
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

J. ALGEBRAIC GEOMETRY
31 (2022) 345–386
https://doi.org/10.1090/jag/782

Article electronically published on December 20, 2021

CODIMENSION TWO INTEGRAL POINTS ON
SOME RATIONALLY CONNECTED THREEFOLDS

ARE POTENTIALLY DENSE

DAVID MCKINNON AND MIKE ROTH

Abstract

Let X be a smooth, projective, rationally connected variety, defined over
a number field k, and let Z ⊂ X be a closed subset of codimension at
least two. In this paper, for certain choices of X, we prove that the set
of Z-integral points is potentially Zariski dense, in the sense that there
is a finite extension K of k such that the set of points P ∈ X(K) that
are Z-integral is Zariski dense in X. This gives a positive answer to a
question of Hassett and Tschinkel from 2001.

1. Introduction

In [HT], as Problem 2.13 (“The Arithmetic Puncturing Problem”), Hassett

and Tschinkel ask the following question:

Question 1.1. Let X be a projective variety with canonical singularities

and Z a Zariski closed subset of codimension at least two,1 all defined over a

number field k. Assume that rational points on X are potentially dense. Are

integral points on (X,Z) potentially dense?

Of course, the hypothesis that Z has codimension at least two cannot be

removed, as there are countless well known examples of varieties with a dense

set of rational points but a degenerate set of integral points if Z is a divisor.

In [HT] Hassett and Tschinkel provide positive answers to Question 1.1

in various cases, including toric varieties and products of elliptic curves. In

contrast, a recent preprint of Levin [L] gives an example of a singular fourfold

X for which the answer to Question 1.1 is negative. The purpose of this paper
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is to give a positive answer to Question 1.1 for a large number of examples in

dimension up to three.

The case for curves seems vacuous, but if one views a curve defined over

a number field as an arithmetic surface, then one can choose Z to be an

arithmetic zero-cycle, in which case there is something to prove. This is

Lemma 2.3, and is a crucial technical tool for the paper.

For surfaces, the situation is more complicated, as it is unknown which sur-

faces have a potentially dense set of rational points. If the Kodaira dimension

is negative, however – which is believed to be the case in which rational points

are most plentiful – we give a positive answer to Question 1.1 in Theorem 3.1.

In the central part of the paper, X will be a smooth, projective, rationally

connected threefold. It is a well known result (see Theorem 1.4.1 of [IP])

that there is a birational map f : X ��� V , where V is a normal projective

threefold with only Q-factorial and terminal singularities with a morphism

π : V → Y of one of the following three types:

(a) The variety Y is a normal projective surface with at most rational

singularities, and π makes V a conic bundle over Y .

(b) The variety Y is isomorphic to P1, and a generic fibre of the morphism

Y is a smooth del Pezzo surface.

(c) The variety Y is a point, and Pic(V ) ∼= Z.

This list provides a natural set of examples on which to test Question 1.1.

Indeed, in light of Lemma 2.2, a positive answer to Question 1.1 for the

varieties listed above will provide a positive answer for any blowup of such

varieties, which constitutes a huge proportion of all smooth, rationally con-

nected threefolds. In this paper, we will deal with examples from cases (b)

and (c). Specifically, we prove the following results:

Theorem 4.1. Let X be a complex Fano threefold of Picard rank one and

index at least two. Assume that X is defined over a number field k, and let

Z be a Zariski closed subset of X of codimension at least two. If X is a

hypersurface of degree 6 in the weighted projective space P(1, 1, 1, 2, 3), then

we make the further assumption that Z does not contain the unique basepoint

of the square root of the anticanonical linear system. Then the Z-integral

points of X are potentially Zariski dense.

Theorem 6.1. Let k be a number field. Let X be a smooth threefold with

a map π : X → P1 whose generic fibre is a del Pezzo surface of degree at least

three, all defined over k. Let Z ⊂ X be a Zariski closed subset of codimension

at least two. Then the Z-integral points of X are potentially Zariski dense.

The rest of the paper is structured as follows. In section 2, we make some

preliminary definitions, and prove two useful results, including Lemma 2.3.
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Section 3 gives a positive answer to Question 1.1 for rational and ruled sur-

faces. Sections 4 and 6 are the heart of the paper, giving a positive answer

to Question 1.1 for a wide range of rationally connected threefolds: section 4

deals with Fano threefolds with Picard rank one, and section 6 with del Pezzo

fibrations. In section 5, given a fibration π : X → P1, we prove the existence

of sections avoiding a subset of codimension at least two, which may be of

independent interest. Section 7 gives some applications of these results to in-

tegral points on families of curves and surfaces, including some classical cases

of points integral with respect to a divisor. Finally, section 8 proves that the

indeterminacy locus of a birational map to P2 may be chosen to avoid any

fixed proper Zariski closed subset, a result needed in the proof of Theorem 3.3.

2. Preliminaries

We first fix some notation and definitions. Let X be a projective algebraic

variety, Z ⊂ X a Zariski closed subset, both defined over a number field k.

By “defined over k”, we mean that X is a variety over Spec(k), and that there

is a variety X0 over Spec(k) along with an isomorphism X ∼= X0 ×k k. For

varieties X and Y defined over k, a morphism f : X → Y is defined over k if

there is a morphism f0 : X0 → Y0 such that the diagram

X ��

f

��

�

X0

f0

��

Y �� Y0

is cartesian. I.e., f is defined over k if it is the base change to Spec(k) of a

morphism f0 : X0 → Y0 over Spec(k).

Let Mk be the set of places of k. Definition 2.1 is essentially Definition

1.4.3 in [Vo]:

Definition 2.1. Let S be a finite set of places of k containing all the

archimedean places. A subset R ⊂ X(k)−Z(k) is called (Z, S)-integralizable if

and only if there are global Weil functions λZ,v and non-negative real numbers

nv such that nv = 0 for all but finitely many places v, and such that

λZ,v(P ) ≤ nv

for all v ∈ Mk − S and P ∈ R.

If the λZ,v and nv are fixed, we will say that a k-rational point P is (Z, S)-

integral (or Z-integral, if S is understood) if and only if λZ,v(P ) ≤ nv for all

v ∈ Mk − S.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

348 DAVID MCKINNON AND MIKE ROTH

This definition is somewhat involved, and for the sake of brevity, we refer

the reader to section 1.4 of [Vo] for a more detailed discussion, including the

definition and elementary properties of Weil functions, and a discussion of

integralizable sets of points.

We begin with a lemma.

Lemma 2.2. Let f : X → Y be a birational morphism between irreducible

varieties. Assume that f , X, and Y are all defined over the same number

field k. If Question 1.1 has a positive answer for every Zariski closed subset

Z ⊂ Y of codimension at least two, then it has a positive answer for every

Zariski closed subset Z ⊂ X of codimension at least two.

Proof. Let Z ⊂ X be a Zariski closed subset of codimension at least two.

Then the closure W of f(Z) is a Zariski closed subset of Y of codimension at

least two, so by hypothesis the W -integral points of Y are potentially Zariski

dense. But then the f−1(W )-integral points of X are potentially Zariski dense

as well, so a fortiori the Z-integral points of X are also potentially Zariski

dense. �
Lemma 2.3 is a generalization of Theorems 1 and 2 of [Sh], and also appears

as Theorem 3.1 in [MZ], but the proof given in the latter is slightly different.

The idea behind this lemma is to show that if a curve has infinitely many

integral points on it, then deleting an arithmetic zero-cycle from it will either

delete all the integral points or else leave an infinite set of integral points. (If

the curve C is projective, then “integral points” refers to rational points.)

In the statement of the lemma, C is the curve we’re considering, and Z is

the “locus at infinity” – that is, we assume that C has an infinite set of Z-

integral points. We then delete a further set N which is assumed to intersect

C in an arithmetic zero-cycle, and the assumption is that C contains at least

one (Z ∪ N)-integral point. Lemma 2.3 then says that C must still contain

an infinite set of (Z ∪N)-integral points. In other words, Question 1.1 has a

positive answer for curves, considered as arithmetic surfaces.

Lemma 2.3. Let V be an algebraic variety defined over a number field k,

and let C be an irreducible curve on V . Let Z and N be Zariski closed subsets

of V . Let L = Z ∪ N , and let S be a set of places of k that contains all the

archimedean places of k.

For every place v of k, let nv be a non-negative real number such that

nv = 0 for all but finitely many places v. Choose Weil functions λL,v for each

place v. Assume that there is a point P ∈ C(k) satisfying

λL,v(P ) ≤ nv

for every place v �∈ S.
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If N ∩ C = ∅ and C contains an infinite set of (Z, S)-integral points, then

there are infinitely many points Q ∈ C(k) satisfying

λL,v(Q) ≤ nv

for every place v �∈ S.

Proof. Since C(k) is infinite, it follows by a theorem of Faltings (Satz 7 of

[Fa]) that C must have geometric genus zero or one. The condition that C

contain a dense set of Z-integral points implies that C must intersect Z in at

most two places of C (places in the sense of points of the normalization of C),

and that C ∩ Z = ∅ if C has genus one.

We first assume that C ∩ Z = ∅. Note that without loss of generality,

we may assume that S is precisely the set of archimedean places of k, as

increasing S only makes the lemma easier to prove.

Let S′ be the set of places v of k such that either v is archimedean or

λN,v(Q) �= 0 for some Q ∈ C(kv), where kv is the completion of k at v. Note

that S′ is finite because N ∩ C = ∅.
For each v �∈ S′, λN,v(Q) = 0 for all Q ∈ C, so we may restrict our attention

to v ∈ S′.

If v is finite with corresponding prime π ofOk, then the condition λN,v(P ) <

nv depends only on the residue class of P modulo a suitable power of π. (See

for example subsection 2.2.2 of [BG].) Thus, the collection of all Q ∈ C(k)

satisfying λN,v(Q) ≤ nv for all finite v contains the set of points Q such that

Q ≡ P (mod M) for some suitable nonzero M ∈ Ok.

There are now two cases: either the geometric genus of C is zero or one.

If the geometric genus of C is zero, then Lemma 2.3 follows immediately

from the Weak Approximation Theorem for P1.

Weak Approximation does not hold for curves of genus one, however, so we

must work a bit harder. The set B of points Q such that Q ≡ P (mod M)

for some nonzero M ∈ Ok contains the image on C of a coset of a finite index

subgroup A of the Mordell-Weil group of the normalization C̃ of C over k.

Since the set of rational points of C is infinite, the group A is infinite, and so

we are done with the case C ∩N = ∅.
The only cases that remain are when C is a genus zero curve with either

one or two places supported on Z. Let π : C̃ → C be the normalization map

over k. The set of (π∗Z, S)-integral points R of C̃ with π(R) �∈ Z are the

integral points of the principal homogeneous space C − Z for an arithmetic

group (Ga if there is one place of C on Z, and Gm if there are two places),

so by choosing a (π∗Z, S)-integral point R0 on C̃, we can give the (π∗Z, S)-

integral points of C̃ the structure of an arithmetic group G. The set B of

points Q of C such that Q ≡ P (mod N) for some nonzero N ∈ Ok – which,
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as before, is contained in the set of points Q satisfying λL,v(Q) ≤ nv for all v

not in S – contains the image on C of a coset of a finite index subgroup A of

G, and is therefore infinite, as desired. �
The statement of Lemma 2.3 is somewhat technical, so we include a weaker

version that is much simpler to state. It follows immediately from Lemma 2.3.

Lemma 2.4. Let k be a number field with ring of integers Ok, and let C
be a scheme over Spec(Ok) with generic fibre C = C × Spec k. Assume that

C is a geometrically integral curve.

Let N ⊂ C be a subscheme such that N × Spec(k) = ∅ – that is, N is

supported over a finite set of primes.

Assume that there is an infinite set of k-rational points on C. Assume

further that there is a single point P satisfying P ∩ N = ∅, where P denotes

the closure of P over Spec(Ok). Then there is an infinite set of points Q on

C satisfying Q ∩ N = ∅.

3. Surfaces

Lemma 2.3 gives a positive answer to Question 1.1 for curves, in an arith-

metic sense. The next natural question is to ask if it has a positive answer for

surfaces. This is as yet unknown in general, but there are nevertheless a great

many cases in which it is known. For example, Question 1.1 has a positive

answer for every toric variety, by Corollary 4.2 in [HT]. In fact, we can prove

much more.

Theorem 3.1. Let X be a complex surface with negative Kodaira dimen-

sion, defined over a number field k. Then Question 1.1 has a positive answer

for X.

Proof. Every surface of negative Kodaira dimension is, after possibly a fi-

nite extension of the field k, the blowup of a Hirzebruch surface, the projective

plane, or a ruled surface. By Lemma 2.2, then, it suffices to assume that X

is one of these three.

If X is a projective plane or Hirzebruch surface, then it is, in particular, a

toric variety, and therefore Question 1.1 has a positive answer.

If X is a ruled surface, then there is a fibration f : X → C for some smooth

curve C. If C has genus at least two, then Question 1.1 has a vacuously posi-

tive answer for X, because the rational points on X are not potentially dense.

If the genus of C is zero, then X is a Hirzebruch surface and Question 1.1 has

a non-vacuously positive answer for X, as just noted.

Thus, assume that C has genus 1, and let Z be a Zariski closed subset of

codimension at least two – that is, let Z be a finite set of points of X. By
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a finite extension of the field of definition k, we may assume that there is a

Z-integral point P on X defined over k, and that C has an infinite number

of k-rational points. By, for example, Theorem V.2.17.(c) of [Ha], there is

a very ample divisor class V on X whose elements are sections of f , and

therefore have infinitely many rational points. Let Y1 be a curve in the class

V that contains the point P , but does not intersect Z. By Lemma 2.3, Y1

has a Zariski dense set of Z-integral points, and in particular, there are an

infinite number of fibres F of f for which Y1 ∩ F is a Z-integral point, and

for which F ∩Z = ∅. By Lemma 2.3 again, this means that F has a dense set

of Z-integral points, implying that the set of Z-integral points is dense, and

that Question 1.1 has a positive answer for X. �
Lemma 3.2. Let X be a smooth projective surface defined over k, Z ⊂ X

a proper subvariety, and R ⊂ X(k) a finite set of points. Suppose that there is

a birational map X ��� P2 defined over k. Then there exists a birational map

f : X ��� P2, also defined over k, such that f is defined in a neighbourhood of

Z and R, and such that f is an isomorphism in a neighbourhood of R.

Proof. By Theorem 8.1(d) there is a birational map g : X ��� P2 defined

over k such that neither R nor Z are in the indeterminacy locus of g. Equiv-

alently, resolving g, there are a smooth projective surface Y1, and birational

morphisms π1 : Y1 −→ X, h1 : Y1 −→ P2, all defined over k, such that π1 is

an isomorphism in a neighbourhood of Z and R. Via π1, we may consider Z

and R to be subsets of Y1.

Applying Proposition 8.6 to Y1, we obtain a smooth projective surface Y2,

and birational morphisms π2 : Y2 −→ Y1, and h2 : Y2 −→ P2 all defined over k,

such that π2 is an isomorphism in a neighbourhood of Z and R, and such that

h−1
2 is defined at h2(π

−1
2 (Q)), for each Q ∈ R. The map f := h2 ◦ (π1 ◦ π2)

−1

then satisfies the conditions of the lemma. �
Remarks.

(1) The notation used in Lemma 3.2 and Proposition 8.6 do not quite

match up. In applying Proposition 8.6 in the proof above, for the W of the

proposition one uses the Z of this lemma, and for the Z of the proposition

one uses the R of this lemma.

(2) The proofs of Theorem 8.1 and Proposition 8.6 do not depend on any

other results in this paper.

The following analogue of Lemma 2.3 will be used in the next section.

Theorem 3.3. Let k be a number field and X → Spec(Ok) an arithmetic

threefold. Let X → Spec(k) be the generic fibre of X , and assume that X is

birational to P2
k over k. Fix an effective arithmetic 1-cycle Z on X , with Z

defined over Ok. (Note that Z is not assumed to be flat over Spec(OK).) Let
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S be a finite set of places of k including all the archimedean places. If there

is a Z-integral point on X, then the set of Z-integral points is Zariski dense.

Proof. Let Z = Z × Spec(k) be the generic part of Z, and let QX ∈ X

be the given Z-integral point. By hypothesis X is birational to P2 over k,

and hence by Lemma 3.2 there is a birational map f : X ��� P2 also defined

over k, which is defined in a neighbourhood of Z, and an isomorphism in a

neighbourhood of QX .

The map f can be extended to a rational map F : X ��� P2
Ok

. Let Y ⊂
X×Ok

P2
Ok

be the closure of the graph of F , and π1 : Y → X and π2 : Y → P2
Ok

the two projections. (We will use πi to refer also to the restriction to the

generic fibre of Y .)

Let QY = π−1
1 (QX); by the hypothesis on f , this is a single k-rational

point. Then QY is a Z ′-integral point on Y , where Z ′ = π−1
1 (Z).

Set Q = π2(QY ). Let L be a k-rational line in P2
k which contains Q and

which avoids both the finite set π2(π
−1
1 (Z)) and the finite set of points of

indeterminacy of f−1.

Let C be the closure of π−1
2 (L) in Y , with generic fibre C = C × Spec(k).

Then C is an irreducible curve with a dense set of k-rational points, and

at least one Z ′-integral point, namely QY . Since C ∩ Z ′ = ∅ (where Z ′ =

Z ′ × Spec(k)), Lemma 2.3 implies that C contains a dense set of Z ′-integral

points.

The set of such curves C is dense on Y , so we immediately deduce that

Y contains a dense set of Z ′-integral points, and therefore that X contains a

dense set of Z-integral points, as desired. �
For surfaces with non-negative Kodaira dimension, the situation is more

complex, and indeed it is still not known which of these surfaces have a Zariski

dense set of rational points, never mind integral ones. (Of course, there are

many particular examples in which the answer is known – abelian surfaces,

bielliptic surfaces, many K3 and Enriques surfaces, for example – but the gen-

eral classification is not yet complete.) We will therefore move on to threefolds.

4. Fano threefolds

For the purposes of this paper, a Fano threefold is a smooth, three-dimen-

sional, projective algebraic variety X whose anticanonical sheaf −KX is am-

ple. If X has Picard rank one – that is, if the Picard group of X is isomorphic

to Z – then there is a unique ample generator H of the Picard group. The

index of a Fano threefold is the unique integer r such that −KX = rH. The

main theorem of this section is the following:
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Theorem 4.1. Let X be a complex Fano threefold of Picard rank one and

index at least two, and let Z be a Zariski closed subset of X of codimension at

least two. Assume that both X and Z are defined over a number field k. If X

is a hypersurface of degree 6 in the weighted projective space P(1, 1, 2, 3), then

we make the further assumption that Z does not contain the unique basepoint

of the square root of the anticanonical linear system. Then the Z-integral

points of X are potentially Zariski dense.

Remark 4.2. Note that Theorem 4.1 includes – with its one caveat – all

del Pezzo threefolds.

Proof. The proof relies crucially on the classification of Fano threefolds of

Picard rank one, found (for example) in [IP]. Section 12.2 of [IP] gives the

following list of Fano threefolds of Picard rank one and index at least two:

(a) P3.

(b) A smooth quadric in P4.

(c) A smooth linear section of the Plücker-embedded Grassmannian

Gr(2, 5).

(d) A smooth intersection of two quadrics in P5.

(e) A smooth cubic hypersurface in P4.

(f) A double cover of P3, branched on a smooth quartic surface.

(g) A smooth hypersurface of degree 6 in the weighted projective space

P(1, 1, 1, 2, 3).

Note that our list is in the reverse order of that in [IP], and in particular,

item (g) is the same as the unnamed threefold in [IP] with −K3
X = 8 and

h1,2 = 21.

We now proceed by cases. Case (a) is the easiest, as the answer to Ques-

tion 1.1 is well known to be positive for P3 – see for example Corollary 5.2 of

[HT].

Case (b). X is a smooth quadric hypersurface in P4.

Let P be a k-rational point of X − Z, and let π : X → P3 be the linear

projection from P . Then π(Z) is a Zariski closed subset of P3 of codimension

at least two, and so the π(Z)-integral points are potentially Zariski dense. It

therefore follows immediately that the Z-integral points of X are also poten-

tially Zariski dense.

Case (c). X is a smooth linear section of the Plücker-embedded Grass-

mannian Gr(2, 5).

X can be obtained by blowing up a smooth quadric threefold V ⊂ P4

along a smooth rational curve of degree three, and then contracting the strict

transform of a smooth quadric surface S. If π : Y → V is the blowup, and

φ : Y → X is the contraction, then a Z-integral point on X corresponds to

a φ∗Z-integral point on Y . Any π(φ∗Z)-integral point of V pulls back to a
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φ∗Z-integral point of Y , so it suffices to show that the π(φ∗Z)-integral points

of V are potentially Zariski dense.

The scheme π(φ∗Z) is contained in the union of S and a subset of V of

codimension at least two. It therefore suffices to prove that the Z-integral

points of V are potentially Zariski dense, where Z is the union of S and a

subset W of codimension at least two.

After a finite extension of the base field k, we may assume that there is

a Z-integral point P on Q, and that Gm over k has infinitely many integral

points. Let T ⊂ P4 be a 2-plane containing P , but with T ∩ S finite, T ∩ V

irreducible and smooth at P , and T ∩W = ∅. Then (T ∩ V ) − (T ∩ S) is a

rational curve with at most two places deleted, and has a Z-integral point.

Therefore, Lemma 2.3 implies that T ∩ V contains infinitely many Z-integral

points.

For each such point P ′, we can find another 2-plane T ′ such that P ′ ∈ T ′,

T ′ ∩ S finite, T ′ ∩ V irreducible and smooth at P ′, T ′ ∩W = ∅, and T ′ �= T .

This, via Lemma 2.3, yields a set of Z-integral points whose Zariski closure Y

has dimension at least 2. If Y �= V , then for each Z-integral point P ′′
i on Y ,

we can find a 2-plane T ′′
i such that P ′′

i ∈ T ′′
i , T

′′
i ∩S finite, T ′′

i ∩V irreducible

and smooth at P ′′
i , T

′′
i ∩ W = ∅, and T ′′

i ∩ V �∈ Y ∪ T ′′
1 ∪ . . . ∪ T ′′

i−1. By

Lemma 2.3, we obtain a set of Z-integral points that is Zariski dense in V .

Case (d). X is a smooth intersection of two quadrics in P5.

After a finite extension of the base field k, we can choose a Z-integral point

P that is not contained in Z, and such that the singular locus of the linear

projection of X from P is not contained in the image of Z. Let π1 : X ��� P4

be the projection from P , and let W be the closure of π1(X). Then W is

a singular cubic threefold, and if P ′ is a singular point of W that is not

contained in π1(Z), then the projection π2 : W ��� P3 of W away from P ′

induces a birational map φ : X ��� P3 such that φ(Z) is a Zariski closed subset

of P3 of codimension at least two. Since φ(Z)-integral points are potentially

Zariski dense in P3, it follows that Z-integral points on X are also potentially

Zariski dense, as desired.

Case (e). X is a smooth cubic threefold in P4.

Let � be a line on X with � ∩ Z = ∅, and let π : Y → X be the blowing

up of X along � with exceptional divisor S. Then Y admits the structure of

a conic bundle φ : Y → P2. Note that S is a rational surface and a double

section of φ.

After a fixed extension of k, we may assume that �, Y , π, and φ are all

defined over k, and that S has a dense set of k-rational points, including a

point P that is also Z-integral. By Theorem 3.3, this means that S has a

Zariski dense set of Z-integral points as well.
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The dimension of Z is at most one, so there is a dense set A of points of

S such that for all Q ∈ A, the fibre of φ through Q does not meet Z. By

Lemma 2.3, each such fibre has an infinite set of Z-integral points, and so the

Z-integral points of X are dense.

Case (f). X is a double cover of P3 branched on a smooth quartic surface.

The threefold X is known to be geometrically unirational (see for example

[IP, Example 10.1.3.(iii)]), so we may extend the number field k to ensure

that X has a Zariski dense set S of rational points. Let π : X → P3 be the

double cover. The set π(S) is Zariski dense in P3, and by extending the field

k again we may assume that at least one point P of π(S) is π(Z)-integral.

Any line � in P3 lifts to a curve of geometric genus at most one on X. The

net N of lines through P induces an elliptic threefold structure (fibred over a

rational surface) on a blowup X̃ of X. Lemma 4.3 is helpful here:

Lemma 4.3. Let π : X → Y be a morphism of smooth projective varieties

whose generic fibre is a smooth curve of genus 1, with a section S of π that

makes it an elliptic fibration. Assume that π, S, X, and Y are all defined over

a number field k. Then there is a proper Zariski closed subset G of X such

that every k-rational point P that is a torsion point in its fibre π−1(π(P ))

satisfies P ∈ G.

Proof. By a theorem of Merel (“Théorème” of [Me]), there is a positive

integer N such that for any elliptic curve defined over k, and any k-rational

point P of finite order, the order of P divides N . Therefore, the set of k-

rational points of finite order in their fibre is contained in a finite number of

multisections of π, and in particular is not Zariski dense in X. �
Let G be the set given by Lemma 4.3 for X̃. We further enlarge G to

contain all the singular fibres of X̃. Let U be the complement of the image of

G in P3. Then U ∩ π(S) consists entirely of k-rational points Q of P3 whose

preimages on X are also k-rational, and such that the elliptic curve lying over

the line joining the point Q to P has positive rank. (The point P is viewed

as the identity element.)

Since Z has codimension at least two, there is a Zariski dense set of points

Q in U such that the line � joining P to Q is disjoint from Z. In each such

case, the elliptic curve E lying over � has positive Mordell-Weil rank (because

Q is non-torsion with respect to P ), and so by Lemma 2.3, E contains an

infinite set of Z-integral points. Since the set of such E is Zariski dense, the

theorem follows.

Case (g). X is a smooth hypersurface of degree 6 in the weighted pro-

jective space P(1, 1, 1, 2, 3), and the subset Z does not contain the unique

basepoint P of the square root of the anticanonical linear system.
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In this case, X is a double cover of the cone V in P6 over the Veronese

embedding of P2 in P5; denote the cover by π : X → V . Note that P is the

preimage P = π−1(v) of the vertex v of the cone V .

Blowing up v on V yields a smooth threefold V ∗, which admits the structure

of a P1-bundle f : V ∗ → P2 over P2, where the fibres of the bundle are the

strict transforms of the lines of the ruling of V . The corresponding blowup

of X yields a biregular map g : X∗ → X and a double cover π∗ : X∗ → V ∗,

where X∗ inherits the structure of an elliptic fibration over P2 via φ = f ◦π∗.

X∗
2:1

π∗
��

g

��

φ

��

V ∗
P
1

f
��

��

P2

X
2:1

π �� V

Since P �∈ Z, it follows that Z∗ = g−1(Z) is a subset of X∗ of codimension

at least two. In Section 4 of [BT], the authors show that there is a two-

dimensional family of double sections of φ that are singular, but birational to

K3 surfaces. After a possible finite field extension, we may assume that one of

those double sections, which we will call S, satisfies the following properties:

• S intersects Z properly.

• S contains a singular point s which is Z∗-integral.

• S contains a Zariski dense set of rational points.

To see that such a choice is possible, note that [BT] proves the Zariski

density of the rational points, and allows for a two-dimensional linear system

full of such double sections S. (The extra field extension is necessary for the

existence of the Z∗-integral singular point.)

Given such an S, we blow up the singular locus with h : S∗ → S to obtain

an elliptically fibred, smooth K3 surface S∗. The exceptional divisor over s

is a (−2)-curve on S∗ with a dense set of rational points, each of which is

h−1(Z∗)-integral. Thus, every smooth elliptic curve in the elliptic fibration

on S∗ contains at least one h−1(Z∗)-integral point. The density of rational

points on S∗ implies that there are infinitely many such curves with positive

Mordell-Weil rank. Therefore, since Z∗ ∩ S is of codimension at least two,

we conclude by Lemma 2.3 that the set of h−1(Z∗)-integral points on S∗ is

Zariski dense, and therefore that the Z∗-integral points on S are also Zariski

dense on S.

For any Z∗-integral point x on X∗, Lemma 2.3 again shows that the Z∗-

integral points are Zariski dense on the fibre of φ through x, provided that its

Mordell-Weil rank is positive. Since [BT] proves that the set of rational points
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on X∗ are Zariski dense, there is a Zariski dense set of fibres with positive

Mordell-Weil rank. Therefore, the set of Z∗-integral points on X∗ is Zariski

dense. This immediately implies that the set of Z-integral points on X is

Zariski dense, as desired. �
As far as the authors are aware, the exceptional case in (g) (i.e., the case

where P ∈ Z) is still open.

5. Sections avoiding given subsets

In this section we prove a lemma guaranteeing the existence of a section

of a rationally connected fibration over a curve, such that the section avoids

(respectively fails to be contained in) a given subset of codimension ≥ 2

(respectively ≥ 1). The result is well-known to experts on families of curves

on varieties, but we include a proof for lack of a reference. We begin by

recalling background material.

Let X be a smooth projective variety, and set n = dim(X).

Recall that a rational curve in X is a nonconstant map f : P1 −→ X. The

rational curve is said to be free if f∗TX = ⊕n
i=1OP1(ai) with each ai ≥ 0.

Fix an ample line bundle L on X. Then for each d ≥ 1 there is a quasi-

projective variety Hom(P1, X)d parametrizing maps f : P1 −→ X such that

deg(f∗L) = d. (This is a special case of the general construction of [Ko, 1.10]

constructing parameter spaces Hom(Y,X) for any projective varieties Y and

X. Any morphism Y −→ X can be identified with its graph, a subset of

Y × X, and the spaces Hom(Y,X) are then realized as the open subscheme

of Hilb(Y ×X) parametrizing such graphs. The restriction deg(f∗L) = d is

used to fix the Hilbert polynomial of the graph. )

For a map f : P1 −→ X, with deg(f∗L) = d, we denote by [f ] the corre-

sponding point of Hom(P1, X)d. One also has an evaluation map

ev : Hom(P1, X)d × P1 −−−−→ X,

([f ], p) �−−−−−−→ f(p).

Let Hom(P1, X)◦d denote the subset of Hom(P1, X)d consisting of those [f ]

such that f is free. By [Ko, II.3.5.4, p. 115], Hom(P1, X)◦d is an open subset

of Hom(P1, X)d, and the evaluation map

Hom(P1, X)◦d × P1 ev−−−−−→ X

is smooth. (Thus Hom(P1, X)◦d is also smooth, although one can see this last

point directly by computing the tangent space to the Hilbert scheme).
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It is a result of Kollár, Miyaoka, and Mori (see [KMM, Corollary 2.5] or

[Ko, Theorem 3.11, p. 205]) that if X −→ S is a smooth proper morphism in

characteristic zero with S connected, then if one fibre is rationally connected,

all fibres are rationally connected. In Lemma 5.1 and Corollary 5.2 we will

consider surjective maps π from a smooth projective variety X to a smooth

curve. Since X is projective, π is automatically proper, and π is smooth away

from finitely many points of the base. When we say that “the general fibre is

rationally connected”, we mean that at least one, and hence all, of the smooth

fibres is rationally connected.

Lemma 5.1.

(a) Let X be a smooth irreducible projective variety defined over an alge-

braically closed field of characteristic zero, π : X −→ P1 a surjective

map whose general fibre is rationally connected, Z ⊂ X a subvariety

of codimension ≥ 2, and T ⊂ X a subvariety of codimension ≥ 1.

Then there exists a section of π which is not contained in T , and

which does not meet Z.

(b) If X, and π, Z, and T are defined over a field k of characteristic zero,

and if the general fibre of π over k is rationally connected, then there

exists such a section defined over a finite extension k′ of k.

Proof. We first prove (a). By [GHS, Theorem 1.1] there is a map g : P1 −→
X which is a section of π. Furthermore, by [KMM, Theorem 2.13], given that

such a section exists, and given any point q on a smooth fibre of π, there

exists a curve f ′ : P1 −→ X which is a free curve, a section of π, and passes

through q (i.e., so that q is in the image of f ′).

Choose any point q in a smooth fibre, and not in Z or T , and let f ′ be

a free curve and section passing through q provided by those theorems. Set

d = deg((f ′)∗L), and let V be the irreducible component of Hom(P1, X)◦d
containing [f ′]. We consider the diagram

V × P1 ev ��

pr1

��

X

V

The property that f is a section of π is equivalent to deg(f∗π∗OP1(1)) = 1,

i.e., the degree of ev∗ π∗OP1(1) on the fibre pr−1
1 ([f ]) is 1. Since pr1 is flat,

the degree of ev∗ π∗OP1(1) is constant on the fibres of pr1 and it follows that

every [f ] ∈ V is also a section of π.

The map pr1 is proper, and by [Ko, II.3.5.4.2, p. 115], ev is smooth. The

set of [f ] ∈ V such that f(P1) is contained in T is the locus where the map

ev−1(T )
pr1−→ V has 1-dimensional fibres. By upper semicontinuity of fibre
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dimension [EGA IV3, Cor. (13.1.5)] this locus is a closed subset of V . Let

U ′ be its complement. The set U ′ is nonempty since [f ′] ∈ U ′. Every point

[f ] ∈ U ′ is now a section of π not contained in T . To prove part (a) we just

need to find such an [f ] so that f(P1) ∩ Z = ∅.
Set N = dim(V ). Since Z is of codimension ≥ 2, and ev flat, ev−1(Z) also

has codimension ≥ 2, and hence has dimension at most N + 1 − 2 = N − 1.

Thus pr1(ev
−1(Z)) has dimension ≤ N − 1 and so is a proper subset of V .

Let U ′′ be its complement. Any [f ] ∈ U ′′ satisfies f(P1) ∩ Z = ∅. Since V is

irreducible, U := U ′ ∩ U ′′ �= ∅, giving (a).

For (b), we are assuming that X, π, Z and T are all defined over k. Fol-

lowing the notational convention in section 2, we let X0, π0, Z0, and T0 be

the corresponding varieties and morphism over Spec(k) whose base changes

to Spec(k) give X, π, Z and T .

We then follow the construction as in part (a), but working over Spec(k).

Specifically, we fix an ample line bundle L0 on X0, and using L0 to define

the degree, for each d ∈ N look at the k-scheme Homk(P
1, X0)d. We then

restrict to the open set Homk(P
1, X0)

◦
d parametrizing free morphisms, and

then further to the open subset where the morphisms are sections of π0 (this

is open for the same reason as before: it is a condition on the degree of

ev∗π∗
0OP1(1) on the fibres of the projection pr1 : Homk(P

1, X0)
◦
d × P1 −→

Homk(P
1, X0)

◦
d).

The locus where the fibre dimension of ev−1(T0) −→ Hom(P1, X0)
◦
d is 1 is

again closed, as is the subset pr1(ev
−1(Z0)). Intersecting the complements

of these closed sets with the open set in the previous paragraph, for each

d we obtain a (possibly empty) open subscheme Ud ⊂ Homk(P
1, X0)

◦
d. For

any extension k′/k, the k′-points of Ud parameterize maps g : P1 −→ X ′ over

Spec(k′) which are sections of π′ avoiding Z ′ and not contained in T ′, and

with deg(g∗L′) = d. Here the prime denotes the base change of the respective

object from k to k′.

By part (a), there is some d for which Ud has a k-point, and thus, for this

d, Ud is nonempty. Since Homk(P
1, X0)d is of finite type, the residue field of

any closed point is finite over k. Thus taking any closed point [f0] ∈ Ud, and

letting k′ be its residue field, we obtain a morphism whose base change to k

is a section f : P1 −→ X defined over k′, avoiding Z, and not contained in

T . �

Using an idea from [GHS] due to Aise Johan de Jong, one can extend

Lemma 5.1 to the case where the base curve has arbitrary genus. We will not

need this extension, but record the statement and the idea of its proof.
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Corollary 5.2.

(a) Let X be a smooth irreducible projective variety defined over an alge-

braically closed field of characteristic zero, π : X −→ C a surjective

map to a smooth curve C such that the general fibre of π is rationally

connected, Z ⊂ X a subvariety of codimension ≥ 2, and T ⊂ X a

subvariety of codimension ≥ 1. Then there exists a section of π which

is not contained in T , and which does not meet Z.

(b) If X, and π, Z, and T are defined over a field k of characteristic zero,

and if the general fibre of π over k is rationally connected, then there

exists such a section defined over a finite extension k′ of k.

Proof. We repeat the argument of de Jong from [GHS, §3.2]. To prove (a),

given π : X −→ C choose any finite map g : C −→ P1, and then form the

“norm” of X. This is a variety and map ϕ : Y −→ P1 (well defined up to

birational equivalence) whose fibre over a general point p ∈ P1 is the product∏
q∈g−1(p) π

−1(q). The utility of the norm construction is that sections of ϕ

give sections of π. Given a section σ of ϕ, for each p ∈ P1, σ gives a point of∏
q∈g−1(p) π

−1(q), and thus for each point q ∈ C, setting p = g(q), σ gives a

point in the fibre π−1(q).

To ensure that the resulting section of π misses Z and is not contained in

T , we define appropriate subsets of Y . Let Z̃ ⊂ Y be the subset

Z̃ =

{
y ∈ Y

∣∣∣∣ at least one of the coordinates of y ∈
ϕ−1(ϕ(y)) =

∏
q∈g−1(ϕ(y)) π

−1(q) is in Z

}

and similarly define T̃ .

Sections σ of ϕ which do not meet Z̃ and are not contained in T̃ induce

sections of π similarly missing Z and not contained in T . The codimension of

Z̃ in Y is equal to the codimension of Z in X, and similarly codim(T̃ , Y ) =

codim(T,X).

Since the product of rationally connected varieties is rationally connected,

the general fibre of Y is rationally connected, and so we can apply Lemma

5.1(a), proving (a) of the corollary.

To prove (b), supposing everything defined over k, if we choose our map

g : C −→ P1 to be defined over k, then so are Y , Z̃, and T̃ . Thus applying

Lemma 5.1(b), we obtain a section of ϕ defined over a finite extension k′

missing Z̃ and not contained in T̃ . This then induces a section of π, also

defined over k′, with the desired properties. �
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6. Del Pezzo fibrations

In this section, we prove the potential density of integral points for del

Pezzo fibrations, provided that the degree of the (generic) del Pezzo surface

is at least three.

Let π : X → Y be a morphism, where X is a smooth, rationally connected,

projective threefold, and Y is a smooth curve. SinceX is rationally connected,

Y must be isomorphic to P1 over k. (This may require a finite extension of

k.) We further assume that a generic fibre of π is a del Pezzo surface. We will

show that in many cases, the Z-integral points of X are potentially Zariski

dense.

Theorem 6.1. Let k be a number field. Let X be a smooth threefold with

a map π : X → P1 whose generic fibre is a del Pezzo surface of degree at least

three, all defined over k. Let Z ⊂ X be a Zariski closed subset of codimension

at least two. Then the Z-integral points of X are potentially Zariski dense.

Proof. Let T be the union of the (−1)-curves in the fibres of π. Applying

Lemma 5.1, after at most a finite field extension – which we continue to call

k – we obtain a k-rational section σ : P1 → X of π whose image is a smooth

rational curve C ⊂ X, and disjoint from Z, and meeting T in only finitely

many points (i.e., only finitely many points of C are contained in (−1)-curves

of the fibres of π). Furthermore, after blowing up, we may decrease the degree

of the generic fibre of π to three without changing the hypothesis or conclusion

of Theorem 6.1. (We choose the blowup locus to be disjoint from Z.) Let

S ⊂ P1(k) be the finite subset of points p where either π−1(p) contains a 1-

dimensional component of Z or π−1(p) intersects C in a point on a (−1)-curve

of the fibre.

We will finish the proof by applying Lemma 6.2 to the fibres π−1(p), with

p ∈ P1(k)− S. (Note that Lemma 6.2 is not implied by Theorem 3.3 because

a del Pezzo surface need not be birational to P2 over k.)

Lemma 6.2. Let V be a del Pezzo surface of degree three defined over a

number field k. Let Z ⊂ V be a Zariski closed subset of codimension at least

two. Assume that there is a k-rational point P ∈ V (k) that is Z-integral, and

that does not lie on a (−1)-curve of V . Then the Z-integral points are Zariski

dense.

Proof. A generic member of the linear system |−KV | is a smooth curve of

genus one, and |−KV | is basepoint free because V is del Pezzo. Consider the

linear subsystem of |−KV | consisting of curves containing P . This subsystem

has dimension three, so we can choose a pencil H of curves defined over k

such that every curve in H contains P , a generic curve in H is smooth, and
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the base locus consists of three points {P,Q,R}, none of which lie in Z. (Note

that P �∈ Z trivially.)

Since H is defined over k, so is the triple {P,Q,R}, and we may therefore

blow it up to obtain a surface Ṽ defined over k, with a morphism ψ : Ṽ →
V whose fibres are precisely the (strict transforms of) curves in H. The

morphism ψ makes Ṽ into an elliptic surface, with a section O given by the

exceptional curve lying over P . Note that O is disjoint from Z.

The class −KV embeds V in P3 as a smooth cubic surface. We may there-

fore consider the curve T defined by the intersection of the tangent plane TP

with the embedded surface V . Note that T is irreducible because P does not

lie on any (−1)-curves, so T is an irreducible plane cubic curve. Moreover, T

is singular at P , so it has geometric genus zero. Indeed, T is birational to P1

over k via projection from P in the plane TP , so T has a dense set of rational

points.

For each rational point A of T , the intersection of TA with the embedded

surface V is again a cubic curve with a singularity at A, albeit possibly re-

ducible. At most finitely many A correspond to reducible curves in this way

(there are only finitely many intersections of T with lines), so there are infin-

itely many A whose tangent curves are birational to P1 over k, and therefore

have a dense set of rational points. We therefore deduce that the rational

points of V are Zariski dense.

By Lemma 4.3, this means that there is a dense set of k-rational points on

V each lying on a smooth fibre of ψ and having infinite order in that fibre. In

particular, there are an infinite number of genus one curves on V that contain

an infinite set of k-rational points, one of which is the Z-integral point P . By

Lemma 2.3, each of those curves contains an infinite set of Z-integral points.

We conclude that the Z-integral points on V are dense. �

We now finish the proof of Theorem 6.1. The curve C is disjoint from

Z over the generic fibre, so after a further finite extension of k – which we

stubbornly persist in calling k – we may assume that C contains a Z-integral

point. To see this, note that over Spec(Ok), N = C ∩Z is an arithmetic zero-

cycle supported on finitely many places of k. After a suitably chosen finite

extension of k, we may assume that for every place v of k, there is a point

pv of C lying over v that does not lie in the support of N . By the Chinese

Remainder theorem – since C is a rational curve – there is some k-rational

point P of C such that for all v over which N is supported, P ≡ pv mod v.

This P is the Z-integral point that we seek.

Since C is a rational curve, Lemma 2.3 implies that C contains an infinite

number of Z-integral points. For each such point, the corresponding fibre, by
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Lemma 6.2, contains a dense set of Z-integral points. It therefore follows that

the Z-integral points of V are Zariski dense, as desired. �

7. Application to integral points in families

We can apply the theorems of the previous sections to families of curves

and surfaces on surfaces and threefolds, to get results about integral points

in the classical sense – that is, integral points with respect to a divisor. The

proof of Theorem 7.1 is trivial:

Theorem 7.1. Let X be a smooth, projective variety, defined over a num-

ber field k, and let P be a family of cycles on X. We further assume that

on some dense open subset U of X, every point P ∈ U lies on exactly one

element of P.

Let Z be a subset of X of codimension at least 2. If the Z-integral points

of X are Zariski dense, then there is a Zariski dense set of k-rational cycles

in P with at least one Z-integral point defined over k.

In full generality, this theorem applies to a huge range of examples, and

even though the codimension of Z in X is at least 2, the codimension of Z∩A

in A (where A is a member of the family) can be anywhere from 0 to dimA

for particular A – indeed Z ∩A could even be empty for most A in P.

Of perhaps greatest interest is the case in which the codimension of Z ∩A

in A is 1 – the classical case of integral points. This happens, for example, if

P is a pencil of hypersurfaces in X with no fixed component. Or in the case

where P is the locus of lines through a fixed point of Pn. Note that in these

two cases the existence of the open set U is automatic.

Another particularly interesting case is when P is a family of curves, and

Z intersects every element of P nontrivially. For any subset Z ′ ⊂ Z, any Z-

integral point is automatically also Z ′-integral. Theorem 7.1 therefore implies

that over a fixed finite extension, infinitely many curves in P acquire a Z ′-

integral point, where Z ′ is any chosen point of Z. Indeed, Theorem 7.1 even

allows us to conclude that, for any function f : P → Z, there are infinitely

many curves C in P with an {f(C)}-integral point!
The assumption that every point P ∈ U lies on exactly one element of P

can be relaxed to “at least one element of P”, but the cycles in the conclusion

might not be defined over k.

The results of this paper show that the hypotheses of Theorem 7.1 are

satisfied when X is any rational or ruled surface, or any rationally connected

threefold of a type considered in sections 4 or 5, whenever the rational points
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are dense or potentially dense. Specifically, we have the following corollaries

of Theorem 7.1.

Corollary 7.2. Let X be a smooth surface that is uniruled over a number

field k. Let P be a pencil of curves on X with zero-dimensional base locus Z.

Assume that X has a Zariski dense set of k-rational points. Then there is a

finite extension k′/k such that there is an infinite set of curves in P that are

defined over k′ and contain at least one Z-integral point.

Corollary 7.3. Let X be a smooth Fano threefold defined over a number

field k, with geometric Picard rank one and index at least two. Let P be

a pencil of surfaces on X with one-dimensional base locus Z that, if X is

isomorphic to a smooth hypersurface of degree 6 in the weighted projective

space P(1, 1, 1, 2, 3), does not contain the unique basepoint of the square root

of the anticanonical linear system. Assume that X has a Zariski dense set of

k-rational points. Then there is a finite extension k′/k such that there is an

infinite set of surfaces in P that are defined over k′ and contain at least one

Z-integral point.

Corollary 7.4. Let X be a smooth Fano threefold defined over a number

field k, with geometric Picard rank one and index at least two. Let N be

a two-dimensional family of curves on X with common intersection locus Z

that, if X is isomorphic to a smooth hypersurface of degree 6 in the weighted

projective space P(1, 1, 1, 2, 3), does not contain the unique basepoint of the

square root of the anticanonical linear system. Assume that X has a Zariski

dense set of k-rational points, and that there is a Zariski dense open subset

U of X such that every P ∈ U lies on exactly one curve in N . Then there is

a finite extension k′/k such that there is a Zariski dense set of curves in N
that are defined over k′ and contain at least one Z-integral point.

Note also that in cases where the potential density of rational points is

already known, the hypothesis on the existence of a dense set of rational

points is unnecessary.

8. Moving the indeterminacy locus of a map to PP2

Theorem 8.1 addresses a technical point in the proof of Theorem 3.3. Its

proof does not rely on any other results in this paper.

Theorem 8.1. Let X be a smooth projective surface and f : X ��� P2 a

birational map. Set n to be the number of points (over k) in the indeterminacy

locus of f . Then:

(a) For any general collection I = {q1, q2, . . . , qn} of n points in X, there

is a birational map fI : X ��� P2 whose indeterminacy locus is I.
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(b) In particular, given any proper closed subset Z ⊂ X, there is always

such a birational map defined at all points of Z.

If f is defined over k, then the k-points of X are Zariski dense, and hence

the k-points of Xn are Zariski dense.

(c) The set of k-points (q1, . . . , qn) ∈ Xn with the property that there

exists a birational map fI : X ��� P2 defined over k and with indeter-

minacy locus I = {q1, . . . , qn} is Zariski dense in Xn.

(d) In particular, if f is defined over k then given any proper closed subset

Z ⊂ X there is always such a birational map fI defined over k, and

defined at all points of Z.

It is clear that (a) implies (b), and that (c) implies (d). Part (c) also

follows fairly easily from (a) by keeping track of the field of definition of the

constructions. Most of the work is in proving (a).

The idea of the proof of (a) is simple: The birational map f may be resolved

by a sequence of blowups, starting with the points of the indeterminacy locus.

On the resulting surface Y , the induced birational morphism Y −→ P2 is given

by a base point free line bundle with three sections. This line bundle may be

written as a line bundle pulled back from X and twisted by the exceptional

divisors. If we vary the initial points of the blowup in a family, the theorems on

cohomology, base change, and semicontinuity imply that for a general choice

of n initial points the resulting line bundle on the new blowup will continue

to give a birational morphism to P2.

Although simple, writing out this argument in detail is unfortunately some-

what long, with most of the length being taken up in constructing the pa-

rameter spaces on which to apply the above named theorems. We start by

constructing these spaces, then record some consequences of the theorems on

base change. The proof of Theorem 8.1, using these results, appears after the

proof of Lemma 8.5.

The spaces we want to construct parameterize not only the n points on

X where we first blow up, but also the points of further blowups on further

exceptional divisors. How the further blowups are to be continued is de-

scribed by discrete data. To explain this terminology, consider the sequence

of blowups below, which starts with blowing up a single point q in X. (In

the diagram, and in further discussion, we use the name Ei to denote the ex-

ceptional divisor of the i-th blowup, as well as its proper transform in further

blowups.)
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q

X

←−−−
q′

X1

E1 ←−−−
q′′

X2

E1

E2

←−−−

E1

E2

E3

E4

Y

−−−→
q′′′

X3

E1

E2

E3

In this example, we start by blowing up at q, then blow up at a point on

E1, then at the intersection of E1 and E2, and finally blow up at a point on

E3 which is not on E1 or E2.

The discrete portion of this data is the information of which exceptional

divisor each successive blowup occurs on, including the possibility that the

point to be blown up is on the intersection of two exceptional divisors. The

portion which may vary in a family is the choice of which point on each

exceptional divisor to blow up, unless one is supposed to blow up on the

intersection of two exceptional divisors, in which case there is no choice at all.

Formally, for use below, the discrete portion of the data is a finite list of

instructions, whose first instruction is “blow up at a (variable) point q on X”,

and where successive elements of the list are either of the form “blow up at

a point on Ei (but not on any of the other exceptional divisors)” or of the

form “blow up at the intersection of Ei and Ej”. We implicitly assume that

all instructions of the second type are possible, e.g., Ei does intersect Ej . In

general we will want to start blowing up at n distinct points q1, . . . , qn of X,

with further blowups given by discrete data describing the pattern of blowups

over each of the points (the pattern of blowups may be different over each

point). It is useful to separate the case n = 1, where we start by blowing up

at a single point q on X, from the general case.

Proposition 8.2 (Existence and properties of the parameter space, n = 1).

Let X be a smooth projective surface. Given discrete data with s steps describ-

ing the pattern of blowups over a single point, there exists:

• A quasi projective variety B, with a morphism ϕ : B −→ X.

B is the parameter space for “choices of blowup with the given discrete

data”. For q ∈ B, ϕ(q) ∈ X is the point where we first blow up.

• A quasi projective variety Y with morphism Π: Y −→ B ×X.
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The morphism Π is the “universal blow down map”. Setting ψ := pr1 ◦Π,

the morphism ψ : Y −→ B is the universal family of blown up surfaces. For a

point q ∈ B, we denote by Yq := ψ−1(q) the fibre of Y over q, and πq : Yq −→
X the restriction of Π over q.

• For each i, i = 1,. . . s, a closed subscheme Ei ⊂ Y.

The Ei are the relative families of exceptional divisors. The commutative

diagram below summarizes some of this data.

Ei �
�

��

P
1

��
��

��
��

� Y Π ��

ψ

��

B ×X

pr1

��

B B

These varieties and morphisms satisfy the properties the descriptions above

promise, namely:

(a) ψ is a smooth proper morphism of relative dimension 2;

(b) Via ψ, each Ei is a P1-bundle over B;

(c) ϕ is a smooth surjective morphism, and B is smooth and irreducible;

(d) For each q ∈ B, the morphism πq : Yq −→ X is a blow up of X starting

at ϕ(q) in X, with further blowups following the pattern described by

the given discrete data;

(e) Conversely, given a birational map π : Y −→ X which is obtained by

blowing up X at a single point q ∈ X, and then continuing in the

pattern described by the discrete data, there exists q ∈ B such that

Yq = Y and πq = π as objects and morphisms over X.

(f) If X is defined over k, then B, Y, the Ei, the morphisms Π, ψ, ϕ,

and the inclusion morphisms Ei ↪→ Y are defined over k.

(g) If, in addition, the k-points of X are Zariski dense, then the k-points

of B are Zariski dense, and the map B(k) −→ X(k) induced by ϕ is

surjective;

(h) Π is a proper map, and is an isomorphism over the complement of

Γϕ, where Γϕ ⊂ B ×X denotes the graph of ϕ.

Remarks.

(1) The point q in (d) is unique, although we will not need this detail.

(2) Y and each Ei are smooth and irreducible, as follows by combining

(a), (b), (c), and (d).

Proof. The construction is inductive, following the steps of the discrete

information describing the blowups. We indicate with a superscript t (e.g.,

Bt, Yt, E t
i , Π

t) the varieties and maps constructed after the t-th step. We do
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not need to explicitly construct ψt, since it is always the composition pr1 ◦Πt,

where pr1 is projection onto the first factor.

For the base case we start with B1 := X and set Π1 : Y1 −→ B1 × X to

be the blowup of B1 ×X = X ×X along the diagonal. We set E1
1 ⊂ Y1 to be

the exceptional divisor of Π1 and ϕ1 : B1 −→ X to be the identity map.

For the inductive step, we assume that we have constructed Bt, Yt, the

morphisms Πt : Yt −→ Bt ×X and ϕt, and divisors E t
i ⊂ Yt, i = 1,. . . t. In

describing the construction we will use properties (e.g., “E t
i is a P

1-bundle over

Bt”) which, strictly speaking, we will only show later when proving (a)–(h).

However, each of those arguments is also inductive, and thus we may assume

their validity for the t-th step when making the construction for the (t+1)-st.

By our working definition of “discrete data”, the (t+1)-st step must be of

one of the following two operations:

(i) Blow up at a point on an exceptional divisor Ei, but which is not on

any other exceptional divisor, or

(ii) Blow up at a point on the intersection of Ei and Ej (assuming that

Ei and Ej do intersect).

In case (i): We set Bt+1 := E t
i −

⋃
j �=i E t

j . Thus Bt+1 parameterizes

points which lie on the i-th exceptional divisor, but not on any others. We

have a natural surjective map Bt+1 −→ Bt given by the composition of the

open immersion Bt+1 ↪→ E t
i and the fibration E t

i −→ Bt. (The fibres of

Bt+1 −→ Bt are P1’s minus a finite number of points.) Let W be the fibre

product W := Bt+1 ×Bt Yt. The inclusion morphism Bt+1 ↪→ E t
i ↪→ Yt

induces a section σ of W over Bt+1:

W ��

��
�

Yt

��

Bt+1 ��

σ

��

Bt

Let γ : Yt+1 −→ W be the blowup of W along σ(Bt+1) (i.e., we define Yt+1

to be the blowup, and use γ for the blowdown map), and define E t+1
t+1 to be

the exceptional divisor of γ.

For each �, � = 1,. . . , t, the base change of E t
� ↪→ Yt to Bt+1 gives a divisor

F� ↪→ W , a P1-fibration over Bt+1. For � �= i, F� is disjoint from σ(Bt+1),

and is thus contained in the open set where γ−1 is an isomorphism. For � �= i

we set E t+1
� := γ−1(F�) ⊂ Yt+1. For � = i, σ(Bt+1) is a section of the P1-

fibration Fi −→ Bt+1. Since this section is a Cartier divisor in Fi, blowing up

along the section leaves Fi unchanged. We define E t+1
i to be this blowup, i.e.,

to be the proper transform of Fi in Yt+1. Equivalently, E t+1
i is the divisor
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γ∗(Fi)(−E t+1
t+1 ). We note that for each � = 1, . . . , t, E t+1

� , is isomorphic to F�

as a scheme over Bt+1.

Finally we define Πt+1 : Bt+1 × X as the composition of the blowdown

map γ with the morphism W −→ Bt+1 ×X obtained as the base change of

Πt : Yt −→ Bt to Bt+1, and define ϕt+1 : Bt+1 −→ X as the composition of

the surjective map Bt+1 −→ Bt with ϕt : Bt −→ X.

This completes the inductive step of the construction in case (i).

In case (ii): The intersection E t
i ∩ E t

j is a section of Yt −→ Bt, which

we again call σ. We set Bt+1 := Bt, define Yt+1 to be the blowup of Yt

along σ, and define E t+1
t+1 to be the exceptional divisor of the blowup. We

define Πt+1 : Yt+1 −→ Bt+1 ×X to be the composition of the blowdown map

γ : Yt+1 −→ Yt with Πt, and set ϕt+1 = ϕt (a map Bt+1 = Bt −→ X).

For � �∈ {i, j}, E t
� ⊂ Yt is disjoint from the section blown up, and we set

E t+1
� := γ−1(E t

�). For � ∈ {i, j} the section is, as in case (a), a section of

the P1-fibration E t
� −→ Bt, and a Cartier divisor in E t

� . We set E t+1
� to be

the proper transform of E t
� in Yt+1. As before, for � = 1,. . . , t, each E t+1

� is

isomorphic, as a scheme over Bt+1, to the base change of E t
� to Bt+1.

This completes the inductive step of the construction in case (ii), and thus

the inductive step overall.

We define Y , B, Π, ψ, ϕ and E1, . . . , Es to be the end result of the inductive

steps (i.e., the result on the s-th step).

The properties (a)–(h) are deduced fairly easily by following the steps of

the inductive construction.

(a) As part of the construction we have a sequence of maps

B = Bs τs−→ Bs−1 τs−1−→ · · · τ3−→ B2 τ2−→ B1 = X,

where we use τt for the map τt : B
t −→ Bt−1. In both cases (i) and

(ii), Yt+1 and Yt are related by the diagram

(8.2.1)

Yt+1 γ
��

ψt+1

��

Yt ×Bt Bt+1 ��

��
�

Yt

ψt

��

Bt+1 Bt+1 ��

σ

��

τt+1
�� Bt

where γ is the blowup of Yt ×Bt Bt+1 along the section σ. (We omit

calling them γt+1 and σt+1 to slightly simplify notation.)

Setting Y0 to be the trivial family Y0 := X ×X
pr1−→ X =: B0, τ1

to be the identity map, and σ the diagonal section, then (8.2.1) with

t = 0 also describes the base case of the construction.
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Each ψt+1 is thus obtained from ψt by base change and then blow-

ing up along a section. If ψt is smooth and proper of relative dimen-

sion 2 we conclude that the same is therefore true of ψt+1. Since X

is smooth and proper the hypothesis is valid for ψ0 = pr1, and so by

induction for all ψt.

(b) In step t+ 1 (including the base case, t = 0), E t+1
t+1 is the exceptional

divisor of the blowup γ in (8.2.1). Thus, by (8.2.1) and the inductive

argument in (a), γ is the blowup of a family of smooth surfaces along

a section and therefore E t+1
t+1 is a P1 bundle over Bt+1. On the other

hand, as remarked in the construction, for each � = 1, . . . , t, E t+1
� is

isomorphic, as a scheme over Bt+1, to the base change of E t
� to Bt+1.

Since (inductively) each E t
� is a P1-bundle over Bt, each E t+1

� is a

P1-bundle over Bt+1.

(c) The map ϕ is the composition ϕ = τ2 ◦ τ3 ◦ · · · ◦ τs. In case (ii) τt+1

is the identity map, while in case (i) τt+1 is a fibration, whose fibres

(by (b)) are P1’s minus a finite number of points. Since each of the

τt+1 is a smooth surjective morphism, so is ϕ.

Each Bt+1 is either equal to Bt (case (ii)) or an open subset of

a P1-bundle over Bt (case (i)). Starting with B1 = X smooth and

irreducible, we conclude that each Bt, and hence B, is also smooth

and irreducible. (The fact that B is smooth also follows from fact

that ϕ is a smooth morphism, and X a smooth variety.)

(d) Given q ∈ B, let qt be the image of q in Bt under the composition

τt+1 ◦ τt+2 ◦ · · · ◦ τs. Taking the fibre product of (8.2.1) over {qt+1} =

{qt+1} ∼→ {qt} (sitting inside Bt+1 = Bt+1 −→ Bt), we obtain

Yt+1
qt+1 −→ Yt

qt = Yt
qt ,

expressing Yt+1
qt+1 as the blow up of Yt

qt at the point σ(qt+1).

Starting with q = ϕ(q) in X, Y1
q1 is the blow up of Y0

q = X at

the point q (the section in this case being the diagonal map). For

subsequent blowups, in case (i), where the step is “blow up along

Ei”, the fibre of τt+1 over qt is the fibre of E t
i \ ∪j �=iE t

j over qt, i.e.,

points of the exceptional divisor Ei in Yt
qt which do not lie on any

other exceptional divisor Ej . Given a point qt+1 on this fibre, σ(qt+1)

is that point in Yt
qt , so that Yt+1

qt+1 is the blow up of Yt
qt at a point on

Ei, but not on any other exceptional divisor.

In case (ii), where the step is “blow up on the intersection of Ei

and Ej , the map τt+1 is the identity map (so qt+1 = qt), and σ(qt+1)

is the point of Yt
qt on the intersection of Ei and Ej . Thus Yt+1

qt+1 is the

blow up of Yt
qt at the intersection of Ei and Ej .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CODIMENSION TWO INTEGRAL POINTS 371

Continuing to Yq = Ys
qs , we conclude that Yq is obtained from X

by blowing up at q = ϕ(q), and continuing in the pattern dictated by

the discrete instructions.

(e) The above argument is reversible. If Y is a surface obtained from

X by blowing up at a point q, and then continuing following the

given pattern of the discrete instructions, each step of the blowing up

process tells us how to pick a point qt+1 in the fibre of τt+1 over the

previously chosen qt. By the description above, each Yt+1
qt+1 is then the

surface obtained by following those instructions up to the (t + 1)-st

step. Setting q = qs, we conclude that Y = Yq and that the blowdown

map is πq.

(f) The fibre product of varieties defined over k (via morphisms defined

over k) is again defined over k, and the blow up of a variety defined

over k along a subvariety defined over k is again defined over k. The

varieties Y , B, the Ei, and the resulting morphisms are all constructed

iteratively from X following the essentially combinatorial instructions

in steps (i) or (ii) describing which fibre products or blowups to make.

It follows that if X is defined over k, so are the varieties and maps

produced by the proposition.

(g) As remarked in (c), each τ t+1 : Bt+1 −→ Bt is either the identity map

(case (ii)) or a fibration which is an open subset of a P1 bundle, i.e., a

fibration whose fibres are each P1 minus finitely many points (case (i)).

It follows immediately that if the k-points of X are Zariski dense, then

so are the k-points of B, and that the induced map B(k) −→ X(k) is

surjective.

(h) Using the factorization ψt = pr1 ◦ Πt we can insert the maps Πt and

Πt+1 into (8.2.1), the result being the diagram below.

(8.2.2)

Yt+1 γ
��

Πt+1

��

Yt ×Bt Bt+1 α ��

β

��
�

Yt

Πt

��

Bt+1 ×X

pr1
��

Bt+1 ×X
θ ��

pr1
��

�

Bt ×X

pr1
��

Bt+1 Bt+1 ��

σ

��

τt+1
�� Bt

For use in the argument we have introduced names α, β, θ for

some of the maps in the diagram. (These maps already have longer

names, for instance θ = τt+1× IdX , and β is the base change of Πt via

θ.) As in (a) we omit subscripts from these maps to slightly simplify

notation.
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If Πt is proper, then its base change β is proper, and therefore so

is the composition Πt+1 = β ◦ γ, since γ, being a blowup, is proper.

Starting with the (proper) identity map Π0 : X ×X −→ X ×X, we

conclude by induction that all the Πt are proper, and hence so is

Π = Πs.

For each t, t = 1, . . . , s, let ϕt : Bt −→ X be the map ϕt :=

τ1 ◦ τ2 ◦ · · · ◦ τt, so that ϕ = ϕs. Here, as in (a), we use τ1 for the

identity map from B1 to B0 = X. We will prove by induction that

each Πt is an isomorphism over the complement of Γϕt , where again

Γϕt ⊂ Bt ×X denotes the graph of ϕt.

By definition Π1 : Y1 −→ B1 × X = X × X is the blowup along

the diagonal. Since ϕ1 = τ1 is the identity map, Γϕ1 ⊂ B1 ×X is the

diagonal. Thus the claim holds in the base case.

To show the inductive step (that Πt+1 is an isomorphism over the

complement of Γϕt+1) it suffices to establish

(8.2.3) θ−1(Γϕt) = Γϕt+1

and

(8.2.4) Im(β ◦ σ) ⊆ Γϕt+1 .

To see why these are sufficient, we note that since Πt+1 = β ◦ γ, it
is enough to prove that each of β and γ is an isomorphism over the

complement of Γϕt+1 .

By the inductive hypothesis Πt is an isomorphism over the com-

plement of Γϕt ; hence by the top right fibre square in (8.2.2), β is an

isomorphism over the complement of

θ−1(Γϕt)
(8.2.3)
= Γϕt+1 .

On the other hand, by definition γ is the blowup along σ(Bt+1), and

so γ is an isomorphism over the complement of β(σ(Bt+1)), which,

by (8.2.4), contains the complement of Γϕt+1 .

To show (8.2.3) we recall that θ = τt+1 × IdX . Starting with

Γϕt =
{
(b, x) | x = ϕt(b)

}
⊂ Bt ×X,

we therefore have

θ−1(Γϕt) =
{
(b′, x) | x = ϕt(τt+1(b

′))
}
⊂ Bt+1 ×X.

Since ϕt+1 = ϕt ◦ τt+1, we conclude that θ−1(Γϕt) = Γϕt+1 .

We will establish (8.2.4) through a series of reductions. By (8.2.3)

to show (8.2.4) it is equivalent to show that Im(θ ◦ β ◦ σ) ⊆ Γϕt ,

which, by the commutativity of (8.2.2), is the same as showing that
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Im(Πt◦α◦σ) ⊆ Γϕt . By the inductive hypothesis (that Πt is an isomor-

phism over the complement of Γϕt) this last statement is equivalent

to showing that Im(α ◦ σ) is contained in the locus where Πt is not

an isomorphism.

In each of cases (i) and (ii) the section σ was constructed by giving

a map Bt+1 −→ Yt, and of course α ◦ σ is this map. In case (i) Bt+1

is an open subset of E t
i for some i, and α ◦ σ is the composition of

inclusions Bt+1 ↪→ E t
i ↪→ Yt. In case (ii), Bt+1 = Bt, and there are

i and j such that the map α ◦ σ is given by sending a point of Bt+1

to the unique point on the intersection of E t
i ∩ E t

j above it. Thus in

either case, there is an � such that Im(α ◦σ) ⊆ E t
� , and so to establish

(8.2.4) we are reduced to proving that Πt is not a local isomorphism

at any point of E t
� ⊂ Yt, for any � = 1, . . . , t.

Let y be any point of E t
� , and set qt := ψt(y) ∈ Bt. To show

that Πt is not an isomorphism at y, it suffices to show that the map

πt
qt : Yt

qt −→ X obtained by restricting Πt over qt is not an isomor-

phism at y ∈ Yt
qt .

Set qt−1 := τt(q
t). Taking the fibre product of (8.2.2) (shifted to

be a diagram relating Yt and Yt−1, instead of Yt+1 and Yt) over

{qt} = {qt} ∼→ {qt−1} we obtain, similarly to the argument in (d), a

commutative diagram

Yt
qt

��

πt
qt

��

Yt−1
qt−1

πt−1

qt−1

��

Yt−1
qt−1

πt−1

qt−1

��

X X X

Since this is a commutative diagram of smooth surfaces, to show

that πt
qt is not an isomorphism at y, it suffices to show that πt−1

qt−1 is

not an isomorphism at the image of y in Yt−1
qt−1 . Continuing, we are

reduced to showing that π1
q : Y1

q −→ X is not an isomorphism at the

image of y in Y1
q , where q = ϕt(qt).

Under the map Yt −→ Yt−1, if � < t then E t
� ⊂ Yt is sent to

E t−1
� ⊂ Yt−1, while, if � = t, then there is some i ≤ t − 1 such that

the image of E t
t is contained in E t−1

i . Iterating this argument, we

conclude that the image of y in Y1
q lies in the restriction of E1

1 to Y1
q .

This restriction is the exceptional divisor of π1
q , the blowup of X at

q, which is precisely the locus where π1
q is not an isomorphism.

This establishes that Πt is not an isomorphism at any point of E t
� ,

and completes the proofs of (8.2.4) and (h).
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Note: Since β ◦ σ is a section of pr1 (i.e., pr1 ◦ β ◦ σ = IdBt+1),

it follows that Im(β ◦ σ) is the graph of a morphism Bt+1 −→ X,

necessarily the morphism pr2 ◦ β ◦ σ. The inclusion (8.2.4) therefore

implies the equality Im(β◦σ) = Γϕt+1 , or equivalently, that pr2◦β◦σ =

ϕt+1.

This finishes the proof of Proposition 8.2. �
We now construct the parameter space for general n. This is essentially

done by taking fibre products over the constructions for n = 1.

Proposition 8.3 (Existence and properties of the parameter space, general

n). Let X be a smooth projective surface. Given n ≥ 1, suppose that for each

j, j = 1, . . . , n, we are given discrete data with sj steps describing the pattern

of blowups over a single point. Let V ⊂ Xn be the open subset which is the

complement of all the pairwise diagonals in Xn, so that

V =
{
(q1, q2, . . . , qn) ∈ Xn qi �= qj if i �= j

}
.

Then there exists:

• A quasi projective variety B and morphism ϕ : B −→ V .

B is the parameter space for “choices of blowup starting with n distinct

points q1,. . . , qn, with the blowup over qj following the j-th given discrete

data”. For b ∈ B, ϕ(b) = (q1, q2, . . . , qn) is the ordered set of points where we

first blow up.

• A quasi projective variety Y with morphism Π: Y −→ B.

Setting ψ := pr1 ◦ Π, the morphism ψ : Y −→ B is the universal family of

blown up surfaces. For a point b ∈ B, we denote by Yb := ψ−1(b) the fibre of

Y over b, and πb : Yb −→ X the restriction of Π over b.

• For each j = 1,. . . , n, and i = 1,. . . , sj, a closed subscheme Ei,j ⊂ Y.

The Ei,j are the relative families of exceptional divisors. The varieties and

maps satisfy the following.

(a) ψ is a smooth proper morphism of relative dimension 2.

(b) Via ψ, each Ei,j is a P1-bundle over B.

(c) ϕ is a smooth surjective morphism, and B is smooth and irreducible.

(d) For each b ∈ B, the morphism πb : Yb −→ X is a blow up of X

starting at the points q1,. . . , qn given by ϕ(b) = (q1, . . . , qn), with

further blowups over each qj following the pattern described by j-th

set of given discrete data.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CODIMENSION TWO INTEGRAL POINTS 375

(e) Conversely, given a birational map π : Y −→ X which is obtained by

blowing up X at points q1,. . . , qn, and then continuing over each qj
in the pattern described by the j-th set of discrete data, there exists

b ∈ B such that Yb = Y and πb = π as objects and morphisms over

X.

(f) If X is defined over k, then B, Y, the Ei,j, the morphisms Π, ψ, ϕ,

and the inclusion morphisms Ei,j ↪→ Y are defined over k.

(g) If, in addition, the k-points of X are Zariski dense, then the k-points

of B and V are Zariski dense, and the map B(k) −→ V (k) induced

by ϕ is surjective.

Proof. For each j, j = 1,. . . , n, applying Proposition 8.2 to the j-th set

of discrete data we obtain: a parameter space Bj ; a map ϕj : Bj −→ X; a

family ψj : Yj −→ Bj ; and a universal blowdown map Πj : Yj −→ Bj × X.

We define B as the fibre product of B1 × · · · ×Bn and V over Xn:

(8.3.1)

B � � ��

ϕ

��

�

B1 ×B2 × · · · ×Bn

ϕ1×···×ϕn

��

V � � �� Xn

We label by ϕ the map B −→ V in the fibre product above, and note

for use below that since V is an open subset of Xn, B is an open subset of

B1×· · ·×Bn. For a point b ∈ B, we identify it with its image in B1×· · ·×Bn,

writing b = (q1, . . . , qn). Thus points of B parameterize instructions q1,. . . ,

qn for blowing up X at qj = ϕj(qj), j = 1, . . . , n (with qi �= qj if i �= j)

and continuing to blow up over each qj as specified by the j-th set of discrete

data.

In order to construct the universal family Y over B, we take advantage of

the fact that if Y1 −→ X and Y2 −→ X are two blowups over different points

of X, then the fibre product Y1 ×X Y2 is the simultaneous blow up of X at

both points. For each j, j = 1,. . . , n, let YB
j denote the base change of Yj to

B, pulling back via

B ↪−→ B1 × · · · ×Bn
prj−→ Bj ,

where prj again denotes projection onto the j-th factor. By pulling back the

morphism Πj , we get morphisms ΠB
j : YB

j −→ B×X for each j. We set Y to

be the fibre product of the Y ,B
j over B ×X:

(8.3.2) Y := YB
1 ×B×X YB

2 ×B×X · · · ×B×X YB
n .
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Thus, the fibre of Y over a point (q1, . . . , qn) ∈ B is

(8.3.3) Y(q1,...,qn)
= Y1,q1 ×X Y2,q2 ×X · · · ×X Yn,qn .

Since the points q1,. . . , qn are distinct, this fibre product is the simultane-

ous blowup of X over q1,. . . , qn, with further blowups over each qi as specified

by qi.

We define Π: Y −→ B×X to be the natural map from Y to B×X induced

by (8.3.2) and set ψ : Y −→ B to be the composition of Π and projection onto

the first factor. Finally, we define the exceptional divisors Ei,j by first pulling

back each such divisor in Yj to YB
j to produce a divisor EB

i,j in YB
j , and then

pulling back to Y .

The properties (a)–(g) follow readily from the corresponding properties in

Proposition 8.2. Specifically:

(a) By Proposition 8.2(h) each of the maps Πj : Yj −→ Bj ×X is proper,

and therefore each of the morphisms ΠB
j : YB

j −→ B × X, obtained

as the base change of Πj to B, is also proper. From the definition

(8.3.2) of Y as a fibre product, we conclude that Π: Y −→ B × X

is proper. Since X is projective, pr1 : B × X −→ B is proper, and

therefore ψ = pr1 ◦Π is proper.

We next show that ψ is smooth of relative dimension 2, which may

be checked locally on Y . Let ϕB
j : B −→ X be the pullback ϕj to B (so

ϕB
j = prj◦ϕ). By Proposition 8.2(h) each of the Πj is an isomorphism

over the complement of Γϕj
⊂ Bj ×X, and, pulling back, we conclude

that each of the maps ΠB
j is an isomorphism over the complement of

ΓϕB
j
⊂ B ×X, with Γ again denoting the graph of a morphism.

For a point b ∈ B, by the definition of V (“qi �= qj”) we have that

ϕB
i (b) �= ϕB

j (b) if i �= j, i.e., each of the graphs ΓϕB
j
, j = 1, . . . , n, is

disjoint. Thus, a point z ∈ B ×X lies on at most one, and possibly

none, of the ΓϕB
j
.

Given y ∈ Y , set z = Π(y) ∈ B×X. By the previous remark, there

exists j so that for all i �= j, z �∈ ΓϕB
i
(and possibly even when i = j).

Thus, over a neighbourhood U of z, each of the maps ΠB
i : YB

i −→
B ×X is an isomorphism when i �= j. By the definition (8.3.2) of Y
as a fibre product, we conclude that (Y ,Π) is isomorphic to (YB

j ,ΠB
j )

as objects and morphisms over U ⊂ B × X. Via this isomorphism,

ψ = pr1 ◦Π is equal to pr1 ◦ΠB
j near y.
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Let ψB
j : YB

j −→ B be the base change of ψj : Yj −→ Bj from Bj

to B. The base change diagram

YB
j

��

ΠB
j

��

�

ψB
j

		

Yj

Πj

��

ψj





B ×X ��

pr1

��

�

Bj ×X

pr1

��

B �� Bj

shows that pr1 ◦ ΠB
j = ψB

j . By Proposition 8.2(a) ψj is smooth of

relative dimension 2, and hence the same is true for ψB
j . By the local

equality ψ = pr1 ◦ΠB
j above, we conclude that ψ is smooth of relative

dimension 2 near y. Since y ∈ Y was arbitrary, this finishes the proof

of (a).

(b) By Proposition 8.2(b), each of the subschemes produced in the case

n = 1 is a P1-bundle over the base Bj . The Ei,j are obtained by

pulling these families back to B, and are therefore also P1-bundles

over B.

(c) By Proposition 8.2(c), each ϕj is smooth and surjective; hence the

product map ϕ1 × · · · × ϕn is smooth and surjective. Thus, ϕ, being

the base change of this map, is also smooth and surjective. Again

by Proposition 8.2(c), each of the Bi is smooth and irreducible, and

hence the product B1 × · · · × Bn is smooth and irreducible. Since B

is an open subset of this product, B is also smooth and irreducible.

(d) For a point b = (q1, . . . , q
n) ∈ B, by (8.3.3) we have that Yb is the

fibre product of Y1,q1 through Yn,qn over X. By Proposition 8.2(d),

each of the Yj,qj is obtained from X by blowing up at ϕj(qj) = qj , and

then continuing following the pattern of the j-th set of discrete data.

Since the ϕj(qj), j = 1, . . . , n, are disjoint, the fibre product Yb is the

surface obtained by performing all of these blowups simultaneously.

(e) Given such a surface Y , by Proposition 8.2(e) for each j = 1,. . . , n

there is a point qj in Bj such that Yj,qj is the blowup of X starting at

qj and continuing in the same way as Y was blown up over qj . Setting

b = (q1, . . . , qn) it follows from (8.3.3) that Y = Yb and πb = π.

(f) By Proposition 8.2(f), if X is defined over k, then so are all the Bj ,

and therefore so is the product B1×· · ·×Bn. The open set V ⊂ Xn is

defined over k, and therefore so is B (being given by the fibre product

(8.3.1)). By Proposition 8.2(f) again, each of the Yj is defined over

k, as are the maps to Bj × X. Pulling these back to B, it follows
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that the YB
j and maps YB

j −→ B × X are also defined over k, and

therefore Y and Π, being defined by the fibre product (8.3.2), are also

defined over k. Finally, invoking Proposition 8.2(f) one more time,

each of the families of exceptional divisors in each Yj is defined over

k, and therefore their pullbacks, the Ei,j , are also defined over k.

(g) If the k-points of X are Zariski dense, then by Proposition 8.2(g),

the k-points of each Bj are Zariski dense, and therefore the k-points

of B (being an open subset of B1 × · · · × Bn) are also Zariski dense.

Furthermore, again by Proposition 8.2(g), each of the maps Bj(k) −→
X(k) is surjective, so that the map B1(k)×B2(k)× · · · × Bn(k) −→
Xn(k) is surjective. By the definition of B as the fibre product (8.3.1),

it follows that B(k) −→ V (k) is surjective.

This completes the proof of Proposition 8.3. �
We record two further results we will need before proceeding to the proof

of Theorem 8.1.

Lemma 8.4. Let Y be a smooth projective surface, g : Y −→ P2 a bira-

tional morphism, and set L = g∗OP2(1). Then c1(L)
2 = 1, and Hi(Y, L) =

Hi(P2,OP2(1)) for all i ≥ 0.

Proof. Since g is birational, deg(g) = 1, and therefore c1(L)
2 = c1(OP2(1))2

= 1. By the projection formula we have

Rig∗L = Rig∗(g
∗OP2(1)) = (Rig∗OY )⊗O

P2
OP2(1)

for all i ≥ 0. On the other hand, since g is a proper birational map between

smooth varieties, we also have g∗OY = OP2 and Rig∗OP2 = 0 for i ≥ 1.

Together these give g∗L = OP2(1) and Rig∗L = 0 for i ≥ 1. The Leray spec-

tral sequence for computing H•(Y, L) thus degenerates immediately, giving

Hi(Y, L) = Hi(P2, g∗L) = Hi(P2,OP2(1)) for all i ≥ 0. �
Lemma 8.5. Let ψU : YU −→ U be a flat proper morphism and LU a line

bundle on YU . For a point b ∈ U we use Yb for the fibre Yb := ψ−1
U (b) and

Lb for the restriction of LU to Yb. We assume that there is an integer m

so that h0(Yb,Lb) = m for all b ∈ U , and that there is a b0 ∈ U such that

H0(Yb0 ,Lb0) is base point free on Yb0 .

Then there is a nonempty open subset U ′ ⊆ U such that H0(Yb,Lb) is base

point free on Yb for all b ∈ U ′.

Proof. On each Yb we have the natural evaluation homomorphism

H0(Yb, Lb) ⊗ OYb
−→ Lb, and Lb is basepoint free if and only if this map

is surjective. This evaluation homomorphism globalizes to a map of bundles

on YU .

Since h0(Yb,Lb) = m for all b ∈ U , by the theorem on cohomology and base

change ([EGA III2, Corollaire 7.9.10], [Ha, Theorem 12.9], or [Mu, Corollary
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2, p. 50]) ψU∗(LU ) is a vector bundle of rank m on U . The natural adjunction

morphism ψ∗
UψU∗(LU ) −→ LU restricts on each fibre to be the evaluation mor-

phism above (this again uses the theorem on cohomology and base change).

Let Q be the cokernel of this map, so that we have the exact sequence of

sheaves on YU :

ψ∗
UψU∗(LU ) −→ LU −→ Q −→ 0.

By right exactness of the tensor product, restricting the sequence above to Yb

gives the exact sequence

H0(Yb,Lb)⊗OYb
−→ Lb −→ Q|Yb

−→ 0.

Therefore Lb is basepoint free on Yb if and only if Q|Yb
= 0. Let W ⊆ YU

be the support of Q, and Z = ψU (W ). Then W is closed in YU since Q is a

coherent sheaf, and Z is closed in U since ψU is proper. Thus Lb is basepoint

free if and only if b ∈ U ′ := U − Z, and U ′ is nonempty since b0 ∈ U ′. �
Proof of Theorem 8.1. We start by proving (a).

Let p1,. . . , pn be the points of indeterminacy of f . By blowing up at each

pj , and then possibly further blowing up at points of the exceptional divisors

over these points (and on points of further exceptional divisors) we obtain

a birational morphism π : Y −→ X resolving f . Let g : Y −→ P2 be the

resulting birational morphism to P2, and set L = g∗OP2(1). By Lemma 8.4

we have c1(L)
2 = 1, h0(Y, L) = 3, and h1(Y, L) = h2(Y, L) = 0.

For j = 1,. . . , n, let sj be the number of blowups over pj (including the

first blow up at pj), and let Ei,j , i = 1,. . . , sj be the exceptional divisors

over pj , listed in the order they appear when blowing up. The Picard group

of Y is the direct sum π∗ Pic(X)
⊕(

⊕n
j=1 ⊕

sj
i=1 Z[Ei,j ]

)
, and therefore there

are unique integers ri,j and a unique line bundle M on X such that L =

(π∗M)(
∑n

j=1

∑sj
i=1 ri,jEi,j).

Let Y , B, Π, ψ, and Ei,j (j = 1,. . . , n, i = 1,. . . , sj) be the parameter

spaces, maps, and divisors obtained by applying Proposition 8.3, with the

j-th discrete data being that which describes the pattern of blowups over pj
used to resolve f above. By Proposition 8.3(e) there is a point b0 ∈ B such

that Yb0 = Y and πb0 = π.

On Y we set L := (Π∗pr∗2M)(
∑n

j=1

∑sj
i=1 ri,jEi,j) where pr2 : B×X −→ X

is the second projection. For a point b ∈ B we denote by Ei,j,b and Lb

the restrictions of Ei,j and L respectively to Yb. Thus Lb is the line bundle

(π∗
bM)(

∑n
j=1

∑sj
i=1 Ei,j,b) on Yb, and for b0 ∈ B we have Lb0 = L.

In this way we have constructed a smooth family of blowups of X, with a

flat family of line bundles which specialize to Y and L. By flatness, for each

b ∈ B we have c1(Lb)
2 = c1(L)

2 = 1 and χ(Yb, Lb) = χ(Y, L) = 3.
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Since h1(Yb0 ,Lb0) = h1(Y, L) = 0, and h2(Yb0 ,Lb0) = h2(Y, L) = 0, by

semicontinuity of the dimension of the cohomology groups on fibres ([Mu,

Corollary, p. 50] or [Ha, Theorem 12.8]) there is a nonempty open set U ⊂ B

containing b0 such that h1(Yb, Lb) = h2(Yb,Lb) = 0 for all b ∈ U . Thus, for

b ∈ U we have h0(Yb,Lb) = χ(Yb,Lb) = 3.

Set YU = ψ−1(U), with ψU denoting the restriction of ψ to YU , and let

LU := L|YU
. By Lemma 8.5 there is a nonempty open set U ′ ⊆ U such that

for each b ∈ U ′ the three dimensional space of sections H0(Yb,Lb) is basepoint

free on Yb. This space of sections therefore induces a morphism gb : Yb −→ P2,

necessarily birational since c1(Lb)
2 = 1.

By Proposition 8.3(c) ϕ : B −→ V is surjective and B irreducible, and

hence the nonempty open set U ′ ⊆ B dominates V . Therefore for a general

(q1, . . . , qn) ∈ V ⊂ Xn there is a point b ∈ U ′ with ϕ(b) = (q1, . . . , qn), and

hence a birational map fI := gb◦π−1
b , fI : X ��� P2, with indeterminacy locus

I = {q1, . . . , qn}. This proves (a).
We now turn to the proof of (c), and the k-rationality of the constructions.

If X is defined over k, then by Proposition 8.3(f), Y , B, the morphisms Π

and ψ, and the exceptional divisors Ei,j are also all defined over k. The only

ingredient in the argument which is not automatically defined over k is the

line bundle M . But if the initial birational map f : X ��� P2 is defined over k,

then so is the resolution Y −→ P2, and one concludes that M is then defined

over k.2 Therefore the line bundle L on Y used in the argument for (a) is also

defined over k.

Proceeding with the argument, we arrive at a nonempty open set3 U ′ ⊂
B such that for all b ∈ U ′ the resulting Yb has a birational morphism to

P2, and thus that X has a birational map to P2 with indeterminacy locus

(q1, . . . , qn) := ϕ(b) ∈ V .

If b ∈ U ′(k) then the surface Yb, and, from above, the line bundle Lb are

defined over k, and thus so are the resulting birational morphism Yb −→ P2,

and birational map X ��� P2.

To prove (c), it is therefore sufficient to show that the image of U ′(k) in

V is Zariski-dense. By Proposition 8.3(g) we have that B(k) is Zariski-dense

in B. Since U ′ is a nonempty open subset of B, we conclude that the U ′(k)

is Zariski-dense in B, and since ϕ : B −→ V is a surjective map between

irreducible varieties, that ϕ(U ′(k)) is Zariski-dense in V .

2The individual divisors Ei,j on Y need not be defined over k, but if pj and pj′ in

X are in the same Gal(k/k) orbit, then ri,j′ = ri,j for all i = 1,. . . , sj = sj′ , and so

M = π∗L(−
∑n

j=1

∑sj
i=1 ri,jEi,j) is defined over k.

3Since L is defined over k, the set U ′ is also defined over k, although this does not matter
for the argument.
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This finishes the proof of Theorem 8.1. �
If Z ⊂ X(k) is a finite set of points, it is possible to improve the conclusion

of Theorem 8.1(d) to obtain a birational map f : X ��� P2 so that f is defined

at each point of Z, and f−1 is defined at each point of f(Z). For instance,

see Lemma 3.2, the result of combining Theorem 8.1 and Proposition 8.6.

Proposition 8.6. Let Y be a smooth projective surface defined over k,

Z ⊂ Y (k) a finite set of points, and let f : Y −→ P2 be a birational morphism

defined over k. Then there exists a blowup π : Ỹ −→ Y at finitely many points

of Y (k) disjoint from Z, and a birational morphism g : Ỹ −→ P2 also defined

over k, such that for each point z ∈ Z, g−1 is defined at g(z). (Here, via π,

we are identifying Z ⊂ Y with the corresponding subset of Ỹ .) The points

blown up at are general, and may be taken to avoid any proper closed subset

W ⊂ Y .

To explain the idea of the argument, suppose that f : Y −→ P2 is the

blowup of P2 at a single (k-rational) point with exceptional divisor E, and

that Z = {z}, with z ∈ E. We want to find a different morphism to P2

where E is not contracted. To do this let Ỹ be the blow up of Y at two

further k-rational points q1 and q2 of Y such that f(z), f(q1), and f(q2) are

not on the same line in P2. Thus Ỹ is the blowup of P2 at three points. The

associated Cremona transformation, blowing down the proper transforms of

the lines connecting each of the three pairs of those points, sends E to a line

in P2, and thus has the property we are looking for.

In general (i.e., returning to the general setup of the proposition), for each

z ∈ Z, f−1(f(z)) may be a tree of P1’s, and we will have to successively apply

basic quadratic Cremona transformations to get at the component of the tree

containing z, and do this for each z ∈ Z.

Proof. The argument is inductive, and we first define an invariant N(f, Z)

to keep track of the steps. Let h : S −→ S′ be a birational morphism of

smooth projective surfaces, and s a point of S. If h is an isomorphism near

s then we set �(h, s) = 0. Otherwise, let T := h−1(h(s)) be the tree of h-

exceptional divisors through s. This tree has a distinguished component E1,

the exceptional divisor from first blowup of S′ at h(s) when resolving h−1.

Since T is a tree, for any component E′ of T there is a unique sequence of

components from E1 to E′. If s lies on a single component E′ of T , we set

�(h, s) to be the number of components in the path from E1 to E′. If s lies on

two components of T , we do the same, choosing for E′ the component closest

to E1, i.e., the component which gives the shorter path. Thus, for example,

�(h, s) = 1 if and only if s ∈ E1. Finally we set

(8.6.1) N(f, Z) :=
∑
z∈Z

�(f, z).
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Therefore N(f, Z) ≥ 0, and N(f, Z) = 0 if and only if f is an isomorphism

near each point of Z, i.e., if and only if f−1 is defined at each point of f(z),

z ∈ Z.

For use below, we record the following formula. Suppose that f factors

as f = γ ◦ ψ with ψ : Y −→ V a map to a smooth surface. The tree of f -

exceptional curves through z is obtained from the tree of γ-exceptional curves

through ψ(z) by adding the tree of ψ-exceptional curves through z, as well

as possibly adding other ψ-exceptional trees lying over points different from

ψ(z). The computation of � only depends on the path from the distinguished

component to the component containing z, and we conclude that for any

z ∈ Y we have

(8.6.2) �(f, z) = �(ψ, z) + �(γ, ψ(z)).

We now establish the inductive step. Assuming that N(f, Z) > 0 we will

construct a map π : Y1 −→ Y , the blowup of Y at two general k-rational

points of Y disjoint from Z, and a birational morphism f1 : Y1 −→ P2 such

that �(f1, z) ≤ �(f, z) for each point z ∈ Z, and such that for at least one of

the points the inequality is strict. (Here via π we are again considering Z as

a subset of Y1.) Thus, N(f1, Z) < N(f, Z), and iterating this procedure we

arrive at a morphism g with N(g, Z) = 0. By the remark after (8.6.1), such

a g satisfies the conditions of the morphism to be constructed, proving the

proposition.

The diagram below, whose pieces we will fill in as we go along, is useful

for keeping track of the elements of the argument; the subscripts on the two

copies of P2 are used to distinguish between them.

(8.6.3)

Y1
π ��

ψ1

��

f1

��

�

Y

ψ0

��

f

��

V1
α ��

γ1

��

V0

γ0

��

P2
1

δ ����� P2
0

We are assuming that N(f, Z) > 0, and so there is a z0 ∈ Z with �(f, z0) ≥
1. Fix one such z0, and let γ0 : V0 −→ P2

0 be the blowup of P2
0 at f(z0), with

exceptional divisor E1. By the structure theorem for birational maps between

smooth surfaces (e.g., [B, Théorème II.11]) f factors as f = γ0 ◦ψ0 for a map

ψ0 : Y −→ V0.
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We split Z into two subsets, setting

Z ′ := {z ∈ Z | f(z) = f(z0)}
(
= {z ∈ Z | ψ0(z) ∈ E1}

)
,

and setting Z ′′ to be the complement of Z ′ in Z.

For u, v ∈ Y (k) let Luv be the line in P2
0 passing through f(u) and f(v)

(assuming f(u) �= f(v)). We choose q1 and q2 in Y (k) general enough so that

the following conditions are satisfied:

(i) q1 and q2 do not lie on any of the exceptional curves of f (and thus

do not lie on any of the exceptional curves of ψ0).

(ii) f(z0), f(q1), and f(q2) do not lie on the same line in P2
0 .

(iii) None of the lines Lz0q1 , Lz0q2 or Lq1q2 pass through f(z), for any

z ∈ Z ′′.

(iv) The proper transforms of Lz0q1 and Lz0q2 in V0 do not meet E1 at

any of the points ψ0(z), for any z ∈ Z ′.

For z ∈ Z, if �(f, z) �= 0 then (i) implies that q1, q2 must be different from

z. If �(f, z) = 0 then z ∈ Z ′′, and (iii) implies that q1, q2 are also different

from z. Thus q1, q2 are disjoint from Z. As stated in the proposition, and for

use inductively, we may also fix a proper closed subset W ⊂ Y and require

(v) q1 and q2 are not in W .

When applying the argument inductively, W should at least contain the

exceptional divisors of previous applications of the inductive step, so that the

end Ỹ resulting from the process is the blowup of the original Y at finitely

many points (as opposed to being an iterated blowup, blowing up at points

of exceptional divisors).

We set π : Y1 −→ Y to be the blowup of Y at q1 and q2, and α : V1 −→ V0

to be the blowup of V0 at ψ0(q1) and ψ0(q2). Since ψ0 is a local isomorphism

at q1 and q2 (by (i)), Y1 is also the fibre product Y1 = Y ×V0
V1, and we set

ψ1 : Y1 −→ V1 to be the induced morphism.

The variety V1 is the blowup of P2
0 at three distinct points, with γ0 ◦ α the

blowdown map. We let γ1 : V1 −→ P2
1 be the other blowdown map associated

with this configuration, blowing down the proper transforms of Lz0q1 , Lz0,q2 ,

and Lq1q2 in V1, and define f1 := γ1 ◦ ψ1.

Setting δ := γ0 ◦ α ◦ γ−1
1 , the resulting birational map δ : P2

1 ��� P2
0 is a

standard quadratic Cremona transformation and makes the bottom square of

(8.6.3) commutative, where defined.

Set Z1 := π−1(Z). Since q1 and q2 are disjoint from Z, π identifies Z1 with

Z, but we use this notation to emphasize that the maps now start from Y1.

The decomposition Z = Z ′�Z ′′ into disjoint subsets induces a decomposition
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Z1 = Z ′
1 � Z ′′

1 . Since Z ′
1 is nonempty (Z ′ contains z0), to see that f1 satisfies

N(f1, Z1) < N(f, Z), it suffices to verify

(a) �(f1, z) = �(f, π(z)) for each z ∈ Z ′′
1 , and

(b) �(f1, z) = �(f, π(z))− 1 for each z ∈ Z ′
1.

Let U0 ⊂ P2
0 be the complement of Lz0q1 , Lz0q2 , and Lq1q2 . Let Eq1 and

Eq2 be the exceptional divisors of α over ψ0(q1) and ψ0(q2) respectively, set

F1 := α−1(E1), and let U1 be the complement of the three lines γ1(Eq1),

γ1(Eq2), and γ1(F1) in P2
1 .

Both γ0 and α are isomorphisms over U0, and similarly γ1 is an isomorphism

over U1. Moreover, δ induces an isomorphism U1
∼−→ U0 (i.e., δ and γ1 are

also isomorphisms over U0). Thus, over U0, the bottom square of (8.6.3) is

the diagram of isomorphisms

γ−1
1 (U1)

α

∼
��

γ1�
��

γ−1
0 (U0)

γ0�
��

U1
δ

∼
�� U0

Since the top of (8.6.3) is a fibre square, we conclude that π induces an

isomorphism

(8.6.4) f−1
1 (U1)

∼−→ f−1(U0)

of varieties over U0. For any z in Z ′′
1 , condition (iii) shows that f(π(z)) is

in U0, and thus also that f1(z) is in U1. From the definition, �(f1, z) can be

computed on the inverse image of any neighbourhood of f1(z), and similarly

�(f, π(z)) can be computed on the inverse image of any neighbourhood of

f(π(z)). By (8.6.4) we may assume these neighbourhoods are the same, with

the isomorphism taking f1 to f . It follows that for z ∈ Z ′′
1 we have �(f1, z) =

�(f, π(z)), proving (a).

Let U ⊂ V0 be the complement of q1 and q2, so that α is an isomorphism

over U , and hence by the top fibre square in (8.6.3), π induces an isomorphism

(8.6.5) ψ−1
1 (α−1(U))

∼−→ ψ−1
0 (U)

of varieties over U . By (ii), q1 and q2 do not lie on E1, and so E1 ⊂ U . For

a point z ∈ Z ′
1, by definition ψ0(π(z)) ∈ E1, and in particular ψ0(π(z)) ∈ U

Applying the reasoning at the end of (a), with (8.6.5) in place of (8.6.4) we

conclude that �(ψ1, z) = �(ψ0, π(z)).

Since ψ0(π(z)) lies on E1, the unique curve contracted by γ0, we have

�(γ0, ψ0(π(z))) = 1. By (iv) the exceptional divisors of γ1 (the proper trans-

forms of Lz0q1 , Lz0q2, and Lq1q2) do not meet F1 = α−1(E1) at ψ1(z) =
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α−1(ψ0(π(z))), and so �(γ1, ψ1(z)) = 0. Combining these and using (8.6.2)

we obtain

�(f1, z)
(8.6.2)
= �(ψ1, z) + �(γ1, ψ1(z)) = �(ψ1, z) = �(ψ0, π(z))

(8.6.2)
= �(f, π(z))− �(γ0, ψ0(π(z))) = �(f, π(z))− 1,

proving (b).

It is clear from the k-rational nature of the construction that if f is defined

over k, then so is f1, and therefore so is the morphism g produced as the

result of iterating the inductive steps. �
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schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ.
Math. 28 (1966), 5–255. MR217086

[Fa] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern
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