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Preface

These lectures were given at the Fields Institute as part of a one-semester pro-
gram on automorphic forms from January 2003 to July 2003. They were addressed
to graduate students and non-specialists who wanted to see how the exotic theory
of the Langlands program can be applied to classical questions arising in analytic
number theory. As such, we have never aimed for completeness or for technical
precision. Rather, we aimed to convey how the methods can be applied to such
questions. Wherever possible, we have given precise references for the interested
reader so that he/she may fill in the required details, if needed.

It is assumed that the reader has some familiarity with analytic and algebraic
number theory, though often, we give a quick review. For the most part, the lectures
can be read easily and some understanding can be gained of how the role analytic
number theory plays in the Langlands program.

We use as motivating themes, the Sato-Tate conjecture, the Ramanujan conjec-
ture, the Selberg eigenvalue conjecture and the celebrated Artin’s conjecture about
holomorphy of non-abelian L-series. There are further applications but time has
not permitted us to go into details. In some places, other applications are briefly
indicated.

These lectures complement the other two courses of Cogdell and Kim. Indeed,
the technical details of the Rankin-Selberg method as well as converse theory are
recurring themes of these lectures also. Moreover, the holomorphy of symmetric
power L-functions combined with sophisticated methods of averaging from analytic
number theory imply surprising results that often have important consequences to
questions with a classical flavour. Wherever possible, we indicate some of these
consequences and indicate how further refinements can be made.

It should be stressed that these lectures are somewhat informal and in some
places lack “textbook rigor”. Nevertheless, we hope they will be useful to both
student and researcher alike.

M. Ram Murty, Kingston, Ontario.
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LECTURE 1

The Sato-Tate Conjecture

1 Introduction

There are many significant applications of the theory of symmetric power L-
functions to questions arising from classical analytic number theory. In these notes,
we will touch upon only a few of them. In this lecture, we will discuss the Sato-Tate
conjecture and discuss the relationship between this conjecture and the analytic-
ity of the symmetric power L-functions. In the next lecture, we will discuss the
Ramanujan conjecture and the Selberg eigenvalue conjecture.

Let FE be an elliptic curve over a number field F'. For each prime ideal v of F
where E has good reduction, the number of points of £ mod v is given by

N@)+1—a,
where N (v) denotes the norm of v and a, satisfies Hasse’s inequality
las| < 2(N ()2,

Thus, we can write
ay = 2N ()2 cos b,

for a uniquely defined angle 6, satisfying 0 < 8, < w. The Sato-Tate conjecture is a
statement about how the angles 8, are distributed in the interval [0, 7] as v varies.

To study the distribution of the angles 8,, attached to an elliptic curve, we have
to consider two cases. The first case is when the elliptic curve has CM (complex
multiplication). This refers to the well-known fact that the ring of endomorphisms
of an elliptic curve E is either isomorphic to the ring of ordinary integers or is an
order in an imaginary quadratic field k. In the former case we say E has no CM
(no complex multplication) and in the latter case, we say E has CM.

Let us now look at the CM case. For simplicity, let us suppose that k is
contained in F', the field over which E is defined. Then, the sequence {6,,—6,},
as v ranges over the places of F, is uniformly distributed in [—m,7]. If F' does not
contain k, the situation is a little more complicated with a slightly different density
function that has been determined (see [39]).

In the non-CM case, the distribution is unknown at present. We will show
below that the angles are not uniformly distributed when F' = Q. Sato and Tate
(independently) predicted another law of distribution for the angles 6,,. More pre-
cisely, they predict that

B
#v:Nv)<z:0, € (a,0)} ~ (%/ sin? 6d0> wp ()

as ¢ tends to infinity, where 7 () is the number of prime ideals of F' whose norm
is less than z.
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206 1. The Sato-Tate Conjecture

2 Uniform distribution

We will begin with a general discussion of the classical setting for uniform
distribution. A sequence of real numbers {x,} is called uniformly distributed
(modulo 1) if for any pair of real numbers «a, 8 with 0 < a < § < 1, we have

#{n<N: zn€(a,p)}~(B-a)N
as N tends to infinity.

Theorem 1.1 (Weyl’s Criterion) The sequence {xy} is uniformly distributed
mod 1 if and only if for allm > 1,

Z e27rz'ma:n — O(N)
n<N
as N tends to infinity.
Proof (Sketch) First suppose that the sequence is uniformly distributed. We
will show the condition is necessary. Let us observe that any continuous function

f can be approximated by a linear combination of step functions so that for any
given € > 0, we have

sup |f(z Zc,x; )| <€,

z€[0,1]

where x1 denotes the characteristic functlon of the interval I. Then,

> flan) = Zcz 3" x1.(zn) | +O(eN).

n<N n<N
By hypothesis,

Z X1: (zn) = p(L;)N + o(N),
n<N
where p(I) denotes the measure of the interval I. Now the sum

Z cip(I;)

is a Riemann sum and as our epsilon gets smaller, the sum converges to the integral

LU@M

Nme%/f

n<N

Thus, we have proved that

In particular, we can apply this to cos mz and sin mx to deduce the required result.

For the converse, we approximate xy(z) by trigonometric polynomials (which
can be done by the Stone-Weierstrass theorem). In fact, one can be more precise.
For any positive integer K, there are trigonometric polynomials m(z) and M (x) of
degree < K such that

m(z) < xr(x) < M(z)

Z ameQﬂimx, M(:II): Z bm62m'mz

|m|<K |m|<K

with



3. Wiener-lIkehara Tauberian theorem 207

with
ag = by = pu(I) + O(1/K)
Therefore,
#n<N: @, €I} =) xi(an) = w(I)N +o(NV),
n<N
as required. O

Theorem 1.1 says that to establish uniform distribution of the angles 6,, we
need to study the exponential sums

E : 627rzm9,,‘
N()<z

In the CM case, Hecke proved a theorem that implies that the series
x() \
L = 1-—
0 =11 ( N<v>s>

with x(v) = €2™¥ | extends to an entire function for ®(s) > 1 and does not vanish
there. The same applies to L(s, x™) for each natural number m. Thus, we can now
apply a classical Tauberian argument to deduce the uniform distribution of the 6,.
We briefly review the relevant theorem in the next section.

3 Wiener-Ikehara Tauberian theorem

Theorem 1.2 Let f(s) = Yo | a,/n’, with a, > 0, and g(s) = >~ bu/n®
be two Dirichlet series with |b,| < ap, for all n. Assume that f(s) and g(s) extend
analytically to R(s) > 1 except possibly at s = 1 where they have a simple pole with
residues R and r (which may be zero) respectively. Then

Z by ~rx
n<lz
as x tends to infinity.

The classical application of this theorem is the deduction of the prime number

theorem. Let -
SRR P ())
f(s) = —Z(S) = Z e
where A(n) = logp when n = p® for some prime p and zero otherwise. Taking
g(s) = f(s) in the above theorem allows us to deduce the prime number theorem

ZA(n) ~

n<z

n=1

using the well-known fact that the Riemann zeta function does not vanish on R(s) =
1.

One can apply this theorem to L(s,x™) above and deduce the uniform distri-
bution of the angles after a routine application of partial summation.

In a fundamental paper written in 1970, Langlands [30] outlined an approach
to the Sato-Tate conjecture using the theory of automorphic forms. (It is possible
that some of these ideas may have had roots in the earlier work of Sato and Tate.)
To simplify matters and notation, we will give only a rough outline of this approach
and relegate to later lectures the more precise details.



208 1. The Sato-Tate Conjecture

Firstly, Langlands suggested the automorphic viewpoint. Thus, the conjecture
of Sato-Tate was applicable in a larger context of modular forms, or more gener-
ally, to automorphic forms on GL(2). For example, one could take the celebrated
Ramanujan 7 function attached to the unique newform of weight 12 and level 1,
and write

7(p) = 2p*'/? cos b,

One expects the same Sato-Tate distribution for these angles 8, as well.
Here is a brief description of the strategy of Langlands [30]. For each natural
number m, put

m a;n,jﬂz -1
En) = [T (1 - %)
v j=0
where a, = e, 3, = e . Langlands indicated that the theory of automorphic
forms predicts that each L,,(s) should extend to an entire function. In fact, if each
L,,(s) extends analytically for ®(s) > 1, and does not vanish there, then by the
Tauberian theorem, the Sato-Tate conjecture follows. Kumar Murty [39] showed
that the non-vanishing hypothesis can be dispensed with because a very elegant
argument extending the classical one of Hadamard and de la Vallée Poussin allows
one to show non-vanishing from having analytic continuation to R(s) > 1.

In the case F' is the rational number field, it is now a theorem due to Wiles
and others that L (s) is essentially the L-function attached by Hecke to a classical
cusp form of weight 2. Thus, in this particular case, the Langlands conjecture is
established. The non-vanishing of Li(s) on R(s) = 1, is a result due to Rankin.
For m = 2, Rankin-Selberg theory allows one to deduce that Ly(s) extends to an
entire function for R(s) > 1. The continuation of Lz(s) to the entire complex plane
was established by Shimura [59] in the case F' = Q and in the general case by
Gelbart and Jacquet [10]. In very recent work, Kim and Shahidi [23] showed that
L3(s) extends to an entire function and later, Kim, showed the same for L4(s).
For the cases 5 < m < 9, Kim and Shahidi have shown that L,,(s) extends to a
meromorphic function for all s € C which is regular for ®(s) > 1, except in the case
of m =9, Lg(s) may have a pole at s = 1.

Let us remark that Rankin’s result on Ly(s) is already sufficient to show that
in the non-CM case, the Sato-Tate distribution does not hold. Also, if Lg(s) were
to have a pole at s = 1, then the Sato-Tate conjecture would be false, as we will
indicate below.

4 Weyl’s theorem for compact groups

Serre [53] gave the following reformulation of the Weyl criterion for uniform
distribution in the context of a compact group. Let G be a compact group and
X its space of conjugacy classes. Let p denote its normalised Haar measure. A
sequence of elements {z,,} with z, € X is said to be uniformly distributed in X if
for every continuous function f with compact support, we have

D),

as N tends to infinity.
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Theorem 1.3 (Wey!’s criterion for compact groups) Let G be a compact
group with Haar measure p. A sequence {x,} is uniformly distributed in G if and

only if
3" x(@a) = o(N)
n<N

for every irreducible character x of G.

The classical case in Theorem 1.1 corresponds to G = R/Z because in this case,
the irreducible characters are given by x — e2™™me.

Serre gave an interesting reformulation of this criterion in the context of L-
functions. Let F be a field and for each place v of F, let z, € G. For each
irreducible representation p : G — GL,(C), we let

L(s, p) = | [ det( — p(z2) Nv™*) 7",

Theorem 1.4 (Serre) Suppose that for each irreducible non-trivial represen-
tation p of G, the L-function L(s,p) extends to an analytic function for R(s) > 1.
Then, the sequence {z,} is uniformly distributed in X if and only if L(s,p) does
not vanish on R(s) = 1.

In the context of the Sato-Tate conjecture, one considers the group SU(2,C)
where the conjugacy classes are parametrized by
e 0
X9:(0 e‘ia)’ OSQSW.
The image of the Haar measure in the space of conjugacy classes of SU(2,C)
is known to be 5
= sin® 6d6.
0
The irreducible representations of SU(2,C) are the symmetric power represen-
tations p,, of the standard representation p; of SU(2,C) into GL(2,C). We find
that L(s, pm) as defined above by Serre coincide with L,,(s) defined in section 3.
Since tr p,,(Xp) = sin(m + 1)8/ sin 6, the Sato-Tate conjecture is equivalent to
the assertion
Z sin(m + 1)6,

S = ol (@),

N(v)<z
for each natural number m. So far, this has been established only for m < 8 by the
work of Kim and Shahidi [23].






LECTURE 2

Maass Wave Forms

1 Maass forms of weight zero

If we consider modular forms without the holomorphy condition but insist that
our function is an eigenfunction of the non-Euclidean Laplacian:

0? o?
A=y =+ ==
Y (63:2 + 0y?
we arrive at the notion of real analytic forms. We may write such a function, as a
function of the variables z,y and since f(z + 1) = f(z), we have

z,y) = Y an(f,y)e>™".

Suppose that Af = Af. This gives us a condition on the coefficients a,(f,v),
namely that they satisfy

2

d
_yZd_yzan(fa ) ()‘ 4m’n? 2)an(fa )
One can renormalize and show that

F@,y) = ac(Hy’ +ag(Hy' ™ + Y an(F)VyKir(27|n|y)e*
n#0
where

o .
Kir — / e Y cosh t—z’rtdt
—00

with A = 1/4 + r2.
Maass proved that the series

i an(f)

n=1 n?
extends to a meromorphic function for all s € C analytic everywhere except possibly
at s = 0 and s = 1, and satisfies a functional equation.

We have the celebrated Ramanujan conjecture that for any € > 0, a,(f) =
O(n®). The Selberg conjecture is that A > 1/4, or equivalently, r is real and not
purely imaginary.

In his 1970 paper, Langlands [30] interprets the Selberg conjecture as a Ra-
manujan conjecture “at infinity” and thus puts both conjectures on an equal con-
ceptual footing. This viewpoint has roots in earlier work of Satake.

By the work of Kim and Shahidi [24], we know that a, = O(n"/%*) and that
A > .238 by the recent work of Kim and Sarnak [22]
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212 2. Maass Wave Forms

2 Maass forms with weight

Let us fix a discrete subgroup I' of SLy(R). Here we consider functions on the
extended upper half plane which satisfy the following:
(i) f(v2) = ((cz + d)/|ez + d|)* f(z) for all

a b
VE(C d)EF,

(if) f is an eigenfunction of
92 0?

.0
Ap = —y2 (@ + 6—yz> +zky%

(iii) a growth condition of the form f(x +iy) = O(y") for some N > 0 as y
tends to infinity.

One can show the existence of “shift” operators that will reduce the study of
these spaces essentially to the study of weight zero or weight one Maass forms.
Thus, often in the literature, (see for example [4] ) the focus is on weight zero or
the weight one case.

If f is a classical modular form of weight k, then it is not hard to show that
y*/2 f(2) is a Maass form of weight k with eigenvalue k(2 — k)/4. Therefore, the
study of Maass forms includes the study of modular forms from this perspective.

The set of Maass forms of fixed weight and eigenvalue is a vector space over C.
Moreover, we have an involution acting on this space given by the map

v f(2) = f(=2).
A form is called even if 1o f = f and odd if t o f = —f. Therefore, the space of
Maass forms decomposes as a direct sum of two subspaces consisting of even forms

and odd forms respectively.
The L-series

i an(f)
n=1 n’
extends to an entire function and satisfies a functional equation:

or () o () 26

_ le_sr(l—s-;é—r>F(l—s;—5+r>L(1_S’7)

where § = 0 or 1 according as f is even or odd and @ > 0.

For T' = SLs(Z), Selberg [52] proved that A > 1/4 and this was extended
to congruence subgroups of sufficiently small level by Vignéras [60]. For general
arithmetic groups, Selberg showed that A > 3/16.

3 Eisenstein series

The simplest example of a Maass form is given by the Eisenstein series

E(z,s) = w*sr(s)% 3 y

2s "
(memz(o0) ME T

This series converges for £(s) > 1 and we clearly have
E(yz,5) = E(z,s)

S
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for all v € SL2(Z). In addition, it is easily verified that
AE(z,s) = s(1 — s)E(z,s)

so that E(z, s) is a weight zero Maass form with eigenvalue s(1 — s). Since E(z, s)
is periodic with period 1, we can derive its Fourier series:

oo

E(z5)= Y a(y,5)e™™

rT=—00

and )
ar(y,s) = / E(z + iy, s)e 2™y,
0

We do the obvious. We insert the series expansion for E(z, s) into the integral and
apply Fubini’s theorem. First, the contribution to E(z, s) from m = 0 is

m °T(s)y*¢(2s).
This is part of ag(y, s) but not all of ag as we shall see below. Now suppose m # 0.

Since (m,n) and (—m,—n) give the same summand in E(z,s), we may suppose
m > 0. Thus,

o0 [eS) 1
ar(y,s) =m °L(s)y’ Z Z / [(mz 4+ n)? + m?y®] " > dy.
m=1n=—o0 0
If we put n = ¢gm + d with 0 < d < m, the sum becomes

Z Z / [(mz + d)? + m*y?] " *e™*""qz.

m=1d mod m

We change variables: © = u — d/m to get

o oo
Z m—23/ (u2 +y2)—se—2friru ( Z e27rid7"/m) du.
m=1 -

R d mod m

The innermost sum is zero unless m|r in which case it is m. Thus, the sum becomes

Zmlf&s/

m|r -

oo
(u2 + y2)756727rz'rudu

If r =0, we get
o

T T()y*((2s — 1) / (u? +y?)~*du

—o0
which is equal to
78 /al(s — 1/2)y" ~5¢(2s — 1).
Thus, the constant term (on applying the functional equation for {(s)) is equal to
ao(y,s) = °T'(s)C(28)y® + n° 10(1 = 5)¢(2 — 28)y* °.
If r #0, then we get

ar(y, 8) = 2lr[* 2012 (|r]) VT, -1 /2(2mlrly)

0'1_23(7') = Z ml=28.

m|r

where
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One can show that a.(y,s) = a,(y,1 — s) and ro_s5(r) = 7 %095(r) from
which the functional equation is easily deduced.

4 Upper bound for Fourier coefficients and eigenvalue estimates

We begin with the elementary observation
1 24100
e~l/7 = —/ T(s)x’ds
2mi 2—io0
which is easily demonstrated by contour integration and Stirling’s formula. Hence,
—-njz _ s
Zan =5 /(2)F(s)f(s):1: ds

where
o
s) = Z an/n’.
n=1

Now suppose that a, > 0 and f(s) is absolutely convergent for R(s) > 1+ e.
Moving the line of integration to R(s) = 1 + € gives

oo
Za"efn/:l: — O(ﬂfl+6).
n=1

Thus, for any individual term in the sum, we have
ane—n/z — O(SL'H_E).

Choosing z = n, we deduce that a, = O(n'*¢).

It may look as if we were wasteful in the above analysis and a finer argument
would give a better estimate. This, however, is not true as can be seen by consid-
ering

X k-1
fs)=> o = (ks —k+1).
n=1
In this example, we have
an = Qn'~°)

for any € > 0 and so, we cannot reduce the exponent in the penultimate analysis.
Now consider

Ly, (s) := L(s,m,7m) HH < % Jﬂ])

p j=1

where we are ignoring the finitely many Euler factors that need to be modified
corresponding to the ramified factors.
Consider the L-function

L(Sﬂﬂ.,lrm ®Fm) = H L(S,ﬂ-, rk)'
k<2m, k odd

The proof of this identity is equivalent to the trigonometric identity
1+ sin30  sin 56 sin(2m — 1)6 (sin m6‘> >

sin @ sin @ sin @ sin @

which is easily proved by induction and left as an exercise for the reader.
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Thus, the series L(s, 7,7, ® Tp,) is a Dirichlet series with non-negative co-
efficients. If we now suppose that for each m > 1, L(s,n,r,,) is analytic for
R(s) > 1 + ¢, then its p-th coefficient (for p prime) is O(p'*¢) by the argument
given above. But the p-th coeflicient is easily calculated to be

2

m

m—j 3j
Zap Byl -
=1

Moreover, |apB,] = 1 so that if the Ramanujan conjecture is false, one of these
has absolute value greater than 1. Without any loss of generality, suppose it is .
Then, in the above summation, a;* dominates the sum so we deduce

e |*™ = O(p'*).
Taking, 2m-th roots, we obtain
ay = 0@ */2m),

and letting m tend to infinity, we obtain «, = O(1) which is the Ramanujan
conjecture.

As we remarked above, this reasoning cannot be sharpened. However, using the
fact that each of the L-functions L(s, ,r,,) satisfies a functional equation, one can
improve the estimate using a classical result of Chandrasekharan and Narasimhan
[5]. This result says that if a, > 0 and f(s) = Y., a,/n® is convergent in some
half-plane, has analytic continuation for all s except for a pole at s = 1 of order k
and it satisfies a functional equation of the form

Q°A(s)f(s) =wQ'*A(l ~ 8)f(1 - s)
where Q > 0 and
As) = [[T(eus + Bs)

then oA
Z an = 2Py_1 (log z) + O(z 2471 log" ™' 1)
n<lz

where A = )", ;. Taking differences, we deduce that

an = O(ngﬁw_Li logF=" n).

In [42], this result is stated with a typo on page 525. (On lines 3 and 7 of [42],
(2A—1)(24 4+ 1) should be (24 —1)/(2A + 1) in both instances.)

A similar reasoning can be applied to obtain bounds in the Selberg eigenvalue
conjecture. If 7 corresponds to a Maass form with eigenvalue A, then the Gamma

factors in the functional equation of L(s, 7, ) will have the following shape:

_m 8—)\]' . . _1 2
F(s,w,rm)—jl;IOF< 5 ), Aj =i(m —2j)r, )\—4+r.

One can also study oscillations of Fourier coefficients of modular forms as well
as Dirichlet series constructed out of Kloosterman sums. This we will take up in
later lectures.






LECTURE 3

The Rankin-Selberg Method

1 Eisenstein series and non-vanishing of ((s) on R(s) =1

I want to indicate a proof of the non-vanishing of {(s) on R(s) = 1 which uses
the theory of Eisenstein series and as a consequence does not use the Euler product
of ((s) as most conventional proofs do. The idea was used by Jacquet and Shalika
[17] in their general result about the non-vanishing on R(s) = 1 of automorphic
L-functions associated with GL,,.

Recall that

8

E(z,s) = w—sr(s)% 3 y

.
(o0 MZ T
Notice that we may also write this as
_ 1
E(z,5) = m°I(s)5¢(2s) > S(ha)®
YET\T

where I', is the stabilizer of the cusp at infinity.
We showed last time that

E(z,s) = n°T(s)((28)y" + 7" 'T(1—s)¢(2 - 2s)y'
+ Z |r|s_1/201_23(|T|)\/§stl/2(27T|7'|y)627riTw
r#0

where oy(n) =3, d” and

1 [ —1y /9 . dt
=} [T
0

One can prove directly that K,(y) = K_,(y) and 7°0_3,4(r) = r°02,(r) which
allows us to deduce the functional equation of E(z,s) from its Fourier expansion.

This result lies at the heart of the Langlands-Shahidi method of analytic con-
tinuation of Eisenstein series. It is also at the core of the Rankin-Selberg method
of analytic continuation which we outline below.

Now suppose that {(1 + itg) = 0 for some to real. Then, ((1 — itg) = 0 also.
We put s = (1 +14t9)/2 in E(z,s). Then, the constant term vanishes and we get a
Maass cusp form:

. .- 7 < — 7T -1 dt
E(za (1 + Zto)/2) = 4\/@2 r t0/20—’ito (T) COS(271’T.’L‘) /0 e v tl—ito/2°

Using standard estimates for the integral, one can show that the sum is O(e~)
for some ¢ > 0. Hence the constant term of E(z, (1 +ito)/2) is zero and we have a
genuine Maass cusp form on our hands.

217



218 3. The Rankin-Selberg Method
In particular,
1
/ E(z + iy, (1 + ito)/2)dz = 0.
0
Mulitplying this equation by y°*~2 and integrating from 0 to oo, we get
o] 1
/ / E(z + iy, (1 +ito) /2)y* 2dxdy = 0.
o Jo

Now we use the fundamental idea that

U'yEFoo\F ’Y(F\H) = [07 1] X [07 OO]:

usually referred to as the “unfolding” of the domain of integration. Thus,

/ Bz, (1 + ity) /2)3(2)* 224
A0\

Y=o
Y

YEL o \I'

As E(~vz,s) = E(z,s), we may change variables and get:

sdzdy

0= E(z, (1+ito) /2)S(v2)
veg\l“ I\H y? I'\H

dzdy

y?’

E(z,(1+it0)/2)E(z, 5)

valid for all s € C.
From the definition of E(z,s) (or its Fourier expansion) we see that

E(z,3) = E(z,s).
Therefore, putting s = (1 — itg)/2, we get from the penultimate equation,

,ded
oz/ Bz, (1 + ito) /2) 2222
I\H Y

Thus, the integrand is identically zero. That is, we have proved that ((1 +itg) =0
implies that

E(z,(1+ity)/2) = 0.

We now show that this is a contradiction. We do this by showing that some Fourier
coefficient of E(z, (1 4 itg)/2) is non-zero. That is, we need to check

oo
—7T u+u_1 du
/0 e v S 20

, we have to show that

/00 efwry(eg+e_9)fit09d6 ?é 0.

—00

If we set u = e

In other words, it suffices to show that
o0 6 —6
/ e ™+ costefdl # 0.
0
This integral is of the form

/ e~¥(@+a™) 005040, a > 1.
0
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We would like to determine its behaviour as y tends to infinity. To do this, we
can apply Laplace’s saddle point method: if f has two continuous derivatives, with
f(0) = f'(0) =0 and f"(0) > 0, and f is increasing in [0, A], then

A
I(z) = —efOgp o [T
(z) /0 e dt 2277(0)

as z tends to infinity and provided I(zg) exists for some zg. A slightly generalized
version of this says that if g is continuous on [0, A], then

A
e FO gt ~ T
| awe = 0a ~ 900, [52s

Now choose f(t) = a® + a=t — 2, g(t) = cost so that

oo
e / e (@’ +a7"=2) 005070 ~ e 272]0g ay/ T
0 x

from which we see that E(z, (1 + itg)/2) # 0, as required. This gives the desired
contradiction.

It is possible to deduce the non-vanishing of the above integrals directly without
appealing to Laplace’s saddle point method. With some work, it may also be
possible to derive a zero-free region for ((s). These ideas are further developed in
the PhD thesis of M. McKee.

2 Explicit construction of Maass cusp forms

The first examples of Maass cusp forms were constructed by Maass [34] in 1949.
Alternate treatments of this subject can also be found in [4] and [37].

Let F be a quadratic field over Q with narrow class number one. (This means
that the order of the narrow ideal class group is one, where the equivalence relation
for narrow ideals is modulo principal ideals with a totally positive generator.) Let
1 be a Hecke character. Such a character has the form ¢ = 91y for some some
finite order character ¢y with conductor f. We will consider only characters with
f = OpF so that 9(a) = ¥ (a) where « is a totally positive generator of a. Let v
and e be as follows: v is purely imaginary, and e, equals 0 or 1. Then

Yoo () = sgn(z1)sgn (@) |21 /22

where z; and z2 are the Galois conjugates of x. It is necessary to have that
Yoo(n) = 1 for n € Of. The fact that F' has narrow class number one implies there
is a fundamental unit € > 1 whose norm is —1. This forces v = min/2loge with m
an ordinary integer. If m # 0, we get a family of Maass cusp forms:

04(2) =Y ¥(a)IK,(2rN(a)y) cos 2rN (a)z

ife=0.
If e = 1, we may take

0y(2) = > _ 1(a)y/yKy(2wN(a)y) sin 2 N (a)z.

Maass [34] (see p. 112 of [4] also) shows that each of these is a cusp form for
To(D) where D is the discriminant of the quadratic field F. The corresponding
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eigenvalue is
1 m2m?
i 4(loge)?”
This construction is really a special case of Langlands functoriality, namely
automorphic induction.
The fact that 8, is a Maass form is proved using converse theory in pp. 112-118
of [4]. In general, one expects a map

A(K) — A(k)

from the space of automorphic representations of GL,,(Ax) to the space of auto-
morphic representations of GL,q(Ay) where d = [K : k] where the map is given as
follows. Let II be a cuspidal automorphic representation of K and suppose

L(s, 1) = [ ] L(s, ),

where the product is over all places w of K. One expects that there is a = which is
a cuspidal automorphic representation of k£ so that

Ls,my) = H L(s,IL).
wlv

This special case of functoriality has been established by Arthur and Clozel [1]
when K/k is cyclic.

3 The Rankin-Selberg L-function

The unfolding technique of section 1 has wider ramifications. It can be used
to establish the analytic continuation and functional equation for a large class of
L-functions which fall under the umbrage of Rankin-Selberg theory.

Let F : H — C be a I-invariant function which is of rapid decay (that is,
F(z +iy) =O(y~) for all N > 1.) Let

1
C(F,y) :/ F(z+iy)dz, y>0
0
be the constant term of the Fourier expansion. Let
L(F,s) = / C(F, y)ysy—2
0

be the Mellin transform of C(F,y).

Theorem 3.1 Let L*(F,s) = n~°T'(s)((2s)L(F,s). Then, L(F,s) has analytic
continuation to the whole complex plane, reqular everywhere except for a simple pole
at s = 1 with residue equal to

3 F(z)dz.
™ JT\H
The function L*(F,s) is regular for all s # 0,1 and satisfies a functional equation

L*(F,s) = L*(F,1 — s).
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Proof The key idea is to use the decomposition described earlier. We have

oo 1
L(F,s) = / / F(z +iy)y* dady.
o Jo

Decomposing the domain of integration as in the “unfolding” technique, this be-

comes dud
s dady

= > [ e

YET o\ v(T\H) y

This can be rewritten as

S [ Foh) Y -

< drdy
F(2)(S(72))
yerar /T\H Y

I'\H y?

YET o \I'

because F' is I'-invariant. Moving the summation inside the integral shows that this

is equal to
dzd,
F(2)E(z,5) =52
T'\H Y

As E(z,s) has analytic continuation and functional equation, we get the same for
L(F,s). O

We now give a few examples on how to apply this theorem.

In the special case that f is a cusp form of weight k, we may apply the above
result to F(z) = y*|f(2)|? which is easily checked to be I'-invariant.

A straightforward computation shows that the constant term is

%)
yk Z |an|26747rny‘
n=1

The Mellin transform of the constant term is

* k+s .- 2 —4nwny dy —s—k+1 - |a’”|2
Yy Zlanl e —2:(47I') F(S+k_1)ZW
0 n=1 Yy n=1

This proves:
Theorem 3.2 Let f be a cusp form of weight k for SL2(Z). If

o]
— § :an627rznz
n=1

is its Fourier expansion at infinity, then the Dirichlet series

5
n=1 n?

has a meromorphic continuation to the whole complex plane. In fact, if
2
P(s) = m 22T ()D(s + k — 1)¢ Z 'a"|

then 1(s) extends to a function which is regular for all s € (C except at s = 1 where
it has a simple pole and residue equal to

3 k dedy
/F\Hy )

™

(£, 5)-
5) = o(1—s).

=1|oa

Moreover, 1(s) satisfies the functional equatzon ]

—~
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If we apply the theorem of Chandrasekharan and Narasimhan [5] mentioned in
the previous lectures, we deduce that

3 lonf = 2(4, 0)ak + Ok 21%)

because twice the sum of the coefficients in the Gamma factors (or equivalently the
degree in the sense of Selberg) is equal to 4. By taking a single summand in the
sum on the left, we deduce that a,, = O(n*/2~1/5). The same technique applied to
Maass forms gives us a, = O(n®/19).

If we take f and g to be cusp forms (or even with one of them a cusp form),
we consider

which is I'invariant. If
and

are the respective Fourier expansions at infinity, then the constant term is easily
computed to be equal to

o0
yk E Anbne 4™,
n=1

One could also take forms of different weights k; and k; and consider

y B2 (2)9(z).

In the end, applying Theorem 3.1 we deduce that

oo _
anbn
Z ns'

n=1

A suitably normalized version of this series (with appropriate I'-factors, {(2s) and
so forth) extends to a function which is regular everywhere except possibly at s = 1
where it may have a simple pole with residue equal to

2(1,9)

Thus, if f and g are orthogonal to each other, then the normalized series extends
to an entire function.
Kronecker’s limit formula states that

1
. _ - | = ~ . 2
tisg [ B(s,5) — 25| = og(e"/4m) - 2108(valn )
where 7(z) = ¢/ ][22, (1 — ¢"), with ¢ = €2>™%. If f and g are Hecke eigenforms
with 7, 7, being the associated automorphic representations, the Kronecker limit
formula allows us to write down an exact formula for the special value L(1, 7 Q).
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4 Rankin-Selberg L-functions for GL,

The general theory for GL,, was initated and developed by Jacquet, Piatetski-
Shapiro and Shalika [18], Shahidi [55] and finally completed by Moeglin-Waldspurger
[35]. If m; and mo are cuspidal automorphic representations of GL,, and GL,, of the
adele ring over the rationals (say), then the Rankin-Selberg L-function is defined
by the Euler product

L(S,’]Tl ® 7]'2) = HL(S;Wl,p ® 7T27p)
p
where for all but finitely many primes p, the Euler factors are given by the formula

a(.l)a(.2) -1
L(SJTFI,}) & 7T2,p) = H 1_ Ls],p
irj p
and

o\ !
L(s,mp) =[] (1 - %)
K3
for r = 1,2. It is possible to define the Euler factors at all the places so that the
final product converges for R(s) > 1. The completed L-function turns out to be
entire unless
Ty 2T & |det|it

for some real number ¢ in which case the function is regular everywhere except at
s = 1 — it where it has a simple pole.






LECTURE 4

Oscillations of Fourier Coefficients of Cusp Forms

1 Preliminaries

Last time, we discussed the Rankin-Selberg L-function on GL,, X GL,, over a
number field. This is one of the most powerful methods in the theory that enables
us to deduce the meromorphic continuation of the symmetric power L-functions.
The general strategy has been first to derive a meromorphic continuation, then to
establish holomorphy everywhere and finally by some form of converse theory (again
involving some application of the Rankin-Selberg method or the Langlands-Shahidi
method) to establish the automorphy of the desired L-function. In this way, one
hopes to inductively deduce the holomorphy of the symmetric power L-functions.
This strategy has worked so far for only small dimensions and is perhaps illustrated
as follows.

Following conventional notation, we shall now denote by L(s,m,r,,) the sym-
metric power L-function attached to a cuspidal automorphic representation = of
G Ly (Ar) which we had previously denoted by L,,(s). As mentioned earlier, L(s, 7w x
7) decomposes as

Cr(s)L(s,m,r2)

where (r(s) is the Dedekind zeta function of F. This already gives a meromor-
phic continuation of L(s,m,r2). When F' = Q and 7 corresponds to a holomorphic
modular form, Shimura [59] had established the holomorphy of L(s,m,r2) by ex-
tending the Rankin-Selberg method and making ingenious use of the classical theta
function. Gelbart and Jacquet [10] extended this work to all cuspidal automor-
phic representations of GLs(Ar) and in addition proved the existence of a cuspidal
automorphic representation IT of GL3(Ar) such that

L(s,II) = L(s,m,r2).

This II is often called the Gelbart-Jacquet lift of 7.
But now, we can apply the Rankin-Selberg method to II. We find,

L(s,TT1 x M) = (p(s)L(s, m,m2)L(s, T, T4)

and thus, we immediately deduce the meromorphic continuation of the 4-th sym-
metric power L-function.
We could also consider

L(Saﬂ' X H) = L(S,7T,’I'1)L(8,7T,’I‘3)

and this gives us the meromorphy of L(s, 7, 73). One expects that for each L(s, 7, ry,)
there exists a cuspidal automorphic representation II,, on GLy,+1(Ar) such that

L(S7Hm) = L(S,Tf‘,’rm).

225
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Now by the Clebsch-Gordon formulas for SU(2,C), we have
Tm @Tp = Tm+n D T"m+n—2 D---D r|m—n\

which is essentially the trigonometric identity

(sin(m + 1)0> (sin(n + 1)0) _ i sin(m +n —2j)0

sin 0 sin @ , sin
7=0
for n < m. We leave this as an exercise for the reader.

The essential point is that we may use the Rankin-Selberg method to induc-
tively deduce the meromorphic continuation of the symmetric power L-functions
once we have shown the automorphy property. Since we know that each of the
symmetric cube and fourth power L-functions are automorphic by the work of
Kim-Shahidi [23] and Kim [20], we can inductively obtain the meromorphic contin-
uation of the L,,(s) for m < 8. Finer analysis of the location of the poles leads to
the holomorphy of the L,,(s) for m < 8 (which uses the Langlands-Shahidi method
of Eisenstein series).

2 Rankin’s theorem

The discussion below applies equally well to Maass forms. However, for the
sake of clarity, we will specialise to the case of classical Hecke eigenforms.
Given a normalized Hecke eigenform of weight k, we let a(n) be the n-th Fourier
coefficient and write
a(p) = 2p* /2 cos b,

In general, we have
/2 8in(a + 1),
sin 6,

ap?) = )+ Y

as can be easily checked from the recursion for the Hecke operators. Thus, for
example, if a = 1, we retrieve our formula for a(p) above. Now

sin(a + 1)0 ei(a+1)9 _ efi(a+1)9 potl _ ya+1

sinf el — =0 T z—y
i

with z = e,y = e ¥ so we see from

'Z.a+1 _ya+1 _ .a a—1 a
7 =zt ly 44y
r—=y
that
i 1
w‘ <a+l.
sin @
Therefore,

la(n)| < n*=D2d(n)

where d(n) is the number of divisors of n. The maximal order of d(n) is easily
determined (see for example, [12]) and we have

1

for some suitable constant ¢ > 0.
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In 1973, Rankin [45] investigated if this is the optimal error term. He proved

that
. la(n)|
limsup G573

In the same paper, Rankin indicated that if the Sato-Tate conjecture is true, then

1
a(n) = Q4 <n(k1)/2 exp <%))

for some ¢ > 0. This Q-estimate was finally proved unconditionally in [41]. We
briefly indicate Rankin’s argument. By the Sato-Tate conjecture, we have

#{p<z:6,€[-7/6,7/6]} > cm(x).

= +400.

Put
N = H p.
»<s

6p€E[—7/6,7/6]

Then
aN)=[[ alp).

opeiZ6,m/6]

Because
la(p)| = 2p*V/?| cos 6, > V3pk/2

we obtain

la(N)] > N*1/2(/3)7(),

Now, by partial summation

log N = Z logp > ciz.

p<=z
Op€[—7/6,7/6]
Also, by Chebycheff’s estimate
log N < coz.

In any case
la(N)| > N*=1)/2(y/3)colog N/loglog N

and the omega theorem is deduced from this.

But since we don’t have the Sato-Tate conjecture in its entirety until all the
symmetric power L-functions are shown to be entire, (no pun intended) it makes
sense to ask how much of the Sato-Tate conjecture can be proved if we only had
analyticity of L, (s) for m < R (say). For instance, can we aim for Chebycheff type
estimates for the Sato-Tate problem based on only partial information. The goal
of this lecture is to indicate how we may deduce the following.

Theorem 4.1 Suppose that L,(s) extends to an analytic function for R(s) >
1/2 for all r < 2m + 2. Then, each of the statements

1. for any 6 >0, =6 < 2cosf, < 5(m2—+2);

2. for any e >0,
4m + 2
2 cosf — =€
|2cosfp| >4/ T2 6
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3. for any € >0, 2cosb, > B, — € where

B 1 2m +2) | 7
'Bm_{4(m+2)<m+l)} ’

holds for a positive density of primes.

Corollary 4.2 Setting 6 = /2/(m+2) in (1), we deduce that there is a
positive density of primes p satisfying

2
1/ < cosf, < 2

Putting m = 1 in (2), we deduce

Corollary 4.3 For a positive density of primes p, we have
la(p)| > (V2 — e)pk~D/2.

This last result is what we need to obtain Rankin’s oscillation theorem without
the Sato-Tate conjecture. For this, we need the analyticity for (s) > 1/2 for each
of L.(s), r <4.

In 1981, Shahidi [55] proved that L3(s) and L4(s) are analytic in this region.
Recently Kim and Shahidi [23] established that these are in fact automorphic L-
functions and hence entire. This is more information than we need and it is quite
possible that this can be used to refine our results.

3 A review of symmetric power L-functions

0=TI (1- %)

p j=0

Let us look at

Now a, = e¥r, B, = e~" so that the Euler factor is

r i(r—27)0,\ 1
I(EE—
i=0 P

If L,.(s) is analytic for ®(s) > 1, and non-vanishing there, we may apply the
Tauberian theorem to deduce

p
Z Zei(r—zj)ap = o(x/ log;v)-

p<z \Jj=0

By an easy exercise,
T

Sin(T’ + 1)0 — Z ei(T*Qj)a

sin 6
i=0

Z M = o(z/log x).

sin 6
p<z P

so that for r > 1,

Let in(n + 1)0
sin(n +
Un(COS 0) = W
and T}, (cos ) = cosnf be the Chebycheff polynomials of the first and second kind
respectively.

?
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We have the identity
2T, (z) = Up(x) — Up—a(x).
Thus, for n = 2,
2 Z Ty(cosb,) = Z Us(cosb,) — m(z)
p<z p<z
which implies
1
Z T»(cosbp) = (—5 + o(1))w(x).
p<z

We also have
Z Ti(cosbp) = o(z/logx).
p<z

Now we can write powers of the cosine function using Chebycheff polynomials of
the second kind:

’
r

(2cos8)" =2 (") T, _on(cos8), ' =[r/2].
k=0 k
From this identity, we deduce

!
T

Z(Z cosfp)" = 22 (2) ZTr_gk(COSGP).

p<z k=0 p<z

Each of the inner sums is o(z/log z) unless r — 2k = 0 or 2 in which case it is w(x)
or —m(x)/2 respectively. Hence, if r is not even, the sum is o(z/logz). The final

result is
3 (2c0s,)>" = (— (7«2_711) + (2:)) a +0(1))1ozm'

p<z
1 2r
r+1\r /)’

The term inside the brackets is

We can state the final result as:

Theorem 4.4

or 1 2r
g@cos@p) =T ( ) (1+0(1))

as T tends to infinity.

For example, when r = 1, we get

x
2(2 c0s8,)? = (14 o(1))
e log x
and for r = 2,
4 _
D (2cosy)" = (2+ 0(1))10“.

p<z
This last result immediately gives that for a positive proportion of primes, we have

[2cos6,| > 24 — €
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which is greater than 1. From this result, we may deduce the Q-result stated earlier
See [41] for further details.

4 Proof of Theorem 4.1

To prove Theorem 4.1, we need to obtain finer information about sign changes
and so forth, and a slightly subtler analysis is needed

We will need the following combinatorial identities

Lemma 4.5

S - ()

J r+1
i(_l)j (r) (2j+2> 2-% 2= (2r+2> @
= iJ\ji+1)ji+2 — r+2\r+1)°

Now consider the polynomial

where a and b will be chosen later. Now

Pn(z) = (22 — (a + b)z + ab) i( ) —1)mdgm—i

7j=0
so that (after some calculation) we find

log z

m

% retemtn =3 () 0 (75 (75) 455 (5)

j+2\ j+1 j+1\ j

which by the lemma is

(—1)m 2m + 2 a_b+ 1
m+1 2 m+2)/)°

We conclude that

me(2C059p)~(—1)m(2m+2) (a—b+ 1 ) il

a<e m+1 2 m+2) logx

Now, we examine the graph of P,,(z).
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The graph of P, (z)

Choosing a = —4, b so that ab > —2/(m +2) if m is even and ab < —2/(m + 2)
if m is odd, we deduce that

T
ZPm(Zcosﬁp) > @
p<z

This means that a positive proportion of primes will have
a<2cosf, <b

so we get
2

—_5<2 _c
d <2cosbp, < 5m+2)

as stated in Theorem 4.1.
The remaining part (2) of the Theorem are obtained by using the polynomial

Qm(z) = 2™ (2 - 7)
where 7 is to be chosen. As before, we deduce

1 2m 4+ 2 0% 2m z
sz@COSHp)N <m+2 <m+1> m+1 (m)) log z

p<z

as ¢ tends to infinity. Again, examining the graph of @, (z), we see that if

m+1 (2m+2\ [(2m\ " 2(2m + 1)
= — €= ——*~
7 m+2\ m+1 m m+ 2

we get (2).
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The graph of @, (z)

Finally,
Z |2 cosf, >t >

p<lz

N =

2(2 cosf,)?m+?
p<z

which implies that

1 2 2
Z (2 Cosep)2m+1 pe T ( m + ) T

v o (m+2)\m+1 /) logz’

Thus, for a positive proportion of primes

2cosf, > 1 2m +2 o
P 4m+2) \ m+1 “

By choosing better polynomials, Rankin [46], Serre and Shahidi [58] have obtained
refined results. Most notable is Rankin’s result[46] that for some § > 0, we have

(k—1)/2 z
Z|an/n | < Toga)®"

n<lz
Here is a sketch of Rankin’s argument. Let
b, = an/n(k’l)/z.

For each r, define the series

¥r(s) = [I(1 —2(cosr6,)p™* + p~>*) .

Then,
C(8)2(s) = La(s)
and
C(8)¥2(8)ha(s) = La(s),

as can be easily checked by comparing the Euler factors of both sides.
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By Gelbart-Jacquet [10] (for Ly(s)) and Shahidi [55] (for L4(s)) we see that
C(8)¢2(s)

and
C(5)¢p2(s)ha(s)
are holomorphic and non-vanishing for ®(s) > 1.
Rankin [46] shows that there are functions K, L, M in (3 satisfying

K-L=Ff)+1

such that if
ut(0) = K + 2L cos 26 + 2M cos 46

then

|2 cosb|* < ut(6)
and 51

o8-
F(B) = T(zﬁ +3%77) —1.

We consider the Dirichlet series

=14
n=1 P
where -
Af(s) =140t B)p" + D _(v+1)p*
v=2

so that for all real values of s,

°°b25
Z"

n=1

(8) b2 (s)"9pu(s)™ Hs(s)

where Hj(s) is holomorphlc and on-zero for N(s) > 1/2. By an extended version
of the Tauberian theorem (due to Delange) we obtain

Z a ~ cx(log x)K-L-1

n<z

with ¢ # 0, and if K — L < 1 (note that there is a typo on p. 175, line -13 of [58]).

We now use the fact that K — L = F(8) +1 and for 8 = 1/2, F(1/2) =
?(\/ﬁ +3v3) — 1 < 0 as is easily checked. This completes the proof (sketch) of
Rankin’s theorem.

Rankin’s theorem was used by Murty-Murty[40] in proving a crucial non-
vanishing theorem which was an essential ingredient for Kolyvagin’s theorem about
finiteness of Tate-Shafarevich groups of modular elliptic curves with Mordell-Weil
rank < 1.






LECTURE 5

Poincaré Series

1 Poincaré series for SLy(Z)

The Poincaré series for SLo(Z) are defined by

az+

1 )
Grlz) =5 D (cotd)hemiredi
(e,d)=1

where a, b are any integers such that ad—bc = 1. Observe that if r = 0, this reduces
to the classical Eisenstein series Ey(z) (upto a constant). Thus, the Poincaré series
are to be viewed as generalisations of Eisenstein series. It is easy to see that
the inner summand does not depend on the choice of a solution. Indeed, by the
Euclidean algorithm, any other solution for (a,b) has the form (a + tc, b + td) and

(a+tc)z+ (b+td) az+b

= +t, te€eZ
cz+d cz+d
so that , ,
e2mir( g +t) _ p2mir(2ZEg)

We can rewrite the series in a more invariant form by setting

. b
j(v,2) =cz+d, v= (Z d)

and then
Gr(2) = Z j(’Yaz)_ke%rir(rYZ)'
YET o \T'
The important thing to note is that G.(z) is a modular form of weight k. To see
this, let 6 € I' = SLy(Z). Then,

G(02)= 3, 02) kermrtria),
YET o\
Now, we have the so-called cocycle relation:
3(76,2) = j(7,62)3(6,2)

as is easily verified, so that

: _ j(v9,2)
J(v,02) = 7(6.2)

and
Gr(02) = j(6,2)° ) j(y6,z) ket
YEL o \I'
= j(3,2)"G.(2).
Holomorphy is easy to verify using standard tests of complex analysis. In
addition, G(ic0) = 0 if r > 1. We conclude that for every r > 1, G,.(z) is a cusp

235
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form of weight k. Thus, Poincaré series give explicit constructions of cusp forms.
For a detailed treatment of this theory, we refer the reader to Rankin’s book [44]
(especially Chapter 5).

Now let f be any cusp form of weight k. We would like to compute the inner
product (f,G).

First observe that e?7* = 27 . ¢=27Y gq that

e2miz — 6727rzz i 6727ry — 67271'1(2).

Thus,
r dzdy
2

e = [ 2 ST

V€M \T

I ko dedy
= cz + d)F f(2)e2mir(72) A
/F\HF“Z\F( V1) lcz +d|?k y2?

£ (r2)ke2mir T
T\H )

YEl\I'

— / f(z)%(z)ke—%rirfdxgy
YET L \T v(T\H) Yy

1
/oo / f(CE + iy)yke—Qﬂ'irze—%rry dw;iy .
0o Jo Y

Now from the Fourier expansion of f(z):

o
f(Z) — Z ane27rin:c . g—2mny
n=1
we see that the z-integral picks up the r-th Fourier coefficient. Thus,

oo
(f; Gr) = ar/ e_4ﬂryyk_2dy-
0
By setting 47ry = t in the integrand and simplifying, we deduce

Theorem 5.1 Let f be any cusp form of weight k for T'. Then,
_ T'(k-1a,
(f,Gr) = W
An important corollary is:

Corollary 5.2 Every cusp form is a finite linear combination of Poincaré
series Gr(z).

Proof The set of Poincaré series spans a closed subspace in the space of cusp
forms. If f is a cusp form not in this space, all of its Fourier coefficients must vanish
by the previous theorem. Thus, the orthogonal complement is zero. O

As an example, consider the case k = 12. Each of the G,(z) is a cusp form
of weight 12. But any cusp form of weight 12 must be a constant multiple of A,
Ramanujan’s cusp form. Thus,

G.(z) = ¢, A(2).
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What is ¢,.? By the above theorem,
r(11)r(r)

(Aa Gr) = (47_",)11

=c. (A A).

Hence,

(47r)1t / 12 ———dzdy
= A .
)= G0 [ e E

2 Fourier coefficients and Kloosterman sums

Emanating largely from the work of Petersson [43] in the 1930’s and Selberg
[61], an explicit formula can be given for the Fourier coefficients of G, (z). This
striking formula involves the Kloosterman sums and their appearance has opened
new connections to the Selberg eigenvalue conjecture as well as applications to clas-
sical questions of analytic number theory. We now derive this remarkable formula.

We begin by writing

oo
GT(Z) — Zgrnemrinz_
n=1
Then,
1
Grn :/ Gr(m)e—Qwinw‘
0

More precisely, for reasons of convergence, we should consider
146
/ GT (Z)e—27rinz
i6
with § > 0, but we leave this technical modification to the reader. We have

1 ! —k 2mir(22t%) —2rina
grn =5 Z /0 (cx +d)~"e (&59) dx.
(e,d)=1
Put cz + d =t. The argument in the exponential becomes
r(a
> (G -a+0)
t (c( )+
since ad — bc = 1. Thus,

1 1 2mi e 2mi (1
_ = - 7t (nd+ar) -k —=*(§+nt
9rn = D) E B E e [m t™"e ( )dt

d(mod c)
70 ad=1(mod ¢)

n nd+ar nt r
c c c tc

(t—d) =

because

/1 t—ke%i(nd+ar—nt)e— 2mir dt
(c,d)y=1"0
depends only on d (mod ¢). Writing d as do+ (m+1)c with varying m, we transform
the integral from 0 to 1 into an integral from —oo to co. This integral turns out to
be a Bessel function:

oco+-ci 27
/ t™* exp (_%z (g + nt)) dt = 2n(n/r)*F=V/2 ], (4nv/rn/c)
—oo+-ci

where

Ju(2) L/ k=13 (-1/8) gy
C

= 21
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where C is the unit circle. The sum
S(ryn,e)= 3 ewniren

d(mod c)
ad=1(mod c)

is called a Kloosterman sum. Using this notation, we obtain the beautiful formula
due to Petersson:

Grn = (n/r)k=1)/2 {5m n Wi Mjkil (@)}

c=1
where 6,,, denotes the Kronecker delta function.

We have already noted that the Poincaré series span the space of cusp forms.
Thus, to prove the Ramanujan conjecture, it suffices to show that

9rn = O(n%;l_’_e)

for every r. This is tantamount to showing that the expression in parentheses in
the above sum is O(n°®).
Selberg, using this expression and Weil’s estimate for Kloosterman sums:

1S(r,m, )| < d(e)eM2(r, m, )2
as well as the bound

Ji_1(z) < Amin(z*t, 271/2)
obtained that

9rn = O(nk/2_1/4+€)'

Note that this is better than what we obtained earlier by the Rankin-Selberg
method. Since the estimate was obtained crudely, Selberg felt that there must be
cancellation among the Kloosterman sums. This led him to formulate the following
conjecture (which was also arrived at independently by Linnik):

Conjecture (Selberg-Linnik)
S(r,n,c .

c<lz
for x > ged(r,n)Y/?*¢ for any e > 0.

In his 1965 paper, Selberg stated that this would lead to a proof of the Ra-
manujan conjecture (for Maass forms as well) but did not indicate a proof. We will
indicate below how such a proof can be obtained for the full modular group. The
argument is adapted from the author’s [41].

Let us first observe that Weil’s estimate for Kloosterman sums leads to the
estimate

G(z) = O(z'/? log x)
for (r,n) = 1. Kuznetsov[26] proved that G(z) = O(z'/%%¢), but the O-constant
depends on r,n so it is not applicable to the estimation of the Fourier coefficients.
Let
H(z) := ZS(r,n,c).
c<lz

By partial summation, the Selberg-Linnik conjecture is equivalent to
H(z) = O(z'*°).
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We begin by considering

520 (25) - 5 o (B40) -0 (557

c>vn c>\/n
by partial summation. By the mean value theorem, the expression in parentheses
is

4dm\/rn

———Jr_1(&)

c(c+1)

for some &, € (4my/rn/(c+1),4n/rn/c). Using the estimate
Tp—1(z) < g/

we get

S(T,’I’L,C) 4/ 1/4 |G(C)| €
> ey (V) <t 30 0 <,
c>\/rn c>\/n

by the Selberg-Linnik conjecture. Thus, we need only consider

S(r,n,c) 4m/rn
s Sy (),
c c
e<vn
To estimate this, we apply an inductive argument. As there are no cusp forms of

v EIg}lb ]‘D’ “ella‘ e
‘; 77 , 471\/"’”/
§ ( - C)“g( c ) O(1L )'

c<vn
So, if for example, we were trying to establish the conjecture for k¥ = 12, then it
suffices to estimate for k£ = 10 the quantity

S(r,n,c 4m\/rn 4m\/rn
§ S0 [ (VY L (S
c c c
c</n
By the familiar identity

2kJ(z
D) @)+ @)
it suffices to estimate
1 4my/rn
% Z S(T,n,C)Jk< c )

e<v/n
Again, by partial summation, we may write this as

v S () - ()]

c<vn
Again, the expression in the brackets is
4m\/rn
T (&e)-
c(c+1)

Using the estimate

(@) < 271/?
as before, and the fact that H(c) = O(c'*¢), we deduce a final estimate of O(n¢)
as desired. This completes the proof of the fact that the Selberg-Linnik conjecture
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implies the Ramanujan conjecture (for the full modular group). A similar argu-
ment can be applied to higher levels. However, the non-existence of cusp forms of
small weight is not guaranteed. In this case, we exploit the fact that we know the
Ramanujan conjecture in the weight two case (a result due to Eichler and Shimura).

3 The Kloosterman-Selberg zeta function

In order to gain more insight into the Selberg-Linnik conjecture, we will consider
(with Selberg [52]) the series

S(r,n,c)
Z(r,n,s) = C#ZO FE
To study this series, Selberg [52] considers the cognate Poincaré series
Un(e,8) = 3 S(yz)e*min,
T\l
Clearly, U, is I'-invariant. Moreover, if

0? 0?
2= (57 + 27)

AUp(z,8) = s(1 = 8)Up(2,5) +4mnUp(z,s + 1)s.
As we will show next time, the Fourier expansion of Uy,(z,s) contains Z(r,n, s) in
it. This allows us to relate the eigenvalues of A with the abscissa of convergence of
Z(r,n,s). More precisely,

then

oo
Z Bn(ma y) s)e2ﬂ-zmz

m=—0o0
where
S(m,n,c) yi-s

Bn(mayas) = 6nmy e~y + 5 Z |C|25

c;éO

y /°° . i 2n dv
xp (| —2mimyv — — - —.
e P Y Ayl —iv) ) (1 +v2)s
It then turns out that

. oo . | 1 1
(2my/mm) ! Z Strom, ) _ sinms g~ a;magm)pe, 1 g ypes - )
j=1

|c|?s 2 cosh 7r; 2

bum _T(s) 1 [ hr, )
_ﬁm—’_ ;/_oo(n/m) Ozzr(m)a—zir(m)m 4

where i
sin s

1 1 .
h(r,s) = 5 I(s— B +ir)['(s — 5~ ir)
and the a;(n)’s are the Fourier coefficients of the Maass form corresponding to the
eigenvalue \; = 1/4 +rf-. This remarkable formula establishes a striking relationship
between the eigenvalues A\; and the Kloosterman-Selberg zeta function.




LECTURE 6

Kloosterman sums and Selberg’s Conjecture

1 Petersson’s formula

Recall that we defined the Poincaré series G (z) for SLy(Z) by

G.(2) == Z (cz + d)_ke%"(:zis).
(e,d)=1

For r = 0, we retrieve the classical modular form of weight k.
We have the important:

Theorem 6.1 If f is a cusp form with Fourier expansion

[e's}
Z) — § :ane27rznz7
n=1

then
_ I(k—-1)a,
(f,Gr) = “mr)E1

In particular, every cusp form can be written as a finite sum of Poincaré series.

A straightforward calculation allows us to write down an explicit formula for
the n-th Fourier coefficient of G.(z). More precisely, if

0
— 2winz
= E grn€

n=1

then

n = (n/r) k=172 {5m i ”i M‘]k—l (47T\C/M) } ‘

If in Petersson’s formula, we put f = G4, we obtain a “quasi”’-orthogonality
relation among the Fourier coefficients of the Poincaré series. We state this as:

Theorem 6.2 Let fi, ..., fr be an orthonormal basis of the space of cusp forms
of weight k on I'. Suppose

)
— Z ay, (n)e%rmz‘
n=1

Then

S(t,r,c) 4/t
471' rt (k 1)/2 Zaﬁ r)ay, () = 5Tt+7r2 Je—1 ( c )

c>0
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242 6. Kloosterman sums and Selberg’s Conjecture

Proof We write
Gi = (fiGo) fs-

i
Using Petersson’s formula for the inner product and comparing the n-th coefficient

of both sides gives us the result. O

Iwaniec interprets this theorem as the GL(2)-analogue of the classical orthog-
onality relations for Dirichlet characters. Thus, from this viewpoint, coefficients of
Poincaré series are analogous to Dirichlet characters and this analogy suggests a
universe of exploration especially from the standpoint of analytic number theory.
For example, following the treatment of Davenport one can successfully develop a
‘spectral’ version of the large sieve. We refer the reader to the finer expositions of
[15] and [38] for further details. These ideas first appeared in [52].

2 Selberg’s theorem
Last time, we introduced the Kloosterman-Selberg zeta function:
S
Z(r,m,s) = Z S(r.n, )

2
i

where

S(r,n,c) = Z o 2= (ar+nd)

d(mod c)
ad=1(mod c)

is the Kloosterman sum. The remarkable connection between Selberg’s eigenvalue
conjecture and Z(r,n,s) is given by the following theorem.

Theorem 6.3 (Selberg) Letog > 1/2. Z(r,n, s) admits analytic continuation
to R(s) > oo if and only if A1 > 0o(1 — 09).

The trivial bound S(r,n,c) = O(c) gives that Z(r,n,s) extends to an analytic
function for R(s) > 1 and Weil’s estimate gives it for R(s) > 3/4. The latter result
implies by the theorem that A; > 3/16. This is how Selberg obtains his result for
general congruence subgroups.

However, in the full modular case, one can show A; > 1/4 by a simple elemen-
tary argument (due to Roelcke). This gives an analytic continuation of Z(r,n, s) to
R(s) > 1/2. Of course, if we admit the Selberg-Linnik conjecture, we immediately
get A > 1/4 by the theorem.

Theorem 6.4 For the full modular group, we have

3n?
)\1 2 ?
Proof Let u(z) be a Maass form with eigenvalue \. Without loss of generality,
we may suppose that (u,u) = 1. Thus,
dzd
A= (Au,u) = / (Aua 2.

F Y

s= ().

Let
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Then, it is easy to see that if 7; = S(F), we have

dzd
2\ = (Auja—Y.
FUF1 Yy
By Stokes theorem, this is
2
/ Ou Oul* dzdy
Fur \107 dy
which is
1/2
— d dy.
\/_ /1/2 6.%' v y
Writing
.73 + zy Z an ZTrinw
n#0
we get
g—z = Z an (y)2mine™n®
n#0
so that
12 | gy |?
—| dz = an(y)|*(27n)?
|5 =T el

Putting this in our previous formula, we get

22 > / |27nan, (y)|*dy
>

3/2 n;éO
3 d;
> [ Y rma)?s
V3/2 20 Y
1/2
V32172 124
> 37%(u,u) = 3n°.

This completes the proof.

3 The Selberg-Linnik conjecture

I want to now sketch a proof that the abscissa of convergence of the series

i S(m,n,c)
=
is related to the eigenvalue A;. Last time, we introduced
Un(z,8) = Y (S(y2))°e*™ ™.
Foo\l
It is easy to see that

{A+5(1 —8)}Un(z,s) = —dmstUp (2,5 + 1)
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244 6. Kloosterman sums and Selberg’s Conjecture

and this relation can be used to meromorphically continue U,,(z, s) to the entire
complex plane. See [38] for details. Let now 9; be a Maass cusp form. The analog

of Petersson’s formula is
‘ N ajm)ym T(s=1/2+ir;)T(s = 1/2 —iry)
(Um(ys)awj) - (47Tm)371/2 F(S)

where \; = 1/4 + 7‘]2. is the corresponding eigenvalue for ;. Selberg’s conjecture
can then be rephrased as the r; being real and not purely imaginary. (These are
the only possiblities since the eigenvalues of A are real.) The interesting thing is
that

(Un (-5 8), Un(-,w))
is equal to (by the unfolding method),

Smn(4mn)t 5T (s + W — 1)

+Z TZPZ - / / x2 (_yCQ(?+ 1) _ny(x_i)) dzgy

c#0
It turns out that this is equal to (for w =3+ 2):

r
Smn(4mn) 257 IT(2s + 1) + 4_5_177_1n_2%Z(m,n, s)
S(m,n,c)
+ Z R Rin,n(s )

c#0
where the latter expression is to be seen as an error term which can be estimated.

In the case under study, we can apply the Selberg spectral decomposition for
any function f in L?(T\H) as

f= Z(f, ¥;)¥; + (part involving Eisenstein series).

By Parseval’s formula, we have

(f,9) = _(fi i) (W5, 9) +
J
Thus, putting f = Un(-,s) and g = Up(-,w) and choosing w = 3 + 2 gives the
required formula and the theorem of Selberg.
Goldfeld and Sarnak (see [49]) have used this formula to prove a theorem of

Kuznetsov:
Z S(macnac) < $1/6+e_

c<Llz
Using averaging techniques, which will be discussed in a later lecture, it is
possible to show that A; > .238 which is due to Kim and Sarnak [21].



LECTURE 7

Refined Estimates for Fourier Coefficients of Cusp
Forms

1 Sieve theory and Kloosterman sums

Last time, we indicated how Kloosterman sums are connected with Selberg’s
eigenvalue conjecture. This connection has profound implications to questions of
classical analytic number theory. Much of the work of Iwaniec reflects this theme.

Kloosterman sums first arose in connection with the circle method. That they
are more ubiquitous than first thought is brought out by a fundamental paper of
Atkinson on the fourth power moment of the Riemann zeta function. Below, I want
to illustrate how Kloosterman sums enter sieve theory and relate the study to the
Brun-Titchmarsh theorem. Our discussion will be brief.

The basic set-up of the sieve is as follows. We are given a set 4 together with
a set of conditions indexed, for notational convenience, by prime numbers p € P.
For each p € P, we denote by A, to be the set of elements of A which satisfies the
conditions indicated by p. The sieve problem is to estimate the size of

S(A,P) :== A\ Upep Ap.
If for every squarefree number d composed of primes p € P, we define
Ad = mp|dAp;

then, the usual inclusion-exclusion process gives

S(A,P) =Y p(d)]Adl
d

when the set A is finite. This is sometimes referred to as the Sieve of Eratosthenes.
One of the significant applications of sieve theory is to the estimation of the
number of primes in a given arithmetic progression. The best result in this direction
is given by Montgomery and Vaughan [36] where they show that the number of
primes p < z and p = a(mod ¢) is
2x
< -
= ¢(c)log(z/c)’
It is an observation due to Chowla that any improvement in the constant 2 above
will imply that there are no “Siegel” zeros. As indicated above, this entails precise
estimation of

if c<x.

#{n <z :n =a(modc), dn}.
Writing n = dt, this means ¢ = da(mod c). Now the number of natural numbers
t < z in a fixed residue class v(mod ¢) is easily seen to be

=)
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246 7. Refined Estimates for Fourier Coefficients of Cusp Forms

Usually, one writes this as
x
-+0(1
~+0(1)

and the error term is too crude for many applications. Hooley [14] had the idea
that one can Fourier analyse the error term in the following way. Write

(@) =z —[a] - 1/2
and observe that it has a Fourier series (for z non-integral):
>, sin 2whx
v =2 =5
h=1
which can be rewritten as a finite sum
sin 27 ht 1
——+0 in{1, —— .
2~ * (mm ( ’ N||w||>)
1<h<N

Here ||z|| denotes the distance from x to the integer nearest to z. Inserting this
Fourier series into the sieve method indicated above, one is naturally led to Kloost-
erman sums.

2 Gauss sums and hyper-Kloosterman sums

The Gauss sum is defined by
90) = Y x(ajemie/a.

amod ¢

Notice that

ZY(b)Xz(C)g(X)T = ZY(b)XZ(C) Z X(al)...X(ar)e2§i(a1+...+ar)

A1yeeeyQp
= ) T T XX (En - ar)
Q1,...,0np X
2mi
= o > edimrd

A1yeees@p
ai...ar=c”2b(mod q)

which is a hyper-Kloosterman sum. Deligne [6], as a consequence of his work on
the Weil conjectures has estimated this sum to be O(g("~1/2). If we normalize our
Gauss sums to have absolute value 1, we see that the quantity above is O(¢'/?). In
the method to be discussed in the next section, we will see that hyper-Kloosterman
sums enter in a natural way.

3 The Duke-Iwaniec method

Duke and Iwaniec [8] introduced a general method of obtaining estimates for
coeflicients of Dirichlet series that satisfy appropriate functional equations. We now
outline this method.

Let A = {a,} be a sequence of complex numbers. Suppose

A(s) = i anpn”?®
n=1
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converges absolutely for $(s) > 1. For any Dirichlet character x mod g, let us set

A(s,x) = Y anx(n)n°.
n=1

For technical reasons, we suppose g is prime, so that any non-trivial character mod ¢
is primitive. We assume A(s, x) can be analytically continued to an entire function
and that it satisfies a functional equation

A(l - S:X) = EXQ(S)A(SJY)
where
lex| =1, ®(s)isholomorphic for R(s) > 1.

In practice,

_ ()
26 =m-9)
where .
v(s) = (g¢/m)* /> T[ T(s/2 + 1)
7j=1
with

R(ps) > =1/2, e = (9(x)/va)-
We will assume that there is a constant ¢ > 1 such that
B(s) < (q|s])* e

on R(s) = ¢ > 1 (the implied constant depending on o). In practice, 2¢ = d, as
can be seen easily by Stirling’s formula when v(s) is given as above. The sign in
the functional equation is assumed to be randomly distributed on the unit circle in
the following sense. Namely, we suppose that

Ky(a) ==Y X(a)ex < q'/*

for all characters x mod g. (It is possible to weaken this condition and allow for
some exceptional characters which are not included in the sum.)

Theorem 7.1 If these conditons hold for a set of primes q of positive density,
then
2c—1
ap K n2FITE
for any € > 0.

Proof Let f be a smooth, compactly supported function in R*. We shall
study

Af(g,0)= ) anf(n)

n={(mod q)
and
Ar(0) = anx(n)f(n)
so that )
Alah =g 2 XA

x( mod g)
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-/ " f@)e

then by Mellin inversion formula, we have
1

If we define

f(z) = 23 o F(s)xz™*ds.
Thus,
1
=X anx(mfn) = 5 [ Al )F()ds
T (2)
We move the line of 1ntegrat10n to R(s) = —1 and apply the functional equation
to get
Ag (x) = exAyg x)
where .
= — F(s)®(s)y °ds.
9(y) = 5 . (s)@(s)y *ds

Note that g depends on the parity of x but not on x otherwise. We will reflect
this dependence by writing g+ and g_ in place of g with self-evident notation.
Accordingly, we will split the sum K,(a) into even and odd characters, getting

1
Si(a) = 5 (Kq(a) £ Ky(~a)).
We remove the contribution from the trivial character so that
1
Af(g,0) — —=Ags( a m)Sy (fm).

Thus, this quantity is
< a2y lamg(m)|.
m

It remains to estimate g(m). To this end, let us assume that the Mellin integral is
bounded by

|F(s)] < [s]7"
for some r > ¢+ 1. Then,

g(m) < m7176q6(1+26) .

This gives a final estimate of O(g¢—/2t¢).

The above condition on F'(s) is easily satisfied with any r > 0 for the function
of type f(z) = w(z/f) where w(t) is a smooth function supported in the interval
[1/2,2] and ¢ > 1. To see this, we need only integrate by parts the equation defining
F(s). We apply the calculation to this test function and obtain

Z anw n/e < = Z |a |+pc 1/2+e

n={( mod q) n<2£

This holds for primes ¢ in a set of positive density. So we sum it over such primes
in an interval of the form [P,2P]. (If ¢ belongs to such an interval, we sometimes
denote it by ¢ ~ P.) On the left hand side the term a,w(1) occurs with high
multiplicity. For n # £, there are at most O(log{) prime divisors of n — £. Thus,
summing over g ~ P, we get
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Pla| < Z |lan|(log £) + Pet1/2+e,
n<2f
As the Dirichlet series A(s) converges absolutely for R(s) > 1, we have

oo
D lanl < lan|(@/n)' T < 2t

n<lz n=1
Hence,
D an <
n<2¢
and we get

|CL[| < (% —+—PC—1/2) /<.

Now choose P = ¢2/(2¢+1) t4 deduce the result.






LECTURE 8

Twisting and Averaging of L-series

1 Selberg conjectures for GL,,

The general philosophy of the Duke-Iwaniec method is that information about
twists of Dirichlet series gives information on the coefficients of the Dirichlet se-
ries. This method can also be applied to the study of I'-factors of twists. Since
the functional equation of the L-series attached to a Maass cusp form involves
the eigenvalue A; in its I'-factors, we should be able to get some insight into A
by studying twists of the L-series attached to the Maass cusp form. This is the
approach of Luo, Rudnick and Sarnak [32] which we discuss in this lecture.

Let Tr(s) = 7~%/2T'(s/2). If A is as usual the adele ring of Q, 7 an irreducible
cuspidal automorphic representation of GL,,(A) (with unitary central character),
we assume that the archimedean component 7., is spherical so that we associate
H1,005 -5 Hm,00 and

L(s,me0) = [[ Tr(s — #.00)-
j=1

Conjecture 8.1 (Selberg’s conjecture for GL,,)
R(uj0) =0, 1<j5<m.
Our goal in this lecture will be to prove the following theorem:

Theorem 8.2 Let m be a cuspidal automorphic representation of GLy,(Ag)
with 7o spherical. Then,

N | =
3
V)
+
(=Y

1R (1j,00)| <

As a corollary, we get
21
A > —=.21
1= 100
which follows from the above theorem by taking the Gelbart-Jacquet lift Sym? ().
Indeed, let \; = 1/4—r?. Then, p1,00 =T, 2,00 = —7. Since 7 cannot be monomial
(as these have A > 1/4), it lifts to a cuspidal automorphic representation I of GL;

whose Il is also spherical and is parametrized by
diag(2r,0, —2r).
We apply the theorem to get

which gives ®(r) < 1/5. Thus, A\; = 1/4 —r? > 21/100.
The key to the proof is Rankin-Selberg theory.
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L(8, Moo X Too) = H I'r(s = Hj,00 _ﬁk,oo)
3k=1
Let
ﬂo = 2max §R(Pfj,(x>)-
Then,

is holomorphic for R(s) > By and has a pole at s = By. If x is a primitive even
Dirichlet character, then the same is true for the gamma factor of L(s, (7 ® X)co X
Troo)- For x even, primitive of sufficiently large (prime) conductor ¢, we have
TRQXET
and so
L(s, Moo X o) L(8, 7 ® X ® )
is entire. Hence, (3 is a trivial zero of
L(s,m® x ® 7).
That is
L(Bo,m@x® %) =0
for all such x. Now the strategy is to apply the techniques of [40] or [16] to deduce
2

Z Z L(B,m®x® ) >>1Q—

0
4~Q XFX0,X even 8@

for R(B) > 1— EQ% to get a contradiction. To show this, we use the functional
equation to approximate

L(B,m®x®T7).
Using this approximation, one then averages over the even characters and estab-
lishes the result. We will give the details of the method in the next lecture.

2 Ramanujan conjecture for GL,

If 7 is a cuspidal automorphic representation of GL,,(A) with local Satake
parameters aq p, ..., 0y, p for p unramified, then we have
Conjecture 8.3 (Ramanujan conjecture for GL,)
laipl =1, 1<i<m.
It is possible to extend the method above for Selberg’s conjecture to treat the

Ramanujan conjecture. More precisely, fix a prime p at which 7 is unramified. The
local L-factor

(1 - aj(P)ax(Pp )~

L(s,mp x 7p) =

fit=F

J
has a pole at 3y defined via

pP = mJaX|aj(P)|2-

Hence, the partial L-function

LP) (5,7 @ 7) := L(s,m, x ) " L(s,7 X &)
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has a trivial zero at s = 9. The same is true for the twists
L?) (s, (1 ® x) ® &)

for any x of conductor ¢ for which x(p) = 1. This puts the finite and infinite places
on the same footing.

Thus, the Ramanujan conjecture would follow from another line of attack.
Namely, given 7 an irreducible cuspidal automorphic representation and g with
R(B) > 0, there is an even character x such that L(3,7 ® x) # 0.

3 The method of averaging L-functions

We now give a brief idea of how the method can be used to establish Theorem
8.2. The details will be given in the next lecture. We sketch the idea now.
The Rankin-Selberg theory gives us precise functional equations of the twists.

Let f € C°(0, 00) with
Af@w=

=Awﬂwy@

Thus, k(s) is entire, rapidly decreasing in vertical strips and k£(0) = 1. The approx-
imate functional equation gives

Set

b
L(B,x) = 21 %H (n/Y’) + other terms
n=
where ) p
Fi(z) = — k s)xfs—s.
27 (2) S
The essential point is we can approximate L(3, x) with a finite sum of length Q™.
Moreover,
0 ifn =0 mod ¢
> xm)={ (¢g—-1)/2—1 n=+lmodg
X#Xo0;X even -1 otherwise
Thus,
qg—1 b(n)
SR SIPILCETWISED UL S DPe
q~Q x#£Xxo,xeven n g~Q n=+1 (mod q)

-y > bT(L—Z)Fl (n/Y).
q~Q (n,q)=1,nZ+1 mod ¢
The contribution from n = 1 gives rise to the dominant term for an appropriate
choice of (). We will give the details in the next lecture.






LECTURE 9

The Kim-Sarnak Theorem

1 Preliminaries

In this lecture, our goal is to establish the best estimates on the Selberg eigen-
value conjecture and the Ramanujan conjecture for GL,, due to Kim and Sarnak
[22]. Before we do so, let us examine the averaging idea assuming the Lindelof
hypothesis for automorphic L-functions. This conjecture predicts that

L(1/2 +it,m) = O(f (m)“(|t] + 2))

where f(7) denotes the conductor of 7.
Given a Dirichlet series

f8) =) ann™*
n=1

we can write by partial summation

=% s [0

where

If x is a primitive Dirichlet character mod ¢, suppose that
oo
f(s,x) =) anx(n)/n*
n=1

extends to an entire function and satisfies a “Lindel6f hypothesis” of the form
A2+t x) = O(¢°(|t] + 2)°)
then standard methods of analytic number theory show that
S(t,x) =Y _ anx(n) < t'/2¢.
n<t
Thus, by what was said above, we find
F8,) =Y anx(m)n™? + O(gz'/?77).
n<lz

Now, let us consider an averaging

Yo fBx=Yam P D x(n)|+0(@" P

xeven,x7#xo n<z xeven,x7#xo

255
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The inner sum is equal to ¢(¢q)/2 — 1 if n = +1 mod ¢ and —1 if # £+1 mod ¢, so
that if we choose z = ¢, we get

P(g) —1 _ _ Gte
Y £ =YL 0 ) 0 + 0,
xeven ,x7Xo
If £(8,x) =0 for all x # xo0, we get a contradiction if 8 > 1/2.
Now let 7 be a cuspidal automorphic representation and let us apply this result

to

f(s) = H L(s, mp X Tp).
p<x

By the method to be described below, we will get for the Ramanujan and Selberg
conjectures the following estimates:

[R(pj,00)| <1/4
as well as
|o; (p)| < p™/*
for the Satake parameters. This holds for general GL,,. If we apply this estimate
to the symmetric fourth-power L-function attached to a cuspidal automorphic rep-
resentation on G L, the 1/4 in the above estimates can be improved to 1/8. The

challenge is to do this calculation without the Lindeldf hypothesis. This is the
context of the paper by Luo, Rudnick and Sarnak [32].

2 Rankin-Selberg theory

Let 7 be a cuspidal automorphic representation of GL,,(Ag). For 7 spherical
(or unramified), the gamma factor of L(s,7) is

m
L(s, 7o) = H Tr(s — Nj,M)
j=1

where
Ir(s) = 7 */°T'(s/2).
Selberg’s conjecture is the assertion that R(uj o) = 0 for j =1,...,m.
If = corresponds to a Maass form of eigenvalue A = 1/4 + r2, then P00 =

ir, M2,00 = —ir. Selberg’s conjecture is then the statement that r is not purely
imaginary. In other words, R(11;,00) = 0. The gamma factor of L(s, 7 x 7) is

m

L(s,m x fiog) = H Tr(8 — fj,00 = Hi,00)-
k=1

Let By = 2max R(uj,00), then L(s, Te X 7o) is holomorphic for R(s) > Fy. If x is
a primitive even Dirichlet character, then the same is true for L(s, (7 X X)oo X foo)-
For x even, primitive of sufficiently large prime conductor ¢, we have m x x %2 7 so
that

L(s, oo X Too)L(s,m X X X 7)

is entire. Hence, [y is a “trivial” zero of L(s, 7 X x) Thus,

L(Bo,n xxx7) =0
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for all such . In this way, the problem becomes the familiar one of proving that
certain twists of L-functions do not vanish at a given point. We will prove that
2

> > L(ﬁﬂrxxxf)>>loQE

q~Q x#Xo0, X even

for R(B) >1— 2 —1- This is the basic strategy. The same strategy can be applied
to improve estimates on the Ramanujan conjecture at the finite primes. Indeed, for
p unramified, we have

L(s,mp X 7p) H (1—aj(p) ar(p)p®)!

Suppose

Then,
L(s,mp X 7p)
has a pole at s = §y. Hence, the partial L-function
LP) (5,7 x &) = L(s,mp X 7tp) ' L(s,m x )
has a trivial zero at s = By. The same is true for all twists
L) (5,7 x x X 7)

for characters x with x(p) = 1. By choosing special ¢’s as in [48], one deduces the
analogous theorem.

Thus, this argument puts both the finite and infinte versions of the Ramanujan
conjectures on the same footing.

3 An application of the Duke-Iwaniec method

We begin by noting that if
L(s,m x 7) Z b(n
n=1
and
L(s,m X x X ) = Z b(n)x(n)n=?
n=1

then the twisted L-function satisfies a functional equation of the form
A(s,mx x X 7T) = €e(s,m x x X T)A(1 — 8, ™ X X X 7T)
where the global epsilon factor is given by
e(s,m X x X 7) = x(f(m x 7))e(s, 7 x 7)e(s, )™
and this can be shown to be equal to
X(f (X B)T()™ q ™ e, m x 7)

which involves a bit of representation theory (see [32]).
We now apply the argument of Duke and Iwaniec [8]. Let f € C2°(0, 00) with

Amf@sz
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Set
& d
ko) = [ .
0 Y
Thus, k(s) is entire, rapidly decreasing and k(0) = 1. For z > 0, let

1 _gds
and
1 _gds
Fy(z) = 5~ o k(=8)G(=s + B)z"—
where
G(s) = L(1 — 8,700 X Too)

L(s,Too X Too)
Recall that
fio = 2max (i (1)

and we assume 0 < R(0) < 1.

Lemma 9.1 1. Fi(z) and F>(z) are rapidly decreasing as x — oo.
2. Asz — 0,
Fi(z) =1+ 0(")
for all N > 1.
3. Asz — 0,

Fz(.??) <1+ xl—ﬁo—m(ﬁ)—é‘

Proof The asymptotics for Fi(z) follow upon shifting the contour of integra-
tion to the right (for £ — o0) and to the left for x — 0). As for F5(x), we apply
Stirling’s formula to deduce that G(s) is of moderate growth in vertical strips and
so we may shift contours. To get the behaviour as x — oo, we shift the contour
to the right. For the behaviour as z — 0, we shift the contour to the left. If
R(B) + Bo — 1 < 0, we pick up a simple pole at s = 0 which gives Fx(xz) = O(1).
Otherwise, we pick up the first pole at s = 8 + By — 1 and there are none to its
right. In this case, we get the bound

Fy(z) < gt 7P RB) (_jog z)dt
where d < m? is the maximal order of a pole of
L(8,To0 X Too)

on the line R(s) = f. O

The next step is to derive the “approximate functional equation” in the follow-
ing form. With F; and F, defined as above, for x # x¢ mod ¢, with ¢ coprime to
the conductor of 7, and 0 < R(8) < 1, we have for Il = 7 x 7,

Lpaxy = 3 X gy

trex @) S Xy By £,

n=1
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To see this, consider the integral

L[ keLe+aTx vl = fj (1 ()(/)ds)
2mi J(2) ’ s —~ 20 J(2) s
o
= Z Fi(n/Y).
n=1
By the lemma, this converges absolutely and again by the lemma, we may shift the

contour to R(s) = —1. Thus,
L[ k) Ls+8, xS = 1(8,T1x )+i/ B(s)L(s+8, Tx )Y+ &
2mi (2) ’ X S XX 27 (—1) ’ X

Applying the functional equation to the second integral, we get

> oy Tl X XU O™ (fa) TG s + AL~ 5 = B x ek

We now change s to —s and integrate term by term to get
T(m x F)x(f)T(x) - Z (nY/fq™).

We sum this over the non-trivial even characters mod ¢ and apply the orthogonality
relation noted before, to obtain several sums. The first sum to consider is

>y SERAwy - DS e

9~Q x#Xo,xeven n ~Q n=+1(q)
b(n)
~Q (naQ):l

We single out the contribution from n = 1:

q g—1 cQ?
F1 (1/Y) = Z 1 +0(Y M) ~
q~Q q~Q log Q

for some positive constant ¢ as we will choose Y so that Q €K Y « sz. In fact,

we will choose
Y = QUrt+D/2,

The sum over n = 1 mod ¢ with n # 1 gives

> Y Waey =3 X mey) > 7

g~Q n=1 mod q,n#1 n a~Q,q|(n—1), n#1
which is n)
b(n)n*
<@ Z WWI(”/Y)L
where we have used the fact that for n # 1, the number of representations n =
1+dg =1+ diq for fixed n is O(n®) for any € > 0. Now use

Fl(.’L') ~1

as ¢ — 0 to get that this is
< le—é}?(ﬁ)-f-e_
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Similarly, the same estimate holds for terms n = —1 mod ¢. To treat the second
terms arising from the approximate functional equation, we use

2 2
> XX (HTOO™ < g2
X7#Xo0,X even
by Deligne’s bounds for hyperkloosterman sums. Thus, we get

2 b(n)x(n m2 m2
Sty Y D (e By e,
q~Q X#Xo0, X even
which by Deligne’s bound is

iy b(n) e e
<Y (Fg™) D Y g d P RWY fgm).
~Q (n,9)=1
This is easily estimated by partial summation as

m2)—R(8) (m2+1)/2 [ m2y At
<Y (fgm) FPq /1 B f4™)
~Q
upon using the fact that
Z b(n) K =.
n<z
Now using the bound for F5(x) provided by the lemma leads to a final estimate of
< Q1+(m2+1)/2y—9?(,3)
because F; is rapidly decreasing. With our choice of Y, we see that the main term
is bigger than the error term if
2
1——-.
> m2+1
This leads to:

Theorem 9.2 Let m be a cuspidal automorphic representation of GLy,(Ag)
with 7o spherical. Then,

1 1
1R (1,00 < S T mE 1
In a similar way, by following the Duke-Iwaniec method [8] one gets the estimate
108, lagoll < 5 = 5.
PI=2 m241

In [22] the method described is actually applied to
which was shown by Kim [19] to be holomorphic if 7 is not self-contragredient. The
functional equation was established by Shahidi [56]. If x is a Dirichlet character of
conductor g which we take to be prime and large, we have

L(s,m x x,Sym?) = L(s,n,Sym? x x?)
so that as long as x not one of at most two characters mod ¢, m X x is not self-
contragredient. It will be noted that the positivity of the b(n) was not used in a
vital way and only the weaker estimate

Z bn) <z

n<z
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was used. Thus, we may apply the method to f(s) above and deduce as in [22] the
following:

Theorem 9.3 Let m be a cuspidal automorphic representation of GL,(Ag).
For my unramified,

1 1
1R (1,00)| < R m;
and for p < co at which m, is unramified,
108, Il < 5 = ey —
T2 i) 4

Applying this to G Ly over the rational number field gives

7 .
R(jo0)| < 570 5= 1,2

when 7, is unramified. If p < oo and 7, is unramified, we have

7 .
|10gp |Oéj,p|| < 64’ J=12
For the Selberg eigenvalue conjecture, this translates as
975
A > —— = .238...
1= 4096

For the general number field, one has the weaker bound of 1/2 — 1/(n? + 1)
(see [33)).






LECTURE 10

Introduction to Artin L-functions

1 Hecke L-functions

Dirichlet’s work on primes in arithmetic progression gave birth to a family of
L-functions attached to characters of the group of coprime residue classes mod
q. Using the analyticity of these L-functions, and most importantly, their non-
vanishing at s = 1, Dirichlet deduced the infinitude of primes in a given arithmetic
progression a (mod ¢) with (a,q) = 1.

If one wants to generalize Dirichlet’s theorem, several natural questions arise.
First, the ring of integers Ok of a number field K does not, in general, have the
unique factorization property. Thus, we must speak of prime ideals rather than
prime elements. Having decided this, the next question is to understand the notion
of a residue class. The natural object to take is the ideal class group of a number
field and inquire if there are infinitely many prime ideals in a given ideal class. This
was the approach taken by Hecke.

Given a number field K, and an ideal q, we have the notion of the g-ideal class
group defined as follows. We consider the group of fractional ideals of K which are
coprime to q modulo the principal ideals (a) with & = 1 mod ¢. Thus, a natural
generalization of Dirichlet’s theorem is to inquire if there are infinitely many prime
ideals in a given g-ideal class.

In the case K = Q, all ideals are principal and the g-ideal class group is easily
seen to be (Z/qZ)*/ £ 1. Thus, we don’t realize (Z/qZ)* as a g-ideal class group.
Clearly the problem arises with the choice of generator for the principal ideals. To
rectify this, we introduce the real embeddings of K in the following way.

We introduce the notion of a generalized ideal f = fofoo Where fo is an ordinary
ideal and f is a collection of real embeddings of K. The f-ideal class group consists
of the group of fractional ideals coprime to fo modulo the subgroup of principal
fractional ideals () with

a =1 mod *f

which means that @ = 1 mod fo and o(a) > 0 for all 0 € foo. If K = Q, and oo
denotes the usual embedding of Q into R, then goo-ideal class group of Z retrieves
the coprime residue classes mod ¢g. From this perspective, Dirichlet’s theorem is to
be viewed as a special case of a theorem about the distribution of prime ideals in
generalized ideal classes.

The special case when f = fo, includes all the real embeddings, the ideal class
group is called the narrow ideal class group and its order is called the narrow class
number.

263
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Following Hecke, we may now consider characters of f-ideal class groups and
for each character x, we set

Lo = ¥

These L-functions are referred to as Hecke L-functions of finite type and x is called
a character of finite order. Hecke showed that these L-functions extend to entire
functions and satisfy a suitable functional equation. He also proved that they do not
vanish on $(s) = 1. Thus, following the Tauberian theorem explained in Lecture
1, we deduce that for any generalized f-ideal class, there are infinitely many prime
ideals in that class.

But Hecke considered a more general question in his researches. To any idele
class character x of A}, /K*, he showed how one can associate an L-function, extend
it to an entire function and establish a functional equation. These characters are
called “grossencharacters” and if we view the idele class group as GL1 (Ax ) /G L1 (K),
then Hecke’s work is the first level in the Langlands program. For more on Hecke
L-functions, see [28].

2 Artin L-functions

Let K /k be finite Galois extension of algebraic number fields. Let G = Gal(K/k).
For each prime ideal p of K, let us consider a prime ideal p of K dividing p. We
define the decomposition group D,, and inertia groups I, by

D,={0ceG:p’ =p}
and
I,={0€G:0o(x)=2"® mod p forallz € Ok}
respectively. Clearly I, is a normal subgroup of D, and one can show that

Do/, =~ Gal((Ox /9)/(Ok/p))

as the latter is the Galois group of a finite extension of a finite field. As such, the
latter is a cyclic group generated by the Frobenius automorphism

Froby : 2 — N,

The pull-back of this element to D, which is well-defined up to an element of I,
is called the Frobenius element (denoted o) attached to p. As we vary over the
o with p|p, the elements o, determine a conjugacy class o, of elements which we
call the Artin symbol attached to p. Of course, this is only well-defined when the
inertia group is trivial. In general, it is well-defined modulo inertia.

In the special case that ¥ = Q and K = Q(v/D), the Artin symbol turns out
to be the Legendre symbol (D/p).

A natural question to ask is the following. Given a conjugacy class C' of G,
how often do we have o, € C'? The Chebotarev density theorem states that

IC| =
|G| log =
as z tends to infinity. One way to prove this theorem (although historically this

was not the case) is to introduce the non-abelian L-series of Artin as follows. Let
V be a finite dimensional vector space over C and let

p: G—GL(V)

#{p, N(p) <z :0, € C} ~
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be a representation. The Artin L-function is defined as

L(s,p; K/k) = Hdet (1—plo,)N(p)~2|Vie)~t

Sometimes, we write L(s, x, K/k) for L(s, p, K/k) where x = trp is the character
of p.

Artin’s conjecture is the assertion that if p is irreducible and unequal to the
trivial representation, then L(s, p, K/k) extends to an entire function. In the case
that p is one-dimensional, Artin showed that there is a Hecke character ¢ of k of
finite order, so that

L(s, p, K/k) = L(s, ).
This is usually referred to as Artin’s reciprocity law. If K is a quadratic extension
of k, then this theorem is precisely the law of quadratic reciprocity for algebraic
number fields.

Langlands [30] has enunciated a more general conjecture. Namely, given p of

degree n, he predicts that there is an automorphic representation 7(p) of GL,,(Ay)
with

L(s, p, K/k) = L(s,m(p))

and the latter L-function, being a GL,, L-function has been shown by Godement
and Jacquet [11] to extend to an entire function. This conjecture of Langlands
is referred to as the Langlands reciprocity conjecture or sometimes as the strong
Artin conjecture. By the work of Arthur-Clozel [1], we know that it holds for any
nilpotent Galois extension K/k.

Before we state what is currently known about this conjecture, it will be useful
to review some functorial properties of Artin L-functions. They are:

1. L(s,1, K/k) = Gk (s);
2. L(SaXI + X27K/k) = L(S;XhK/k)L(SaXZ;K/k);
3. if n is a character of a subgroup H of G, then
L(s,n, K/K™) = L(s,Indgn, K/k);
4. if M/k is Galois with M C K, and 7 is a character of Gal(M/k) then,
L(s,7,M/k) = L(s,7, K/k).

Properties (1), (2) and (4) are easy to verify. Property (3) involves some group
theory and algebraic number theory. The details can be found in [28].

Motivated by Artin’s conjecture, Brauer [3] was led to prove the following
fundamental theorem in group theory. Let G be a finite group and x any character
of G. Then, there exist nilpotent subgroups H; of G, one-dimensional characters
1; of H; and integers n; so that

X = Z niIndgi V.
i

An immediate consequence is:

Theorem 10.1 (Brauer, 1947) The Artin L-function L(s,p, K/k) can be
written as a quotient of products of Hecke L-functions and consequently, it extends
to a meromorphic function.
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Proof We first use Brauer’s theorem to write xy = trp as a sum of abelian
characters induced from nilpotent subgroups. By property (2),

L(s,x, K/k) = [ [ L(s,Ind, v, K/k)™.

By property (3), each of the factors can be written as
L(s,Ind$; i, K/k) = L(s,v;, K/ KHi)ni.

By Artin’s reciprocity law, L(s,;, K/K*) is a Hecke L-function L(s,n;) (say),
which by Hecke’s theorem extends to an entire function. This completes the proof
of the theorem. O

3 Automorphic induction and Artin’s conjecture

Our goal now is to show how a special case of the automorphic induction
conjecture in the Langlands program suffices to establish the Langlands reciprocity
conjecture and consequently Artin’s conjecture.

Conjecture 10.2 (Automorphic induction of Hecke characters) Let
K/k be an arbitrary finite extension of algebraic number fields. If ¢ is a Hecke
character of K, then there is a cuspidal automorphic representation mw(¢) of K
such that

L(s,) = L(s, m(¢)).
Now we can prove:
Theorem 10.3 If we have automorphic induction of Hecke characters, then
the Langlands reciprocity conjecture follows.

Proof By the proof of Brauer’s theorem, we may write

L(s,x,K/k) = HL )™

where 1); are Hecke characters of some extension K of k. By the automorphic
induction conjecture, we may write

L(s7¢i) = L(saﬂ-i)
for some automorphic representation m; of k. After regrouping some factors if
necessary, we may write

L(s,x,K/k) = HLSTI’Z

where all of the 7;’s are distinct cuspidal automorphlc representations. (Here, we
are viewing the L-function L(s, ) as a product over the finite primes only.) Writing
a(n)
N(n)®

L(s,m) =
and comparing coefficients of Dirichlet series for a prime ideal p in the penultimate
equality, we get

= Z €iQnr; (p)

1
Now we compare poles of the “Rankin-Selberg” L-function of both sides. The
order of the pole is equal to the multiplicity of the trivial character in x¥. As



3. Automorphic induction and Artin’s conjecture 267

x is irreducible, the multiplicity is one. On the other hand, the right hand side
contributes a pole (by Rankin-Selberg theory) of order

2:2
€; -
i

Thus, all the e; = 0 with one exception e; (say) which must be £1. If ¢ = —1,
the Artin L-function would have “trivial poles” at certain negative integers and
by Brauer’s theorem, we know that all the poles of an Artin L-function lie in the
critical strip. O






LECTURE 11

Zeros and Poles of Artin L-functions

1 The Heilbronn character

Heilbronn [13] introduced an important idea in the study of zeros and poles of
Artin L-series. We begin by reviewing his fundamental observation. Let K/k be a
Galois extension with group G. Fix so € C. We denote by G the set of irreducible
characters of G. For each subgroup H of G and ¢ € H, we let

n(H, 1) = ord 4=, L(s, ¢, K/ K).
We define the Heilbronn character as
Or(g) = > n(H,)¥(g).
veH

We begin with the following fundamental proposition whose proof is based on Frobe-
nius reciprocity [54].

Proposition 11.1

0G|H=0H
Proof
blu = D n(GX)xlu
XEG‘
= > | DGl Y) | ¥
veH \xe@

= Z (Z n(G, x)(x, Indgiﬁ)) 1 by Frobenius reciprocity

YeH \xeG

The inner sum is
> (x, Ind§¢p)ord o—g, L(s, x, K/ k).

x€G
Since
L(s, ¢, K/KT) = L(s,Ind$§, K /k)
and
mdGe = 3 (x, Ind§)x
xXEG
we see that

L(s,, K/ KT = H L(s, x, K /k)xmndiw)
x€G

269
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Thus, the inner sum is equal to n(H,) and the lemma is proved. O

2 The fundamental inequality

Following [9], we consider

1
(04,0G) = €l > 16a(9)-
9€q
Since,
0(;’ = Z 'I'L(G, X)X
xEG

we immediately get by the orthogonality relations
(6a,00) = Y _ (G, x)*-
XE€EG
By by the proposition
bc(g) = b()(9)-
Now, if H is abelian

Or(9) = D n(H,¥)b(9)
YeH
and by Artin’s reciprocity law, n(H,4) > 0. As |(g)| = 1 we find
10c(g)| < ord s—s,Cr (s)
because
(k(s) = H L(s, %)
YeH
in the abelian case. Thus, we have proved:

Theorem 11.2
S n(G,X) < (0rd sy G (5))°

xEG’
This simple theorem, due to Foote-Murty [9], has some astounding corollaries.
Corollary 11.3 If so # 1, and (x(so) # 0, then every Artin L-function
L(s,x, K/k) is regular at s = so.
Corollary 11.4 If x # 1, then L(1,x, K/k) # 0.

Proof If sy = 1, then ord s—,(x(s) = —1 and we know n(G,1) = —1. Thus,
n(G,x) = 0 for all x # 1. O

Corollary 11.5 If x # 1, L(s, x, K/k) extends to a reqular function for R(s) >
1 and non-vanishing there.

Proof We know that the Dedekind zeta function is analytic for R(s) > 1,
s # 1, and non-vanishing there. Thus, L(s, x, K/k) is regular and non-vanishing
for R(s) > 1. O

Remark 11.6 The last corollary is important to establish the Chebotarev
density theorem using the standard Tauberian argument (see Lecture 1) as well as
[28].



3. Rankin-Selberg property for Galois representations 271

Corollary 11.7 (Aramata-Brauer theorem) (x(s)/(x(s) is an entire func-
tion.

Proof We have
|n(G,1)| < ord s—s,Cr(S).
But for s¢ # 1, |n(G, 1)| = n(G, 1) and for so = 1, (x(s) has a simple pole at sq = 1.
Thus, we deduce that (x(s)/(k(s) is entire. O

We have the following important
Conjecture 11.8 (Dedekind) If k C K, then (x(s)/Ck(s) is entire.

The Aramata-Brauer theorem shows that Dedekind’s conjecture is true for
Galois extensions K /k. It is also known if K is contained in a solvable extension
of k.

3 Rankin-Selberg property for Galois representations

The foregoing discussion allows us to deduce the following important property
of Galois representations.

Theorem 11.9 If x; and x2 are two irreducible characters of Gal(K/k), then
L(s,x1xz2, K/k) has a pole at s = 1 if and only if x1 = x2, in which case the pole
is simple.

Proof By the discussion of the preceding section, the order of the pole of
any Artin L-function L(s,x,K/k) at s = 1 is given by (x,1). In our case, this
is (x1xz,1) = (x1, x2) which by the orthogonality relations is equal to 1 or zero
according as x1 = X2 oOr not. O






LECTURE 12

The Langlands-Tunnell Theorem

1 Review of some group theory

Let k£ be an algebraic number field. The Langlands-Tunnell theorem states that
if
p: Gal(k/k)—=GLy(C)
is an irreducible representation such that the image of p is solvable, then there is a
cuspidal automorphic representation m = w(p) of GL2(Ay) such that

L(s,p) = L(s, ).

Consequently, both the Artin and Langlands reciprocity conjectures are true in this
case. Below, we will sketch two proofs of this theorem and refer the reader to [47]
for complete details. The first proof works only when k = Q and is based on the
Deligne-Serre theorem:

Theorem 12.1 (Deligne-Serre) Let f be a holomorphic newform of weight
one with Nebentypus on To(N). Then, there is a Galois representation

ps : Gal(Q/Q—GLy(C)
such that
L(Sapf) = L(Saf)

First, we recall a classical theorem of Klein (see Lang [29]) that describes the
finite solvable subgroups of PGL4(C). They are either cyclic, dihedral, A4, Sy or
As. In the last three cases, we speak of the tetrahedral, octahedral and icosahedral
cases respectively, as these groups can also be realised as the group of symmetries
of the tetrahedron, octahedron and icosahedron. As Aj is not solvable, only the
first four cases occur in our situation.

We leave as exercises the following facts. A4 has a normal 2-Sylow subgroup V'
isomorphic to the Klein four group. A4 has no elements of order 6. It has a unique
3-dimensional representation

ptet = Ind 949
where 6 is any non-trivial character of V.
Recall that GL2(C) acts on the 3-dimensional vector space

sly(C) = {2 x 2matrices over C, with trace 0}
by conjugation
g-Am gt Ag.
This gives a representation
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If p: G-GLy(C) is any representation, we denote by Ad(p) the representation
Ad o p which is a 3-dimensional representation. It is easy to verify that if p(g) has
eigenvalues a, 8 then Ad(p)(g) has eigenvalues /3,1, /.

2 Some representation theory

Let E/F be cyclic extension of prime degree £. Recall that we have the base
change and automorphic induction maps given as follows:

AIE : A(E)=A(F)
satisfying

L(s, BCg/p(m)) = H L(s,m®X)
X
with the product over the (abelian) characters of Gal(E/F) and

L(s, ATE(),) = [] £(s, L)

w|v

for unramified v. We refer the reader to Langlands [31] and Arthur-Clozel [1] for
further details and proofs of these maps. Below, we will use the notation A(n, E)
to denote the space of automorphic representations of GL,(Ag) and we set

a notation which we have already used above.

The Gelbart-Jacquet lift is a lifting of automorphic forms from GLy to GLs.
What they prove [10] is that given m € A(F') there exists Ad(r) which is an automor-
phic representation of GL3(Ar) so that Ad(A, (7)) has the same set of eigenvalues
as Ay(Ad(m)). Gelbart and Jacquet [10] also prove that Ad(w) is cuspidal if and
only if 7 is not of the form AIL(6) with E/F quadratic and 6 a Hecke character of
E.

We review the notion of Galois invariance of automorphic representations. Let
E/F be a finite Galois extension. Let IT be an automorphic representation of
GL,(Ag). Let n be an element of Gal(E/F) and f € V,, the representation space
corresponding to w. Then, Gal(E/F) acts on V via the action

(n-f)lg) = fn"9g).

This gives the notion of n(II). We say that II is Galois invariant if (II) = II for
all n € Gal(E/F). Now suppose E/F is a finite cyclic extension. By the theory of
base change[l], if II is an automorphic representation of GL,(Ag) which is Galois
invariant, then it must be the base change lift of some 7 which is an automorphic
representation of GL,(Ar).

Now let us consider the A4-case. Let EV be the field fixed by V. Consider

plgv : Gal(E/EY)=GLy(C).

A little reflection shows that p|gv is dihedral and so by the work of Artin-Hecke,
we deduce that there is a cuspidal automorphic representation I of GL2(Agv ) so
that

L(s,11) = L(s, p, B/EV).
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Next, one shows that IT is Gal(EY /F)-invariant. Thus, there exists a m € A(2, F)
so that

II = BCEV/F(’]T).
Therefore

L(s,p, E/EY)

L(s,m)L(s,m ® x)L(s, 7 ® x*)
= L(s,p,E/F)L(s,p ® X, E/F)L(s,p ® X*, E/F).

From this, we see that if v splits completely in E, then A,(7) and p(Frob,) have
the same characteristic polynomial. The difficult case is when v is inert in EV.

3 An application of the Deligne-Serre theorem

In the case F' = Q, it is possible to apply the Deligne-Serre theorem [7] to deduce
the theorem immediately. Indeed, choose 7 so that its central character agrees with
det p. One checks that 7 corresponds to a classical holomorphic modular form f of
weight one. Hence, by Deligne-Serre, we deduce that there is a Galois representation

pr : Gal(@/Q)»GLy ()
so that
L(Sa f) = L(S,pf).
We consider the Artin L-functions

L(s,p® py), L(s,p® p7 © X), L(s,p ® 7 ® X°)
and by the Chebotarev density theorem,

2
, 1 1
§ log L B~ § — ~log | —
ogL(s,p@p;®@x') ~3 . Og(s_1>

=0 p splitsinE
which implies (by our discussion in lecture 11) that p is isomorphic to some twist
of Pf-

4 The general case

In the case of arbitrary ground field, we know by our previous discussion that
Ad(p) is automorphic over F. That is, 7(Ad(p)) exits. What we want to establish
is that the characteristic polynomial of A,(w) and p(Frob,) are the same for all
places v. Suppose the eigenvalues of A, () are a, b and of p(Frob,) are «, 8. By the
determinant condition, we know ab = af. From the equality of the base change L-
function with the Artin L-function attached to the restriction of p to Gal(E/EY),
we deduce that

a=Ca, b=¢*p
for some cube root of unity ¢. From the equality of Ad(p) with w(Ad(p)), we deduce
that
{a/b,1,b/a} = {a/B,1,8/a}.

If ( = 1, then we are done. If not, a/3 = (2 by the above. If a/3 = (?, then
the eigenvalues of A,(w) and p(Frob,) match and we are done. If a/8 = —(2,
then Ad(p(Frob,)) has order 6 which is impossible because A4 has no elements of
order 6. This completes the proof of the tetrahedral case of the Langlands-Tunnell
theorem.

For the octahedral case, one needs to use cubic (non-Galois) base change. We
refer the reader to [47] for the details.
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5 Sarnak’s theorem

In this section, we will describe briefly a recent result of Sarnak [50].

As in Sarnak [50], we need to consider first the group-theoretic question of
determining the finite subgroups of G L4 (C) which have rational integer determinant
and trace. Let

GLS™(C) = {g € GLy(O) : (detg)™ =1}, m=1,2.

Up to conjugacy, the finite subgroups of GL2(C) with rational integer trace and
determinant are:

SR R M G R
SN AR O | B
e (o6 D DG (5 D)

)

:I:G _01),16 SJ c G (©)

R N NP
+ G _01) L+ G _01) } c GL?(©)

1z 4ize  mg+iza _
U4_{§(—:c3+ia:4 T1 — iTo |z = £1 0 Ulo.

U, and V5 have image V', the Klein four group in PGL2(C). Us and V3 have im-
age Dj, the dihedral group in PGL,(C). Uy C GL{Y(C) and its image in PGL,(C)
is A4 .

Theorem 12.2 (Sarnak) Let 7 be a cuspidal automorphic representation for
GLy(Ar) whose finite L-series has rational integer coefficients. Then, w corre-
sponds to a Galois representation whose image is solvable. In particular, the Ra-
manugjan conjecture and Selberg’s eigenvalue conjecture hold in case m corresponds
to a Maass form.

o

Proof We follow Sarnak [50]. Let 7 be a cuspidal automorphic representation
of GL2(Ar) and x its central character. For k = 2, 3,4, we will consider when the
functorial lifts Sym* (7) are cuspidal. If Sym?(x) is not cuspidal, then by [10], there
is a quadratic character g # 1 of A}, /F™* such that

TN =T,

In such a case, n determines a quadratic extension K of F' and w a Hecke character
A of A} /K* such that L(s,\) = L(s,m) by a theorem of Labesse-Langlands [27].
As 7 has integer Fourier coefficients, this means that A must have finite order. If €y
is the quadratic character of Gal(K /K) corresponding to A via class field theory,
and p = Ind f(ex, then

L(s, p) = L(s,A) = L(s,),
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so the theorem is proved in this case. It is not hard to see that
L(s,m x ) = L(s, x)L(s, Sym?(r)).

The Rankin-Selberg L-function has a simple pole at s = 1 and soif x # 1, we deduce
that L(s,Sym?(r)) has a simple pole at s = 1. But then, by Gelbart-Jacquet
theorem [10], Sym?(w) cannot be cuspidal so that we are done by the previous
analysis. Thus, we may assume that x = 1 and that Sym?(x) is cuspidal. Now if
Sym? () is not cuspidal on GL4(Ar), then by results of Kim-Shahidi [24] we deduce
that 7 corresponds to a representation p of the Weil group Wy of tetrahedral type.
But the finite L-series attached to m has integer coefficients and we have det p =1
(as x = 1). By analysing the possible images in GL2(C) which have projection into
PGL,(C) equal to A4, we deduce that 7 corresponds to a 2-dimensional Galois
representation with integer trace and determinant and so must be conjugate to Uy.
Thus, we now can assume that Sym?(w) and Sym®(x) are cuspidal. If Sym* () is
not cuspidal, then by [25], m corresponds to a representation of the Weil group of
F of octahedral type. That is, its image in PGL2(C) is S4. However, no lift of this
group to GL2(C) can have integer trace and determinant as our earlier discussion
shows. Thus, we are left with a = whose central character is trivial, and Sym* () is
cuspidal for £ = 2, 3,4. We now show that such a 7 cannot have integer coefficients.
Indeed, as in [25], the Rankin-Selberg L-functions L(s,Sym’(r) x Sym*(r)) for
2 < j,k < 4. The analytic properties including their non-vanishing on %(s) =1 are
known from [57]. From this, we deduce that each of the L-functions L(s,Sym* ())
is analytic and non-vanishing on R(s) > 1 for 1 < k < 8. By standard Tauberian
theorems, we deduce that for any polynomial T'(z) of degree at most 8, we have

i = 3 T logp— | T@du(o). ()

i [
N—o0 7T(N) p<N

du(z) = %\/1 — 22 [4dx

is the Sato-Tate measure. Now consider
T(z) = 2%(z — 1)*(z + 1)*(4 — 2?).

Observe that T'(m) < 0 for m € Z, while T'(z) > 0 for z € [-2,2]. From the first
inequality, we see that if \;(p) € Z for all p, then, the left hand side of (*) is less
than or equal to zero. Whereas, from the second inequality, we see that the right
hand side is positive. This is a contradiction. O

where

Recently, Booker [2] has proved that if the Artin L-series L(s,p) attached to
a 2-dimensional Galois representation of icosahedral type has its inverse Mellin
transform not a modular form, then L(s, p) has infinitely many poles. In particular,
Artin’s holomorphy conjecture for this representation implies that it is modular.
We refer the reader to [2] for details.
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