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We describe a new technique for obtaining new codes from old ones using geometric
methods. Several applications are described.  © 2001 Academic Press

1. INTRODUCTION

We want to provide some background from coding theory and geometry.
Let C be a binary linear code of length N, dimension k, and minimum
distance at least 4. Let G be a generator matrix for C of size k x N. Then
C* has length N and dimension N —k. Put N—k=n+ 1. A basis for C*
gives a matrix M of size (n+ 1) x N. Since C has minimum distance at least
4 it follows that the columns of M form a set S of N points in X' = PG(n, 2)
with no 3 collinear. Such a set S with no three of its points collinear is
called a cap.

Let us say that C is extendable if C can be embedded as a subspace of
codimension 1 in a binary linear code D of dimension k + 1, length N+ 1
and minimum distance at least 4. Otherwise C is said to be inextendable or
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non-lengthening. One can show that C is non-lengthening (inextendable) if
and only if the covering radius of C is 2.

The geometric result is that C is non-lengthening if and only if S is not
properly contained in a larger cap in the same space 2 =PG(n, 2), ie., if
and only if the cap S is complete.

Again, start with C. As above we get a set S in 2 =PG(n, 2) from C*.
Using the ideas above, if C is extendable then S is properly contained in
a cap S, of X with |S,| =S|+ 1. Since the size of the largest cap in X' is
2" =2N—k=1 we see that after a finite number of steps, the process of
lengthening must stop. In this way every binary linear code C of minimum
distance at least 4 is embedded in a non-lengthening binary linear code D
of minimum distance at least 4. This brings out the crucial role of such
non-lengthening codes or equivalently of complete caps in 2= PG(n, 2).

A much-studied construction, the Plotkin doubling construction preserves
completeness. This process has the effect of doubling the length of C and
increasing its dimension (by a factor greater than 2). In this note we provide
a new construction (black/white lifting) for getting new codes from old. Like
the Plotkin construction black/white lifting increases the dimension by a factor
greater than 2 but the length increases by a factor less than 2. Several new
results are shown using this black/white construction.

2. A NEW CONSTRUCTION

We begin with some basic definitions.

A cap is a set of points in 2 =PG(n, 2) having no three of its points
collinear. We say that a cap is complete or maximal if it is not a proper
subset of any other cap in 2.

Given a subset 4 of 2 =PG(n, 2), a vertex for 4 is a point v such that
v+ A= A. A subset A of X is said to be periodic if it has at least one vertex.

Given a complete cap S in X' =PG(n, 2) one may easily construct from
S a complete cap ¢(S) in £=PG(n+1,2) by the Plotkin or doubling
construction as follows. We choose a point ve £\X and define

d(S)=Su{v+s|seS}.

Clearly |4(S)| =2 |S| and ¢(S) is periodic with v as a vertex.

In [DT], Davydov and Tombak showed that if S is a complete cap in
X =PG(n,2) with |S]=2""'+2 then S=¢(S;) where S;,=5SnZX; is a
complete cap in some hyperplane X', PG(n—1,2) of 2. Thus if S'is a
complete cap in X' = PG(n, 2) with |S| =2 >2""1+2 where r is odd then
S'=¢*(S’) where S’ is a complete cap in some subspace X' =PG(n—t,2)
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of 2. Furthermore |S’| =¢=2""""'4+1 and |S| =2"""'+2" We call a cap
S of X =PG(n, 2) large if |S| =2""'+1, and small if | S| <2"~ L.

DerFmNITION 2.1, Let S be a cap in 2 =PG(n, 2). Given a point x of X
not lying in S we partition the set S into two subsets as follows. The Black
points of S with respect to x are the points

B(x,S):={seS|x+seS}.
The White points of S with respect to x are the points
W(x,S):={seS|x+s¢S}.

In geometric language #(x, S) and # (x, S) are the secant and tangent
cones of x respectively.

Next we define our construction of new caps from old ones. Let S be a
complete cap in X =PG(n, 2) with w any point of 2\S. Embed X in a
projective space £ of one dimension more. Fix ve £\X. We will construct
a new cap ¥,(S) in £=PG(n+1,2). We define

Yu(S):=Su{x+v|xe#(w,S)} u{v+w}.

We call ,(S) the black/white lift of S and we call v the apex. Note that
U (S)nZ=S.

THEOREM 2.2. Let S be a cap in X =PG(n,2), w a point of X\S and
S =PG(n+1,2) the projective space generated by an apex v together with
the space X. Then \r(S) is a cap in £ with |y (S)| =|S| + |# (w, S)| + 1=
2|S|—|%(w, S)| + 1.

Proof.  Write w' =w+v. Since ,(S)\{w'} is contained in the Plotkin
double of S we see that any line in ,,(S) would have to pass through w'.
Assume, by way of contradiction, that y,,(S) does contain a line {w’, u’, z}
where without loss of generality ' ¢ X and zeS. Since w¢ S, this line
cannot contain v. Thus we may project the line from v into X to obtain a
line {w, u=u'+v, z}. Since u' €y, (S)\w', we have u € S. Therefore, u, z €
A(w, S). But then, by the definition of y,,(S), this means that u' ¢y ,(S).
This contradiction shows that v, (S) is a cap. The formulae for |y, (S)| are
clear. |

For further developments we need some more definitions.

DEFINITION 2.3. Let S be a cap in 2 =PG(n, 2). A point, w, of Z\S is
dependable or a dependable point for S if there does not exist any other
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point x € X\S with % (w, S) = ¥ (x, S), i.e., if every point x € X\S different
from w satisfies Z(w, S) 2 Z(x, S).

In particular, if a point we X'\S lies on exactly one secant line to S, then
w is dependable. We emphasize this important special case as follows.

DerFINITION 2.4. Let S be a cap in 2 =PG(n, 2). A point, x, of X' is a
faithful point or a faithful point for S if x lies on a unique secant to S, i.e.,
if |B(x, S)| =2.

PrOPOSITION 2.5. Let S be a complete cap in X =PG(n, 2) obtained by
a sequence of Plotkin doublings beginning with a cap S" in PG(n—t, 2), i.e.,
S=¢(S"). Let x be a point of X which is not in S and is not a vertex of S.
Then the number of secants to S through x is divisible by 2°.

Proof. The proof is by induction on ¢. The result is trivial for t =0. Sup-
pose we have proved the result for £ —1 and let S be a cap with S=¢*(S’)
in X =PG(n, 2) where S, :=¢""!(S") =X, 2PG(n—1,2) and v is a vertex
of S which is not contained in X',. This means that we may consider S as
having been obtained from S, by Plotkin doubling using the vertex v. Note
that we may also view S as having been obtained by doubling from v the
cap v+ .S, contained in the hyperplane v+ 2. Let x be any point of X\S
with x not a vertex of S. Replacing 2, by v+ 2, if necessary we may
assume that xe 2. If x is a vertex of S, then x+ S, =S, and therefore
x+S=x+(S;u@+S))=(x+S)u@+x+S)=S,u(v+S;)=S, con-
tradicting our assumption that x is not a vertex of S.

Therefore x cannot be a vertex of S; and thus by the induction hypo-
thesis, the number of secants to S, through x is r(2¢) for some integer r.

Consider one of these secants to Sy, {x, y,z} where y,zeS, =S. The
points y' :=y+v and z'=z4v lie in S. Then x lies on the two secants
to S, {x, y,z} and {x, ', z’'}. Thus each secant of S, through x gives rise
to two secants to S through x.

Conversely if u’, w', x is some secant line to S not entirely contained in
2, then we see that u' + v, w' 4+ v, x is a secant line to S; which is contained
in 2. Thus every secant line to S through x arises in the above manner
from a secant line to S; through x. ||

COROLLARY 2.6. If S=¢(S,) is a complete periodic cap in X =PG(n, 2)
with n=2 then there are no faithful points for S.

Proof. The corollary follows easily from the preceding theorem and the
fact that for n>2 every complete cap has at least 4 points. ||
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For emphasis we mention a special case of the above corollary. Let S be
a large complete cap in PG(n, 2). Then by the result of [ DT] described
above, S=¢'(S’) for some ¢>0 and some cap S’ in PG(n—1t,2) with
|S’| =2"~"~! + 1. Therefore if S<PG(n, 2) is a large complete cap having
a faithful point then |S| =2""1+1.

The following partial converse to the preceeding is proved in [ BW,
Theorem 13.8].

PROPOSITION 2.7. If S is a complete cap in X =PG(n, 2) with |S| =2"""+1
then there exists a faithful point w for S.

We next consider how the black/white lift behaves when applied to
complete caps.

THEOREM 2.8. Let S be a complete cap in 2 =PG(n, 2) where n =2 with
w a dependable point for S. Then the set y,(S) is a complete cap in
S=PGn+1,2).

Proof. We show that y,(S) is complete. Let x' be a point of £ not
contained in y,(S). If x'€X then x' lies on a secant to S so we may
suppose that x'¢ 2. The point v lies on the secant line {v, y, y+ v} for
every ye # (w, S). Since w is dependable we must have # (w, S) # ¢ and
thus x" #v.

Consider the point x =v+ x' € 2. If x € S then x € #(w, S) since x" ¢ ,,(S).
But then x’ lies on the secant line to ¥,,(S) given by {w’, w+ x, x’}. Thus we
may suppose that x¢S. Now since w is dependable for S there exists
yeW (w, S\ (x,S). Since ye# (w,S), we have y =yp+vey (S).
Since y ¢ # (x, S), we have y, x + ye S. Therefore x’ lies on the secant line
{(r+x). y. X'} 1o (S). I

Now we are able to give an interesting application of our new construc-
tion. It is clear that if 4 and B are two distinct complete caps then |4 N B|
< |A| — 1. Here we show that this bound is actually attained, even when A4
and B contain a large number of points. To see this take any maximal cap
S having a faithful point w and consider the two complete caps ¢(S) and
¥,(S). We have that [¢(S) N, (S)] = [y, (S)] =1 =p(S)] —2.

3. PROPERTIES OF THE BLACK/WHITE LIFT

In Proposition 2.7 we pointed out the existence of faithful points for certain
important caps (the so-called critical caps—see [ BW, DT]). Our construc-
tion provides many examples of complete caps having many faithful points.
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PropOSITION 3.1. Let ScX=PG(n,2) be a complete cap with w a
dependable point for S. Let xe€ #(w, S) and write X' =v+x and w' =v+w.
Then B(x', ,(S)) = {w', w+x}. In other words, each point of v+ %B(w, S)
is a faithful point of ,(S)

Proof. Since xe %(w, S), x" ¢ ,(S). Since ,(S) is a complete cap there
exist two points y, X' + ye B(x', ¥, (S)) with y e 2. Now {x, x+ y, y} isa line
in X2 with x, ye S. Thus, x + y¢S even though (x4 y)+v=x"+ yey,(S).
Therefore, x + y=w and x' + y=w' and thus y =w' + x"=w + x. In other
words, every secant to ¥ ,(.S) through x’ contains w + x, showing that there
is only one secant, i.e., that x’ is a faithful point for (S). |

PROPOSITION 3.2. Let S<=X=PG(n,2) be a cap and take x € X\S. Then

(1) 7 (S)nZ=7(x,S),
2) # (x v, (S))r\Z AB(x, S) and
(3) B(w, ,(S))=B(w,S).

Proof. (1) and (2) are left to the reader. For (3), assume by way of
contradiction that we have ),z =) +weZB(w, ¥,(S))\2. Then both
y=y"+v and z=z+v must lie in ¥ (w, S). But this cannot be because
y+z=w. |

THEOREM 3.3. Let S<PG(n,2) be a cap with a dependable point w.
Form the black/white lift of S, ,(S) =« PG(n+ 1, 2) using the apex v. Then
w is a dependable point for r,,(S).

Proof. We proceed by contradiction. Thus we assume that there exists
a point x' ¢y (S) such that # (w, Y (S)) = # (X', ¥, (S)). If x'€X then
applying Proposition 3.2(1) we have # (w, S)< #'(x’, S) violating the
dependability of w for S. Thus we must have x' ¢ 2.

Now we show that x' #v as follows. Since w is dependable, there exists
ye# ' (w,S). Then yand y' = y + v both licin y,,(S) and thus y ¢ # (v, ,,(S)).
Therefore x' cannot be v since y e W (w, Y, (S)\# (v, ¥, (S).

Suppose that x:=x"+veS. Since w :=w+ve# (w ¥, (S)) <
W(x', 0,,(S)), w+x" ¢, (S). Thus w+ x ¢ S which means that x e # (w, S).
Therefore x" €y,,(S) by the definition of ¥ ,(S). This contradiction shows
that x ¢ S.

Finally we consider the case x ¢ S. Since w is dependable for S, there
exists a point y € # (w, S)\#(x, S). Thus ye S and y+xeSbut y+w¢S.
Therefore y'=y+vey,(S) and y +w=(y+v)+wé¢y,(S). This means
that y' e W' (w, y,,(S)) € # (X', ¥,,(S)). Therefore y+x=y" +x" ¢y, (S).
But we have already shown that y + x € S. This contradiction completes the
proof. 1|
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4. SMALL COMPLETE CAPS

The structure of all large complete caps is now known (see [ BW, DT]).
However, this is not so for small complete caps. Indeed not even the car-
dinalities which occur are known. Here we sketch an example which illustrates
how black/white lifting can be exploited to construct small complete caps. In
[FHW, p. 294] a cap C; = PG(5, 2) of cardinality 12 is exhibited. As is easily
verified, C; can be extended to only one complete cap, # < PG(5, 2) and this
cap has cardinality 13. The cap, 2, contains many faithful points. Let w
denote one of these. We define new small complete caps via #; :=# and
Ho =Y (H) =y HAH) for i=5. Thus #,=PG(n,2) with |#,|=
3(2"73)+1 and |PG(n, 2)| =2"*'—1 for n>5. By Theorem 2.8 these new
caps #, are all complete.

Note that in the above construction we could have instead chosen a
different faithful or dependable point for each lift.

Furthermore there exist dependable points w, for J# with |%(w, #)| = 6.
In light of Theorem 3.3, using such a point w, in the role of w in the above
construction we obtain complete caps wﬁo(% )= PG(n, 2) with |xp:;0(9f )|
=2""2435.
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