

(�); : : : ; p

r

(�)

are de�ned by

P (�) = (�� 1)

m

0

p

0

(�) = (�� �

t

)

m

t

p

t

(�); t = 1; : : : ; r;

where

p

0

(1) 6= 0; p

t

(�

t

) 6= 0; t = 1; : : : ; r:

This relationship has a particular importance for the ergodic Markov chain associated

with P when �

0

= 1 is a simple eigenvalue, i.e., m

0

= 1. But this follows directly
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from Theorem 3.3.3 since �

0

> j�

0

j for every other eigenvalue �

0

. Indeed, if �

0

= �

0

for some �

0

then j�

0

j = j�

0

j. But, �

0

> j�

0

j clearly implies that j�

0

j > j�

0

j which yields

a contradiction. In this case, the formula (�) assumes the form

p

k

ij

=

P

ij

(1)

p

0

(1)

+

r

X

t=1

1

(m

t

� 1)!

D

m

t

�1

�

"

�

k

P

ij

(�)

p

t

(�)

#

�=�

t

: (��)

By Lemma 3.4.6, P

ij

(1) = P

ii

(1). Also, since P (�) = (� � 1)p

0

(�), then, P

0

(�) =

p

0

(�) + (�� 1)p

0

0

(�), and, P

0

(1) = p

0

(1) 6= 0.

But by Lemma 3.4.5 P

0

(�) =

P

i

P

ii

(�). Therefore, P

0

(1) =

P

i

P

ii

(1) 6= 0.

For simplicity let

1

(m

t

� 1)!

D

m

t

�1

�

"

�

k

P

ij

(�)

�

k

t

p

t

(�)

#

�=�

t

4

= Q

ijt

(k);

Clearly, Q

ijt

(k) represents a polynomial in k of degree not greater than (m

t

� 1), and

we can therefore write

Q

ijt

(k) =

m

t

�1

X

h=0

Q

(h)

ijt

k

h

;

where the Q

(h)

ijt

represent some speci�c numbers which do not depend on k. We

conclude that (��) can be written as

p

k

ij

= p

i

+

r

X

t=1

Q

ijt

(k)�

k

t

;

where

p

i

=

P

ii

(1)

P

0

(1)

=

P

ii

(1)

P

j

P

jj

(1)

:
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Note that by Theorem 3.3.3 the magnitude of all the remaining eigenvalues of P are

less than unity. Since Q

ijt

(k) are polynomials of �nite degree in k, it follows that

lim

k!1

p

(k)

ij

= p

i

; i = 1; 2; : : : ; n;

since

lim

k!1

k

h

�

k

= 0;

which is equivalent to

lim

k!1

k

h

j�j

k

= 0:

This argument follows by taking the ratio of two successive terms of the sequence

fk

h

j�j

k

g. It can be shown easily that this ratio is equal to j�j asymptotically. Since

j�j < 1, the sequence of positive numbers fk

h

j�j

k

g is asymptotically decreasing, and

hence converges to 0. Finally, we have the following theorem.

Theorem 3.5.2 Let P be the n � n probability transition matrix for an ergodic

Markov chain. The stationary distribution is given by

p

i

=

P

ii

(1)

P

j

P

jj

(1)

; i = 1; : : : ; n:
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3.6 R�enyi's entropy rate

3.6.1 Assumptions

Let X

1

; X

2

; : : : be an ergodic Markov chain with transition matrix P = (p

ij

) where

p

ij

4

= PrfX

k+1

= jjX

k

= ig; i; j = 1; 2; : : : ; N:

Suppose X

1

has distribution q = (q

1

; : : : ; q

N

). Then

PrfX

1

= i

1

; : : : ; X

M

= i

M

g = q

i

1

p

i

1

i

2

� � � p

i

M�1

i

M

:

Let

V (M;�)

4

=

X

i

1

;i

2

;:::;i

M

(q

i

1

p

i

1

i

2

� � � p

i

M�1

i

M

)

�

;

where � > 0, � 6= 1.

The R�enyi entropy of (X

1

; : : : ; X

M

) is

H

�

(M) =

1

1� �

logV (M;�):

The base of the logarithm is arbitrary. For coding purposes, as seen in Theorem 2.4.1

from the previous chapter, we need the R�enyi entropy rate de�ned as

lim

M!1

H

�

(M)

M

:

3.6.2 The limit

De�ne a new matrix R = (r

ij

) by

r

ij

= (p

ij

)

�

; i; j = 1; 2; : : : ; N;
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and de�ne new vectors s = (s

1

; : : : ; s

N

) and 1 by

s

i

= (q

i

)

�

; 1

T

= (1; 1; : : : ; 1):

Then, clearly V (M;�) can be written as

V (M;�) = sR

M�1

1:

Theorem 3.6.1 If P > 0, then

lim

M!1

H

�

(M)

M

=

log�(�; P )

1� �

;

where �(�; P ) is the largest positive eigenvalue of R.

Proof: By de�nition of R, if P > 0 then clearly R > 0. By Theorem 3.3.1, R

has a positive eigenvalue � = �(�; P ) with the property that � > j�

0

j for any other

eigenvalue �

0

of R. Also, R has positive left and right eigenvectors a and b, say,

corresponding to the eigenvalue �. Here, q, a, and s are row vectors, while b and 1

are column vectors. By Corollary 3.3.5,

lim

M!1

R

M�1

�

M�1

= ba:

Also, we have

lim

M!1

logV (M;�)

M

= lim

M!1

M

�1

log

"

sR

M�1

1

�

M�1

:�

M�1

#

:

Consider �rst the limit

lim

M!1

log

"

sR

M�1

1

�

M�1

#

:
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Since the logarithm is a continuous function and the limit of its argument exists then

by de�nition of the limit of a function we have

lim

M!1

log

"

sR

M�1

1

�

M�1

#

= log

"

s lim

M!1

R

M�1

�

M�1

1

#

= log[sba1] = C;

where C is some constant. Therefore,

lim

M!1

M

�1

log

"

sR

M�1

1

�

M�1

#

= lim

M!1

M

�1

C = 0:

Now, clearly

lim

M!1

M

�1

log

h

�

M�1

i

= lim

M!1

M

�1

(M � 1) log� = log�:

Since

M

�1

log

"

sR

M�1

1

�

M�1

:�

M�1

#

=M

�1

log

"

sR

M�1

1

�

M�1

#

+M

�1

log

h

�

M�1

i

;

and the limit of each term of the right hand side of this equality exists, then,

lim

M!1

logV (M;�)

M

= 0 + log� = log�(�; P );

and so

lim

M!1

H

�

(M)

M

=

log�(�; P )

1� �

: (3.1)

Now, we need two lemmas in order to prove a similar result when P � 0.

Lemma 3.6.1 If P � 0 then there exists some positive number m such that R

m

> 0.
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Proof: By Theorem 3.1.2, there exists a positive integer m, such that P

m

> 0. An

arbitrary entry of P

m

is a linear combination of products of length m of elements of

P , so it has the following form:

X

p

i

1

j

1

p

i

2

j

2

� � � p

i

m

j

m

;

where the sum is over some i

k

; j

k

2 f1; 2; : : : ; Ng, where k = 1; 2; : : : ; m.

Since P

m

> 0, then each entry is strictly positive; therefore

X

p

i

1

j

1

p

i

2

j

2

� � � p

i

m

j

m

> 0:

But, clearly this will imply that

X

p

�

i

1

j

1

p

�

i

2

j

2

� � � p

�

i

m

j

m

> 0;

where the sum, as before, is over some i

k

; j

k

2 f1; 2; : : : ; Ng, where k = 1; 2; : : : ; m:

But this sum is in fact an arbitrary entry of R

m

; therefore R

m

> 0.

Lemma 3.6.2 The largest eigenvalue of R

m

is equal to the largest eigenvalue of R

raised to the power m.

Proof: Let f�

i

g, i = 1; 2; : : : ; N be the eigenvalues of R. Clearly f�

m

i

g are the

eigenvalues of R

m

. By the previous lemma, R

m

> 0; therefore, by Theorem 3.3.1,

there exists � such that: (�

m

) > j(�

0

)

m

j for any other eigenvalue �

0

of R, where

(�

m

) > 0. But clearly, j(�

0

)

m

j = j�

0

j

m

; hence �

m

> j�

0

j

m

. This implies that � > j�

0

j;

therefore � is the largest eigenvalue of R. We conclude that the largest eigenvalue �

m

of R

m

is equal to the largest eigenvalue of R raised to the power m.
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Theorem 3.6.2 If P � 0, then

lim

M!1

H

�

(M)

M

=

log�(�; P )

1� �

;

where �(�; P ) is the largest positive eigenvalue of R.

Proof: By Lemma 3.6.1 there exists m such that R

m

> 0. By Theorem 3.3.1, R

m

has

a positive eigenvalue �

�

with the property that �

�

> j�

0

j for any other eigenvalue �

0

of R

m

. Also, R

m

has positive left and right eigenvectors a and b, say, corresponding

to the eigenvalue �

�

. Here, q, a, and s are row vectors, while b and 1 are column

vectors. By Corollary 3.3.5,

lim

M!1

�

R

m

�

�

�

M�1

= ba:

Also, we have

lim

M!1

logV (M;�)

M

= lim

M!1

M

�1

log

2

4

s

�

R

m

�

�

�

M�1

m

1:�

�(

M�1

m

)

3

5

:

Consider �rst the limit

lim

M!1

log

2

4

s

�

R

m

�

�

�

M�1

m

1

3

5

:

Since the logarithm is a continuous function and the limit of its argument exists, then

by de�nition of the limit of a function we have

lim

M!1

log

2

4

s

�

R

m

�

�

�

M�1

m

1

3

5

= log

2

4

s

 

lim

M!1

�

R

m

�

�

�

M�1

!

1

m

1

3

5

= log

h

s(ab)

1

m

1

i

= C;

where C is some constant. Therefore,

lim

M!1

M

�1

log

2

4

s

�

R

m

�

�

�

M�1

m

1

3

5

= lim

M!1

M

�1

C = 0:
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Now, clearly

lim

M!1

M

�1

log

h

�

�(

M�1

m

)

i

= lim

M!1

M

�1

(

M � 1

m

) log�

�

=

log�

�

m

:

Since

M

�1

log

2

4

s

�

R

m

�

�

�

M�1

m

1:�

�(

M�1

m

)

3

5

=M

�1

log

2

4

s

�

R

m

�

�

�

M�1

m

1

3

5

+M

�1

log

h

�

�(

M�1

m

)

i

;

and the limit of each term of the right hand side of this equality exists, then,

lim

M!1

logV (M;�)

M

= 0 +

log�

�

m

=

log�

�

m

:

But by Lemma 3.6.2, �

�

= �

m

, where � is the largest eigenvalue of R. Therefore

log�

�

m

=

log�

m

m

= log�:

Thus

lim

M!1

H

�

(M)

M

=

log�(�; P )

1� �

; (3.2)

which is the same result as when P > 0.

Remark: The function

f(�) =

log�(�; P )

1� �

;

is not monotonic in �. For notational convenience set �(�; P ) = �.

f

0

(�) =

h

�

0

(1��)

�

+ log�

i

(1� �)

2

:

We have two cases.

First case: 0 < � < 1. By Corollary 3.3.4 � is a strictly decreasing function of �.
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Therefore, �

0

< 0. But � > 0 and 1� � > 0, therefore

�

0

(1� �)

�

< 0:

Since �(�; P ) is a decreasing function of � and 0 < � < 1, then �(�; P ) > �(1; P ) = 1.

Hence log� > 0. Therefore, if log� is greater then the absolute value of �

0

(1� �)=�,

then f

0

(�) > 0, otherwise, f

0

(�) < 0. Hence, f(�) is not monotonic.

Second case: � > 1. In this case �

0

(1��)=� > 0, and log� < 0. By similar argument

as before, f(�) is not monotonic.

Some numerical examples will be given in Chapter 4.

3.7 A source coding theorem for 1

st

order Markov

sources

By (2.15) we have

H

�

(M) � L

M

(t) < H

�

(M) + 1:

Dividing by M yields

H

�

(M)

M

�

L

M

(t)

M

<

H

�

(M)

M

+

1

M

:

By Theorem 3.6.1 and Theorem 3.6.2 we have

lim

M!1

H

�

(M)

M

=

log�

1� �

:
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Therefore,

lim

M!1

L

M

(t)

M

=

log�

1� �

:

Thus, the following theorem holds for ergodic Markov sources of �rst order with

probability transition matrix P = (p

ij

).

Theorem 3.7.1 Let � = (1 + t)

�1

. By encoding su�ciently long sequences of input

symbols from an ergodic Markov source of �rst order, it is possible to make the average

code length of order t per input symbol as close to

log�(�; P )

1� �

as desired where �(�; P ) denotes the largest positive eigenvalue of the matrix

R = (p

�

ij

).

Now, we will illustrate with some examples.

3.8 Special cases

3.8.1 Memoryless sources

If the source is memoryless, p

ij

= p

j

and R consists of N identical rows, each being

(p

�

1

; : : : ; p

�

N

). For this R, 1 is a right eigenvector with eigenvalue

N

X

i=1

(p

i

)

�

:
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Since the right eigenvector is positive, this is the largest eigenvalue by Corollary 3.3.2.

Thus, by (3.2)

lim

M!1

H

�

(M)

M

=

log

�

P

N

i=1

(p

i

)

�

�

1� �

= H

�

;

which is consistent with Lemma 2.3.1.

3.8.2 Markov sources with symmetry properties

The last result generalizes to any matrix P for which every row is some permutation

of the �rst row. Let every row of P consist of the numbers p

1

; : : : ; p

N

in some order,

where p

i

� 0 and

P

p

i

= 1. Then 1 is a right eigenvector of R, with eigenvalue

N

X

i=1

(p

i

)

�

:

As before,

lim

M!1

H

�

(M)

M

=

log

�

P

N

i=1

(p

i

)

�

�

1� �

:

3.8.3 Binary Markov sources

For a binary Markov source we can calculate the eigenvalues and eigenvectors explic-

itly and examine the result. Let the transition matrix be

P =

2

6

6

6

4

x 1� x

1� y y

3

7

7

7

5

;
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where x > 0 and y > 0. The stationary distribution for this P is the left eigenvector

v =

 

1� y

2� x� y

;

1� x

2� x� y

!

: (3.3)

The largest eigenvalue of R is found to be

�(�; P ) =

1

2

�

x

�

+ y

�

+ [(x

�

� y

�

)

2

+ 4(1� x)

�

(1� y)

�

]

1=2

�

: (3.4)

lim

�!1

�(�; P ) =

1

2

�

x+ y + [(x� y)

2

+ 4(1� x)(1� y)]

1=2

�

=

1

2

�

x+ y + (x

2

+ y

2

+ 2xy + 4� 4y � 4x)

1=2

�

=

1

2

�

x + y +

h

(2� x� y)

2

i

1=2

�

=

1

2

(x + y + 2� x� y)

= 1:

Then, by l'Hôpital's rule (natural logarithm is used for convenience), we �nd that

lim

�!1

ln�(�; P )

1� �

= ��

0

(1; P ): (3.5)

From (3.1) and (3.4),

lim

�!1

lim

M!1

H

�

(M)

M

= ��

0

(1; P )

= �

(x

�

lnx + y

�

ln y)

2

�

�

�

�

�

�=1

�

[(x

�

� y

�

)

2

+ 4(1� x)

�

(1� y)

�

]

0

4 [(x

�

� y

�

)

2

+ 4(1� x)

�

(1� y)

�

]

1=2

�

�

�

�

�

�=1

= �

(2� x� y)(x lnx + y ln y) + (x� y)(x lnx� y ln y)

2(2� x� y)
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�

(1� x)(1� y)(ln(1� x) + ln(1� y))

2� x� y

= �

x ln x+ y ln y � xy ln y � xy lnx

2� x� y

�

(1� x)(1� y) ln(1� x) + (1� x)(1� y) ln(1� y)

2� x� y

= �

1� y

2� x� y

[x lnx + (1� x) ln(1� x)]

�

1� x

2� x� y

[y ln y + (1� y) ln(1� y)]:

In view of (3.3), this is the Shannon conditional entropy associated with this Markov

chain.

3.8.4 Limiting case for N-ary Markov sources

We now consider an ergodic Markov source fX

n

g of �rst order with alphabet size

N. Let P = (p

ij

) denotes the probability transition matrix and R = (p

�

ij

), i; j =

1; 2; : : : ; N . The goal is to �nd the limit of (3.2) as � ! 1. For binary Markov

sources, as seen in the previous section, the limiting value of (3.2) is easy to compute

since the eigenvalues and eigenvectors can be explicitely determined. However, this

calculation for N-ary Markov sources is more complicated, because in general there

is no closed form for the eigenvalues and the eigenvectors. The eigenvalues of P are

continuous functions of its elements [12]. Note that as � ! 1, R ! P and that the

largest eigenvalue of the matrix P is 1 by Theorem 3.3.3. Hence

lim

�!1

�(�; P ) = 1:
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From this we see that (3.5) holds for any N . The equation de�ning the largest positive

eigenvalue of R, �(�; P ) is

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

�

11

� � p

�

12

� � � p

�

1N

p

�

21

p

�

22

� � � � � p

�

2N

.

.

.

.

.

.

.

.

.

.

.

.

p

�

N1

p

�

N2

� � � p

�

NN

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 0: (3.6)

By di�erentiating this equation with respect to �, we get by Lemma 3.4.4

D

1

+D

2

+ � � �+D

N

= 0; (3.7)

where D

i

is the determinant obtained from (3.6) by replacing the i-th row by

(p

�

i1

ln p

i1

; p

�

i2

ln p

i2

; : : : ; p

�

ii

ln p

ii

� �

0

; : : : ; p

�

iN

ln p

iN

):

and leaving the otherN�1 rows unchanged. In this equation, �

0

denotes the derivative

of � with respect to �.

Note that if � = 1 then � = 1. Also, by Lemma 3.4.3 if we add in D

i

all the

other columns to the i-th column, the value of the determinant remains unchanged.

Therefore, for � = 1 D

i

is the determinant with i-th row

(p

i1

ln p

i1

; p

i2

ln p

i2

; : : : ;�H(Xji)� �

0

; : : : ; p

iN

ln p

iN

);

where

H(Xji) = �

N

X

j=1

p

ij

ln p

ij

:
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The k-th row of D

i

for k > i is

(p

k1

; p

k2

; : : : ; 0; p

kk

� 1; : : : ; p

kN

);

and for k < i,

(p

k1

; p

k2

; : : : ; p

kk

� 1; 0; : : : ; p

kN

):

A 0 occurs in the i-th position because clearly

N

X

j=1

p

kj

� 1 = 0:

We conclude that

D

i

= (�H(Xji)� �

0

)c

i

; (3.8)

where c

i

is the N � 1� N � 1 cofactor of p

ii

� 1 in the determinant of (3.6) for the

case � = 1, given by

c

i

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

11

� 1 p

12

: : : p

1;i�1

p

1;i+1

: : : p

1N

p

21

p

22

� 1 : : : p

2;i�1

p

2;i+1

: : : p

2N

.

.

.

.

.

. : : : : : : : : : : : :

.

.

.

p

i�1;1

p

i�1;2

: : : p

i�1;i�1

� 1 p

i�1;i+1

: : : p

i�1;N

p

i+1;1

p

i+1;2

: : : p

i+1;i�1

p

i+1;i+1

� 1 : : : p

i+1;N

.

.

.

.

.

. : : : : : : : : : : : :

.

.

.

p

N1

p

N2

: : : p

N;i�1

p

N;i+1

: : : p

NN

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

By Substituting (3.8) in (3.7) we get

lim

�!1

ln�(�; P )

1� �

= ��

0

(1; P ) =

N

X

i=1

p

i

H(Xji); (3.9)

48



where

p

i

=

c

i

P

j

c

j

:

But, from Theorem 3.5.2 (p

1

; : : : ; p

N

) as de�ned above, is the stationary probability

vector of P . Hence the value given in (3.9) is just the Shannon conditional entropy

H(X

2

jX

1

) associated with the Markov source fX

n

g.
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Chapter 4

Extension for k

th

order ergodic

Markov sources

We �rst examine second and third order ergodic Markov sources, and then generalize

for ergodic Markov sources of order k. We start by de�ning a k

th

order Markov chain.

De�nition: A discrete stochastic process Z

1

; Z

2

; : : : is said to be a k

th

order Markov

chain if, for n � k

Pr(Z

n+1

= z

n+1

jZ

n

= z

n

; Z

n�1

= z

n�1

; : : : ; Z

1

= z

1

)

= Pr(Z

n+1

= z

n+1

jZ

n

= z

n

; Z

n�1

= z

n�1

; : : : ; Z

n�k+1

= z

n�k+1

):

For the sake of simplicity, and without loss of generality, all Markov sources in this

chapter are assumed to be binary with state space Z = f0; 1g.
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4.1 Second order ergodic Markov sources

Let fZ

n

g be a second order ergodic Markov source. De�ne the process fW

n

g such

that each random variable W

n

is a 2-step blocking of the process fZ

n

g, i.e.

W

n

4

= (Z

n

; Z

n+1

):

We have

P (W

n

= w

n

jW

n�1

= w

n�1

; : : : ;W

1

= w

1

) = P (Z

n+1

= z

n+1

; Z

n

= z

n

jZ

n

; : : : ; Z

1

)

= P (Z

n+1

= z

n+1

jZ

n

= z

n

; Z

n�1

= z

n�1

)

= P (W

n

= w

n

jW

n�1

= w

n�1

);

where z

n

2 f0; 1g and w

n

2 f(0; 0); (0; 1); (1; 0); (1; 1)g. Therefore fW

n

g is a �rst order

Markov source with 4 states. We denote each state by its decimal representation; i.e.,

state 0 corresponds to state (0; 0) or (00); state 1 corresponds to state (01); state 2

corresponds to state (10) and state 3 corresponds to state (11).

Now, we would like to write the joint distribution of fZ

n

g in terms of the conditional

probabilities of fW

n

g, p(w

n

jw

n�1

)

4

= P (W

n

= w

n

jW

n�1

= w

n�1

). Suppose that W

1

has distribution q(w

1

). Then

P (Z

1

= z

1

; : : : ; Z

M

= z

M

)

= P (Z

1

= z

1

; Z

2

= z

2

)P (Z

3

= z

3

jZ

1

= z

1

; Z

2

= z

2

)

P (Z

4

= z

4

jZ

2

= z

2

; Z

3

= z

3

) : : : P (Z

M

= z

M

jZ

M�1

= z

M�1

; Z

M�2

= z

M�2

)
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= p(z

1

; z

2

)P (Z

3

= z

3

; Z

2

= z

2

jZ

1

= z

1

; Z

2

= z

2

)

: : : P (Z

M

= z

M

; Z

M�1

= z

M�1

jZ

M�1

= z

M�1

; Z

M�2

= z

M�2

)

= q(w

1

)P (W

2

= w

2

jW

1

= w

1

) : : : P (W

M�1

= w

M�1

jW

M�2

= w

M�2

)

= q(w

1

)p(w

2

jw

1

) : : : p(w

M�1

jw

M�2

)

= q

w

1

p

w

1

;w

2

: : : p

w

M�2

;w

M�1

:

Let

V (M;�) =

X

w

1

;w

2

;:::;w

M�1

(q

w

1

p

w

1

;w

2

: : : p

w

M�2

;w

M�1

)

�

:

The R�enyi entropy of (Z

1

; : : : ; Z

M

) is

H

�

(M) =

1

1� �

logV (M;�):

The base of the logarithm is arbitrary.

For simplicity of notation denote by p

ij

the transition probability that W

n

goes from

state i to state j; i; j = 0; 1; 2; 3. Therefore, the probability transition matrix of fW

n

g

is P = (p

ij

).

De�ne a new matrix R = (r

ij

) by

r

ij

= (p

ij

)

�

; i; j = 0; 1; 2; 3:

Also, de�ne new vectors s = (s

0

; s

1

; s

2

; s

3

) and 1 by

s

i

= (q

i

)

�

; 1

T

= (1; 1; 1; 1);

where T denote the transpose operation. Then, clearly V (M;�) can be written as

V (M;�) = sR

M�2

1:
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We next observe that the matrix P is non-negative.

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

00

p

01

p

02

p

03

p

10

p

11

p

12

p

13

p

20

p

21

p

22

p

23

p

30

p

31

p

32

p

33

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

00

p

01

0 0

0 0 p

12

p

13

p

20

p

21

0 0

0 0 p

32

p

33

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

The zeros in the above matrix occur because of grouping. For example,

p

02

= p(w

2

= 2jw

1

= 0)

= p(w

2

= (1; 0)jw

1

= (0; 0))

= p((z

2

; z

3

) = (1; 0)j(z

1

; z

2

) = (0; 0))

= p(z

2

= 1; z

3

= 0jz

1

= 0; z

2

= 0)

= 0:

Therefore, fW

n

g is an ergodic source with probability transition matrix P � 0.

In the next section we examine the case of third order Markov sources.
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4.2 Third order ergodic Markov sources

Let fZ

n

g be a third order Markov source. De�ne the process fW

n

g such that each

random variable W

n

is a 3-step blocking of the process fZ

n

g, i.e.

W

n

4

= (Z

n

; Z

n+1

; Z

n+2

):

We have

P (W

n

= w

n

jW

n�1

= w

n�1

; : : : ;W

1

= w

1

)

= P (Z

n+2

= z

n+2

; Z

n+1

= z

n+1

; Z

n

= z

n

jZ

n+1

; Z

n

; : : : ; Z

1

)

= P (Z

n+2

= z

n+2

jZ

n+1

= z

n+1

; Z

n

= z

n

; Z

n�1

= z

n�1

)

= P (Z

n+2

= z

n+2

; Z

n+1

= z

n+1

; Z

n

= z

n

jZ

n+1

= z

n+1

; Z

n

= z

n

; Z

n�1

= z

n�1

)

= P (W

n

= w

n

jW

n�1

= w

n�1

):

where z

n

2 f0; 1g and w

n

2 f(000); (001); (010); (011); (100); (101); (110); (111)g.

Therefore fW

n

g is a �rst order Markov source with 8 states. Again, We denote

each state by its decimal representation. Now, we would like to write the joint dis-

tribution of fZ

n

g in terms of the conditional probabilities of fW

n

g, p(w

n

jw

n�1

)

4

=

P (W

n

= w

n

jW

n�1

= w

n�1

). Suppose that W

1

has the distribution q(w

1

). Then

P (Z

1

= z

1

; : : : ; Z

M

= z

M

)

= P (Z

1

= z

1

; Z

2

= z

2

; Z

3

= z

3

)P (Z

4

= z

4

jZ

1

= z

1

; Z

2

= z

2

; Z

3

= z

3

)

P (Z

M

= z

M

jZ

M�1

= z

M�1

; Z

M�2

= z

M�2

; Z

M�3

= z

M�3

)
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= p(z

1

; z

2

; z

3

)P (Z

4

= z

4

; Z

3

= z

3

; Z

2

= z

2

jZ

1

= z

1

; Z

2

= z

2

; Z

3

= z

3

)

: : : P (Z

M

= z

M

; Z

M�1

= z

M�1

; Z

M�2

= z

M�2

j

Z

M�1

= z

M�1

; Z

M�2

= z

M�2

; Z

M�3

= z

M�3

)

= q(w

1

)P (W

2

= w

2

jW

1

= w

1

) : : : P (W

M�2

= w

M�2

jW

M�3

= w

M�3

)

= q(w

1

)p(w

2

jw

1

) : : : p(w

M�2

jw

M�3

)

= q

w

1

p

w

1

;w

2

: : : p

w

M�3

;w

M�2

:

Let

V (M;�) =

X

w

1

;w

2

;:::;w

M�2

(q

w

1

p

w

1

;w

2

: : : p

w

M�3

;w

M�2

)

�

:

The R�enyi entropy of (Z

1

; : : : ; Z

M

) is

H

�

(M) =

1

1� �

logV (M;�):

The base of the logarithm is arbitrary.

For simplicity of notation denote by p

ij

the transition probability that W

n

goes from

state i to state j; i; j = 0; 1; : : : ; 7. Therefore, the probability transition matrix of

fW

n

g is P = (p

ij

).

De�ne a new matrix R = (r

ij

) by

r

ij

= (p

ij

)

�

; i; j = 0; 1; : : : ; 7:

Also, de�ne new vectors s = (s

0

; s

1

; : : : ; s

7

) and 1 by

s

i

= (q

i

)

�

; 1

T

= (1; : : : ; 1);

55



where T denote the transpose of the vector 1 which contains 8 components.

Therefore, V (M;�) can be written as

V (M;�) = sR

M�3

1:

Also, because of grouping, some entries of P are zeros. This matrix has the following

form

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

00

p

01

p

02

p

03

p

04

p

05

p

06

p

07

p

10

p

11

p

12

p

13

p

14

p

15

p

16

p

17

p

20

p

21

p

22

p

23

p

24

p

25

p

26

p

27

p

30

p

31

p

32

p

33

p

34

p

35

p

36

p

37

p

40

p

41

p

42

p

43

p

44

p

45

p

46

p

47

p

50

p

51

p

52

p

53

p

54

p

55

p

56

p

57

p

60

p

61

p

62

p

63

p

64

p

65

p

66

p

67

p

70

p

71

p

72

p

73

p

74

p

75

p

76

p

77

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

00

p

01

0 0 0 0 0 0

0 0 p

12

p

13

0 0 0 0

0 0 0 0 p

24

p

25

0 0

0 0 0 0 0 0 p

36

p

37

p

40

p

41

0 0 0 0 0 0

0 0 p

52

p

53

0 0 0 0

0 0 0 0 p

64

p

65

0 0

0 0 0 0 0 0 p

76

p

77

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Therefore, the ergodic Markov source fW

n

g of order 3 has the probability transition

matrix P � 0.

Now, we will look at the general case.

4.3 k

th

order ergodic Markov sources

Let fZ

n

g be an ergodic Markov source of order k. De�ne fW

n

g as the process obtained

by k-step blocking the process fZ

n

g, i.e.,

W

n

4

= (Z

n

; Z

n+1

; : : : ; Z

n+k�1

):

We have that

P (W

n

= w

n

jW

n�1

= w

n�1

; : : : ;W

1

= w

1

)

= P (Z

n+k�1

= z

n+k�1

; Z

n+k�2

= z

n+k�2

; : : : ; Z

n

= z

n

jZ

n�2+k

; Z

n�3+k

; : : : ; Z

1

)
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= P (Z

n+k�1

= z

n+k�1

jZ

n+k�2

= z

n+k�2

; Z

n+k�3

= z

n+k�3

; : : : ; Z

n�1

= z

n�1

)

= P (W

n

= w

n

jW

n�1

= w

n�1

):

Therefore, fW

n

g is a �rst order ergodic Markov source with 2

k

states;

w

n

2 f(0 � � �00); (0 � � �01); : : : ; (1 � � �11)g where each string is of length k. As be-

fore, we denote each state by its decimal representation. We next write the joint

distribution of fZ

n

g in terms of the conditional probabilities of fW

n

g, p(w

n

jw

n�1

)

4

=

P (W

n

= w

n

jW

n�1

= w

n�1

). Suppose that W

1

has the distribution q(w

1

). Then

P (Z

1

= z

1

; : : : ; Z

M

= z

M

)

= P (Z

1

= z

1

; Z

2

= z

2

; : : : ; Z

k

= z

k

):

P (Z

k+1

= z

k+1

jZ

k

= z

k

; : : : ; Z

1

= z

1

)

: : : P (Z

M

= z

M

jZ

M�1

= z

M�1

; Z

M�2

= z

M�2

; : : : ; Z

M�k

= z

M�k

)

= p(z

1

; : : : ; z

k

)P (Z

k+1

= z

k+1

; Z

k

= z

k

; : : : ; Z

2

= z

2

jZ

k

= z

k

; : : : ; Z

1

= z

1

)

: : : P (Z

M

= z

M

; Z

M�1

= z

M�1

; : : : ; Z

M�k+1

= z

M�k+1

j

Z

M�1

= z

M�1

; : : : ; Z

M�k

= z

M�k

)

= q(w

1

)P (W

2

= w

2

jW

1

= w

1

) : : : P (W

M�k+1

= w

M�k+1

jW

M�k

= w

M�k

)

= q

w

1

p

w

1

;w

2

: : : p

w

M�k

;w

M�k+1

:

Let

V (M;�) =

X

w

1

;w

2

;:::;w

M�k+1

(q

w

1

p

w

1

;w

2

� � � p

w

M�k

;w

M�k+1

)

�

:
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The R�enyi entropy of (Z

1

; : : : ; Z

M

) is

H

�

(M) =

1

1� �

logV (M;�):

The base of the logarithm is arbitrary. For simplicity of notation denote by p

ij

the

transition probability that W

n

goes from state i to state j; i; j = 0; 1; : : : ; 2

k

� 1.

Therefore, the probability transition matrix of fW

n

g is P = (p

ij

).

De�ne a new matrix R = (r

ij

) by

r

ij

= (p

ij

)

�

; i; j = 0; 1; : : : ; 2

k

� 1:

Also, de�ne new vectors s = (s

0

; s

1

; : : : ; s

2

k

�1

) and 1 by

s

i

= (q

i

)

�

; 1

T

= (1; : : : ; 1);

where T denotes the transpose of the vector 1 which contains 2

k

components.

Then, clearly V (M;�) can be written as

V (M;�) = sR

M�k

1:
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Also, because of grouping some entries of P are zeros. This 2

k

� 2

k

matrix has the

following form

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

00

p

01

0 0 : : : : : : : : : : : : 0 0

0 0 p

12

p

13

0 : : : : : : : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0

.

.

. 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : : : : : : : : : : : : : 0 p

2

k�1

�1;2(2

k�1

�1)

p

2

k�1

�1;2(2

k�1

�1)+1

p

2

k�1

;0

p

2

k�1

;1

0 0 : : : : : : : : : : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : : : : : : : : : : : : : 0 p

2

k

�1;2

k

�2

p

2

k

�1;2

k

�1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

It is easy to check that all entries of P are zeros except possibly for the positions (i; j)

such that j = 2i (mod 2

k

), and j = (2i+1) (mod 2

k

). Therefore, fW

n

g is an ergodic

Markov source of �rst order with probability transition matrix P � 0.
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4.3.1 R�enyi entropy rate

For coding purposes we need

lim

M!1

H

�

(M)

M

:

We obtain the following result.

Theorem 4.3.1 For an ergodic Markov source of order k

lim

M!1

H

�

(M)

M

=

log�(�; P )

1� �

;

where P = (p

ij

) is the probability transition matrix of the associated �rst order ergodic

Markov source obtained by k-step blocking the original k'th order Markov source, and

�(�; P ) is the largest positive eigenvalue of the matrix R = (p

�

ij

).

Proof: By Lemma 3.6.1 there exists m such that R

m

> 0. By Theorem 3.3.1, R

m

has

a positive eigenvalue �

�

with the property that �

�

> j�

0

j for any other eigenvalue �

0

of R

m

. Also, R

m

has positive left and right eigenvectors a and b, say, corresponding

to the eigenvalue �

�

. Here, q, a, and s are row vectors, while b and 1 are column

vectors. By Corollary 3.3.5,

lim

M!1

�

R

m

�

�

�

M�k

= ba:

Also, we have

lim

M!1

logV (M;�)

M

= lim

M!1

M

�1

log

2

4

s

�

R

m

�

�

�

M�k

m

1:�

�(

M�k

m

)

3

5

:
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Consider �rst the limit

lim

M!1

log

2

4

s

�

R

m

�

�

�

M�k

m

1

3

5

:

Since the logarithm is a continuous function and the limit of its argument exists, then

we have

lim

M!1

log

2

4

s

�

R

m

�

�

�

M�k

m

1

3

5

= log

2

4

s

 

lim

M!1

�

R

m

�

�

�

M�k

!

1

m

1

3

5

= log

h

s(ab)

1

m

1

i

= C;

where C is some constant. Therefore,

lim

M!1

M

�1

log

2

4

s

�

R

m

�

�

�

M�k

m

1

3

5

= lim

M!1

M

�1

C = 0:

Now, clearly

lim

M!1

M

�1

log

h

�

�(

M�k

m

)

i

= lim

M!1

M

�1

(

M � k

m

) log�

�

=

log�

�

m

:

Since

M

�1

log

2

4

s

�

R

m

�

�

�

M�k

m

1:�

�(

M�k

m

)

3

5

=M

�1

log

2

4

s

�

R

m

�

�

�

M�k

m

1

3

5

+M

�1

log

h

�

�(

M�k

m

)

i

;

and the limit of each term of the right hand side of this equality exists, then

lim

M!1

logV (M;�)

M

= 0 +

log�

�

m

=

log�

�

m

:

But by Lemma 3.6.2 �

�

= �

m

, where � is the largest eigenvalue of R. Therefore

log�

�

m

=

log�

m

m

= log�:

Thus

lim

M!1

H

�

(M)

M

=

log�(�; P )

1� �

: (4.1)
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4.4 A source coding theorem for k

th

order Markov

sources

By (2.15) we have

H

�

(M) � L

M

(t) < H

�

(M) + 1:

Dividing by M yields

H

�

(M)

M

�

L

M

(t)

M

<

H

�

(M)

M

+

1

M

:

By Theorem 4.3.1 we have

lim

M!1

H

�

(M)

M

=

log�

1� �

:

Therefore,

lim

M!1

L

M

(t)

M

=

log�

1� �

:

Thus, the following theorem holds for ergodic Markov sources of order k with proba-

bility transition matrix P = (p

ij

).

Theorem 4.4.1 Let � = (1 + t)

�1

. By encoding su�ciently long sequences of input

symbols from an ergodic Markov source of order k it is possible to make the average

code length of order t per input symbol as close to

log�(�; P )

1� �

as desired where �(�; P ) denotes the largest positive eigenvalue of the matrix R =

(p

�

ij

).
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4.5 Numerical examples

This section is devoted for some numerical examples which are described in Chapter 2

of [2]. We compute the R�enyi entropy rate for di�erent Markov sources. We also verify

that as �! 1, the R�enyi entropy rate reduces to the Shannon entropy rate. The �rst

example is a second order stationary binary Markov source fZ

n

g with state space

f0; 1g. The process fW

n

g such that each random variable W

n

is a 2-step blocking of

fZ

n

g, i.e.

W

n

= (Z

n

; Z

n+1

);

is a �rst order stationary Markov source with 4 states. The probability transition

matrix P of fW

n

g is given by

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

00

p

01

p

02

p

03

p

10

p

11

p

12

p

13

p

20

p

21

p

22

p

23

p

30

p

31

p

32

p

33

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�+2�

1+2�

�

1+2�

0 0

0 0

�+�

1+2�

�+�

1+2�

�+�

1+2�

�+�

1+2�

0 0

0 0

�

1+2�

�+2�

1+2�

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

where �+ � = 1. The Shannon entropy rate of fZ

n

g is given by:

H(Z

3

jZ

2

; Z

1

) =

�(� + �)

1 + �

h

b

�

�

1 + 2�

�

+

2��

1 + �

h

b

 

�+ �

1 + 2�

!

+

�(�+ �)

1 + �

h

b

 

�+ 2�

1 + 2�

!

;
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where h

b

(:) is the binary entropy function. Now, we will illustrate equation (3.9)

numerically for two di�erent sets of numerical values for the variables �; � and �.

First set: � = 0:4, � = 0:6, and, � = 0:5. By direct calculation we get

H(Z

3

jZ

2

; Z

1

) = 0:846846 bits:

The R�enyi entropy rate is calculated for di�erent values of � (close to 1 from above

and below) and displayed in the following table.

�

log

2

�(�;P )

1��

= lim

M!1

H

�

(M)

M

1.001 0.8466999879

0.999 0.8471080727

1.0001 0.8468478218

0.9999 0.8469669159

1.00001 0.8465902779

0.99999 0.8469171509

Observe that as � approaches 1, the R�enyi entropy rate converges to the Shannon

entropy rate.

The second set is: � = 0:3, � = 0:7, and, � = 0:2.

In this case, we get:

H(Z

3

jZ

2

; Z

1

) = 0:5875376 nats:

The R�enyi entropy rate is calculated for di�erent values of � (close to 1 from above

and below) and displayed in the following table.
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�

ln�(�;P )

1��

= lim

M!1

H

�

(M)

M

1.001 0.5873896795

0.999 0.5876852792

1.0001 0.5875212587

0.9999 0.5875727376

1.00001 0.5873817251

0.99999 0.5875982736

Observe that as � approaches 1, the R�enyi entropy rate converges to the Shannon

entropy rate.

The last example employs a third order stationary binary Markov source fZ

n

g. The

process fW

n

g obtained by 3-step blocking of fZ

n

g, i.e.

W

n

= (Z

n

; Z

n+1

; Z

n+2

);
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is a �rst order stationary Markov source with 8 states. The probability transition

matrix of fW

n

g is given by

P =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p

00

p

01

p

02

p

03

p

04

p

05

p

06

p

07

p

10

p

11

p

12

p

13

p

14

p

15

p

16

p

17

p

20

p

21

p

22

p

23

p

24

p

25

p

26

p

27

p

30

p

31

p

32

p

33

p

34

p

35

p

36

p

37

p

40

p

41

p

42

p

43

p

44

p

45

p

46

p

47

p

50

p

51

p

52

p

53

p

54

p

55

p

56

p

57

p

60

p

61

p

62

p

63

p

64

p

65

p

66

p

67

p

70

p

71

p

72

p

73

p

74

p

75

p

76

p

77

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�+3�

1+3�

�

1+3�

0 0 0 0 0 0

0 0

�+2�

1+3�

�+�

1+3�

0 0 0 0

0 0 0 0

�+2�

1+3�

�+�

1+3�

0 0

0 0 0 0 0 0

�+�

1+3�

�+2�

1+3�

�+2�

1+3�

�+�

1+3�

0 0 0 0 0 0

0 0

�+�

1+3�

�+2�

1+3�

0 0 0 0

0 0 0 0

�+�

1+3�

�+2�

1+3�

0 0

0 0 0 0 0 0

�

1+3�

�+3�

1+3�

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

where �+ � = 1. The Shannon entropy rate of fZ

n

g is given by:

H(Z

4

jZ

3

; Z

2

; Z

1

) =

�(� + �)(� + 2�)

(1 + �)(1 + 2�)

h

b

 

� + 3�

1 + 3�

!

+

3��(� + �)

(1 + �)(1 + 2�)

h

b

 

� + 2�

1 + 3�

!
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+

3��(�+ �)

(1 + �)(1 + 2�)

h

b

 

� + �

1 + 3�

!

+

�(�+ �)(� + 2�)

(1 + �)(1 + 2�)

h

b

�

�

1 + 3�

�

;

where h

b

(:) is the binary entropy function.

Let � = 0:3, � = 0:7, and, � = 0:4. Then

H(Z

4

jZ

3

; Z

2

; Z

1

) = 0:533205 nats:

The R�enyi entropy rate is calculated for di�erent values of � (close to 1 from above

and below) and displayed in the following table.

�

ln�(�;P )

1��

= lim

M!1

H

�

(M)

M

1.001 0.5329080703

0.999 0.5335056605

1.0001 0.5332282164

0.9999 0.5332657811

1.00001 0.5333614224

0.99999 0.5327985806

Clearly, as �! 1,

lim

M!1

H

�

(M)

M

= H(Z

4

jZ

3

; Z

2

; Z

1

):

68



Chapter 5

Conclusions and future work

5.1 Summary

Primarily, we examine in detail a R�enyi variable length source coding theorem for

memoryless sources. Then, a formula for the R�enyi entropy rate of ergodic Markov

sources of arbitrary order is derived using Perron-Frobenius theory. This formula

extends the previous theorem for these more general sources.

5.2 Future work

A possible direction is to examine more general sources. One possible source for which

the results of this project can be applicable is the non-Markovian stationary ergodic
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source.

In the literature several information measures other than the Shannon and the R�enyi

entropies have been introduced. Some of these entropies are cited in [7] along with

several references about their applications. Probably, it will be also useful to obtain

formulas for the asymptotic rate of these measures.
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