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Abstract

We prove a characteristic free version of Weyl’s theorem on polariza-
tion. Our result is an exact analogue of Weyl’s theorem, the difference
being that our statement is about separating invariants rather than gener-
ating invariants. For the special case of finite group actions we introduce
the concept of cheap polarization, and show that it is enough to take cheap
polarizations of invariants of just one copy of a representation to obtain
separating vector invariants for any number of copies. This leads to upper
bounds on the number and degrees of separating vector invariants of finite
groups.

Introduction

We begin with a description of the standard invariant theory setting and recall
the concepts of separating invariants and of polarization. Let K be any field
and let V be a finite-dimensional vector space over K. We write K[V ] for the
symmetric algebra of the dual space, V ∗. If {x1, . . . , xk} is a basis of V ∗, then
K[V ] is the polynomial ring in the indeterminates x1, . . . , xk.

Now suppose that G is any group acting linearly on V . Then there is a
natural action of G on V ∗ which induces an action of G on K[V ]. The ring of
invariants is the subring K[V ]G of K[V ] consisting of those polynomials fixed
pointwise by all of G:

K[V ]G := {f ∈ K[V ] | σ(f) = f for all σ ∈ G} .

The main problem in invariant theory is to find a set of invariants S ⊂ K[V ]G

which generates K[V ]G as a K-algebra. Such a set S is called a generating
set.

Since generating sets are often very complicated, and in some cases no finite
generating sets exist, the concept of a separating set of K[V ]G has emerged as
a useful weakening of a generating set. Loosely speaking, a separating set is a
set of invariants that has the same capabilities of separating G-orbits as all the
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invariants from K[V ]G. More precisely, if for two points x, x′ ∈ V there exists
an invariant in K[V ]G taking different values on x and x′, there should also exist
an invariant from the separating set with this property. For more background on
separating invariants we direct readers to Derksen and Kemper [2, Section 2.3.2]
and to [3].

Polarization is an important classical technique used to describe invariants
of certain representations. Before giving the general definition we illustrate the
idea in a simpler setting. With V and G as above, take a, b ∈ K arbitrary and
consider the G-equivariant surjection

ϕa,b: V ⊕ V → V

(u, v) 7→ au + bv,

where G acts diagonally on V ⊕ V . On the level of rings the map ϕa,b in-
duces a ring homomorphism Φa,b: K[V ] → K[V ⊕V ] given by (Φa,b(f))(u, v) =
f(au + bv). Since Φa,b is G-equivariant, it carries invariants to invariants:
Φa,b: K[V ]G → K[V ⊕ V ]G.

If we treat a and b as new indeterminates, rather than as elements of K, we
obtain a ring homomorphism Φ: K[V ] → K[V ⊕ V ][a, b] and a corresponding
homomorphism Φ: K[V ]G → K[V ⊕ V ]G[a, b] where G fixes a and b. Thus if
f ∈ K[V ]G then Φ(f) =

∑
i

∑
j fi,ja

ibj . The coefficients, fi,j , are invariants
called the polarizations of f and we write Pol21(f) := {fi,j} ⊂ K[V ⊕ V ]G.

We will give a more general and formal definition of polarization at the end
of the introduction and state Weyl’s polarization theorem now. Note that in
the standard situation one has W = {0}.
Theorem 0.1 (Weyl [8, II.5, Theorem 2.5A]). Let G be a group acting linearly
on two finite-dimensional vector spaces V and W over a field K of characteristic
zero. Let n and m be positive integers such that m ≥ min{dim(V ), n}. If
S ⊆ K[V m⊕W ]G is a generating set of invariants, then Polnm(S) ⊆ K[V n⊕W ]G

is also generating.

A proof of Theorem 0.1 can also be found in Kraft and Procesi [5, § 7.1].
The following examples show that the hypothesis that K has characteristic

zero is necessary in Weyl’s Theorem.

Example 0.2. (a) Let K be a field of characteristic 3 containing a primitive 4th
root of unity ω. The invariant ring of the group G ⊂ GL1(K) generated
by ω is

K[V ]G = K[x]G = K[x4],

and the vector invariants of two copies are

K[V 2]G = K[x, y]G = K[x4, x3y, x2y2, xy3, y4],

where the given generating set is minimal. However,

Φ(x4) = (ax + by)4 = x4 · a4 + x3y · a3b + xy3 · ab3 + y4 · b4,
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so Pol21(x
4) = {x4, x3y, xy3, y4}. Thus polarization misses the necessary

generator x2y2.

Apart from demonstrating the necessity of the hypothesis on the charac-
teristic in Theorem 0.1, this example also shows that the paradigm that
“any theorem in invariant theory of finite groups that holds in character-
istic zero also holds in the case where char(K) does not divide the group
order” does not carry over directly to Weyl’s theorem. It should be men-
tioned, though, that a weaker form of Weyl’s theorem does hold in this
case; see Knop [4].

What we also see in this example is that the polarizations form a separat-
ing set. Indeed, we have

x2y2 =
(x3y)2

x4
,

so for any point in V 2 where x4 takes a non-zero value, the value of x2y2

can be reconstructed from the values of x3y and x4; and for a point where
x4 vanishes, x2y2 also vanishes.

(b) Consider the two-dimensional indecomposable representation V of the
cyclic group, G, of order p over a field K of characteristic p. It is known
that K[V 2]G has five generators of degrees 1,1,2,p and p. Furthermore,
Richman [6] showed that for n ≥ 3, the ring K[V n]G requires a generator,
h, of degree n(p − 1). Since polarization preserves degree (see below),
we see that h cannot be obtained from polarizations of the generators of
K[V 2]G. /

There are several known results which show that positive characteristic
anomalies of invariant theory tend to disappear when the focus is shifted from
generating to separating invariants (see [2, Section 2.3.2]). It is therefore natu-
ral to ask whether Theorem 0.1 holds in arbitrary characteristic if one replaces
every instance of the word “generating” by “separating”. In this paper we give
an affirmative answer to this question.

In the first section we deal with the case where G may be infinite. In fact, we
start by considering a more general setting which does not necessarily involve
invariant theory. The key result is contained in Lemma 1.1, which leads to our
characteristic free version of Weyl’s theorem (Theorem 1.4 and Corollary 1.5).
We find it remarkable that although the statements of Theorems 0.1 and 1.4
are in perfect analogy, the proofs are altogether different.

Section 2 deals with the case of finite groups. We introduce the concept
of cheap polarization and prove that for G finite, the cheap polarizations of a
separating set S of invariants in K[V ]G yield a separating set of invariants in
K[V n]G for every n (see Theorem 2.4). In particular, Poln1 (S) ⊆ K[V n]G is
separating (see Corollary 2.7). This result has no parallel in terms of generating
invariants, even in characteristic zero. We conclude the paper by giving upper
bounds on the degrees and number of separating invariants. In particular, for
G finite, we obtain a bound on the number of separating invariants in K[V n]G
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which is linear in n (see Corollary 2.12). We also show that no such bound
can exist for generating invariants (see Theorem 2.13), again underscoring the
benefit reaped from shifting focus from generating to separating invariants.

We finish the introduction by giving the general definition of polarization.
Let V and W be finite-dimensional vector spaces over any field K, and write
V m for the direct sum of m copies of V . We write K[V m⊕W ] for the symmetric
algebra of the dual (V m ⊕W )∗. If {x1, . . . , xk} is a basis of V ∗ and {y1, . . . , yl}
is a basis of W ∗, then we obtain a basis {xi,ν | i = 1, . . . , m, ν = 1, . . . , k} ∪
{y1, . . . , yl} of (V m ⊕W )∗ in the obvious way by defining xi,ν(v1, . . . , vm, w) :=
xν(vi) and yi(v1, . . . , vm, w) := yi(w) for v1, . . . , vm ∈ V , w ∈ W . Then K[V m⊕
W ] is a polynomial ring in the indeterminates xi,ν (i = 1, . . . ,m, ν = 1, . . . , k)
and yi (i = 1, . . . , l). Let n be a further positive integer, and for i = 1, . . . , m and
j = 1, . . . , n let ai,j be an indeterminate. Form a homomorphism Φ: K[V m ⊕
W ] → K[V n ⊕W ][a1,1, . . . , am,n] of K-algebras by

Φ(xi,ν) :=
∑n

j=1 ai,jxj,ν (i = 1, . . . ,m, ν = 1, . . . , k) and
Φ(yi) := yi (i = 1, . . . , l).

(0.1)

So, pretending for a moment that the ai,j are elements of the field K, we obtain
for every f ∈ K[V m ⊕W ] and v1, . . . , vn ∈ V , w ∈ W that

(Φ(f)) (v1, . . . , vn, w) = f




n∑

j=1

a1,jvj ,

n∑

j=1

a2,jvj , . . . ,

n∑

j=1

am,jvj , w


 ,

which connects the definition of Φ with what we said about the simpler situation
above. Now we take the ai,j again for what they really are. For f ∈ K[V m⊕W ]
let Polnm(f) ⊆ K[V n ⊕ W ] denote the set of all non-zero coefficients of Φ(f),
considered as a polynomial in the “main” indeterminates ai,j . It is easy to see
that if f is a homogeneous polynomial, then deg(h) = deg(f) for all polarizations
h ∈ Polnm(f). If S ⊆ K[V m ⊕W ] is a set of polynomials, we write Polnm(S) ⊆
K[V n⊕W ] for the union of all sets Polnm(f) for f ∈ S. Note that if S is a finite
subset of K[V m ⊕W ], then Polnm(S) is a finite subset of K[V n ⊕W ], which by
construction has the following property: For any f ∈ S and any m by n-matrix
A with entries in K, inducing a natural linear map ϕA: V n ⊕W → V m ⊕W ,
the polynomial f ◦ ϕA is a K-linear combination of Polnm(S).

Now let G be any group acting linearly on V and W . G acts diagonally
on V m ⊕W . If we let G act trivially on the indeterminates ai,j in the above
construction, then clearly Φ (σ(f)) = σ (Φ(f)) for σ ∈ G and f ∈ K[V m ⊕W ].
It follows that for a subset S ⊆ K[V m ⊕ W ]G of the invariant ring we have
Polnm(S) ⊆ K[V n ⊕W ]G.

A variation of the definition of polarization is given on page 8 before Corol-
lary 1.5.
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1 Infinite groups

We start by considering a rather general situation. Let X and Y be sets and
let F be a set of functions f : X → Y . If ρ ⊆ Y × Y is a relation on Y we write

F−1(ρ) := {(x, x′) ∈ X ×X | (f(x), f(x′)) ∈ ρ for all f ∈ F} ⊆ X ×X

for the preimage of ρ under F . More specifically, let V be a vector space over
a field K, n and m positive integers, and W any set. Put

X := V n ×W and Y := V m ×W.

For A = (αi,j) ∈ Km×n an m by n matrix, define

ϕA: X → Y, (v1, . . . , vn, w) 7→



n∑

j=1

α1,jvj , . . . ,

n∑

j=1

αm,jvj , w




and set F := {ϕA: X → Y | A ∈ Km×n}. Then for ρ ⊆ Y ×Y we call Polnm(ρ) :=
F−1(ρ) the polarization of ρ. As we will see, this is closely related to the
polarization of polynomials.

Lemma 1.1. In the above situation let ∼ and ≈ be equivalence relations on X
and Y , respectively, such that

∼⊆ Polnm(≈) and ≈⊆ Polmn (∼). (1.1)

If m ≥ min {dim(V ), n}, then

∼= Polnm(≈).

Remark 1.2. Before proving the lemma we make two remarks.

(a) Our main application of the lemma will be to the case that W has only
one element (which amounts to saying that there is no set W ) and two
points x1, x2 ∈ X = V n are called equivalent if f(x1) = f(x2) for all
f ∈ K[V n]G, where G is a group acting linearly on V . In the same way,
an equivalence relation is defined on Y = V m. It is easy to see that the
hypothesis (1.1) is satisfied in that situation.

(b) The following example shows that the hypothesis m ≥ min {dim(V ), n}
is essential. Let V = K2, n = 2, m = 1, and let W have one element
(meaning we can drop W ). For (v1, v2), (w1, w2) ∈ X = V 2 we write

(v1, v2) ∼ (w1, w2) if and only if det(v1, v2) = det(w1, w2).
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Set ≈= V × V , i.e., v ≈ w holds for all v, w ∈ Y = V . Then Pol21(≈
) = X ×X, so ∼ is a proper subset of Pol21(≈). Moreover, take v, w ∈ V
and ϕB ∈ G arbitrary. With B = (β1, β2)T we have ϕB(v) = (β1v, β2v),
so det (ϕB(v)) = 0. The same holds for ϕB(w), so ϕB(v) ∼ ϕB(w).
This shows that ≈⊆ Pol12(∼), so the hypothesis (1.1) is satisfied. But
∼6= Pol21(≈). /

Proof of Lemma 1.1. We need to show that Polnm(≈) ⊆∼. To this end, take
x1, x2 ∈ X such that

ϕA(x1) ≈ ϕA(x2) for all A ∈ Km×n. (1.2)

We need to show x1 ∼ x2. First consider the case m ≥ n. In this case we can
choose matrices A ∈ Km×n and B ∈ Kn×m such that BA = In, the n by n
identity matrix. This implies ϕB ◦ ϕA = idX , so

x1 = ϕB (ϕA(x1)) ∼ ϕB (ϕA(x2)) = x2,

where the equivalence “∼” follows from (1.2) and (1.1).
Next we consider the case m < n, which implies m ≥ dim(V ). We interpret

X as (Kn ⊗ V ) × W and for i = 1, 2 write xi =
(∑k

j=1 xi,j ⊗ vi,j , wi

)
with

xi,j ∈ Kn, vi,j ∈ V , wi ∈ W , and k ≤ dim(V ). Let Ûi ⊆ Kn be the span

of xi,1, . . . , xi,k. Then dim(Ûi) ≤ k ≤ m and xi ∈
(
Ûi ⊗ V

)
× W . Choose

Ũi ⊆ Kn with Ûi ⊆ Ũi and dim(Ũi) = m. Set Z := Ũ1 ∩ Ũ2 and let Ui ⊆ Ũi be
a complement of Z in Ũi. Then

Ũi ⊗ V = (Ui ⊗ V )⊕ (Z ⊗ V ) .

Write xi = (ui + zi, wi) with ui ∈ Ui ⊗ V and zi ∈ Z ⊗ V . We have Ũ1 ∩ U2 =
Ũ1 ∩ Ũ2 ∩ U2 = Z ∩ U2 = {0}. This and the fact that dim(Ũ1) = m shows that
there exists A1 ∈ Km×n such that the application of A1 is injective on Ũ1 and
zero on U2. Analogously, there is an A2 ∈ Km×n such that the application of
A2 is injective on Ũ2 and zero on U1. Thus for i = 1, 2 there exists Bi ∈ Kn×m

such that BiAi acts as the identity on Ũi. This yields

x1 = ϕB1 (ϕA1(x1)) ∼ ϕB1 (ϕA1(x2)) = ϕB1 (ϕA1(u2 + z2, w2)) = (z2, w2),
(1.3)

where the first equation holds since x1 ∈
(
Ũ1 ⊗ V

)
×W , the equivalence “∼”

follows from (1.2) and (1.1), and the last equation holds since B1A1 acts as the
identity on Z ⊆ Ũ1 and as 0 on U2. Likewise, by using A2 and B2 we obtain

x2 ∼ (z1, w1). (1.4)

Moreover, we have

ϕA1(z1, w1) ≈ ϕA1(x2) ≈ ϕA1(x1) ≈ ϕA1(z2, w2), (1.5)
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where the fist equivalence follows from (1.4) and (1.1), the second from (1.2),
and the third from (1.3) and (1.1). From this we see that

(z1, w1) = ϕB1 (ϕA1(z1, w1)) ∼ ϕB1 (ϕA1(z2, w2)) = (z2, w2), (1.6)

where both equations follow from zi ∈ Z ⊗ V ⊆ Ũ1 ⊗ V , and the equivalence
follows from (1.5) and (1.1). Now (1.3), (1.6) and (1.4) yield x1 ∼ x2, as
required.

Remark 1.3. Lemma 1.1 generalizes to infinite dimensions as follows: With
V , N , and M vector spaces over K and W a set, form X := (N ⊗ V )×W and
Y := (M ⊗ V )×W , and let F ⊆ Map(X, Y ) be the set of functions induced by
all linear maps N → M . For an equivalence relation ≈ on Y , we write PolNM (≈
) := F−1(≈). Then Lemma 1.1 holds with the condition “m ≥ min {dim(V ), n}”
replaced by

dim(M) ≥ min {dim(V ),dim(N)} ,

where the dimension of a vector space is either a non-negative integer or ∞,
disregarding cardinalities. The original proof of Lemma 1.1 carries over almost
word by word. /

Before formulating the main result, we recall that for any finite-dimensional
vector space U with a linear G-action, a subset S ⊆ K[U ]G is called separating
if for all points u, u′ ∈ U we have that f(u) = f(u′) for all f ∈ S implies
f(u) = f(u′) for all f ∈ K[U ]G. In the following theorem, Polnm, when applied
to a set of polynomials, has the meaning defined at the end of the Introduction.

Theorem 1.4. Let G be a group acting linearly on two finite-dimensional vector
spaces V and W over a field K. Let n and m be positive integers such that
m ≥ min{dim(V ), n}. If S ⊆ K[V m ⊕ W ]G is a separating set of invariants,
then Polnm(S) ⊆ K[V n ⊕W ]G is also separating.

Remark. In Theorem 1.4, W might be the zero vector space. This yields the
case that “there is no W” in Theorem 1.4. /

Proof of Theorem 1.4. Set X := V n ⊕W and define an equivalence relation ∼
on X by saying x ∼ x′ for x, x′ ∈ X if g(x) = g(x′) for all g ∈ K[X]G. An
equivalence relation ≈ on Y := V m ⊕W is defined in the same way. We first
show that ∼⊆ Polnm(≈) and ≈⊆ Polmn (∼).

For a matrix A ∈ Km×n, the map ϕA: X → Y is G-equivariant. Hence
the same is true for the dual map ϕ∗A: Y ∗ → X∗ and also for its extension
ϕ∗A: K[Y ] → K[X] as a homomorphism of algebras. It follows that ϕ∗A(f) ∈
K[X]G for all f ∈ K[Y ]G. Let x, x′ ∈ X with x ∼ x′. Then for f ∈ K[Y ]G and
A ∈ Km×n we have

f (ϕA(x)) = (ϕ∗A(f)) (x) = (ϕ∗A(f)) (x′) = f (ϕA(x′)) .

This shows that ∼⊆ Polnm(≈). The inclusion ≈⊆ Polmn (∼) is proved by reversing
the roles of X and Y . Now Lemma 1.1 shows that ∼= Polnm(≈).
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To prove that Polnm(S) ⊆ K[X]G is separating, take x, x′ ∈ X such that

g(x) = g(x′) for all g ∈ Polnm(S). (1.7)

We need to show that x ∼ x′. By the above, this is equivalent to ϕA(x) ≈ ϕA(x′)
for all A ∈ Km×n. Since S ⊆ K[Y ]G is separating by hypothesis, it is enough to
show that f (ϕA(x)) = f (ϕA(x′)) for all f ∈ S. Write A = (αi,j) ∈ Km×n and
consider the homomorphism ψA: K[X][a1,1, . . . , am,n] → K[X], ai,j 7→ αi,j with
ai,j indeterminates. With Φ: K[Y ] → K[X][a1,1, . . . , am,n] defined by (0.1), we
have ψA (Φ(f)) = ϕ∗A(f) for all f ∈ K[Y ] (this is easily verified for the generators
xi,ν and yi of K[Y ], and follows by homomorphic extension for all f). Since
ψA (Φ(f)) is a K-linear combination of Polnm(f), it follows that for all f ∈ S we
have

f (ϕA(x)) = (ϕ∗A(f)) (x) = (ϕ∗A(f)) (x′) = f (ϕA(x′)) ,

where (1.7) is used for the middle equation. This completes the proof.

There is a more general version of polarization, which we introduce now.
Let V1, . . . , Vr be finite-dimensional vector spaces over K, each with a linear
G-action. Let m1, . . . ,mr, n1, . . . , nr be positive integers. For a subset S ⊆
K[V m1

1 ⊕· · ·⊕V mr
r ]G define Poln1,...,nr

m1,...,mr
(S) ⊆ K[V n1

1 ⊕· · ·⊕V nr
r ]G by applying

Poln1
m1

, Poln2
m2

, . . . , Polnr
mr

successively, where Polni
mi

is defined as the polarization
operator Polnm on page 4 with V mi

i taking the role of V m, and V n1
1 ⊕ · · · ⊕

V
ni−1
i−1 ⊕ V

mi+1
i+1 ⊕ · · · ⊕ V mr

r taking the role of W . Using induction on r we
obtain from Theorem 1.4:

Corollary 1.5. Suppose that in the above setting we have mi ≥ min{dim(Vi),
ni} for each i = 1, . . . , r. If S ⊆ K[V m1

1 ⊕ · · · ⊕ V mr
r ]G is a separating set, then

the same is true for Poln1,...,nr
m1,...,mr

(S) ⊆ K[V n1
1 ⊕ · · · ⊕ V nr

r ]G.

If V is a finite-dimensional vector space over K with a linear G-action, we
write K[V ]Gd for the set of homogeneous invariants of degree d. Define

βsep

(
K[V ]G

)
:= min

{
k ∈ N

∣∣∣∣∣
k⋃

d=1

K[V ]Gd is separating

}

with N := {0, 1, 2, . . .}. By Derksen and Kemper [2, Theorem 2.3.15] there
always exists a finite separating set, hence βsep

(
K[V ]G

)
is a finite number.

Clearly

βsep

(
K[V ]G

) ≤ β
(
K[V ]G

)
:=

min

{
k ∈ N

∣∣∣∣∣
k⋃

d=1

K[V ]Gd generates K[V ]G
}
∈ N ∪ {∞}.

Corollary 1.6. With the notation and hypotheses of Corollary 1.5 we have

βsep

(
K[V n1

1 ⊕ · · · ⊕ V nr
r ]G

) ≤ βsep

(
K[V m1

1 ⊕ · · · ⊕ V mr
r ]G

)
.

Proof. It is clear from the definition of polarization that for f ∈ K[V m]G ho-
mogeneous of degree d, each polynomial in Polnm(f) has degree d. This yields
the result.
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2 Finite groups

In this section we consider actions of finite groups. Here the situation is much
simpler. Indeed, if G is a finite group acting on a vector space V over a field
K, then any two G-orbits in V can be separated by invariants from K[V ]G. For
the convenience of the reader we present a short proof of this fact here.

Lemma 2.1. Let G be a finite group acting linearly on a finite-dimensional
vector space V . Then for each v, w ∈ V with distinct G-orbits (i.e., Gv 6= Gw),
there exists f ∈ K[V ]G such that f(v) 6= f(w).

Proof. Write K[V ] = K[x1, . . . , xn]. With additional indeterminates T and U ,
the polynomial

F (T, U) =
∏

σ∈G

(
T −

n∑

i=1

σ(xi)U i−1

)

has coefficients in K[V ]G. Assume that f(v) = f(w) for every f ∈ K[V ]G.
Then this holds in particular for all coefficients of F (T, U), so

∏

σ∈G

(
T −

n∑

i=1

xi

(
σ−1(v)

)
U i−1

)
=

∏

σ∈G

(
T −

n∑

i=1

xi

(
σ−1(w)

)
U i−1

)
.

Hence there exists a σ ∈ G such that xi(w) = xi (σ(v)) for all i, which implies
Gv = Gw.

It follows from Lemma 2.1 that a subset S ⊆ K[V ]G is separating if any two
G-orbits can be separated by invariants from S. The proof of Lemma 2.1 shows
that the coefficients of F (T, U) form a separating set of invariants.

In order to formulate the results of this section, we need to introduce the
concept of cheap polarization. Let V1, . . . , Vr be finite-dimensional vector spaces
over a field K. For k = 1, . . . , r write dk := dim(Vk), and let x

(k)
1 , . . . , x

(k)
dk

be
a basis of the dual space V ∗

k . Then K[V1 ⊕ · · · ⊕ Vr] is a polynomial ring
with the x

(k)
j as indeterminates. Let n1, . . . , nr be positive integers. Then

K[V n1
1 ⊕ · · · ⊕ V nr

r ] is a polynomial ring with indeterminates x
(k)
i,j (k = 1, . . . , r,

i = 1, . . . , nk, j = 1, . . . , dk) defined in the obvious way (see page 4 in the
Introduction). Let a be a further indeterminate and define a homomorphism

Ψ: K[V1 ⊕ · · · ⊕ Vr] → K[V n1
1 ⊕ · · · ⊕ V nr

r ][a], x
(k)
j 7→

nk∑

i=1

ai−1 · x(k)
i,j

of K-algebras. To illustrate the effect of Ψ, we consider the standard case r = 1
and pretend for a moment that a ∈ K is a scalar. Then for f ∈ K[V ] and
v1, . . . , vn ∈ V we have

(Ψ(f)) (v1, . . . , vn) = f(v1 + av2 + · · ·+ an−1vn).

For a polynomial f ∈ K[V1 ⊕ · · · ⊕ Vr], let Poln1,...,nr

cheap (f) ⊂ K[V n1
1 ⊕ · · · ⊕

V nr
r ] denote the set of all coefficients of Ψ(f) as a polynomial in a. For S ⊆
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K[V1⊕ · · · ⊕ Vr], let Poln1,...,nr

cheap (S) be the union of all Poln1,...,nr

cheap (f), f ∈ S. We
call this set the cheap polarization of S. This construction is in particular
interesting in the case r = 1. The main difference between cheap polarization
and “ordinary” polarization is that there is only one additional indeterminate
a involved in cheap polarization, which results in an easier computation and a
smaller number of coefficients. This is why we use the word “cheap”.

Example 2.2. Consider the case r = 1 and dim(V1) = 1, so K[V1] = K[x]. For
n1 = 3 we have

Ψ(x2) = (x1+ax2+a2x3)2 = x2
1+2x1x2 ·a+(2x1x3+x2

2) ·a2+2x2x3 ·a3+x2
3a

4,

so
Pol3cheap(x2) =

{
x2

1, x
2
3, 2x1x2, 2x2x3, 2x1x3 + x2

2

}
.

On the other hand, “ordinary” polarization gives

Pol31(x
2) =

{
x2

1, x
2
3, 2x1x2, 2x2x3, 2x1x3, x

2
2

}
.

/

The following proposition gives some basic properties of cheap polarization.
The first part compares cheap polarization with “ordinary” polarization.

Proposition 2.3. In the above situation, let S ⊆ K[V1 ⊕ · · · ⊕ Vr] be a set of
polynomials.

(a) Every element in Poln1,...,nr

cheap (S) can be expressed as a sum of elements
from Poln1,...,nr

1,...,1 (S).

(b) If d is an upper bound on the total degree of monomials occurring in poly-
nomials from S, then it is also an upper bound on the total degree of mono-
mials occurring in polynomials from Poln1,...,nr

cheap (S). If all polynomials in
S are homogeneous of degree d, then the same is true for all polynomials
in Poln1,...,nr

cheap (S).

(c) Let d be a bound as in part (b), let S be finite and set n := max{n1, . . . ,
nr}. Then ∣∣∣Poln1,...,nr

cheap (S)
∣∣∣ ≤ |S| · (d · (n− 1) + 1) .

(d) Let G be a group acting linearly on all Vk. If S ⊆ K[V1⊕ · · · ⊕ Vr]G, then

Poln1,...,nr

cheap (S) ⊆ K[V n1
1 ⊕ · · · ⊕ V nr

r ]G

(with G acting diagonally on V1 ⊕ · · · ⊕ Vr and V n1
1 ⊕ · · · ⊕ V nr

r ).

Proof. (a) Let a
(k)
i be indeterminates (k = 1, . . . , r, i = 1, . . . , nk) and define

a homomorphism

Φ: K[V1⊕· · ·⊕Vr] → K[V n1
1 ⊕· · ·⊕V nr

r ][a(1)
1 , . . . , a(r)

nr
], x

(k)
j 7→

nk∑

i=1

a
(k)
i ·x(k)

i,j
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of K-algebras. Let f ∈ K[V1 ⊕ · · · ⊕ Vr]. Let M be the set of monomials
in the a

(k)
i occurring in Φ(f). Then

Φ(f) =
∑

t∈M
ft · t

with ft ∈ K[V n1
1 ⊕ · · · ⊕ V nr

r ], and

Poln1,...,nr

1,...,1 (f) = {ft | t ∈M}.

Define a homomorphism Λ: K[V n1
1 ⊕ · · · ⊕V nr

r ][a(1)
1 , . . . , a

(r)
nr ] → K[V n1

1 ⊕
· · ·⊕V nr

r ][a] of algebras over K[V n1
1 ⊕· · ·⊕V nr

r ] by Λ(a(k)
i ) = ai−1. Then

Ψ = Λ ◦ Φ. For i ∈ N a non-negative integer, set Mi := {t ∈ M | Λ(t) =
ai}. Then

Ψ(f) =
∑

t∈M
ft · Λ(t) =

∑

i∈N

( ∑

t∈Mi

ft

)
ai,

the latter sum being finite by the finiteness of M. It follows that all
elements in Poln1,...,nr

cheap (f) are sums of elements of Poln1,...,nr

1,...,1 (f). This
implies the statement (a).

(b) This is clear from the definition of cheap polarization (assign degree 0 to
a).

(c) Let f ∈ S. Then clearly d · (n − 1) is an upper bound on the degree of
Ψ(f) considered as a polynomial in a, and therefore

∣∣∣Poln1,...,nr

cheap (f)
∣∣∣ ≤ d · (n− 1) + 1.

The statement (c) follows.

(d) Extending the G-action to K[V n1
1 ⊕ · · · ⊕ V nr

r ][a] by σ(a) = a for σ ∈ G,
we see that the map Ψ is G-equivariant. This implies part (d).

Theorem 2.4. In the situation introduced at the beginning of this section, let
G be a finite group acting linearly on all Vk (k = 1, . . . , r). Let S ⊆ K[V1 ⊕
· · · ⊕ Vr]G and assume that at least one of the following hypotheses is satisfied:

(a) S generates K[V1 ⊕ · · · ⊕ Vr]G as a K-algebra.

(b) S is separating and K has strictly more than (max{n1, . . . , nr} − 1) · |G|
elements.

Then Poln1,...,nr

cheap (S) ⊆ K[V n1
1 ⊕ · · · ⊕ V nr

r ]G is separating.

Proof. We first assume that the hypothesis (b) holds. For k = 1, . . . , r, let
v
(k)
1 , . . . , v

(k)
nk , w

(k)
1 , . . . , w

(k)
nk ∈ Vk be vectors such that for all F ∈ Poln1,...,nr

cheap (S)
we have

F
(
v
(1)
1 , . . . , v(1)

n1
, . . . , v

(r)
1 , . . . , v(r)

nr

)
= F

(
w

(1)
1 , . . . , w(1)

n1
, . . . , w

(r)
1 , . . . , w(r)

nr

)
.

(2.1)
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We need to show that there exists a σ ∈ G such that w
(k)
i = σ(v(k)

i ) for all
k ∈ {1, . . . , r}, i ∈ {1, . . . , nk}. For α ∈ K let ηα: K[V n1

1 ⊕ · · · ⊕ V nr
r ][a] →

K[V n1
1 ⊕ · · · ⊕ V nr

r ] be the map given by sending a to α, and set Ψα := ηα ◦Ψ
(with Ψ defined at the beginning of Section 2). Thus for f ∈ K[V1 ⊕ · · · ⊕ Vr]
and u

(k)
i ∈ Vk (k = 1, . . . , r, i = 1, . . . , nk) we have

(Ψα(f))
(
u

(1)
1 , . . . , u(1)

n1
, . . . , u

(r)
1 , . . . , u(r)

nr

)
=

f

(
n1∑

i=1

αi−1u
(1)
i , . . . ,

nr∑

i=1

αi−1u
(r)
i

)
. (2.2)

Observe that Ψα(f) is a K-linear combination of elements of Poln1,...,nr

cheap (f), so
if f ∈ S, then (2.1) implies

(Ψα(f))
(
v
(1)
1 , . . . , v(1)

n1
, . . . , v

(r)
1 , . . . , v(r)

nr

)
=

(Ψα(f))
(
w

(1)
1 , . . . , w(1)

n1
, . . . , w

(r)
1 , . . . , w(r)

nr

)
, (2.3)

which with (2.2) leads to

f

(
n1∑

i=1

αi−1v
(1)
i , . . . ,

nr∑

i=1

αi−1v
(r)
i

)
= f

(
n1∑

i=1

αi−1w
(1)
i , . . . ,

nr∑

i=1

αi−1w
(r)
i

)
.

Since this holds for all f ∈ S, it follows by Lemma 2.1 that there exists a σ ∈ G
such that

nk∑

i=1

αi−1w
(k)
i = σ

(
nk∑

i=1

αi−1v
(k)
i

)
for all k ∈ {1, . . . , r}.

Since α ∈ K was chosen arbitrary, this means that for every α ∈ K there exists
a σ ∈ G such that

nk∑

i=1

αi−1
(
w

(k)
i − σ(v(k)

i )
)

= 0 for all k ∈ {1, . . . , r}. (2.4)

For σ ∈ G let Sσ be the set of all α ∈ K such that (2.4) holds for α and σ.
Thus K =

⋃
σ∈G Sσ. By the hypothesis on the size of K there exists a σ ∈ G

such that |Sσ| ≥ max{n1, . . . , nr}. By using the Vandermonde determinant, we
conclude from (2.4) that for this σ we have

w
(k)
i = σ(v(k)

i )

for all k and i. This completes the proof.
Now assume that (a) is satisfied, and let K be the algebraic closure of K.

With Vk := K⊗K Vk we have K[V1⊕· · ·⊕Vr]G ∼= K⊗K K[V1⊕· · ·⊕Vr]G, so S
generates K[V1⊕· · ·⊕Vr]G. In particular, S is K[V1⊕· · ·⊕Vr]G-separating, and
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the hypothesis (b) is satisfied. Therefore Poln1,...,nr

cheap (S) ⊆ K[V1
n1 ⊕· · ·⊕Vr

nr ]G

is separating. Since G is finite, this implies by Lemma 2.1 that any two points
in V1

n1 ⊕· · ·⊕Vr
nr with distinct G-orbits can be separated by an element from

Poln1,...,nr

cheap (S), hence in particular this applies to points in V n1
1 ⊕ · · · ⊕V nr

r .

Remark 2.5. We know of no example which shows that the hypothesis on the
size of K in Theorem 2.4(b) cannot be dropped. /

Example 2.6. Suppose char(K) 6= 2, and let G = {±1} ⊂ GL1(K). Then
K[x]G = K[x2], so by Example 2.2 and Theorem 2.4 the set

{
x2

1, x
2
3, x1x2, x2x3, 2x1x3 + x2

2

} ⊆ K[x1, x2, x3]G

is separating. In other words, for (ξ1, ξ2, ξ3), (η1, η2, η3) ∈ K3 we have

(ξ1, ξ2, ξ3) = ±(η1, η2, η3) ⇐⇒
ξ2
1 = η2

1 , ξ2
3 = η2

3 , ξ1ξ2 = η1η2, ξ2ξ3 = η2η3, and 2ξ1ξ3+ξ2
2 = 2η1η3+η2

2 .

It is rather subtle to verify this equivalence without using Theorem 2.4. /

Corollary 2.7. With the same situation and hypotheses as in Theorem 2.4,
Poln1,...,nr

1,...,1 (S) ⊆ K[V n1
1 ⊕ · · · ⊕ V nr

r ]G is also separating.

Proof. This is a direct consequence of Theorem 2.4 and Proposition 2.3(a).

As a consequence of Theorem 2.4 and Proposition 2.3(b) we obtain:

Corollary 2.8. Let G be a finite group acting linearly on a finite-dimensional
vector space V over a field K. Then for all positive integers n we have

βsep

(
K[V n]G

) ≤ β
(
K[V ]G

)
.

Remark 2.9. (a) Of course Corollary 2.8 holds in the more general situation
of a linear action on several vector spaces V1, . . . , Vr. Moreover, if K
has more than (n − 1) · |G| elements, one can use βsep instead of β on
the right hand side of the inequality. In fact, we have βsep

(
K[V n]G

)
=

βsep

(
K[V ]G

)
in this case.

(b) In the modular case (i.e., when the characteristic of K divides the group
order), Corollary 2.8 stands in stark contrast to the results about generat-
ing invariants. In fact, we know from Richman [7] that for every faithful
linear representation V of a finite group G with char(K) | |G| we have

lim
n→∞

β
(
K[V n]G

)
= ∞.

/
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Example 2.10. Corollary 2.8 contains new information in the characteristic zero
case as well. In fact, whenever we have

β
(
K[V n]G

)
> β

(
K[V ]G

)
, (2.5)

Corollary 2.8 tells us that βsep

(
K[V n]G

)
< β

(
K[V n]G

)
. It is surprisingly hard

to find an example in characteristic zero where (2.5) is satisfied. Using a rather
extensive computer search, we found the subgroup G ⊆ GL4(C) of order 32
generated by the four matrices



i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i


 ,




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 ,




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

We used the computer algebra system Magma [1] for computing generating
invariants for C[V ]G and C[V 2]G, where V = C4. The resulting beta-values are

β
(
C[V ]G

)
= 6 and β

(
C[V 2]G

)
= 8.

So C[V 2]G is an example of an invariant ring in characteristic zero where the
degree bound on separating invariants is smaller than the one for generating
invariants. /

Corollary 2.11. Let G be a finite group acting linearly on a finite-dimensional
vector space V over a field K. Moreover, let Vreg be the regular representation
of G. Then

βsep

(
K[V ]G

) ≤ β
(
K[Vreg]G

)
.

Proof. Since Vreg is free of rank one as a module over the group ring KG, there
exists a positive integer n and an epimorphism V n

reg → V ∗ of KG-modules,
where V ∗ is the dual. Dualizing yields V ↪→ V n

reg, which induces a degree-
preserving, G-equivariant epimorphism π: K[V n

reg] → K[V ] of K-algebras. By
Theorem 2.8 there exists a separating set S ⊆ K[V n

reg]G consisting of homo-
geneous invariants of degree at most β

(
K[Vreg]G

)
. Moreover, by Derksen and

Kemper [2, Theorem 2.3.16], π(S) is a separating set of K[V ]G. This completes
the proof.

Theorem 2.4 also has consequences on the number of separating vector in-
variants. For stating them, we introduce the following notation. For a K-algebra
R we write

γ(R) := min {k ∈ N | R has a generating subset of size k} ∈ N ∪ {∞}.

Moreover, if R consists of functions f : X → K from a set X to K, we write

γsep(R) := min {k ∈ N | R has an R-separating subset of size k} ∈ N ∪ {∞}.



Polarization of separating invariants 15

Corollary 2.12. Let G be a finite group acting linearly on a finite-dimensional
vector space V over a field K. Then for all positive integers n we have

γsep

(
K[V n]G

) ≤ (
(n− 1) · β (

K[V ]G
)

+ 1
) · γ (

K[V ]G
)
.

Proof. This is a direct consequence of Proposition 2.3(c) and Theorem 2.4.

Remark. Remark 2.9(a) applies to Corollary 2.12 in the same way as it does
to Corollary 2.8. /

It is remarkable that the bound in Corollary 2.12 is linear in n. We will
see in Theorem 2.13 that such a bound cannot hold for γ

(
K[V n]G

)
unless G

acts trivially. In fact, instead of a linear upper bound we have a quadratic lower
bound. Before stating the theorem, we make a remark about multihomogeneity.
The natural multigrading on K[V n] = K[x1,1, . . . , xn,k], defined by

degmult

(
n∏

i=1

k∏
ν=1

x
ei,ν

i,ν

)
=

(
k∑

ν=1

e1,ν , . . . ,

k∑
ν=1

en,ν

)
∈ Zn,

is inherited by K[V n]G. Observe that the invariants produced by cheap po-
larization are usually not multihomogeneous, whereas invariants produced by
“ordinary” polarization always are. This can be seen as a shortcoming of cheap
polarization. However, we will also show that no bound on the number of
separating invariants as in Corollary 2.12 can be obtained when requiring the
invariants to be multihomogeneous. In order to formulate our result we need
another piece of notation. For a multigraded subalgebra R ⊆ K[V n] we write

γsep,mult(R) :=
min {k ∈ N | R has an R-separating multihomogeneous subset of size k} .

Theorem 2.13. Let G be a finite group acting linearly and non-trivially on a
finite-dimensional vector space V over a field K. Then for all positive integers n
we have

γ
(
K[V n]G

) ≥ γsep,mult

(
K[V n]G

) ≥
(

n + 1
2

)
.

Proof. We start by showing the first inequality. Set k := γ
(
K[V n]G

)
and

take generators f1, . . . , fk ∈ K[V n]G. Write I := K[V n]G+ for the ideal in
K[V n]G consisting of all invariants whose constant coefficient is 0. We can
remove the constant coefficients from each fi and thus assume fi ∈ I. Clearly
the fi := fi + I2 generate I/I2 as a vector space over K. So

dimK

(
I/I2

) ≤ k.

Observe that I/I2 inherits a multigrading from K[V n]G. Thus there exist mul-
tihomogeneous invariants gi, . . . , gk′ ∈ I with k′ := dimK

(
I/I2

)
such that the

gi + I2 form a basis of I/I2. By the graded version of Nakayama’s lemma (see
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Derksen and Kemper [2, Lemma 3.5.1]), the gi generate I (as an ideal), and
also K[V n]G (as a K-algebra). Therefore k′ = k, and there exists a multihomo-
geneous system of generators of K[V n]G of size k. Since every generating set is
also separating, the first inequality follows.

For proving the second inequality, let S ⊆ K[V n]G be a multihomogeneous
separating set. We first claim that for all 1 ≤ i < j ≤ n there exists a non-zero
f ∈ S with

degmult(f) = (0, . . . , 0, di, 0, . . . , 0, dj , 0, . . . , 0), (2.6)

where di and dj are positive and occur at the i-th and j-th position of the
vector. Indeed, by the non-triviality of the action there exist v ∈ V and σ ∈ G
such that w := σ(v) 6= v. Thus the vectors (0, . . . , 0, v, 0, . . . , 0, v, 0, . . . , 0) ∈ V n

(with v in the i-th and j-th position) and (0, . . . , 0, v, 0, . . . , 0, w, 0, . . . , 0) ∈ V n

(with v in the i-th and w in the j-th position) lie in distinct G-orbits. By
Lemma 2.1, there exists f ∈ S which takes different values at these two vectors.
Let degmult(f) = (d1, . . . , dn). Then dν = 0 for ν /∈ {i, j}, since otherwise

f(0, . . . , 0, v, 0, . . . , 0, v, 0, . . . , 0) = 0 = f(0, . . . , 0, v, 0, . . . , 0, w, 0, . . . , 0).

Assume di = 0. Then

f(0, . . . , 0, v, 0, . . . , 0, v, 0, . . . , 0) = f(0, . . . , 0, 0, 0, . . . , 0, v, 0, . . . , 0) =
f(0, . . . , 0, 0, 0, . . . , 0, w, 0, . . . , 0) = f(0, . . . , 0, v, 0, . . . , 0, w, 0, . . . , 0),

since (0, . . . , 0, 0, 0, . . . , 0, v, 0, . . . , 0) and (0, . . . , 0, 0, 0, . . . , 0, w, 0, . . . , 0) lie in
the same G-orbit. Similarly, assuming dj = 0 leads to

f(0, . . . , 0, v, 0, . . . , 0, v, 0, . . . , 0) = f(0, . . . , 0, v, 0, . . . , 0, w, 0, . . . , 0).

So indeed degmult(f) has the form claimed in (2.6). Our second claim is that
for every i ∈ {1, . . . , n} there exists a non-zero f ∈ S with

degmult(f) = (0, . . . , 0, di, 0, . . . , 0), (2.7)

where di is positive and occurs at the i-th position of the vector. Indeed,
(0, . . . , 0, v, 0, . . . , 0) ∈ V n (with v in the i-th component) and (0, . . . , 0) ∈ V n

lie in distinct G-orbits. Thus there exists f ∈ S with f(0, . . . , 0, v, 0, . . . , 0) 6=
f(0, . . . , 0). This implies (2.7). Taking both claims together shows that S must
contain at least

(
n
2

)
+ n =

(
n+1

2

)
distinct elements.

Example 2.14. Let G ≤ GL1(K) be the group of order 2 generated by -1, where
char(K) 6= 0. Then K[V n]G (with V = K) is minimally generated by all
monomials of degree 2, so

γ
(
K[V n]G

)
=

(
n + 1

2

)
.

This show that the bounds in Theorem 2.13 are sharp. /
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