Existence of Laplace Transforms $F(s)$

Before continuing our use of Laplace transforms for solving BEs, it is worth digressing through a quick investigation of which functions actually have a Laplace transform.
A function f is piecewise continuous on an interval $t \in[a, b]$ if the interval can be partitioned by a finite number of points $a=t_{0}<$ $t_{1}<\cdots<t_{n}=b$ such that

- f is continuous on each open subinterval $\left(t_{i-1}, t_{i}\right)$.
- f approaches a finite limit as the endpoints of each subinterval are approached from within the subinterval.
In other words, f is continuous on $[a, b]$ except for a finite number of jump discontinuities. A function is piecewise continuous on $[0, \infty)$ if $f(t)$ is piecewise continuous on $[0, N]$ for all $N>0$.

Problem. Draw examples of functions which are continuous and piecewise continuous, or which have different kinds of discontinuities.

piece vise cont's
limit at and of sobineret
not be piecewise cont's

One of the requirements for a function having a Laplace transform is that it be piecewise continuous. Classify the graphs above based on this criteria.

Another requirement of the Laplace transform is that the integral $\left(\int_{0}^{\infty} e^{-s t} f(t) d t\right.$ converges for at least some values of $\underline{\underline{s}}$. To help determine this, we introduce a generally useful idea for comparing functions, "Big-O notation".
"Ob"
Big-O notation
"onthe ostler of"
We write $f(t)=O\left(e^{a t}\right)$ as $t \rightarrow \infty$ and say f is of exponential order $a($ as $t \rightarrow \infty)$ if there exists a positive real number M and a real number t_{0} such that $|f(t)| \leq M e^{a t}$ for all $t>t_{0}$.

Lemma. Assume $\lim _{t \rightarrow \infty} \frac{|f(t)|}{e^{a t}}$ exists. Then

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \frac{|f(t)|}{e^{a t}}<\infty \quad \text { finite } \\
\text { if and only if } f(t)=O\left(e^{a t}\right) \text { as } t \rightarrow \infty .
\end{gathered}
$$

Problem. Show that bounded functions and polynomials are of exponential order a for all $a>0$.
bounded $f: f \leq L$ for all t

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{|f(t)|}{e^{a t}} \leq \lim _{t \rightarrow \infty} \frac{L \text { finite }}{e^{a t} \rightarrow \infty}=0 \\
\text { poly's: } & \lim _{t \rightarrow \infty} \frac{\text { poly'l }}{e^{a t}}=0 \\
& =0
\end{aligned}
$$

both bounded and palyle f 's ane of exple order.

Problem. Show that $e^{\left(t^{2}\right)}$ does not have exponential order.

Problem. Are all the functions we have seen so far in our DE solutons of exponential order? Yes!

$$
\begin{aligned}
& \text { Sin, cos: bounded T } e^{\text {at }} \\
& \text { poly's }
\end{aligned}
$$

The final reveal: what kinds of functions have Laplace transforms?
Proposition. If f is

- piecewise continuous on $[0, \infty)$ and

- of exponential order a,
then the Laplace transform $\mathcal{L}\{f(t)\}(s)$ exists for $\underline{\underline{s}}>a$.

The proof is based the comparison test for improper integrals.

Laplace Transform of Piecewise Functions
In our earlier DE solution techniques, we could not directly solve non-homogeneous BEs that involved piecewise functions. Laplace transforms will give us a method for handling piecewise functions.

$$
\begin{aligned}
y^{\prime \prime}+a y^{\prime}+b y & =\begin{array}{cc}
\begin{array}{c}
\sin (a t) \\
e^{b t} \\
\cos (a t)
\end{array} \\
& =\left\{\begin{array}{cc}
\sin (t) & 0<t<1 \\
\vdots
\end{array}\right.
\end{array}
\end{aligned}
$$

Problem. Use the definition to determine the Laplace transform of

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{ll}
2 & 0<t \leq 5, \\
0 & 5<t \leq 10, \\
e^{4 t} & 10<t .
\end{array} \rightarrow f_{1}=0 \text { for } t \geqslant 5\right. \\
& J(f(t))=\int_{0}^{\infty} e^{-s t} \cdot f(t) d t \\
& =\int_{0}^{\infty} e^{-s t} f_{1} d t+\int_{0}^{\infty} e^{-s t} \cdot f_{2} d t \\
& =\int_{0}^{5} e^{-s t} \cdot 2 d t \quad l_{t=2}=t_{t=0 . .5}+\int_{0}^{\infty} e^{-s t} \cdot e^{u t} d t \\
& =\left.2 \cdot \frac{e^{-s t}}{-s}\right|_{0} ^{5}+\left.\frac{e^{-s t+4 t}}{(-s+4)}\right|_{10} ^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{2}{-s}\left(e^{-s t}\right)\right|_{0} ^{5}+\left.\frac{1}{-s+4} e^{-s t+4 t}\right|_{t=10} ^{t=} f(t)= \begin{cases}2 & 0<t \leq 5, \\
0 & 5<t \leq 10, \\
e^{4 t} & 10<t .\end{cases} \\
& =\frac{2}{-s}\left(e^{-5 s}-1\right)+\frac{1}{-s+4}\left(0-e^{-s \cdot 10+4 \cdot 10}\right) \\
& =\frac{2}{s}-\frac{2 e^{-s s}}{s}+\frac{1}{s-4} e^{-10 s} \cdot e^{40} \leftarrow e^{n s} \text { ane imdicators } \\
& \uparrow
\end{aligned} \quad \begin{aligned}
& \text { of f(t) bei } \\
& \text { piccewise. }
\end{aligned}
$$

similar to pruvious

We would like avoid having to use the Laplace definition integral if there is an easier alternative. A new notation tool will help to simplify the transform process.
The Heaviside step function or unit step function is defined
by $u(t):=\left\{\begin{array}{ll}0 & \text { for } t<0, \\ 1 & \text { for } t \geq 0 .\end{array} \quad\right.$ off
Problem. Sketch the graph of $u(t)$.

$u(t):= \begin{cases}0 & \text { for } t<0, \\ 1 & \text { for } t \geq 0 .\end{cases}$
Problem. Sketch the graph of $u(t=5)$.

$$
\text { shift graph right by } 5
$$

Laplace Transform Using Step Functions
Problem. For $a>0$, compute the Laplace transform of

$$
\begin{aligned}
& u(t-a)= \begin{cases}0 & \text { for } t<a, \\
1 & \text { for } t \geq a .\end{cases} \\
& \mathcal{L}(u(t-a))=\underbrace{\infty}_{d y^{\prime} \sim} e^{-s t} u(t-a) d t \\
& =\underbrace{\int_{a}^{\infty} e^{-s t} \cdot 1 d t}_{t \geqslant a} \\
& =\left.\frac{e^{-s t}}{-s}\right|_{a=t} ^{\infty=t} \quad \mathcal{J}\{1\} \\
& =\left(0-\frac{e^{-s \cdot a}}{-s}\right)=\frac{1}{s} e^{-a s}
\end{aligned}
$$

Laplace Transform of Step Functions

$$
\mathcal{L}\left(u_{a}(t) f(t-a)\right)=e^{-a s} F(s)
$$

An alternate (and more directly useful form) is

$$
\mathcal{L}\left(u_{a}(t) f(t)\right)=e^{-a s} \mathcal{L}(f(t+a))
$$

Notation: $u(t-a)$

$$
=u_{a}(t)
$$

$$
\mathcal{L}\left(u_{a}(t) f(t)\right)=e^{-a s} \mathcal{L}(f(t+a))
$$

t's uplaved by $t+a$
Problem. Find $\mathcal{L}\left(u_{2}\right)$. not's to replace

$$
\begin{aligned}
\mathcal{I}\left\{u_{2} \cdot 1\right\} & =e^{-2 s} \mathcal{I}\{1\} \\
& =e^{-2 s} \cdot \frac{1}{s}
\end{aligned}
$$

Problem. Find $\mathcal{L}\left(u_{\pi}\right)$.

$$
\begin{aligned}
J\left\{u_{\pi}\right\}= & e^{-\pi s} \cdot J\{1\} \\
= & e^{-\pi s} \cdot \frac{1}{s}
\end{aligned}
$$

$$
\mathcal{L}\left(u_{a}(t) f(t)\right)=e^{-a s} \mathcal{L}(f(t+a))
$$

Problem. Find $\mathcal{L}\left(t u_{3}\right)$.

$$
\begin{gathered}
\mathcal{L}\left(u_{3}-t\right)=e^{-3 s} \mathcal{L}\{t+3\} \quad J\left(t^{\prime}\right)=\frac{1!}{s^{\prime+1}} \\
=e^{-3 s}\left(\frac{1}{s^{2}}+\frac{3}{s}\right)
\end{gathered}
$$

Problem. Here is a more complicated function made up of $f=t$ and $f=t^{2}$.

Write the function in piecewise form, and ${ }_{n}$ again using step functions.

$$
f(t)=\left\{\begin{array}{cc}
t & 0 \leq t \leq 1 \\
t^{2} & 1<t
\end{array} \quad \begin{array}{c}
t\left(u_{0}-u_{1}\right)+t^{2} \cdot u_{1} \\
t>1, t \cdot(1-1)
\end{array}\right.
$$

Problem. Find $\mathcal{L}\left(t\left(u_{0}-u_{1}\right)+t^{2} u_{1}\right)$.

$$
\begin{aligned}
& =e^{-\phi s} \cdot J(t+0)-e^{-1 s} \mathcal{L}(t+1) \\
& +e^{-1 s} J\left(\begin{array}{c}
(t+1)^{2} \\
\downarrow \text { expand }
\end{array}\right. \\
& =\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)+e^{-s} J\left(t^{2}+2 t+1\right) \\
& =\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right)+e^{-s}\left(\frac{2}{s^{3}}+2 \frac{1}{s^{2}}+\frac{y}{s}\right) \\
& =\frac{1}{s}+e^{-s}\left(\frac{2}{s^{3}}+\frac{1}{s^{2}}\right)
\end{aligned}
$$

Inverse Laplace Transform of Step Functions

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u_{a}
$$

Problem. Find $\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}}\right\}$

$$
\begin{aligned}
&=I^{-1}\left\{e^{-2 s}\right.\left.=\frac{1}{s^{2}}\right\} \\
& \uparrow \\
& \uparrow(t)=\frac{1}{s^{2}}
\end{aligned}
$$

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u_{a}
$$

Problem. Find $\mathcal{L}^{-1}\left\{\frac{e^{-3 s}}{s-4}\right\}$

$$
\begin{aligned}
& =J^{4}\left\{e^{-3 s} \frac{1}{s-4}\right\} \\
& J\left(e^{4 t}\right) \\
& =u_{3}(t) \cdot e^{4(t-3)} 3
\end{aligned}
$$

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u_{a}
$$

Problem. Which of the following equals $f(t)=\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+4}\right\}$?

1. $\frac{1}{s} \cos (\pi t) u_{\pi}$

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{e^{-\pi s} \cdot \frac{1}{2} \frac{x^{2}}{s^{2}+4}\right\} \\
= & \frac{1}{2} u_{\pi}(t) \sin (2(t-\pi))
\end{aligned}
$$

2. $\frac{1}{\pi s} \cos (\pi(t-\pi)) u_{\pi}$
3. $\frac{1}{2} \sin (2(t-\pi)) u_{\pi}$
4. $\frac{1}{\pi} \sin (2(t-\pi)) u_{\pi}$

$$
y^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin (k t)
$$

Problem. Sketch the graph of freq $\rightarrow p \min d=\frac{2 \pi}{2}=\pi$

$$
f(t)=\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+4}\right\}=\frac{1}{2} \sin (2(t-\pi)) u_{\pi}
$$

$$
\begin{aligned}
& \text { Problem. Find } \mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{(s-1)(s-2)}\right\} \quad \begin{array}{l}
\mathcal{J}^{-1}\left\{e^{-a s} \cdot F(s)\right\} \\
=u_{a} \cdot f(t-a)
\end{array} \\
& r=J^{-1}\left[e^{-2 s} \cdot\left[\frac{1}{(s-1)(s-2)}\right)\right] \\
& 1 \text { ned part fran } \\
& \frac{1}{(s-1)(s-2)}=\frac{A}{s-1}+\frac{B}{s-2} \\
& 1=A(s-2)+B(s-1) \\
& s=2 \\
& 1=B(2-1) \\
& B=1 \\
& A=-1 \\
& s=1 \\
& 1=A(1-2) \\
& =-y^{-1}\left\{e^{-2 s} \frac{1}{s-1}\right\}+y^{-1}\left\{e^{-2 s} \frac{1}{s-2}\right\}=-u_{2} e^{1(t-2)}+u_{2} e^{2(t-2)}
\end{aligned}
$$

Tips for Inverse Laplace With Step/Piecewise Functions

- Separate/group all terms by their $\underbrace{e^{-a s}}$ factor.
- Complete any partial fractions leaving the $e^{-a s}$ out front of the term.
- The $e^{-a s}$ only affects final inverse step.
- Partial fraction decomposition only works for polynomial numerators.

$$
\begin{aligned}
\frac{10\left(e^{-10 s}\right)}{(s-1)(s-2)} & =\frac{A}{s-1}+\frac{B}{s-2} \\
M & =\left(\frac{A}{s-1}+\frac{B}{s-2}\right) \cdot e^{-10 s}
\end{aligned}
$$

The reason Laplace transforms can be helpful in solving differential equations is because there is a (relatively simple) transform rule for derivatives of functions.

Proposition (Differentiation). If f is continuous on $[0, \infty), f^{\prime}(t)$ is piecewise continuous on $[0, \infty)$, and both functions are of exponential order a, then for $s>a$, we have « initial addition

$$
\mathcal{L}\{f^{\prime}(t \underbrace{=s \mathcal{L}\{f}_{\text {smuttiptior } z \text { of } \text { orig'l } l}\}(s)-f(0)
$$

Problem. Confirm the transform table entry for $\mathcal{L}\{\cos (k t)\}$ with the help of the transform derivative rule and the transform of $\sin (k t)$.

$$
\begin{aligned}
& \mathcal{Z}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \\
& \mathcal{I}\{\cos (k t)\}=J\left\{\frac{d}{d t} \frac{1}{k} \sin (k t)\right\} \\
& =J\left\{\frac{1}{k}(\sin (k t))^{\prime}\right\}=\frac{1}{k}[S J\{\sin (k t)\}-\sin (0)] \\
& y \text { for diu } \\
& =\frac{1}{k} s\left[\frac{k}{s^{2}+k^{2}}-0\right] \\
& =\frac{s}{s^{2}+k^{2}}
\end{aligned}
$$

We can generalize this rule to the transform of higher derivatives of a function.

Theorem (General Differentiation). If $f(t), f^{\prime}(t), \ldots, f^{(n-1)}(t)$ are continuous on $[0, \infty), f^{(n)}(t)$ is piecewise continuous on $[0, \infty)$, and all of these functions are of exponential order a, then for $s>a$, we have spocien dear $\longrightarrow f$ deriv incs $\mathcal{L}\left\{f^{(n)}(t)\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)$.
Can be proven using integration by parts n times.

$$
s^{n} \text {. Transform of orig'l }
$$

f

Most commonly in this course, we will need specifically the transform of the second derivative of a function.

Corollary (Second Differentiation). If $f(t)$ and $f^{\prime}(t)$ are continuous on $[0, \infty), f^{\prime \prime}(t)$ is piecewise continuous on $[0, \infty)$, and all of these functions are of exponential order a, then for $s>a$, we have

$$
\left.\mathcal{L}\left\{f^{\prime 11}(t)\right\}(s)=s^{2}\right) \mathcal{L}\{f\}(s)-\underset{f \text { deris incs }}{s f(0)-f^{\prime}(0)}
$$

Solving Initial Value Problems with Laplace Transforms Problem. Sketch the general method.

$$
D E \quad y^{\prime \prime}+a y^{\prime}+b y=f(t) \xrightarrow{\mathcal{L}} s^{2} Y(s)+\ldots \quad \begin{aligned}
& \text { (s) } \\
& \text { no durius }
\end{aligned}
$$

no dins

$$
\downarrow_{y_{c}, y_{N *}}
$$

solution $y=\ldots$.

Problem. Find the Laplace transform of the entire DE

$$
\begin{gathered}
\mathcal{I}\left(x^{\prime}+x\right) \fallingdotseq(\cos (2 t)), x(0)=0 \quad J(x(t))=X(s) \\
{[\underbrace{s X(s)-x(s)}_{I\left(x^{\prime}\right)}]+X(s)=\frac{s}{s^{2}+z^{2}}} \\
s X(s)+X(s)=\frac{s}{s^{2}+4}
\end{gathered}
$$

Problem. Note the form of the equation now: are there any derivatives left?

$$
N_{0}!
$$

Problem. Solve for $X(s)$.

$$
\begin{aligned}
& s x(s)+X(s)=\frac{s}{s^{2}+4} \\
& (s+1) x(s)=\frac{s}{s^{2}+4} \\
& x(s)=\frac{s}{\left(s^{2}+4\right)(s+1)}
\end{aligned}
$$

Solving IVPs with Laplace Transforms - 4

$$
X(s)=\frac{s}{\left(s^{2}+4\right)(s+1)}
$$

Problem. Put $X(s)$ in a form so that you can find its inverse transform. \rightarrow partial fractions

$$
\begin{aligned}
\frac{s}{\left(s^{2}+4\right)(s+1)} & =\frac{A s+B}{s^{2}+4}+\frac{C}{s+1} \\
s & =(A s+B)(s+1)+C\left(s^{2}+4\right) \\
s=-1 \quad-1 & =C(1+4) \quad C=-1 / 5 \\
\text { equate } s^{2} \quad O & =A+C \quad A=-C \quad A=1 / 5 \\
\text { canst coff's } \quad O & =B+4 C \quad B=-4 C \quad B=4 / 5 \\
X(s) & =\frac{1}{5} \frac{s}{s^{2}+4}+\frac{4}{5} \frac{1}{s^{2}+4}+\frac{-1}{5} \frac{1}{s+1}
\end{aligned}
$$

Problem. Find $x(t)$ by taking the inverse transform.

$$
\begin{aligned}
& X(s)=\frac{1}{5} \frac{s}{s^{2}+4}+\frac{4}{5} \frac{1}{2} \frac{1 \times 2}{s^{2}+4}-\frac{1}{5} \frac{1}{s+1} \\
& y_{1}^{-1} \\
& x(t)=\frac{1}{5} \cos (2 t)+\frac{2}{5} \sin (2 t)-\frac{1}{5} e^{-t}
\end{aligned}
$$ b / c we used initial condition $x(0)=0$

Problem. Confirm that the function you found is a solution to the differential equation $x^{\prime}+x=\cos (2 t)$.
proposed sol'n

$$
x(t)=\frac{1}{5} \cos (2 t)+\frac{2}{5} \sin (2 t)-\frac{1}{5} e^{-t}
$$

\downarrow need x^{\prime}

$$
x^{\prime}=\frac{-2}{5} \sin (2 t)+\frac{4}{5} \cos (2 t)+\frac{1}{5} e^{-t}
$$

Sub into LHS of eq u :

$$
\begin{aligned}
& (\underbrace{\left(\frac{-2}{5} \sin (2 t)+\frac{4}{5} \cos (2 t)+\frac{1}{5}\right.}_{x^{\prime}} \underbrace{-t})+\left(\frac{1}{5} \cos (2 t)+\frac{2}{5} \sin (2 t)-\frac{1}{5} e^{t}\right) \\
& =\cos (2 t)=\text { RHS of DE }
\end{aligned}
$$

Problem. Solve $y^{\prime \prime}+y=\sin (2 t), y(0)=2$, and $y^{\prime}(0)=1$. I of whole DE:

$$
I(y(t))=Y(s)
$$

$$
\begin{aligned}
& {\left[s^{2} Y(s)-s(2)-1\right]+Y(s)=\frac{2}{s^{2}+4}} \\
& s^{2} y(y)-s y(0)-y^{\prime}(0)
\end{aligned}
$$

Solve for $\varphi(s)$

$$
\begin{aligned}
& \left(s^{2}+1\right) Y(s)-2 s-1=\frac{2}{s^{2}+4} \\
& \left(s^{2}+1\right) Y(s)=\frac{2}{s^{2}+4}+2 s+1 \\
& Y(s)=\frac{2}{\left(s^{2}+1\right)\left(s^{2}+1\right)}+\frac{2 s+1}{s^{2}+1}
\end{aligned}
$$

$$
y^{\prime \prime}+y=\sin (2 t), y(0)=2, \text { and } y^{\prime}(0)=1 .
$$

$$
\begin{gathered}
Y_{1}(s)=\frac{2}{\left(s^{2}+4\right)\left(s^{2}+1\right)}+\frac{2 s+1}{\left(s^{2}+1\right)} \\
\downarrow \text { part frac }
\end{gathered}
$$

$$
\begin{aligned}
\frac{2}{\left(s^{2}+4\right)\left(s^{2}+1\right)} & =\frac{A s+B}{s^{2}+4}+\frac{C s+B}{s^{2}+1} \\
2 & =(A s+B)\left(s^{2}+1\right)+(C s+B)\left(s^{2}+4\right)
\end{aligned}
$$

$S=0 \quad 2=B+4 D D \quad G-2=3 D \quad D=\frac{2}{3}$

$$
s^{3}: \quad 0=4+c
$$

(3) $\rightarrow B=B-D$

$$
s^{2}: \quad 0=B+D B
$$

$$
s: \quad 0=A+4 C(4)
$$

(2) (4) $0=-3 C \quad c=0$
(4) $A=0$

$$
\begin{aligned}
& Y(s)=-\frac{B}{3} \frac{1}{2} \frac{x^{2}}{s^{2}+4}+\frac{D^{2}}{3} \frac{1}{s^{2}+1}+\frac{2 s)+1}{s^{2}+1} \\
&=-\frac{1}{3} \frac{2}{s^{2}+4}+2 \frac{s}{s^{2}+1}+\frac{5}{3} \frac{1}{s^{2}+1} \\
& y^{-1} \downarrow \\
& y(t)=-\frac{1}{3} \sin (2 t)+2 \cos (t)+\frac{5}{3} \sin (t)
\end{aligned}
$$

panticuler solution.

Problem. Confirm your solution is correct.

$$
y=-1 / 3 \sin (2 t)+2 \cos (t)+\frac{5}{3} \sin (t)
$$

Need $y^{\prime}, y^{\prime \prime}$

$$
\begin{aligned}
y^{\prime} & =-\frac{2}{3} \cos (2 t)-2 \sin (t)+\frac{5}{3} \cos (t) \\
y^{\prime \prime} & =+\frac{4}{3} \sin (2 t)-2 \cos (t)-\frac{5}{3} \sin (t)
\end{aligned} \int_{y^{\prime \prime}}^{d / 2 t}+\underbrace{\left.\frac{4}{3} \sin (2 t)-2 \cos (t)-\frac{5}{3} \sin (t)\right]}+\left[\begin{array}{l}
-1 / 3 \sin (2 t)+2 \cos (t)+\frac{5}{3} \sin t \\
\end{array}\right.
$$

Problem. Solve $\underbrace{y^{\prime \prime}-2 y^{\prime}+5 y}_{2^{\omega}}=-8 e^{-t}, y(0)=2$, and $y^{\prime}(0)=12$.
[could use $\left.y_{\text {NH }} y^{\prime}\right\rfloor$
oof DE

$$
[\underbrace{s^{2} Y(s)-s y(0)-y^{\prime}(0)}_{\mathcal{L}\left(y^{\prime \prime}\right)}]-2[\underbrace{\delta Y(s)-y(0)}_{y\left(y^{\prime}\right)}]+5 Y(s)=-8 \frac{1}{s+1}
$$

Gather is) terms

$$
\begin{gathered}
Y(s)\left[s^{2}-2 s+5\right]-s-2-12-2(-2)=-8 \frac{1}{s+1} \\
Y(s)\left[s^{2}-2 s+5\right]=\frac{-8}{s+1}+2 s+8 \\
Y(s)=\frac{-8}{(s+1)\left(s^{2}-2 s+5\right)}+\frac{2 s+8}{\left(s^{2}-2 s+5\right)}
\end{gathered}
$$

IVP Using Laplace - Example 2-2

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+5 y=-8 e^{-t}, y(0)=2 \text {, and } y^{\prime}(0)=12 . \\
& Y(s)=\frac{-8}{(s+1)\left(s^{2}-2 s+5\right)}+\frac{2 s+8}{\left(s^{2}-2 s+5\right)} \\
& \frac{-8}{(s+1)\left(s^{2}-2 s+5\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}-2 s+5} \\
& -8=A\left(s^{2}-2 s+5\right)+(B s+C)(s+1) \\
& s=-1 \quad-8=A(1+2+5) \quad A=-1 \\
& s^{2} \text { col } O=A+B \quad B=1 \\
& -8=5 A+C \quad C=-8-5 A=-3 \\
& i(s)=\frac{-1}{s+1}+\frac{s}{s^{2}-2 s+5}-3 \frac{1}{s^{2}-2 s+5}+\frac{2 s+8}{s^{2}-2 s+5} \\
& =\frac{-1}{s+1}+3 \frac{s}{s^{2}-2 s+5}+5 \frac{1}{s^{2}-2 s+5}
\end{aligned}
$$

$$
\begin{aligned}
& Y(s)=\frac{-1}{s+1}+3 \frac{s}{s^{2}-2 s+5}+5 \frac{1}{s^{2}-2 s+5} \\
& \text { Good find } J^{-1}(Y(s)) \\
& Y_{1}(s)=\frac{-1}{s+1}+3 \frac{s}{(\underbrace{\left.s^{2}-2 s+1\right)}_{(s-1)^{2}}-(1)+5}+5 \frac{1}{\left(s^{2}-2 s+1\right)-1+5} \\
& Y(s)=\frac{-1}{s+1}+3 \frac{(s-1)+1}{(s-1)^{2}+4}+5 \frac{1}{(s-1)^{2}+4} \\
& \text { (2) } y^{-1}\left(\frac{s}{s^{2}+z^{2}}\right) \\
& =\cos (2 t) \\
& Y(s)=\frac{-1}{s+1}+3 \frac{(s-1)}{(s-1)^{2}+2^{2}}+8 \frac{1}{2} \frac{x^{2}}{(s-1)^{2}+2^{2}} \\
& y^{-1}(F(s-a)) \\
& =e^{a t} y^{-1}(F(s)) \\
& y(t)=-e^{-t}+3 e^{t} \cos (2 t)+4 e^{t} \sin (2 t)
\end{aligned}
$$

$$
y^{\prime \prime}-2 y^{\prime}+5 y=-8 e^{-t}, y(0)=2, \text { and } y^{\prime}(0)=12
$$

Problem. Confirm your solution is correct.

$$
y(t)=-e^{-t}+3 e^{t} \cos (2 t)+4 e^{t} \sin (2 t) d d / d t
$$

Nad $y^{\prime}, y^{\prime \prime}$ for LHS:

$$
\begin{aligned}
y^{\prime} & =e^{-t}+3 e^{t} \cos (2 t)-6 e^{t} \sin (2 t)+4 e^{t} \sin (2 t)+8 e^{t} \cos (2 t) \\
& =e^{-t}+11 e^{t} \cos (2 t)-2 e^{t} \sin (2 t) 2 d / d t \\
y^{\prime \prime} & =-e^{-t}+11 e^{t} \cos (2 t)-22 e^{t} \sin (2 t)-2 e^{t} \sin (2 t)-4 e^{t} \cos (2 t)
\end{aligned}
$$

CHS: $\left(-e^{-t}+7 e^{t} \cos (2 t)-24 e^{t} \sin (2 t)\right)$

$$
\begin{aligned}
& -2\left(e^{-t}+11 e^{t} \cos (2 t)-2 e^{t} \sin (2 t)\right) \\
& +5\left(-e^{-t}+3 e^{t} \cos (2 t)+4 e^{t} \sin (2 t)\right) \\
& =-8 e^{-t}=e 45
\end{aligned}
$$

$$
\begin{array}{r}
e^{t} \cos (2 t): 7-22+15=0 \\
?
\end{array}
$$

$$
e^{t} \sin (2 t):-24+4+20=0
$$

