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Preface

The purpose of this preface is two-fold: (1) to discuss the philosophy of the approach taken,
as it is nonstandard for an introductory course; (2) to discuss the content of the book.

The philosophy

Since this book takes an untraditional approach to introductory control, it is worth
outlining why I have taken the approach I have.

The goals

Clearly a new text in classical control needs to have some justification for its appearance,
as there are already a large number of texts on the market, and these satisfy the demands
made by a typical introductory course in feedback control. The approach in this book is
not typical. The idea here is to develop control theory, at an introductory classical level,
as a rigorous subject. This is different, note, from presenting the mathematics needed to
understand control theory. One will often hear things like, “Classical control is merely an
application of complex variable theory,” or “Linear control is merely an application of linear
algebra.” While it is true that these parts of control theory do rely on the asserted branches
of mathematics, control theory is such an effective blend of many branches of mathematics
that to categorise it as a subset of one is a disservice. The subject of control theory, even
at an introductory level, has a mathematical life of its own, and it is this life that is being
exhibited here.

The main benefit of such an approach is that not just the mathematics behind the
subject, but the subject itself can be treated rigorously. The problems of control theory,
and these are actual practical problems, often have precise mathematical statements, and
the intent in this book is to give these wherever possible. The result is that a student
will be able to understand simple problems in a larger context. For some, at least, this is
useful. It also makes it possible to consider challenging control problems that cannot really
be considered in an exclusively ad hoc treatment. It would seem that many classical control
texts were written based upon the standard of control practice in, say, the early 1960’s. This
practice, well laid out in the texts of Truxal [1955] and Horowitz [1963], had reached a point
where, for the problems to which it was applicable, it was “finished.” This was expressed
in one early paper as follows: “The present state of the art is such that it is safe to assume
that, for linear single-loop feedback systems, almost no analysis or design problems of any
consequence remain.” Such statements are seldom prophetic. Indeed, much has been done
since the date of publication of the cited paper (1961), even for linear single-loop systems.
Now we have means for handling problems that would be almost impossible to treat using
the ad hoc methods of classical design. And the methods all rely on a firm grasp of not just
the mathematics behind control theory, but the mathematics of the subject itself. This is
the reason for this book.
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The mathematical approach

With the above as backdrop, this book is provided for students who can be relied upon to
have a satisfactory background in linear algebra, differential equations (including the matrix
exponential), basic complex analysis, and some transform theory. The appendices contain
a quick overview of necessary background material, so that an instructor or a student can
determine whether the book is useful.

Apart from the above pedagogical concerns, I have also tried to write the book with an eye
towards its being a useful reference. In the book, I have tried to prove as many statements as
possible; even many that are not commonly proved, but often stated. I do this not because
I feel that all of these proofs should be delivered in lectures—I certainly do not do this
myself. Rather, my objectives here are scholarly. I do not feel that such lofty goals clash
with the rather more pedagogical concerns of getting students to come to grips with basic
material. Students who find the course challenging may safely omit consideration of the
more technical proofs, provided that they understand the concepts behind the results. More
curious students, however, are rewarded by having for reference proofs that can be difficult
to find in the literature. Moreover, this approach has, in my experience, a pedagogical
byproduct. If one teaches an introductory course in a manner not completely “method
oriented,” natural questions will arise in the presentation. For example, if one even gets
around to posing the problem of finding a controller that stabilises a given plant in a unity
gain feedback loop, the natural question arises as to whether such controllers exist. The
answer is affirmative, but the determination of this answer is nontrivial. A traditional
approach to classical control masks the existence of the question, never mind providing the
answer. Again, the advantage of the approach taken here, at least for the curious student,
is that the answer to this more basic question may be found alongside the more standard ad
hoc methods for controller design.

The rôle of control design

A word needs to be said about control design. Greater emphasis is being placed on
engineering design in the engineering undergraduate curriculum, and this is a by all means
an appropriate tendency. When teaching a control course, one faces a decision relative to
design content. Should the design be integrated into the course at every stage, or should it
be separated from the analysis parts of the course? In this book, the trend in engineering
education is being bucked, and the latter course is taken. Indeed, care has been taken to
explicitly separate the book into three parts, with the design part coming last. One can
justly argue that this is a mistake, but it is the approach I have decided upon, and it seems
to work. My rationale for adopting the approach I do is that in control, there is very simply
a lot of analysis to learn before one can do design in a fulfilling way. Thus I get all the tools
in place before design is undertaken in the latter stages of the book.

How to use the book

It is not possible to cover all of the topics in this book in a single term; at least it is
not advisable to attempt this. However, it is quite easy to break the contents of the book
into two courses, one at an introductory level, and another dealing with advanced topics.
Because this division is not readily made on a chapter-by-chapter basis, it is perhaps worth
suggesting two possible courses that can be taught from this book.

An introductory course for students with no control background might contain roughly
the following material:
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1. Chapter 1;

2. Chapter 2, possibly omitting details about zero dynamics (Section 2.3.3), and going
lightly on some of the proofs in Section 2.3;

3. Chapter 3, certainly going lightly on the proofs in Section 3.3;

4. Chapter 4, probably omitting Bode’s Gain/Phase Theorem (Section 4.4.2) and perhaps
material about plant uncertainty models (Section 4.5);

5. Chapter 5, omitting many of the details of signal and system norms in Section 5.3, omit-
ting Liapunov stability (Section 5.4), and omitting the proofs of the Routh/Hurwitz
criteria;

6. Chapter 6, going lightly, perhaps, on the detailed account of signal flow graphs in
Sections 6.1 and 6.2, and covering as much of the material in Section 6.4 as deemed
appropriate; the material in Section 6.5 may form the core of the discussion about
feedback in a more traditional course;1

7. Chapter 7, probably omitting robust stability (Section 7.3);

8. Chapter 8;

9. maybe some of the material in Chapter 9, if the instructor is so inclined;

10. Chapter 11, although I rarely say much about root-locus in the course I teach;

11. Chapter 12, omitting Section 12.3 if robustness has not been covered in the earlier
material;

12. perhaps some of the advanced PID synthesis methods of Chapter 13.

When I teach the introductory course, it is offered with a companion lab class. The lab
course follows the lecture course in content, although it is somewhat more “down to earth.”
Labs start out with the objective of getting students familiar with the ideas introduced in
lectures, and by the end of the course, students are putting into practice these ideas to design
controllers.

A more advanced course, having as prerequisite the material from the basic course, could
be structured as follows:

1. thorough treatment of material in Chapter 2;

2. ditto for Chapter 3;

3. Bode’s Gain/Phase Theorem (Section 4.4.2) and uncertainty models (Section 4.5);

4. thorough treatment of signal and system norms from Section 5.3, proofs of
Routh/Hurwitz criteria if one is so inclined, and Liapunov methods for stability (Sec-
tion 5.4);

5. static state feedback, static output feedback, and dynamic output feedback (Sec-
tion 6.4);

6. robust stability (Section 7.3);

7. design limitations in Chapter 9;

8. robust performance (Section 9.3);

1Of course, someone teaching a traditional course is unlikely to be using this book.
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9. Chapter 10, maybe omitting Section 10.4 on strong stabilisation;

10. basic loop shaping using robustness criterion (Section 12.3);

11. perhaps the advanced synthesis methods of Chapter 13;

12. Chapter 14;

13. Chapter 15.

The content

In Chapter 1 we engage in a loose discourse on ideas of a control theoretic nature. The
value of feedback is introduced via a simple DC servo motor example using proportional
feedback. Modelling and linearisation are also discussed in this chapter. From here, the
book breaks up into three parts (plus appendices), with the presentation taking a rather less
loose form.

Part I. System representations and their properties

Linear systems are typically represented in one of three ways: in the time domain using
state space methods (Chapter 2); in the Laplace transform domain using transfer functions
(Chapter 3); and in the frequency domain using the frequency response (Chapter 4). These
representations are all related in one way or another, and there exist vocal proponents of one
or the other representation. I do not get involved in any discussion over which representation
is “best,” but treat each with equal importance (as near as I can), pointing out the innate
similarities shared by the three models.

As is clear from the book’s subtitle, the treatment is single-input, single-output (SISO),
with a very few exceptions, all of them occurring near the beginning of Chapter 2. The focus
on SISO systems allows students to have in mind simple models. MIMO generalisations of
the results in the book typically fall into one of two categories, trivial and very difficult.
The former will cause no difficulty, and the latter serve to make the treatment more difficult
than is feasible in an introductory text. References are given to advanced material.

Specialised topics in this part of the book include a detailed description of zero dynamics
in both the state space and the transfer function representations. This material, along with
the discussion of the properties of the transfer function in Section 3.3, have a rather technical
nature. However, the essential ideas can be easily grasped independent of a comprehension
of the proofs. Another specialised topic is a full account of Bode’s Gain/Phase Theorem in
Section 4.4.2. This is an interesting theorem; however, time does not normally permit me
to cover it in an introductory course.

A good understanding of the material in this first part of the book makes the remainder
of the book somewhat more easily digestible. It has been my experience that students find
this first material the most difficult.

Part II. System analysis

Armed with a thorough understanding of the three representations of a linear system,
the student is next guided through methods for analysing such systems. The first concern in
such a discussion should be, and here is, stability. A control design cannot be considered in
any way successful unless it has certain stability properties. Stability for control systems has
an ingredient that separates it from stability for simple dynamical systems. In control, one
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is often presented with a system that is nominally unstable, and it is desired to stabilise it
using feedback. Thus feedback is another central factor in our discussion of control systems
analysis. We are rather more systematic about this than is the norm. The discussion of
signal flow graphs in Sections Section 6.1 and 6.2 is quite detailed, and some of this detail
can be skimmed. However, the special notion of stability for interconnected systems, here
called IBIBO stability, is important, and the notation associated with it appears throughout
the remainder of the book. The Nyquist criterion for IBIBO stability is an important part of
classical control. Indeed, in Section 7.3 the ideas of the Nyquist plot motivate our discussion
of robust stability. A final topic in control systems analysis is performance, and this is
covered in two chapters, 8 and 9, the latter being concerned with limitations on performance
that arise due to features of the plant.

The latter of the two chapters on performance contains some specialised material concern-
ing limitations on controller design that are covered in the excellent text of Seron, Braslavsky,
and Goodwin [1997]. Also in this chapter is presented the “robust performance problem,”
whose solution comprises Chapter 15. Thus Chapter 9 should certainly be thought of as one
of special topics, not likely to be covered in detail in a first course.

Part III. Controller design

The final part of the text proper is a collection of control design schemes. We have tried
to present this material in as systematic a manner as possible. This gives some emphasis
to the fact that in modern linear control, there are well-developed design methods based on
a solid mathematical foundation. That said, an attempt has been made to point out that
there will always be an element of “artistry” to a good control design. While an out of the
box controller using some of the methods we present may be a good starting point, a good
control designer can always improve on such a design using their experience as a guide. This
sort of material is difficult to teach, of course. However, an attempt has been made to give
sufficient attention to this matter.

This part of the book starts off with a discussion of the stabilisation problem.

Part IV. Background and addenda

There are appendices reviewing relevant material in linear algebra, the matrix exponen-
tial, complex variables, and transforms. It is expected that students will have seen all of the
material in these appendices, but they can look here to refamiliarise themselves with some
basic concepts.

What is not in the book

The major omission of the book is discrete time ideas. These are quite important in
our digital age. However, students familiar with the continuous time ideas presented here
will have no difficulty understanding their discrete time analogues. That said, it should
be understood that an important feature in control is missing with the omission of digital
control, and that instructors may wish to insert material of this nature.

This book is in its third go around. The version this year is significantly expanded from
previous years, so there are apt to be many errors. If you find an error, no matter how small,
let me know !

Andrew D. Lewis
Department of Mathematics & Statistics
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Chapter 1

An introduction to linear control theory

With this book we will introduce you to the basics ideas of control theory, and the setting
will be that of single-input, single-output (SISO), finite-dimensional, time-invariant, linear
systems. In this section we will begin to explore the meaning of this lingo, and look at
some simple physical systems which fit into this category. Traditional introductory texts in
control may contain some of this material in more detail [see, for example Dorf and Bishop
2010, Franklin, Powell, and Emani-Naeini 2009]. However, our presentation here is intended
to be more motivational than technical. For proper background in physics, one should look
to suitable references. A very good summary reference for the various methods of deriving
equations for physical systems is [Cannon, Jr. 1967].

Contents
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1.1 Some control theoretic terminology

For this book, there should be from the outset a picture you have in mind of what you
are trying to accomplish. The picture is essentially given in Figure 1.1. The idea is that
you are given a plant , which is the basic system, which has an output y(t) that you’d
like to do something with. For example, you may wish to track a reference trajectory
r(t). One way to do this would be to use an open-loop control design. In this case, one
would omit that part of the diagram in Figure 1.1 which is dashed, and use a controller
to read the reference signal r(t) and use this to specify an input u(t) to the plant which
should give the desired output. This open-loop control design may well work, but it has
some inherent problems. If there is a disturbance d(t) which you do not know about,
then this may well cause the output of the plant to deviate significantly from the reference
trajectory r(t). Another problem arises with plant uncertainties . One models the plant,
typically via differential equations, but these are always an idealisation of the plant’s actual
behaviour. The reason for the problems is that the open-loop control law has no idea what
the output is doing, and it marches on as if everything is working according to an idealised
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r(t) controller plant y(t)

sensor

d(t)

u(t)

−
e(t)

s(t)

Figure 1.1 A basic control system schematic

model, a model which just might not be realistic. A good way to overcome these difficulties
is to use feedback . Here the output is read by sensors , which may themselves be modelled
by differential equations, which produce a signal s(t) which is subtracted from the reference
trajectory to produce the error e(t). The controller then make its decisions based on the
error signal, rather than just blindly considering the reference signal.

1.2 An introductory example

Let’s see how this all plays out in a simple example. Suppose we have a DC servo
motor whose output is its angular velocity ω(t), the input is a voltage E(t), and there is a
disturbance torque T (t) resulting from, for example, an unknown external load being applied
to the output shaft of the motor. This external torque is something we cannot alter. A little
later in this section we will see some justification for the governing differential equations to
be given by

dω(t)

dt
+ 1

τ
ω(t) = kEE(t) + kTT (t).

The schematic for the situation is shown in Figure 1.2. This schematic representation we

E(t) kE

kT

T (t)

u(t) ( d

dt
+

1

τ

)
= u ω(t)

Figure 1.2 DC motor open-loop control schematic

give here is one we shall use frequently, and it is called a block diagram .1

1When we come to use block diagrams for real, you will see that the thing in the blocks are not differential
equations in the time-domain, but in the Laplace transform domain.
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Let us just try something näıve and open-loop. The objective is to be able to drive the
motor at a specified constant velocity ω0. This constant desired output is then our reference
trajectory. You decide to see what you might do by giving the motor some constant torques
to see what happens. Let us provide a constant input voltage E(t) = E0 and suppose that
the disturbance torque T (t) = 0. We then have the differential equation

dω

dt
+ 1

τ
ω = kEE0.

Supposing, as is reasonable, that the motor starts with zero initial velocity, i.e., ω(0) = 0,
the solution to the initial value problem is

ω(t) = kEE0τ
(
1− e−t/τ

)
.

We give a numerical plot for kE = 2, E0 = 3, and 1
τ

= 1
2

in Figure 1.3. Well, we say, this all

Figure 1.3 Open-loop response of DC motor

looks too easy. To get the desired output velocity ω0 after a sufficiently long time, we need
only provide the input voltage E0 = ω0

τkE
.

However, there are decidedly problems lurking beneath the surface. For example, what
if there is a disturbance torque? Let us suppose this to be constant for the moment so
T (t) = −T0 for some T0 > 0. The differential equation is then

dω

dt
+ 1

τ
ω = kEE0 − kTT0,

and if we again suppose that ω(0) = 0 the initial value problem has solution

ω(t) = (kEE0 − kTT0)τ
(
1− e−t/τ

)
.

If we follow our simple rule of letting the input voltage E0 be determined by the desired final
angular velocity by our rule E0 = ω0

kEτ
, then we will undershoot our desired final velocity

by ωerror = kTT0τ . In this event, the larger is the disturbance torque, the worse we do—in
fact, we can do pretty darn bad if the disturbance torque is large. The effect is illustrated
in Figure 1.4 with kT = 1 and T0 = 2.
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Figure 1.4 Open-loop response of DC motor with disturbance

Another problem arises when we have imperfect knowledge of the motor’s physical char-
acteristics. For example, we may not know the time-constant τ as accurately as we’d like.
While we estimate it to be τ , it might be some other value τ̃ . In this case, the actual
differential equation governing behaviour in the absence of disturbances will be

dω

dt
+ 1

τ̃
ω = kEE0,

which gives the solution to the initial value problem as

ω(t) = kEE0τ̃
(
1− e−t/τ̃

)
.

The final value will then be in error by the factor τ̃
τ
. This situation is shown in Figure 1.5

for 1
τ̃

= 5
8
.

Okay, I hope now that you can see the problem with our open-loop control strategy. It
simply does not account for the inevitable imperfections we will have in our knowledge of
the system and of the environment in which it works. To take all this into account, let us
measure the output velocity of the motor’s shaft with a tachometer. The tachometer takes
the angular velocity and returns a voltage. This voltage, after being appropriately scaled by
a factor ks, is then compared to the voltage needed to generate the desired velocity by feeding
it back to our reference signal by subtracting it to get the error. The error we multiply by
some constant K, called the gain for the controller, to get the actual voltage input to the
system. The schematic now becomes that depicted in Figure 1.6. The differential equations
governing this system are

dω

dt
+ ( 1

τ
+ kEkSK)ω = kEKωref + kTT.

We shall see how to systematically obtain equations such as this, so do not worry if you
think it in nontrivial to get these equations. Note that the input to the system is, in some
sense, no longer the voltage, but the reference signal ωref. Let us suppose again a constant
disturbance torque T (t) = −T0 and a constant reference velocity ωref = ω0. The solution to
the differential equation, again supposing ω(0) = 0, is then

ω(t) =
kEKω0 − kTT0

1
τ

+ kEkSK

(
1− e−( 1

τ
+kEkSK)t

)
.
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Figure 1.5 Open-loop response of DC motor with “actual” motor
time-constant

ωref K
E

kE

kT

T (t)

u(t) ( d

dt
+

1

τ

)
= u ω(t)

kS

−

controller

plant

sensor

Figure 1.6 DC motor closed-loop control schematic

Let us now investigate this closed-loop control law. As previously, let us first look at the
case when T0 = 0 and where we suppose perfect knowledge of our physical constants and
our model. In this case, we wish to achieve a final velocity of ω0 = E0τkE as t→∞, i.e., the
same velocity as we had attained with our open-loop strategy. We see the results of this
in Figure 1.7 where we have chosen kS = 1 and K = 5. Notice that the motor no longer
achieves the desired final speed! However, we have improved the response time for the system
significantly from the open-loop controller (cf. Figure 1.3). It is possible to remove the final
error by doing something more sophisticated with the error than multiplying it by K, but
we will get to that only as the course progresses. Now let’s see what happens when we
add a constant disturbance by setting T0 = 2. The result is displayed in Figure 1.8. We
see that the closed-loop controller reacts much better to the disturbance (cf. Figure 1.4),
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Figure 1.7 Closed-loop response of DC motor

Figure 1.8 Closed-loop response of DC motor with disturbance

although we still (unsurprisingly) cannot reach the desired final velocity. Finally we look at
the situation when we have imperfect knowledge of the physical constants for the plant. We
again consider having 1

τ̃
= 5

8
rather than the guessed value of 1

2
. In this case the closed-loop

response is shown in Figure 1.9. Again, the performance is somewhat better than that of
the open-loop controller (cf. Figure 1.5), although we have incurred a largish final error in
the final velocity.

I hope this helps to convince you that feedback is a good thing! As mentioned above, we
shall see that it is possible to design a controller so that the steady-state error is zero, as this
is the major deficiency of our very basic controller “designed” above. This simple example,
however, does demonstrate that one can achieve improvements in some areas (response time
in this case), although sometimes at the expense of deterioration in others (steady-state
error in this case).
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Figure 1.9 Closed-loop response of DC motor with “actual” motor
time-constant

1.3 Linear differential equations for physical devices

We will be considering control systems where the plant, the controller, and the sensors
are all modelled by linear differential equations. For this reason it makes sense to provide
some examples of devices whose behaviour is reasonably well-governed by such equations.
The problem of how to assemble such devices to, say, build a controller for a given plant is
something we will not be giving terribly much consideration to.

1.3.1 Mechanical gadgets

In Figure 1.10 is a really feeble idealisation of a car suspension system. We suppose that

m

k d

y(t)

F (t)

Figure 1.10 Simplified automobile suspension

at y = 0 the mass m is in equilibrium. The spring, as we know, then supplies a restoring
force Fk = −ky and the dashpot supplies a force Fd = −dẏ, where “ ˙ ” means d

dt
. We also

suppose there to be an externally applied force F (t). If we ask Isaac Newton, “Isaac, what
are the equations governing the behaviour of this system?” he would reply, “Well, F = ma,
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now go think on it.”2 After doing so you’d arrive at

mÿ(t) = F (t)− ky(t)− dẏ(t) =⇒ mÿ(t) + dẏ(t) + ky(t) = F (t).

This is a second-order linear differential equation with constant coefficients and with inho-
mogeneous term F (t).

The same sort of thing happens with rotary devices. In Figure 1.11 is a rotor fixed to
a shaft moving with angular velocity ω. Viscous dissipation may be modelled with a force

ω(t)

Figure 1.11 Rotor on a shaft

proportional to the angular velocity: Fd = −dω. In the presence of an external torque τ(t),
the governing differential equation is

Jω̇(t) + dω(t) = τ(t)

where J is the moment of inertia of the rotor about its point of rotation. If one wishes
to include a rotary spring, then one must consider not the angular velocity ω(t) as the
dependent variable, but rather the angular displacement θ(t) = θ0 + ωt. In either case, the
governing equations are linear differential equations.

Let’s look at a simple pendulum (see Figure 1.12). If we sum moments about the pivot
we get

m`2θ̈ = −mg` sin θ =⇒ θ̈ + g
`

sin θ = 0.

Now this equation, you will notice, is nonlinear. However, we are often interested in the
behaviour of the system near the equilibrium points which are (θ, θ̇) = (θ0, 0) where θ0 ∈
{0, π}. So, let us linearise the equations near these points, and see what we get. We write
the solution near the equilibrium as θ(t) = θ0 + ξ(t) where ξ(t) is small. We then have

θ̈ + g
`

sin θ = ξ̈ + g
`

sin(θ0 + ξ) = ξ̈ + g
`

sin θ0 cos ξ + g
`

cos θ0 sin ξ.

Now note that sin θ0 = 0 if θ0 ∈ {0, π}, and cos θ0 = 1 if θ0 = 0 and cos θ0 = −1 if θ0 = π.
We also use the Taylor expansion for sinx around x = 0: sinx = x− x3

3!
+ x5

5!
+ . . . . Keeping

2This is in reference to the story, be it true or false, that when Newton was asked how he’d arrived at
the inverse square law for gravity, he replied, “I thought on it.”
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θ

ℓ

Figure 1.12 A simple pendulum

only the lowest order terms gives the following equations which should approximate the
behaviour of the system near the equilibrium (θ0, 0):

ξ̈ + g
`
ξ = 0, θ0 = 0

ξ̈ − g
`
ξ = 0, θ0 = π.

In each case, we have a linear differential equation which governs the behaviour near the equi-
librium. This technique of linearisation is ubiquitous since there really are no linear physical
devices, but linear approximations seem to work well, and often very well, particularly in
control. We discuss linearisation properly in Section 1.4.

Let us recall the basic rules for deriving the equations of motion for a mechanical system.

1.1 Deriving equations for mechanical systems Given: an interconnection of point masses and rigid
bodies.

1. Define a reference frame from which to measure distances.

2. Choose a set of coordinates that determine the configuration of the system.

3. Separate the system into its mechanical components. Thus each component should be
either a single point mass or a single rigid body.

4. For each component determine all external forces and moments acting on it.

5. For each component, express the position of the centre of mass in terms of the chosen
coordinates.

6. The sum of forces in any direction on a component should equal the mass of the com-
ponent times the component of acceleration of the component along the direction of the
force.

7. For each component, the sum of moments about a point that is either (a) the centre of
mass of the component or (b) a point in the component that is stationary should equal
the moment of inertia of the component about that point multiplied by the angular
acceleration. •
This methodology has been applied to the examples above, although they are too simple

to be really representative. We refer to the exercises for examples that are somewhat more
interesting. Also, see [Cannon, Jr. 1967] for details on the method we outline, and other
methods.
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1.3.2 Electrical gadgets

A resistor is a device across which the voltage drop is proportional to the current
through the device. A capacitor is a device across which the voltage drop is proportional
to the charge in the device. An inductor is a device across which the voltage drop is
proportional to the time rate of change of current through the device. The three devices are
typically given the symbols as in Figure 1.13. The quantity R is called the resistance of

I(t) E = RI

Resistor

q(t) E = 1
C q

Capacitor

I(t) E = LdI
dt

Inductor

Figure 1.13 Electrical devices

the resistor, the quantity C is called the capacitance of the capacitor, and the quantity
L is called the inductance of the inductor. Note that the proportionality constant for the
capacitor is not C but 1

C
. The current I is related to the charge q by I = dq

dt
. We can then

imagine assembling these electrical components in some configuration and using Kirchhoff’s
laws3 to derive governing differential equations. In Figure 1.14 we have a particularly simple

−
E

+

R

L

C

Figure 1.14 A series RLC circuit

configuration. The voltage drop around the circuit must be zero which gives the governing
equations

E(t) = RI(t) + Lİ(t) + 1
C
q(t) =⇒ Lq̈(t) +Rq̇(t) + 1

C
q(t) = E(t)

where E(t) is an external voltage source. This may also be written as a current equation by
merely differentiating:

LÏ(t) +Rİ(t) + 1
C
I(t) = Ė(t).

In either case, we have a linear equation, and again one with constant coefficients.
Let us present a methodology for determining the differential equations for electric cir-

cuits. The methodology relies on the notion of a tree which is a connected collection of

3Kirchhoff’s voltage law states that the sum of voltage drops around a closed loop must be zero and
Kirchhoff’s current law states that the sum of the currents entering a node must be zero.
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branches containing no loops. For a given tree, a tree branch is a branch in the tree, and
a link is a branch not in the tree.

1.2 Deriving equations for electric circuits Given: an interconnection of ideal resistors, capacitors,
and inductors, along with voltage and current sources.

1. Define a tree by collecting together a maximal number of branches to form a tree. Add
elements in the following order of preference: voltage sources, capacitors, resistors, in-
ductors, and current sources. That is to say, one adds these elements in sequence until
one gets the largest possible tree.

2. The states of the system are taken to be the voltages across capacitors in the tree branches
for the tree of part 1 and the currents through inductors in the links for the tree from
part 1.

3. Use Kirchhoff’s Laws to derive equations for the voltage and current in every tree branch
in terms of the state variables.

4. Write the Kirchhoff Voltage Law and the Kirchhoff Current Law for every loop and every
node corresponding to a branch assigned a state variable. •
The exercises contain a few examples that can be used to test one’s understanding of the

above method. We also refer to [Cannon, Jr. 1967] for further discussion of the equations
governing electrical networks.

1.3.3 Electro-mechanical gadgets

If you really want to learn how electric motors work, then read a book on the subject. For
example, see [Cannon, Jr. 1967].

A DC servo motor works by running current through a rotary toroidal coil which sits in
a stationary magnetic field. As current is run through the coil, the induced magnetic field
induces the rotor to turn. The torque developed is proportional to the current through the
coil: T = KtI where T is the torque supplied to the shaft, I is the current through the
coil, and Kt is the “torque constant.” The voltage drop across the motor is proportional
to the motor’s velocity; Em = Keθ̇ where Em is the voltage drop across the motor, Ke is a
constant, and θ is the angular position of the shaft. If one is using a set of consistent units
with velocity measured in rads/sec, then apparently Ke = Kt.

Now we suppose that the rotor has inertia J and that shaft friction is viscous and so the
friction force is given by −dθ̇. Thus the motor will be governed by Newton’s equations:

Jθ̈ = −dθ̇ +KtI =⇒ Jθ̈ + dθ̇ = KtI.

To complete the equations, one need to know the relationship between current and θ. This
is provided by the relation Em = Keθ̇ and the dynamics of the circuit which supplies current
to the motor. For example, if the circuit has resistance R and inductance L then we have

L
dI

dt
+RI = E −Keθ̇

with E being the voltage supplied to the circuit. This gives us coupled equations

Jθ̈ + dθ̇ = KtI

L
dI

dt
+RI = E −Keθ̇
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which we can write in first-order system form as


θ̇
v̇θ
İ


 =




0 1 0
0 − d

J
Kt
J

0 −Ke
L
−R
L





θ
vθ
I


+




0
0
1
L


E

where we define the dependent variable vθ = θ̇. If the response of the circuit is much faster
than that of the motor, e.g., if the inductance is small, then this gives E = Keθ̇ + RI and
so the equations reduce to

Jθ̈ +
(
d+ KtKe

R

)
θ̇ = Kt

R
E.

Thus the dynamics of a DC motor can be roughly described by a first-order linear differential
equation in the angular velocity. This is what we saw in our introductory example.

Hopefully this gives you a feeling that there are a large number of physical systems which
are modelled by linear differential equations, and it is these to which we will be restricting
our attention.

1.4 Linearisation at equilibrium points

When we derived the equations of motion for the pendulum, the equations we obtained
were nonlinear. We then decided that if we were only interested in looking at what is going
on near an equilibrium point, then we could content ourselves with linearising the equations.
We then did this in a sort of hacky way. Let’s see how to do this methodically.

We suppose that we have vector differential equations of the form

ẋ1 = f1(x1, . . . , xn)

ẋ2 = f2(x1, . . . , xn)

...

ẋn = fn(x1, . . . , xn).

The n functions (f1, . . . , fn) of the n variables (x1, . . . , xn) are known smooth functions. Let
us denote x = (x1, . . . , xn) and f(x) = (f1(x), . . . , fn(x)). The differential equation can
then be written as

ẋ = f(x). (1.1)

It really only makes sense to linearise about an equilibrium point. An equilibrium point
is a point x0 ∈ Rn for which f(x0) = 0. Note that the constant function x(t) = x0 is a
solution to the differential equation if x0 is an equilibrium point. For an equilibrium point
x0 define an n× n matrix Df(x0) by

Df(x0) =




∂f1

∂x1
(x0) ∂f1

∂x2
(x0) · · · ∂f1

∂xn
(x0)

∂f2

∂x1
(x0) ∂f2

∂x2
(x0) · · · ∂f2

∂xn
(x0)

...
...

. . .
...

∂fn
∂x1

(x0) ∂fn
∂x2

(x0) · · · ∂fn
∂xn

(x0)


 .

This matrix is often called the Jacobian of f at x0. The linearisation of (1.1) about an
equilibrium point x0 is then the linear differential equation

ξ̇ = Df(x0)ξ.

Let’s see how this goes with our pendulum example.
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1.3 Example The nonlinear differential equation we derived was

θ̈ + g
`

sin θ = 0.

This is not in the form of (1.1) since it is a second-order equation. But we can put this into
first-order form by introducing the variables x1 = θ and x2 = θ̇. The equations can then be
written

ẋ1 = θ̇ = x2

ẋ2 = θ̈ = −g
`

sin θ = −g
`

sinx1.

Thus
f1(x1, x2) = x2, f2(x1, x2) = −g

`
sinx1.

Note that at an equilibrium point we must have x2 = 0. This makes sense as it means
that the pendulum should not be moving. We must also have sinx1 = 0 which means that
x1 ∈ {0, π}. This is what we determined previously.

Now let us linearise about each of these equilibrium points. For an arbitrary point
x = (x1, x2) we compute

Df(x) =

[
0 1

−g
`

cosx1 0

]
.

At the equilibrium point x1 = (0, 0) we thus have

Df(x1) =

[
0 1
−g
`

0

]
,

and at the equilibrium point x2 = (0, π) we thus have

Df(x1) =

[
0 1
g
`

0

]
.

With these matrices at hand, we may write the linearised equations at each equilibrium
point. •

1.5 What you are expected to know

There are five essential areas of background that are assumed of a student using this
text. These are

1. linear algebra,

2. ordinary differential equations, including the matrix exponential,

3. basic facts about polynomials,

4. basic complex analysis, and

5. transform theory, especially Fourier and Laplace transforms.

Appendices review each of these in a cursory manner. Students are expected to have seen
this material in detail in previous courses, so there should be no need for anything but rapid
review in class.
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Many of the systems we will look at in the exercises require in their analysis straight-
forward, but tedious, calculations. It should not be the point of the book to make you go
through such tedious calculations. You will be well served by learning to use a computer
package for doing such routine calculations, although you should try to make sure you are
asking the computer to do something which you in principle understand how to do yourself.
I have used Mathematica® to do all the plotting in the book since it is what I am familiar
with. Also available are Maple® and Matlab®. Matlab® has a control toolbox, and is the
most commonly used tool for control systems.4

You are encouraged to use symbolic manipulation packages for doing problems in this
book. Just make sure you let us know that you are doing so, and make sure you know what
you are doing and that you are not going too far into black box mode.

1.6 Summary

Our objective in this chapter has been to introduce you to some basic control theoretic
ideas, especially through the use of feedback in the DC motor example. In the remainder of
these notes we look at linear systems, and to motivate such an investigation we presented
some physical devices whose behaviour is representable by linear differential equations, per-
haps after linearisation about a desired operating point. We wrapped up the chapter with a
quick summary of the background required to proceed with reading these notes. Make sure
you are familiar with everything discussed here.

4Mathematica® and Maple® packages have been made available on the world wide web for doing things
such as are done in this book. See http://mast.queensu.ca/~math332/.
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Exercises

E1.1 Probe your life for occurrences of things which can be described, perhaps roughly, by
a schematic like that of Figure 1.1. Identify the components in your system which
are the plant, output, input, sensor, controller, etc. Does your system have feedback?
Are there disturbances?

E1.2 Consider the DC servo motor example which we worked with in Section 1.2. Determine
conditions on the controller gain K so that the voltage E0 required to obtain a desired
steady-state velocity is greater for the closed-loop system than it is for the open-
loop system. You may neglect the disturbance torque, and assume that the motor
model is accurate. However, do not use the numerical values used in the notes—leave
everything general.

E1.3 An amplifier is to be designed with an overall amplification factor of 2500 ± 50. A
number of single amplifier stages is available and the gain of any single stage may
drift anywhere between 25 and 75. The configuration of the final amplifier is given in
Figure E1.1. In each of the blocks we get to insert an amplifier stage with the large

Vin K1 K2 KN Vout

α

−

Figure E1.1 A multistage feedback amplifier

and unknown gain variation (in this case the gain variation is at most 50). Thus the
gain in the forward path is K1K2 · · ·KN where N is the number of amplifier stages
and where Ki ∈ [25, 75]. The element in the feedback path is a constant 0 < α < 1.

(a) For N amplifier stages and a given value for α determine the relationship between
Vin and Vout.

The feedback gain α is known precisely since it is much easier to design a circuit
which provides accurate voltage division (as opposed to amplification). Thus, we can
assume that α can be exactly specified by the designer.

(b) Based on this information find a value of α in the interval (0, 1) and, for that
value of α, the minimal required number of amplifier stages, Nmin, so that the
final amplifier design meets the specification noted above.

E1.4 Derive the differential equations governing the behaviour of the coupled masses in
Figure E1.2. How do the equations change if viscous dissipation is added between
each mass and the ground? (Suppose that both masses are subject to the same
dissipative force.)

The following two exercises will recur as exercises in succeeding chapters. Since the compu-
tations can be a bit involved—certainly they ought to be done with a symbolic manipulation
package—it is advisable to do the computations in an organised manner so that they may
be used for future calculations.
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m m
k k k

x1 x2

Figure E1.2 Coupled masses

x

θ

Figure E1.3 Pendulum on a cart

E1.5 Consider the pendulum on a cart pictured in Figure E1.3. Derive the full equations
which govern the motion of the system using coordinates (x, θ) as in the figure. Here
M is the mass of the cart and m is the mass of the pendulum. The length of the
pendulum arm is `. You may assume that there is no friction in the system. Linearise
the equations about the points (x, θ, ẋ, θ̇) = (x0, 0, 0, 0) and (x, θ, ẋ, θ̇) = (x0, π, 0, 0),
where x0 is arbitrary.

E1.6 Determine the full equations of motion for the double pendulum depicted in Fig-
ure E1.4. The first link (i.e., the one connected to ground) has length `1 and mass

θ1

θ2

Figure E1.4 Double pendulum

m1, and the second link has length `2 and mass m2. The links have a uniform mass
density, so their centres of mass are located at their midpoint. You may assume that



Exercises for Chapter 1 17

there is no friction in the system. What are the equilibrium points for the double
pendulum (there are four)? Linearise the equations about each of the equilibria.

E1.7 Consider the electric circuit of Figure E1.5. To write equations for this system we

−
E

+

R

C L

Figure E1.5 Electric circuit

need to select two system variables. Using IC , the current through the capacitor, and
IL, the current through the inductor, derive a first-order system of equations in two
variables governing the behaviour of the system.

E1.8 For the circuit of Figure E1.6, determine a differential equation for the current through

−
E

+

R1

R2 C

Figure E1.6 Another electric circuit

the resistor R1 in terms of the voltage E(t).

E1.9 For the circuit of Figure E1.7, As dependent variable for the circuit, use the volt-

−
E

+

RL

L C

RC

Figure E1.7 Yet another electric circuit
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age across the capacitor and the current through the inductor. Derive differential
equations for the system as a first-order system with two variables.

E1.10 The mass flow rate from a tank of water with a uniform cross-section can be roughly
modelled as being proportional to the height of water in the tank which lies above
the exit nozzle. Suppose that two tanks are configured as in Figure E1.8 (the tanks

Figure E1.8 Coupled water tanks

are not necessarily identical). Determine the equations of motion which give the mass
flow rate from the bottom tank given the mass flow rate into the top tank. In this
problem, you must define the necessary variables yourself.

In the next exercise we will consider a more complex and realistic model of flow in coupled
tanks. Here we will use the Bernoulli equation for flow from small orifices. This says that
if a tank of uniform cross-section has fluid level h, then the velocity flowing from a small
nozzle at the bottom of the tank will be given by v =

√
2gh, where g is the gravitational

acceleration.

E1.11 Consider the coupled tanks shown in Figure E1.9. In this scenario, the input is the
volume flow rate Fin which gets divided between the two tanks proportionally to the
areas α1 and α2 of the two tubes. Let us denote α = α1

α1+α2
.

(a) Give an expression for the volume flow rates Fin,1 and Fin,2 in terms of Fin and α.

Now suppose that the areas of the output nozzles for the tanks are a1 and a2, and
that the cross-sectional areas of the tanks are A1 and A2. Denote the water levels in
the tanks by h1 and h2.

(b) Using the Bernoulli equation above, give an expression for the volume flow rates
Fout,1 and Fout,2 in terms of a1, a2, h1, and h2.

(c) Using mass balance (assume that the fluid is incompressible so that mass and
volume balance are equivalent), provide two coupled differential equations for the
heights h1 and h2 in the tanks. The equations should be in terms of Fin, α, A1,
A2, a1, a2, and g, as well as the dependent variables h1 and h2.

Suppose that the system is in equilibrium (i.e., the heights in the tanks are constant)
with the equilibrium height in tank 1 being δ1.
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Fin

α1

Fin,1

α2

Fin,2

a1

a2

A1

A2

Fout,1

Fout,2

Figure E1.9 Another coupled tank scenario

(d) What is the equilibrium input flow rate ν?

(e) What is the height δ2 of fluid in tank 2?
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Chapter 2

State-space representations (the time-domain)

With that little preamble behind us, let us introduce some mathematics into the subject.
We will approach the mathematical formulation of our class of control systems from three
points of view; (1) time-domain, (2) s-domain or Laplace transform domain, and (3) fre-
quency domain. We will also talk about two kinds of systems; (1) those given to us in “linear
system form,” and (2) those given to us in “input/output form.” Each of these possible for-
mulations has its advantages and disadvantages, and can be best utilised for certain types of
analysis or design. In this chapter we concentrate on the time-domain, and we only deal with
systems in “linear system form.” We will introduce the “input/output form” in Chapter 3.

Some of the material in this chapter, particularly the content of some of the proofs, is
pitched at a level that may be a bit high for an introductory control course. However, most
students should be able to grasp the content of all results, and understand their implications.
A good grasp of basic linear algebra is essential, and we provide some of the necessary mate-
rial in Appendix A. The material in this chapter is covered in many texts, including [Brockett
1970, Chen 1984, Kailath 1980, Zadeh and Desoer 1979]. The majority of texts deal with
this material in multi-input, multi-output (MIMO) form. Our presentation is single-input,
single-output (SISO), mainly because this will be the emphasis in the analysis and design
portions of the book. Furthermore, MIMO generalisations to the majority of what we say in
this chapter are generally trivial. The exception is the canonical forms for controllable and
observable systems presented in Sections 2.5.1 and 2.5.2.
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2.1 Properties of finite-dimensional, time-invariant linear control
systems

With that little bit of linear algebra behind us, we can have at our time-domain formu-
lation. It is in this setting that many models are handed to us in practice, so it is in my
opinion the most basic way to discuss control systems. Here I differ in opinion with most
introductory control texts that place our discussion here late in the course, or do not have
it at all.

We begin by saying what we look at. Our definition here includes the multi-input, multi-
output framework since it is easy to do so. However, we will quickly be specialising to the
single-input, single-output situation.

2.1 Definition A finite-dimensional, time-invariant linear control system is given by
a quadruple Σ = (A,B,C,D) where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, and D ∈ Rr×m.
The system is single-input, single-output (SISO) if m = r = 1 and is multi-input,
multi-output (MIMO) otherwise. •
Er. . . how the heck is this a control system? Like this:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).
(2.1)

Here x ∈ Rn is the state of the system, u ∈ Rm is the input , and y ∈ Rr is the output . We
call the system finite-dimensional because n < ∞ and time-invariant because the matrices
A, B, C, and D are constant. In the single-input, single-output case note that we may
write the equations (2.1) as

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t) +Du(t)
(2.2)

for vectors b, c ∈ Rn. Here the matrix D is 1 × 1 and so is essentially a scalar, and ct

denotes the transpose of c. We will be coming back again and again to the equations (2.2).
They form a large part of what interests us in this book. Note that we will always reserve
the symbol n to denote the state dimension of a SISO linear system. Therefore, from now
on, if you see a seemingly undefined “n” floating around, it should be the state dimension
of whatever system is being discussed at that moment.

2.2 Example Let’s look at a system that can be written in the above form. We consider the
mass-spring-damper system depicted in Figure 1.10. The differential equation governing the
system behaviour is

mẍ+ dẋ+ kx = u

where we denote by u(t) the input force. To convert this into a set of equations of the
form (2.1) we define x1 = x and x2 = ẋ. The governing equations are then

ẋ1 = ẋ = x2

ẋ2 = ẍ = − k
m
x− d

m
ẋ+ 1

m
u = − k

m
x1 − d

m
x2 + 1

m
u.

We can write this in matrix/vector form as

[
ẋ1

ẋ2

]
=

[
0 1
− k
m
− d
m

] [
x1

x2

]
+

[
0
1
m

]
u.
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So if we define

A =

[
0 1
− k
m
− d
m

]
, b =

[
0
1
m

]
,

we have the first of equations (2.1).
We shall look at three ways in which the output equation may appear in this example.

1. Suppose that with a proximeter we measure the displacement of the mass. Thus we have
the output y = x = x1 that we can write in matrix form as

y =
[
1 0

] [x1

x2

]

so that

c =

[
1
0

]
, D =

[
0
]
.

2. The next scenario supposes that we have a means of measuring the velocity of the mass.
Thus we take y = ẋ = x2. In this case we have

y =
[
0 1

] [x1

x2

]

so that

c =

[
0
1

]
, D =

[
0
]
.

3. The final situation will arise when we mount an accelerometer atop the mass so we have
y = ẍ = − k

m
x− d

m
ẋ+ 1

m
u. In this case we have

y =
[
− k
m
− d
m

] [x1

x2

]
+
[
1
]
u

so that

c =

[
− k
m

− d
m

]
, D =

[
1
m

]
. •

In order to be really clear on what we are doing, and in particular to state what we mean
by linearity, we should really specify the class of inputs we consider. Let us do this.

2.3 Definition An interval is a subset I of R of the form

(i) I = (−∞, a),

(ii) I = (−∞, a],

(iii) I = (a, b),

(iv) I = (a, b],

(v) I = (a,∞),

(vi) I = [a, b),

(vii) I = [a, b],

(viii) I = [a,∞), or

(ix) I = R.

Let I denote the set of intervals. If I ∈ I , a map f : I → Rk is piecewise continuous
if it is continuous except at a discrete set of points in I,1 and at points of discontinuity, the

1You will recall the notion of a discrete set (or more precisely, it will be recalled for you). For I ∈ I , a
(possibly infinite) collection of distinct points P ⊂ I is called discrete if there exists ε > 0 so that |x−y| ≥ ε
for every x, y ∈ I. If I is a bounded set, one verifies that this implies that every discrete set is finite. If I is
not bounded, one wants to ensure that the points cannot get closer and closer together, and in so doing one
ensures that length of the intervals on which the function is continuous always have a lower bound.
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left and right limits of the function exist. An admissible input for (2.1) is a piecewise
continuous map u : I → Rm where I ∈ I , and we denote the set of admissible controls by
U . •

2.4 Remark All inputs we will encounter in this book will be in fact piecewise infinitely differ-
entiable. However, we will also not be giving the issue too much serious consideration—be
advised, however, that when dealing with control theory at any level of seriousness, the
specification of the class of inputs is important. Indeed, one might generally ask that the
inputs be, in the language of Lebesgue integration, essentially bounded and measurable. •

Often when dealing with time-invariant systems one makes the assumption of causality
which means that inputs are zero for t < 0. In this book we will often tacitly make the
causality assumption. However, there are brief periods when we will require the opposite of
causality. Thus a system is anticausal when inputs are zero for t > 0.

The following result justifies our calling the system (2.1) linear.

2.5 Proposition Let I ∈ I and let u1,u2 ∈ U be defined on I with x1(t) and x2(t) defined as
satisfying

ẋ1 = Ax1 +Bu1, ẋ2 = Ax2 +Bu2,

and y1(t) and y2(t) defined by

y1(t) = Cx1(t) +Du1(t), y2(t) = Cx1(t) +Du2(t).

For a1, a2 ∈ R, define u(t) = a1u1(t) + a2u2(t). Then x(t) , a1x1(t) + a2x2(t) satisfies

ẋ = Ax+Bu

and y(t) , a1y1(t) + a2y2(t) satisfies

y(t) = Cx(t) +Du(t).

Proof We compute

ẋ =
d

dt
(a1x1 + a2x2)

= a1ẋ1 + a2ẋ2

= a1(Ax1 +Bu1) + a2(Ax2 +Bu2)

= A(a1x1 + a2x2) +B(a1u1 + a2u2)

= Ax+Bu

as claimed. We also compute

y = a1y1 + a2y2

= a1(Cx1 +Du1) + a2(Cx2 +Du2)

= C(a1x1 + a2x2) +D(a1u1 + a2u2)

= Cx+Du,

again, as claimed. �
The idea is that if we take as our new input a linear combination of old inputs, the same
linear combination of the old states satisfies the control equations, and also the same linear
combination of the old outputs satisfies the control equations.

In Proposition 2.5 we tacitly assumed that the solutions x1(t) and x2(t) existed for the
given inputs u1(t) and u2(t). Solutions do in fact exist, and we may represent them in a
convenient form.
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2.6 Theorem For u ∈ U defined on I ∈ I , t0 ∈ I, and x0 ∈ Rn, there exists a unique piecewise
differentiable curve x : I → Rn so that

ẋ(t) = Ax(t) +Bu(t),

and x(t0) = x0.

Proof We demonstrate existence by explicitly constructing a solution. Indeed, we claim
that the solution is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ) dτ. (2.3)

First, note that the initial conditions are satisfied (just let t = t0). We also compute

ẋ(t) = AeA(t−t0)x0 +Bu(t) +

∫ t

t0

AeA(t−τ)Bu(τ) dτ

= AeA(t−t0)x0 +A

∫ t

t0

eA(t−τ)Bu(τ) dτ +Bu(t)

= Ax(t) +Bu(t).

Thus x(t) as defined by (2.3) is indeed a solution.
Now we show that x(t) as defined by (2.3) is the only solution with the initial condition

x(t0) = x0. We suppose that x̃(t) is a solution to the same initial value problem. Therefore,
z(t) = x̃(t)− x(t) satisfies

ż(t) = ˙̃x(t)− ẋ(t) = Ax̃(t)−Bu(t)−Ax(t)−Bu(t) = Az(t).

Since x(t0) = x̃(t0) this means that z(t0) = 0. That is, z(t) is a solution to the initial value
problem

ż(t) = Az(t), z(t0) = 0. (2.4)

Let us multiply the differential equation on each side by 2zt(t):

2z(t)tż(t) =
d

dt
(zt(t)z(t)) =

d

dt
(‖z(t)‖2) = 2zt(t)Az(t).

We now note that

2zt(t)Az(t) = 2
n∑

i,j=1

zi(t)aijzj(t)

≤ 2
n∑

i,j=1

‖z(t)‖max
i,j
|aij|‖z(t)‖

≤ 2n2 max
i,j
|aij|‖z(t)‖2.

Let α = 2n2 maxi,j|aij| so that we have

d

dt
(‖z(t)‖2)− α‖z(t)‖2 ≤ 0.

We write

e−αt
( d

dt
(‖z(t)‖2)− α‖z(t)‖2

)
≤ 0

=⇒ d

dt
(e−αt‖z(t)‖2) ≤ 0.
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This can be integrated to give

e−αt‖z(t)‖2 − e−αt0‖z(t0)‖2 ≤ 0

for all t ∈ I. Since z(t0) = 0 we must have

e−αt‖z(t)‖2 ≤ 0, t ∈ I.
Since e−αt > 0 this must mean that ‖z(t)‖2 = 0 for all t ∈ I and so z(t) = 0 for all t ∈ I.
But this means that x̃(t) = x(t), and so solutions are unique. �

2.7 Remark As per Remark 2.4, if we suppose that u(t) is essentially bounded and measurable,
then Theorem 2.6 still holds. •

Of course, once we have the solution for the state variable x, it is a simple matter to
determine the output y:

y(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)Bu(τ) dτ +Du(t).

Our aim in this book is to study the response of the output y(t) to various inputs u(t), and
to devise systematic ways to make the output do things we like.

Let’s look at an example.

2.8 Example We return to our mass-spring-damper example. Let us be concrete for simplicity,
and choose m = 1, k = 4, and d = 0. The system equations are then

[
ẋ1

ẋ2

]
=

[
0 1
−4 0

] [
x1

x2

]
+

[
0
1

]
u(t).

We compute (I use Mathematica®)

eAt =

[
cos 2t 1

2
sin 2t

−2 sin 2t cos 2t

]
.

Let us suppose that

u(t) =

{
1, t ≥ 0

0, otherwise.

Thus the input is a step function. Let us suppose we have zero initial condition x(0) = 0.
We then compute

[
x1(t)
x2(t)

]
=

∫ t

0

[
cos 2(t− τ) 1

2
sin 2(t− τ

−2 sin 2(t− τ) cos 2(t− τ)

] [
0
1

]
dτ =

[
1
4
(1− cos 2t)

1
2

sin 2t

]
.

The phase portrait of this curve is shown in Figure 2.1.
As far as outputs are concerned, recall that we had in Example 2.2 considered three

cases. With the parameters we have chosen, these are as follows.

1. In the first case we measure displacement and so arrived at

c =

[
1
0

]
, D =

[
0
]
.

The output is then computed to be

y(t) = 1
4
(1− cos 2t)

which we plot in Figure 2.2.
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Figure 2.1 Phase curve for step response of mass-spring system

Figure 2.2 Displacement output for mass-spring system

2. If we measure velocity we have

c =

[
0
1

]
, D =

[
0
]
.

The output here is
y(t) = 1

2
sin 2t

which we plot in Figure 2.3.
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Figure 2.3 Velocity output for mass-spring system

3. The final case was when the output was acceleration, and we then derived

c =

[
−4
0

]
, D =

[
1
]
.

One readily ascertains
y(t) = cos 2t

which we plot in Figure 2.4. •

Figure 2.4 Acceleration output for mass-spring system

2.2 Obtaining linearised equations for nonlinear input/output systems

The example of the mass-spring-damper system is easy to put into the form of (2.2)
since the equations are already linear. For a nonlinear system, we have seen in Section 1.4
how to linearise nonlinear differential equations about an equilibrium. Now let’s see how to



2016/09/21 2.2 Obtaining linearised equations for nonlinear input/output systems 31

linearise a nonlinear input/output system. We first need to say what we mean by a nonlinear
input/output system. We shall only consider SISO versions of these.

2.9 Definition A SISO nonlinear system consists of a pair (f , h) where f : Rn×R→ Rn and
h : Rn × R→ R are smooth maps. •
What are the control equations here? They are

ẋ = f(x, u)

y = h(x, u).
(2.5)

This is a generalisation of the linear equations (2.2). For systems like this, is it no longer
obvious that solutions exist or are unique as we asserted in Theorem 2.6 for linear systems.
We do not really get into such issues here as they do not comprise an essential part of
what we are doing. We are interested in linearising the equations (2.5) about an equilibrium
point. Since the system now has controls, we should revise our notion of what an equilibrium
point means. To wit, an equilibrium point for a SISO nonlinear system (f , h) is a pair
(x0, u0) ∈ Rn×R so that f(x0, u0) = 0. The idea is the same as the idea for an equilibrium
point for a differential equation, except that we now allow the control to enter the picture.
To linearise, we linearise with respect to both x and u, evaluating at the equilibrium point.
In doing this, we arrive at the following definition.

2.10 Definition Let (f , h) be a SISO nonlinear system and let (x0, u0) be an equilibrium point for
the system. The linearisation of (2.5) about (x0, u0) is the SISO linear system (A, b, ct,D)
where

A = Df(x0, u0) =




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
. . .

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn




b =
∂f

∂u
(x0, u0) =




∂f1

∂u
∂f2

∂u
...
∂fn
∂u




ct = Dh(x0, u0) =
[
∂h
∂x1

∂h
∂x2

· · · ∂h
∂xn

]

D =
∂h

∂u
(x0, u0),

where all partial derivatives are evaluated at (x0, u0). •

2.11 Note Let us suppose for simplicity that all equilibrium points we consider will necessitate
that u0 = 0. •

Let us do this for the pendulum.

2.12 Example (Example 1.3 cont’d) We consider a torque applied at the pendulum pivot and
we take as output the pendulum’s angular velocity.

Let us first derive the form for the first of equations (2.5). We need to be careful in
deriving the vector function f . The forces should be added to the equation at the outset,
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and then the equations put into first-order form and linearised. Recall that the equations
for the pendulum, just ascertained by force balance, are

m`2θ̈ +mg` sin θ = 0.

It is to these equations, and not any others, that the external torque should be added since
the external torque should obviously appear in the force balance equation. If the external
torque is u, the forced equations are simply

m`2θ̈ +mg` sin θ = u.

We next need to put this into the form of the first of equations (2.5). We first divide by m`2

and get

θ̈ + g
`

sin θ =
u

m`2
.

To put this into first-order form we define, as usual, (x1, x2) = (θ, θ̇). We then have

ẋ1 = θ̇ = x2

ẋ2 = θ̈ = −g
`

sin θ + 1
m`2

u = −g
`

sinx1 + 1
m`2

u

so that

f(x, u) =

[
x2

−g
`

sinx1 + 1
m`2

u

]
.

By a suitable choice for u0, any point of the form (x1, 0) can be rendered an equilibrium
point. Let us simply look at those for which u0 = 0, as we suggested we do in Note 2.11. We
determine that such equilibrium points are of the form (x0, u0) = ((θ0, 0), 0), θ0 ∈ {0, π}.
We then have the linearised state matrix A and the linearised input vector b given by

A =

[
0 1

−g
`

cos θ0 0

]
, b =

[
0
1
m`2

]
.

The output is easy to handle in this example. We have h(x, u) = θ̇ = x2. Therefore

c =

[
0
1

]
, D = 01.

Putting all this together gives us the linearisation as

[
ẋ1

ẋ2

]
=

[
0 1

−g
`

cos θ0 0

] [
x1

x2

]
+

[
0
1
m`2

]
u

y =
[
0 1

] [x1

x2

]
.

We then substitute θ0 = 0 or θ0 = π depending on whether the system is in the “down” or
“up” equilibrium. •
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2.3 Input/output response versus state behaviour

In this section we will consider only SISO systems, and we will suppose that the 1 × 1
matrix D is zero. The first restriction is easy to relax, but the second may not be, depending
on what one wishes to do. However, often in applications D = 01 in any case.

We wish to reveal the problems that may be encountered when one focuses on in-
put/output behaviour without thinking about the system states. That is to say, if we
restrict our attention to designing inputs u(t) that make the output y(t) behave in a de-
sirable manner, problems may arise. If one has a state-space model like (2.2), then it is
possible that while you are making the outputs behave nicely, some of the states in x(t) may
be misbehaving badly. This is perhaps best illustrated with a sequence of simple examples.
Each of these examples will illustrate an important concept, and after each example, the
general idea will be discussed.

2.3.1 Bad behaviour due to lack of observability

We first look at an example that will introduce us to the concept of “observability.”

2.13 Example We first consider the system

[
ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0
1

]
u

y =
[
1 −1

] [x1

x2

]
.

(2.6)

We compute

eAt =

[
1
2
(et + e−t) 1

2
(et − e−t)

1
2
(et − e−t) 1

2
(et + e−t)

]

and so, if we use the initial condition x(0) = 0, and the input

u(t) =

{
1, t ≥ 0

0, otherwise,

we get

x(t) =

∫ t

0

[
1
2
(et−τ − e−t+τ ) 1

2
(et−τ − e−t+τ )

1
2
(et−τ − e−t+τ ) 1

2
(et−τ + e−t+τ )

] [
0
1

]
dτ =

[
1
2
(et + e−t)− 1

1
2
(et − e−t)

]
.

One also readily computes the output as

y(t) = e−t − 1

which we plot in Figure 2.5. Note that the output is behaving quite nicely, thank you.
However, the state is going nuts, blowing up to ∞ as t→∞ as shown in Figure 2.6. •
What is the problem here? Well, looking at what is going on with the equations reveals
the problem. The poor state-space behaviour is obviously present in the equations for the
state variable x(t). However, when we compute the output, this bad behaviour gets killed
by the output vector ct. There is a mechanism to describe what is going on, and it is called
“observability theory.” We only talk in broad terms about this here.
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Figure 2.5 Output response of (2.6) to a step input

Figure 2.6 State-space behaviour of (2.6) with a step input

2.14 Definition A pair (A, c) ∈ Rn×n × Rn is observable if the matrix

O(A, c) =




ct

ctA
...

ctAn−1
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has full rank. If Σ = (A, b, ct,D), then Σ is observable if (A, c) is observable. The matrix
O(A, c) is called the observability matrix for (A, c). •

The above definition carefully masks the “real” definition of observability. However, the
following result provides the necessary connection with things more readily visualised.

2.15 Theorem Let Σ = (A, b, ct,01) be a SISO linear system, let u1, u2 ∈ U , and let x1(t), x2(t),
y1(t), and y2(t) be defined by

ẋi(t) = Axi(t) + bui(t)

yi(t) = ctxi(t),

i = 1, 2. The following statements are equivalent:

(i) (A, c) ∈ Rn×n × Rn is observable;

(ii) u1(t) = u2(t) and y1(t) = y2(t) for all t implies that x1(t) = x2(t) for all t.

Proof Let us first show that the second condition is equivalent to saying that the output with
zero input is in one-to-one correspondence with the initial condition. Indeed, for arbitrary
inputs u1, u2 ∈ U with corresponding states x1(t) and x2(t), and outputs y1(t) and y2(t) we
have

yi(t) = cteAtxi(0) +

∫ t

0

cteA(t−τ)bui(τ) dτ,

i = 1, 2. If we define zi(t) by

zi(t) = yi(t)−
∫ t

0

cteA(t−τ)bui(τ) dτ,

i = 1, 2, then we see that u1 = u2 and y1 = y2 is equivalent to z1 = z2. However, since
zi(t) = cteAtxi(0), this means that the second condition of the theorem is equivalent to the
statement that equal outputs for zero inputs implies equal initial conditions for the state.

First suppose that (c,A) is observable, and let us suppose that z1(t) = z2(t), with z1

and z2 as above. Therefore we have




z1(0)

z
(1)
1 (0)

...

z
(n−1)
1 (0)


 =




ct

ctA
...

ctAn−1


x1(0) =




z2(0)

z
(1)
2 (0)

...

z
(n−1)
2 (0)


 =




ct

ctA
...

ctAn−1


x2(0).

However, since (A, c) is observable, this gives

O(A, c)x1(0) = O(A, c)x2(0) =⇒ x1(0) = x2(0),

which is, as we have seen, equivalent to the assertion that u1 = u2 and y1 = y2 implies that
x1 = x2.

Now suppose that rank(O(A, c)) 6= n. Then there exists a nonzero vector x0 ∈ Rn so
that O(A, c)x0 = 0. By the Cayley-Hamilton Theorem it follows that ctAkx1(t) = 0, k ≥ 1,
if x1(t) is the solution to the initial value problem

ẋ(t) = Ax(t), x(0) = x0.
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Now the series representation for the matrix exponential gives z1(t) = 0 where z1(t) =
cteAtx0. However, we also have z2(t) = 0 if z2(t) = ct0. However, x2(t) = 0 is the solution
to the initial value problem

ẋ(t) = Ax(t), x(0) = 0,

from which we infer that we cannot infer the initial conditions from the output with zero
input. �

The idea of observability is, then, that one can infer the initial condition for the state
from the input and the output. Let us illustrate this with an example.

2.16 Example (Example 2.13 cont’d) We compute the observability matrix for the system in
Example 2.13 to be

O(A, c) =

[
1 −1
−1 1

]

which is not full rank (it has rank 1). Thus the system is not observable.
Now suppose that we start out the system (2.6) with not the zero initial condition, but

with the initial condition x(0) = (1, 1). A simple calculation shows that the output is then
y(t) = e−t − 1, which is just as we saw with zero initial condition. Thus our output was
unable to “see” this change in initial condition, and so this justifies our words following
Definition 2.14. You might care to notice that the initial condition (1, 1) is in the kernel of
the matrix O(A, c)! •

The following property of the observability matrix will be useful for us.

2.17 Theorem The kernel of the matrix O(A, c) is the largest A-invariant subspace contained in
ker(ct).

Proof First let us show that the kernel of O(A, c) is contained in ker(ct). If x ∈
ker(O(A, c)) then

O(A, c)x =




ct

ctA
...

ctAn−1


x =




0
0
...
0


 ,

and in particular, ctx = 0—that is, x ∈ ker(ct).
Now we show that the kernel of O(A, c) is A-invariant. Let x ∈ ker(O(A, c)) and then

compute

O(A, c)Ax =




ct

ctA
...

ctAn−1


Ax =




ctA
ctA2

...
ctAn


x.

Since x ∈ ker(O(A, c)) we have

ctAx = 0, . . . , ctAn−1x = 0.

Also, by the Cayley-Hamilton Theorem,

ctAnx = −pn−1c
tAn−1x− · · · − p1c

tAx− p0c
tx = 0.

This shows that
O(A, c)x = 0
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or x ∈ ker(O(A, c)).
Finally, we show that if V is an A-invariant subspace contained in ker(ct), then V is a

subspace of ker(O(A, c)). Given such a V and x ∈ V , ctx = 0. Since V is A-invariant,
Ax ∈ V , and since V is contained in ker(ct), ctAx = 0. Proceeding in this way we see that
ctA2x = · · · = ctAn−1x = 0. But this means exactly that x is in ker(O(A, c)). �

The subspace ker(O(A, c)) has a simple interpretation in terms of Theorem 2.15.
It turns out that if two state initial conditions x1(0) and x2(0) differ by a vector in
ker(O(A, c)), i.e., if x2(0)−x1(0) ∈ ker(O(A, c)), then the same input will produce the same
output for these different initial conditions. This is exactly what we saw in Example 2.16.

2.18 Remark Although our discussion in this section has been for SISO systems Σ = (A, b, ct,D),
it can be easily extended to MIMO systems. Indeed our characterisations of observability
in Theorems 2.15 and 2.17 are readily made for MIMO systems. Also, for a MIMO system
Σ = (A,B,C,D) one can certainly define

O(A,C) =




C
CA

...
CAn−1


 ,

and one may indeed verify that the appropriate versions of Theorems 2.15 and 2.17 hold in
this case. •

2.3.2 Bad behaviour due to lack of controllability

Okay, so we believe that a lack of observability may be the cause of problems in the state,
regardless of the good behaviour of the input/output map. Are there other ways in which
things can go awry? Well, yes there are. Let us look at a system that is observable, but
that does not behave nicely.

2.19 Example Here we look at [
ẋ1

ẋ2

]
=

[
1 0
1 −1

] [
x1

x2

]
+

[
0
1

]
u

y =
[
0 1

] [x1

x2

]
.

(2.7)

This system is observable as the observability matrix is

O(A, c) =

[
0 1
1 −1

]

which has rank 2. We compute

eAt =

[
et 0

1
2
(et − e−t) e−t

]

from which we ascertain that with zero initial conditions, and a unit step input,

x(t) =

[
0

1− e−t
]
, y(t) = 1− e−t.
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Okay, this looks fine. Let’s change the initial condition to x(0) = (1, 0). We then compute

x(t) =

[
et

1 + 1
2
(et − 3e−t)

]
, y(t) = 1 + 1

2
(et − 3e−t).

Well, since the system is observable, it can sense this change of initial condition, and how!
As we see in Figure 2.7 (where we depict the output response) and Figure 2.8 (where we

Figure 2.7 The output response of (2.7) with a step input and
non-zero initial condition

Figure 2.8 The state-space behaviour of (2.7) with a step input
and non-zero initial condition

depict the state behaviour), the system is now blowing up in both state and output. •
It’s not so hard to see what is happening here. We do not have the ability to “get at”

the unstable dynamics of the system with our input. Motivated by this, we come up with
another condition on the linear system, different from observability.
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2.20 Definition A pair (A, b) ∈ Rn×n × Rn is controllable if the matrix

C(A, b) =
[
b Ab · · · An−1b

]

has full rank. If Σ = (A, b, ct,D), then Σ is controllable if (A, b) is controllable. The
matrix C(A, b) is called the controllability matrix for (A, b). •

Let us state the result that gives the intuitive meaning for our definition for controllabil-
ity.

2.21 Theorem Let Σ = (A, b, ct,01) be a SISO linear system. The pair (A, b) is controllable
if and only if for each x1,x2 ∈ Rn and for each T > 0, there exists an admissible input
u : [0, T ]→ R with the property that if x(t) is the solution to the initial value problem

ẋ(t) = Ax(t) + bu(t), x(0) = x1,

then x(T ) = x2.

Proof For t > 0 define the matrix P (A, b)(t) by

P (A, b)(t) =

∫ t

0

eAτbbteA
tτ dτ.

Let us first show that C(A, b) is invertible if and only if P (A, b)(t) is positive-definite
for all t > 0 (we refer ahead to Section 5.4.1 for notions of definiteness of matrices). Since
P (A, b)(t) is clearly positive-semidefinite, this means we shall show thatC(A, b) is invertible
if and only if P (A, b)(t) is invertible. Suppose that C(A, b) is not invertible. Then there
exists a nonzero x0 ∈ Rn so that xt0C(A, b)) = 0. By the Cayley-Hamilton Theorem, this
implies that xt0A

kb = 0 for k ≥ 1. This in turn means that xt0e
Atb = 0 for t > 0. Therefore,

since eA
tt = (eAt)t, it follows that

xt0e
AtbbteA

ttx0 = 0.

Thus P (A, b)(t) is not invertible.
Now suppose that there exists T > 0 so that P (A, b)(T ) is not invertible. Therefore

there exists a nonzero x0 ∈ Rn so that xt0e
Atb = 0 for t ∈ [0, T ]. Differentiating this n − 1

times with respect to t and evaluating at t = 0 gives

x0b = x0Ab = · · · = x0A
n−1b = 0.

This, however, infers the existence of a nonzero vector in ker(C(A, b)), giving us our initial
claim.

Let us now show how this claim gives the theorem. First suppose that C(A, b) is invert-
ible so that P (A, b)(t) is positive-definite for all t > 0. One may then directly show, with a
slightly tedious computation, that if we define a control u : [0, T ]→ R by

u(t) = −bteAt(T−t)P (A, b)−1(T )
(
eATx1 − x2

)
,

then the solution to the initial value problem

ẋ(t) = Ax(t) + bu(t), x(0) = x1

has the property that x(T ) = x2.
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Now suppose that C(A, b) is not invertible so that there exists T > 0 so that P (A, b)(T )
is not invertible. Thus there exists a nonzero x0 ∈ Rn so that

xt0e
Atb = 0, t ∈ [0, T ]. (2.8)

Let x1 = e−ATx0 and let u be an admissible control. If the resulting state vector is x(t), we
then compute

x(T ) = eAT e−ATx0 +

∫ T

0

eA(T−τ)bu(τ) dτ.

Using (2.8), we have
xt0x(T ) = xt0x0.

Therefore, it is not possible to find a control for which x(T ) = 0. �

This test of controllability for linear systems was obtained by Kalman, Ho, and Narendra
[1963]. The idea is quite simple to comprehend: controllability reflects that we can reach
any state from any other state. We can easily see how this comes up in an example.

2.22 Example (Example 2.19 cont’d) We compute the controllability matrix for Example 2.19
to be

C(A, b) =

[
0 0
1 −1

]

which has rank 1 < 2 and so the system is not controllable.
Let’s see how this meshes with what we said following Definition 2.20. Suppose we start

at x(0) = (0, 0). Since any solution to
[
ẋ1

ẋ2

]
=

[
1 0
1 −1

] [
x1

x2

]
+

[
0
1

]
u

y =
[
0 1

] [x1

x2

]

which has initial condition x1(0) = 0 will have the property that x1(t) = 0 for all t, the
control system is essentially governed by the x2 equation:

ẋ2 = −x2 + u.

Therefore we can only move in the x2-direction and all points with x1 6= 0 will not be
accessible to us. This is what we mean by controllability. You might note that the set of
points reachable are those in the columnspace of the matrix C(A, b). •

Based on the above discussion, we say that a triple (A, b, c) ∈ Rn×n × Rn × Rn is
complete if (A, b) is controllable and if (A, c) is observable.

We have a property of the controllability matrix that is sort of like that for the observ-
ability matrix in Theorem 2.17.

2.23 Theorem The columnspace of the matrix C(A, b) is the smallest A-invariant subspace con-
taining b.

Proof Obviously b is in the columnspace of C(A, b). We will show that this columnspace
is A-invariant. Let x be in the columnspace of C(A, b), i.e., in the range of the linear map
C(A, b). Then there is a vector y ∈ Rn with the property that

x = C(A, b)y =
[
b Ab · · · An−1b

]
y.
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We then have
Ax =

[
Ab A2b · · · Anb

]
y.

The result will follow if we can show that each of the vectors

Ab, . . . ,Anb

is in the columnspace of C(A, b). It is clear that

Ab, . . . ,An−1b

are in the columnspace of C(A, b). By the Cayley-Hamilton Theorem we have

Anb = −pn−1A
n−1b− · · · − p1Ab− p0b,

which shows that Anb is also in the columnspace of C(A, b).
Now we show that if V is an A-invariant subspace with b ∈ V then V contains the

columnspace of C(A, b). If V is such a subspace then b ∈ V . Since V is A-invariant,
Ab ∈ V . Proceeding in this way we ascertain that A2b, . . . ,An−1b ∈ V , and therefore the
columnspace of C(A, b) is contained in V . �

There is a somewhat subtle thing happening here that should be understood. If a pair
(A, b) is controllable, this implies that one can steer between any two points in Rn with a
suitable control. It does not mean that one can follow any curve in Rn that connects the
two points. This then raises the question, “What curves in Rn can be followed by solutions
of the differential equation

ẋ(t) = Ax(t) + bu(t)?”

Let us explore the answer to this question, following Basile and Marro [1968]. Because we
will deal only with the single-input case, things are somewhat degenerate. Let T (A, b) ⊂ Rn

be the subspace

T (A, b) =

{
span(b), b is an eigenvector for A

{0}, otherwise.

The following lemma asserts the essential property of the subspace T (A, b).

2.24 Lemma T (A, b) is the largest subspace of Rn with the property that

A(T (A, b)) + T (A, b) ⊂ span(b).

Proof First we note that T (A, b) does indeed have the property thatA(T (A, b))+T (A, b) ⊂
span(b). This is clear if T (A, b) = {0}. If T (A, b) = span(b) then it is the case thatAb = λb
for some λ ∈ R. It then follows that if x1 = a1b and x2 = a2b for a1, a2 ∈ R then

Ax1 + x2 = (a1λ+ a2)b ∈ span(b).

Now we need to show that T (A, b) is the largest subspace with this property. Suppose
that V is a subspace of Rn with the property that A(V ) + V ⊂ span(b). Thus for each
x1,x2 ∈ V we have

Ax1 + x2 ∈ span(b).



42 2 State-space representations (the time-domain) 2016/09/21

In particular, if we choose x1 = 0 we see that if x2 ∈ V then x2 ∈ span(b). Similarly, if
x2 = 0 we see that if x1 ∈ V then Ax1 ∈ span(b). Thus we have shown that if V is a
subspace with the property that A(V ) + V ⊂ span(b), this implies that

V = span(b) ∩A−1(span(b))

where
A−1(span(b)) = {v ∈ Rn | Av ∈ span(b)}

(note that we are not saying that A is invertible!). It now remains to show that T (A, b) =
span(b) ∩ A−1(span(b)). We consider the two cases where (1) b is an eigenvector for A
and (2) b is not an eigenvector for A. In the first case, b ∈ A−1(span(b)) so we clearly have

span(b) ∩A−1(span(b)) = span(b).

In the second case, b 6∈ A−1(span(b)) so that

span(b) ∩A−1(span(b)) = {0}.
But this is our result. �

Now we can use this lemma to describe the set of curves in Rn that can be followed
exactly by our control system.

2.25 Proposition Let Σ = (A, b, ct,01) be a SISO linear system and let T (A, b) ⊂ Rn be the
subspace defined above. If I ⊂ R is an interval and if r : I → T (A, b) is continuously
differentiable, then there exists a continuous function u : I → R with the property that

ṙ(t) = Ar(t) + bu(t).

Furthermore, T (A, b) is the largest subspace of Rn with this property.

Proof For the first part of the proposition, we note that if r : I → T (A, b) then

ṙ(t) = lim
τ→0

r(t+ τ)− r(t)

τ
∈ T (A, b)

since r(t+ τ), r(t) ∈ T (A, b). Therefore, by Lemma 2.24,

ṙ(t)−Ar(t) ∈ T (A, b), t ∈ I.
Therefore, for each t ∈ I there exists u(t) ∈ R so that

ṙ(t)−Ar(t) = u(t)b.

The first part of the proposition now follows since the T (A, b)-valued function of t, ṙ(t) −
Ar(t) is continuous.

Now suppose that V is a subspace of Rn with the property that for every continuously
differentiable r : I → V , there exists a continuous function u : I → R with the property that

ṙ(t) = Ar(t) + bu(t).

Let x1,x2 ∈ V and define r : R→ V by −x1+tx2. Then we have r(0) = −x1 and ṙ(0) = x2.
Therefore there must exist a continuous u : R→ R so that

x2 = −Ax1 + bu(0).

Since this construction can be made for any x1,x2 ∈ V , we must have Ax1 + x2 ∈ span(b)
for every x1,x2 ∈ V . By Lemma 2.24 this means that V = T (A, b). �

Thus we see for single-input systems, the state trajectories we may exactly follow are
actually quite limited. Nevertheless, even though one cannot follow all state trajectories, it
is possible for a system to be controllable.
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2.26 Remark As was the case for observability in Remark 2.18, it is easy to talk about controlla-
bility in the MIMO setting. Indeed, if for a MIMO system Σ = (A,B,C,D) we define

C(A,B) =
[
B AB · · · An−1B

]
,

then the appropriate versions of Theorems 2.21 and 2.23 hold. •

2.3.3 Bad behaviour due to unstable zero dynamics

Now you are doubtless thinking that we must have ourselves covered. Surely if a system
is complete then our state-space behaviour will be nice if the output is nice. But this is in
fact not true, as the following example shows.

2.27 Example We take as our system
[
ẋ1

ẋ2

]
=

[
0 1
−2 −3

] [
x1

x2

]
+

[
0
1

]
u

y =
[
1 −1

] [x1

x2

]
.

(2.9)

First, let’s see that the system is observable and controllable. The respective matrices are

O(A, c) =

[
1 −1
2 4

]
, C(A, b) =

[
0 1
1 −3

]

which both have rank 2. We compute

eAt =

[
2e−t − e−2t e−t − e−2t

2(e−2t − e−t) 2e−2t − e−t
]
.

In this example, we do not use a step input, but rather a violent input:

u(t) =

{
et, t ≥ 0

0, otherwise.

Thus our input blows up as time increases. The usual calculations, using zero initial condi-
tions, give

x(t) =

[
1
6
et + 1

3
e−2t − 1

2
e−t

1
6
et − 2

3
e−2t + 1

2
e−t

]
, y(t) = e−2t − e−t.

Thus the output is behaving nicely (see Figure 2.9) while the state is blowing up to infinity
(see Figure 2.10). •

Things are a bit more subtle with this example. The problem is that the large input is
not being transmitted to the output. Describing the general scenario here is not altogether
easy, but we work through it so that you may know what is going on.

2.28 Algorithm for determining zero dynamics We start with a SISO linear system Σ = (A, b, ct,D)
with A ∈ Rn×n and b, c ∈ Rn. We do not assume that (A, b) is controllable or that (A, c)
is observable.

1. Define Z0 = Rn.

2. Inductively define a sequence of subspaces of Rn by

Zk+1 = ker(ct) ∩ {x ∈ Rn | Ax ∈ Zk + span(b)}.
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Figure 2.9 The output response of (2.9) to an exponential input

Figure 2.10 The state-space behaviour of (2.9) with an exponential
input

3. This sequence will eventually stop, i.e., there will be a least K so that ZK+1 = ZK .
Denote ZΣ = ZK , and suppose that dim(ZΣ) = `.

4. It turns out that is it possible to find f ∈ Rn with the property that Ab,f , A+ bf t ∈
Rn×n has ZΣ as an invariant subspace. Choose such an f .

5. Choose a basis {v1, . . . ,v`} for ZΣ, and extend this to a basis {v1, . . . ,vn} for Rn.
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6. Write

Ab,fv1 = b11v1 + · · ·+ b`1v`
...

Ab,fv` = b1`v1 + · · ·+ b``v`

Ab,fv`+1 = b1,`+1v1 + · · ·+ b`,`+1v` + b`+1,`+1v`+1 + · · ·+ bn,`+1vn
...

Ab,fvn = b1nv1 + · · ·+ b`nv` + b`+1,nv`+1 + · · ·+ bnnvn.

7. Define an `× ` matrix by

NΣ =




b11 b12 · · · b1`

b21 b22 · · · b2`
...

...
. . .

...
b`1 b`2 · · · b``


 .

8. The linear differential equation
ẇ = NΣw

is called the zero dynamics for Σ. •
This is plainly nontrivial! Let’s illustrate what is going on with our example.

2.29 Example (Example 2.27 cont’d) We shall go through the algorithm step by step.

1. We take V0 = R2 as directed.

2. As per the instructions, we need to compute ker(ct) and we easily see that

ker(ct) = span((1, 1)).

Now we compute
{x ∈ R2 | Ax ∈ Z0 + span(b)} = R2

since Z0 = R2. Therefore Z1 = ker(ct). To compute Z2 we compute

{x ∈ R2 | Ax ∈ Z1 + span(b)} = R2

since ker(ct) and span(b) are complementary subspaces. Therefore Z2 = ker(ct) and so
our sequence terminates at Z1.

3. We have
ZΣ = ker(ct) = span((1, 1)).

4. Let f = (f1, f2). We compute

Ab,f =

[
0 1
−2 −3

]
+

[
0
1

] [
f1 f2

]
=

[
0 1

−2 + f1 −3 + f2

]
.

In order that this matrix leave ZΣ invariant, it must map the basis vector (1, 1) for ZΣ

to a multiple of itself. We compute

Ab,f

[
1
1

]
=

[
0 1

−2 + f1 −3 + f2

] [
1
1

]
=

[
1

f1 + f2 − 5

]
.

In order that this vector be a multiple of (1, 1) we must have f1 +f2−5 = 1 or f1 +f2 = 6.
Let us choose f1 = f2 = 3.
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5. We choose the basis {v1 = (1, 1),v2 = (1,−1)} for R2, noting that v1 is a basis for ZΣ.

6. We compute

Ab,f (v1) = (1, 1) = 1v1 + 0v2

Ab,f (v2) = (−1, 1) = 0v1 − 1v2.

7. The matrix NΣ is 1× 1 and is given by

NΣ =
[
1
]
.

8. The zero dynamics are then [
ẇ1

]
=
[
1
] [
w1

]

which is a scalar system.

Okay, so how is our bad behaviour reflected here? Well, note that the zero dynamics are
unstable! This, it turns out, is the problem. •

2.30 Remarks

1. Systems with stable zero dynamics (i.e., all eigenvalues for the matrix NΣ have nonposi-
tive real part) are sometimes called minimum phase systems. Note that the response
Figure 2.9 shows an output that initially does something opposite from what it ends
up eventually doing—the output decreases before it finally increases to its final value.
This, it turns out, is behaviour typical of a system that is not minimum phase. We shall
be investigating the properties of nonminimum phase systems as we go along (see
Theorem 3.15).

2. The zero dynamics as we construct them are not obviously independent of the choices
made in the algorithm. That is to say, it is not clear that, had we chosen a different
vector f , or a different basis {v1, . . . ,vn}, that we would not arrive at an utterly different
matrix NΣ. Nonetheless, it is true that if we were to have chosen a different vector f and
the same basis {v1, . . . ,vn} that the resulting matrix NΣ would be unchanged. A choice
of a different basis would only change the matrix NΣ by a similarity transformation, and
so, in particular, its eigenvalues would be unchanged. •
Let us complete this section by giving a description of the subspace ZΣ.

2.31 Theorem Let (A, b, ct,01) be a SISO system and let Z be the set of all subspaces V of Rn

with the properties

(i) V ⊂ ker(ct) and

(ii) A(V ) ⊂ V + span(b).

The subspace ZΣ constructed in Algorithm 2.28 is the largest subspace in Z .

Proof By the inductive procedure of Algorithm 2.28 it is clear that ZΣ ∈ Z . We then need
only show that ZΣ is the largest subspace in Z . Let V ∈ Z and let x ∈ V . This means
that x ∈ ker(ct) and so x ∈ Z1 (since in Algorithm 2.28 we always have Z1 = ker(ct)). We
also have

Ax ∈ V + span(b) ⊂ Z1 + span(b).

Therefore x ∈ Z2. Proceeding in this way we see that x ∈ Zi for i = 1, . . . , K, and so
x ∈ ZΣ. This concludes the proof. �
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2.3.4 A summary of what we have said in this section

We have covered a lot of ground here with a few simple examples, and some general
definitions. The material in this section has touched upon some fairly deep concepts in
linear control theory, and a recap is probably a good idea. Let us outline the three things
we have found that can go wrong, and just how they go wrong.

1. Unseen unstable dynamics due to lack of observability: This was illustrated in Exam-
ple 2.13. The idea was that any input we gave the system leads to a nice output.
However, some inputs cause the states to blow up. The problem here is that lack of
observability causes the output to not recognise the nasty state-space behaviour.

2. Lurking unstable dynamics caused by lack of controllability: It is possible, as we saw in
Example 2.19, for the dynamics to be unstable, even though they are fine for some initial
conditions. And these unstable dynamics are not something we can get a handle on with
our inputs; this being the case because of the lack of controllability.

3. Very large inputs can cause no output due to the existence of unstable zero dynamics:
This is the situation illustrated in Example 2.27. The problem here is that all the input
energy can be soaked by the unstable modes of the zero dynamics, provided the input is
of the right type.

It is important to note that if we have any of the badness of the type listed above, there
ain’t nothing we can do about it. It is a limitation of the physical system, and so one has
to be aware of it, and cope as best one can.

We shall see these ideas arise in various ways when we discuss transfer functions in
Chapter 3. As we say, the connection here is a little deep, so if you really want to see what
is going on here, be prepared to invest some effort—it is really a very neat story, however.

2.4 The impulse response

In this section we will only consider SISO systems, and we will suppose that the 1 ×
1 matrix D is zero. Generalisations to cases where the first condition does not hold are
straightforward. Generalisation to the case where D is non-zero is essentially carried out in
Exercise E3.1.

2.4.1 The impulse response for causal systems

Typically, we will use the impulse response in situations where we are interested in
positive times. Thus we consider everything before t = 0 to be zero, and then at t = 0 the
action starts. It is this “standard” situation we deal with in this section.

Recall from Theorem 2.6 that the solution to the initial value problem

ẋ(t) = Ax(t) + bu(t), x(0) = x0

is

x(t) = eAtx0 +

∫ t

0

eA(t−τ)bu(τ) dτ.

Therefore the output y(t) behaves like

y(t) = cteAtx0 +

∫ t

0

cteA(t−τ)bu(τ) dτ. (2.10)
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We wish to determine the output when we start with zero initial condition, and at t0 = 0
give the system a sharp “jolt.” Let us argue intuitively for a moment. Our input will be
zero except for a short time near t = 0 where it will be large. One expects, therefore, that
the integration over τ in (2.10) will only take place over a very small interval near zero.
Outside this interval, u will vanish. With this feeble intuition in mind, we define the causal
impulse response , or simply the impulse response , of (2.1) to be

h+
Σ(t) =

{
cteAtb, t ≥ 0

0, otherwise.

More succinctly, we may write h+
Σ(t) = 1(t)cteAtb, where 1(t) is the unit step function. In

the next section we will define h−Σ. However, since we shall almost always be using h+
Σ, let us

agree to simply write hΣ for h+
Σ, resorting to the more precise notation only in those special

circumstances where we need to be clear on which version of the impulse response we need.
The idea is that the only contribution from u in the integral is at τ = 0. A good question
is “Does there exist u ∈ U so that the resulting output is hΣ(t) with zero state initial
condition?” The answer is, “No there is not.” So you will never see the impulse response if
you only allow yourself piecewise continuous inputs. In fact, you can allow inputs that are a
whole lot more general than piecewise continuous, and you will still not ever see the impulse
response. However, the impulse response is still an important ingredient in looking at the
input/output behaviour of the system. The following trivial result hints at why this is so.

2.32 Proposition For any u ∈ U the output of the system

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t)

with the initial condition x = x0 is

y(t) = cteAtx0 +

∫ t

0

hΣ(t− τ)u(τ) dτ.

That is to say, from the impulse response one can construct the solution associated with any
input by performing a convolution of the input with the impulse response. This despite
the fact that no input in U will ever produce the impulse response itself!

We compute the impulse response for the mass-spring-damper system.

2.33 Examples For this example we have

A =

[
0 1
− k
m
− d
m

]
, b =

[
0
1

]
.

Since the nature of eAt changes character depending on the choice of m, d, and k, let’s choose
specific numbers to compute the impulse response. In all cases we take m = 1. We also
have the two cases of output to consider (we do not in this section consider the case when
D 6= 01).

1. We first take d = 3 and k = 2. The matrix exponential is then

eAt =

[
2e−t2− e−2t e−t − e−2t

2(e−2t − e−t) 2e−2t − e−t
]
.
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(a) We first consider the case when c = (1, 0), i.e., when the output is displacement.
The impulse response is then

hΣ(t) = 1(t)(e−t − e−2t)

which we show in the left plot in Figure 2.11.

Figure 2.11 The displacement and velocity impulse response for a
mass-spring-damper system with m = 1, d = 3, and k = 2

(b) We next consider the case when c = (0, 1) so that the output is velocity. The
impulse response is then

hΣ(t) = 1(t)(2e−2t − e−t),

which we show in the right plot in Figure 2.11. This is the “overdamped case” when
there are distinct real eigenvalues.

2. Next we take d = 2 and k = 1. We compute

eAt =

[
e−t(1 + t) te−t

−te−t e−t(1− t)

]
.

(a) Taking c = (1, 0) we compute

hΣ(t) = 1(t)(te−t)

which is the left plot in Figure 2.12.

(b) If we let c = (0, 1) then we compute

hΣ(t) = 1(t)(e−t(1− t))

which is the right plot in Figure 2.12. This is the “critically damped” case when
the eigenvalue is repeated.

3. The next case we look at is the “underdamped” one when we have complex roots with
negative real part. We take d = 2 and k = 10 and compute

eAt =

[
e−t(cos 3t+ 1

3
sin 3t) 1

3
e−t sin 3t

−10
3
e−t sin 3t e−t(cos 3t− 1

3
sin 3t)

]
.
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Figure 2.12 The displacement and velocity impulse response for a
mass-spring-damper system with m = 1, d = 2, and k = 1

Figure 2.13 The displacement and velocity impulse response for a
mass-spring-damper system with m = 1, d = 2, and k = 10

(a) Taking c = (1, 0) we compute

hΣ(t) = 1(t)(1
3
e−t sin 3t)

which is the left plot in Figure 2.13.

(b) If we let c = (0, 1) then we compute

hΣ(t) = 1(t)
(
e−t(cos 3t− 1

3
sin 3t)

)

which is the right plot in Figure 2.13.

4. The final case we take is that when there is no damping: d = 0 and k = 1. Then we have

eAt =

[
cos t sin t
− sin t cos t

]
.

(a) Taking c = (1, 0) we compute

hΣ(t) = 1(t) sin t

which is the left plot in Figure 2.14.
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Figure 2.14 The displacement and velocity impulse response for a
mass-spring-damper system with m = 1, d = 0, and k = 1

(b) If we let c = (0, 1) then we compute

hΣ(t) = 1(t) cos t

which is the right plot in Figure 2.14. •
Let us see if we can give some justification to the formula for the impulse response. For

ε > 0 define uε ∈ U by

uε(t) =

{
1
ε
, t ∈ [0, ε]

0, otherwise.

The behaviour of these inputs as ε shrinks is shown in Figure 2.15. It turns out that these

Figure 2.15 A sequence of inputs giving the impulse response in
the limit

inputs in the limit ε→ 0 give the impulse response. Note, however, that in the limit we do
not get an input in U !
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2.34 Theorem If

yε(t) =

∫ t

0

cteA(t−τ)buε(τ) dτ

then
lim
ε→0

yε(t) = hΣ(t).

Proof We use the definition of the matrix exponential:

yε(t) =

∫ t

0

cteA(t−τ)buε(τ) dτ

=
1

ε

∫ ε

0

cteAt
(
In −Aτ +

A2τ 2

2!
+ . . .

)
b dτ.

Since the sum for the matrix exponential converges uniformly and absolutely on [0, ε] we
may distribute the integral over the sum:

yε(t) =
1

ε
cteAt

(
Inε−

Aε2

2!
+
A2ε3

3!
+ . . .

)
b

= cteAt
(
In −

Aε

2!
+
A2ε2

3!
+ . . .

)
b.

Clearly the result holds when we take the limit ε→ 0. �

2.4.2 The impulse response for anticausal systems

Now we turn our attention to a situation that we will only have need to resort to in
Section 15.3; the situation is one where we deal with functions of time that end at t = 0.
Thus functions are defined on the interval (−∞, 0]. The definition of the impulse response
in these cases has the same motivation as in the causal case. We shall use Theorem 2.34 for
our motivation. For ε > 0, let us define

uε(t) =

{
1
ε
, t ∈ [−ε, 0]

0, otherwise.

We then define

yε(t) =

∫ 0

t

cteA(t−τ)buε(τ) dτ, t ≤ 0,

and then h−Σ = limε→0 yε. Let us determine the expression for h−Σ be performing the compu-
tations carried out in the proof of Theorem 2.34, but now for t ≤ 0:

yε(t) =

∫ 0

t

cteA(t−τ)buε(τ) dτ

=
1

ε

∫ 0

−ε
cteAt

(
In −Aτ +

A2τ 2

2!
+ · · ·

)
b dτ

=
1

ε
cteAt

(
− Inε+

Aε2

2!
− A

2ε3

3!
+ · · ·

)
b

= − cteAt
(
In −

Aε

2!
+
A2ε2

3!
+ · · ·

)
b.
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Therefore, we conclude that

h−Σ(t) =

{
−cteAtb, t ≤ 0

0, otherwise.

This may be written as h−Σ(t) = −1(−t)cteAtb, which we call the anticausal impulse
response .

The anticausal impulse response is useful for solving a final value problem, as the following
result states.

2.35 Proposition Let Σ = (A, b, ct,01) be a SISO linear system. If u : (−∞, 0]→ R is admissible
then the output of the final value problem

ẋ(t) = Ax(t) +Bu(t) x(0) = x0

y(t) = ctx(t),

is given by

y(t) = cteAtx0 +

∫ 0

t

h−Σ(t− τ)u(τ) dτ, t ≤ 0.

Proof The result will follow if we can show that the solution to the final value problem

ẋ(t) = Ax(t) + bu(t) x(0) = x0

is given by

x(t) = eAtx0 −
∫ 0

t

eA(t−τ)bu(τ) dτ, t ≤ 0.

Clearly the final condition x(0) = x0 is satisfied. With x(t) so defined, we compute

ẋ(t) = AeAtx0 + bu(t)−
∫ 0

t

AeA(t−τ)bu(τ) dτ

= AeAtx0 −A
∫ 0

t

eA(t−τ)bu(τ) dτ + bu(t)

= Ax(t) + bu(t).

Thus x(t) also satisfies the differential equation. �
Thus the anticausal impulse response acts for anticausal inputs in much the same way as
the causal impulse response acts for causal inputs.

Note again that we shall only rarely require h−Σ, so, again, whenever you see hΣ, it
implicitly refers to h+

Σ.

2.5 Canonical forms for SISO systems

In this section we look at the appearance of a “typical” SISO linear system of the
form (2.2). To do so, we shall take an arbitrary system of that form and make a linear
change of coordinates. So let us first make sure we understand what is a linear change
of coordinates, and how it manifests itself in the multi-input, multi-output system equa-
tions (2.1). We take as our state coordinates x, and define new state coordinates ξ = Tx
where T is an invertible n× n matrix.2 We can easily derive the equations that govern the
behaviour of the state variables ξ. The following result holds in the MIMO case.

2Often T is arrived at as follows. One has n linearly independent vectors {f1, . . . ,fn} in Rn which
therefore form a basis. If we assemble into the columns of a matrix T−1 the components of the vectors
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2.36 Proposition If u(t) ∈ Rm, x(t) ∈ Rn, and y(t) ∈ Rr satisfy

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),

and if ξ = Tx, then u(t) ∈ Rm, ξ(t) ∈ Rn, and y(t) ∈ Rr satisfy

ξ̇(t) = TAT−1ξ(t) + TBu(t)

y(t) = CT−1ξ(t) +Du(t).

Proof We compute

ξ̇(t) = T ẋ(t) = TAx(t) + TBu(t) = TAT−1ξ(t) + TBu(t),

and y(t) = Cx(t) +Du(t) = CT−1ξ(t) +Du(t). �

One may consider more general changes of variable where one defines η = Q−1y and µ =
R−1u, but since our interest is mainly in the SISO case, such transformations simply boil
down to scaling of the variables, and so constitute nothing of profound interest.

2.5.1 Controller canonical form

We now revert to the SISO setting, and prove a “normal form” result for controllable
SISO linear systems. Recall that a pair (A, b) ∈ Rn×n × Rn is controllable if the vectors
{b,Ab,A2b, . . . ,An−1b} form a basis for Rn.

2.37 Theorem If (A, b) ∈ Rn×n × Rn is controllable then there exists an invertible n × n matrix
T with the property that

TAT−1 =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, Tb =




0
0
0
...
0
1



.

Proof We begin with some seemingly unrelated polynomial constructions. Let the charac-
teristic polynomial of A be

PA(λ) = λn + pn−1λ
n−1 + · · ·+ p1λ+ p0.

Define n+ 1 polynomials in indeterminant λ by

Pi(λ) =
n−i∑

k=0

pk+iλ
k, i = 0, . . . , n.

Note that P0 = PA and Pn(λ) = 1 if we declare that pn = 1. These polynomials satisfy the
relation

λPi(λ) = Pi−1(λ)− pi−1Pn(λ). (2.11)

f1, . . . ,fn—that is we take
T−1 =

[
f1 · · · fn

]
—

then ξ = Tx are exactly the components of x ∈ Rn in the basis {f1, . . . ,fn}.
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Indeed, we compute

λPi(λ) =
n−i∑

k=0

pk+iλ
k+1

=
n−i∑

k=0

pk+iλ
k+1 + pi−1 − pi−1

=
n−i∑

k=−1

pk+iλ
k+1 − pi−1Pn(λ)

=

n−(i−1)∑

k′=0

pk′+(i−1)λ
k′ − pi−1Pn(λ)

= Pi−1(λ)− pi−1Pn(λ),

as asserted.
Now we define n+ 1 vectors by

f i = Pi(A)b, i = 0, . . . , n.

Note that Pi(A) is simply given by

Pi(A) =
n−i∑

k=0

pk+iA
k, i = 0, . . . , n.

By the Cayley-Hamilton Theorem, f 0 = 0, and we claim that the vectors {f 1, . . . ,fn} are
linearly independent. To see this latter assertion, note that since (A, b) is controllable the
vectors {g1 = An−1b, g2 = An−2b, . . . , gn = b} are linearly independent and so form a basis
for Rn. We also have

f i =
n∑

j=1

Tjigj

where T is the n× n matrix

T =




1 0 0 · · · 0
pn−1 1 0 · · · 0
pn−2 pn−1 1 · · · 0

...
...

...
. . .

...
p1 p2 p3 · · · 1




which is clearly invertible. Therefore {f 1, . . . ,fn} are themselves linearly independent and
so form a basis.

We define the matrix T by asking that its inverse be given by

T−1 =
[
f 1 · · · fn

]

so that TAT−1 is simply the representation of the linear map A in the basis {f 1, . . . ,fn}.
The relation (2.11) gives

Af i = f i−1 − pi−1fn,

from which we get the representation of A in the basis {f 1, . . . ,fn} as in the theorem
statement. It is trivially true that the coordinates of b in this basis are (0, 0, . . . , 0, 1) since
fn = b. �



56 2 State-space representations (the time-domain) 2016/09/21

The pair (TAT−1,Tb) of the theorem are sometimes called the controller canonical
form for the pair (A, b). This is also sometimes known as the second Luenberger-
Brunovsky canonical form for (A, b).

What is the import of this theorem? Well, let us suppose that we are handed an n × n
matrix A and an n-vector b in the form of that in the theorem statement:

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, b =




0
0
0
...
0
1



.

What does the system look like, really? Well, define a scalar variable x by x = x1. We then
note that if ẋ(t) = Ax(t) + bu(t) then

ẋ = ẋ1 = x2

ẍ = ẍ1 = ẋ2 = x3

...

x(n) = ẋn = −p0x1 − p1x2 − · · · − pn−1xn

= − p0x− p1ẋ− · · · − pn−1x
(n−1) + u.

Thus the vector equation ẋ(t) = Ax(t) + bu(t) reduces to the scalar equation

x(n)(t) + pn−1x
(n−1)(t) + · · ·+ p1x

(1)(t) + p0x(t) = u(t).

Therefore, when we study the controllable SISO linear system

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t) +Du(t),
(2.12)

we can always make a change of coordinates that will render the system an nth order one
whose state variable is a scalar. This is important . It is also clear that if one conversely
starts with a scalar system

x(n)(t) + pn−1x
(n−1)(t) + · · ·+ p1x

(1)(t) + p0x(t) = bu(t)

y(t) = cn−1x
(n−1)(t) + cn−2x

(n−2)(t) + · · ·+ c1x
(1)(t) + c0x(t) + du(t),

one may place it in the form of (2.12) where

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



,

b =




0
0
0
...
1



, c =




c0

c1

c2
...

cn−1



, D =

[
1
]
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by rescaling variables (for example, if d = 0 we may choose ũ(t) = bu(t)).
We shall see that for controllable SISO systems, we may move easily from the linear

systems formulation, i.e., equation (2.2), to the scalar equation formulation in all settings
we examine, and here we have provided the time-domain setting for making this change.
We look at alternative canonical forms for controllable pairs (A, b) in Exercises E2.31 E2.32,
and E2.33.

2.5.2 Observer canonical form

Now let us focus on the situation when the system is observable. The proof here is
simpler than for the controllable case, since we use a “duality” between controllability and
observability.

2.38 Theorem If (A, c) ∈ Rn×n×Rn is observable then there exists an invertible n× n matrix T
so that

TAT−1 =




0 0 0 · · · 0 −p0

1 0 0 · · · 0 −p1

0 1 0 · · · 0 −p2

0 0 1 · · · 0 −p3
...

...
...

. . .
...

...
0 0 0 · · · 0 −pn−2

0 0 0 · · · 1 −pn−1




, ctT−1 =
[
0 0 0 · · · 0 1

]
.

Proof We make the simple observation that (A, c) is observable if and only if (At, c) is
controllable. This follows from the easily seen fact that C(A, c) = O(At, c)t. Therefore, by
Theorem 2.37 there exists an invertible n× n matrix T̃ so that

T̃AtT̃−1 =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, T̃ c =




0
0
0
...
0
1



.

Thus

T̃−tAT̃ t =




0 0 0 · · · 0 −p0

1 0 0 · · · 0 −p1

0 1 0 · · · 0 −p2

0 0 1 · · · 0 −p3
...

...
...

. . .
...

...
0 0 0 · · · 0 −pn−2

0 0 0 · · · 1 −pn−1




, ctT̃ t =
[
0 0 0 · · · 0 1

]
.

The result now follows by letting T = T̃−t. �

The pair (TAT−1,T−tc) in the theorem statement are said to be in observer canonical
form or in second Luenberger-Brunovsky canonical form
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Let us look at the value of this canonical form by expression the system equations for a
system that has this form. The differential equation ẋ(t) = Ax(t) + bu(t) reads

ẋ1 = − p0xn = b0u

ẋ2 = x1 − p1xn = −p0x−p1xn = b1u

...

ẋn = xn−1 − pn−1xn = bn−1u,

where we write b = (b0, b1, . . . , bn−1). Now we differentiate the expression for ẋn with respect
to t n− 1 times, and use the equations for ẋ1, . . . , ẋn to get the equation

x(n)
n + pn−1x

(n−1)
n + · · ·+ p1x

(1)
n + p0xn = bn−1u

(n−1) + · · ·+ b1u
(1) + b0u.

The equation y = ctx +Du simply reads y = xn +Du. The upshot, therefore, is that for
an observable system one can always make a change of coordinates so that the system is
effectively described by the equation

y(n) + pn−1y
(n−1) + · · ·+ p1y

(1) + p0y = bnu
(n) + bn−1u

(n−1) + · · ·+ b1u
(1) + b0u,

where bn is defined by D = [bn]. Thus an observable system can be immediately put into
the form of a differential equation for the output in terms of the output and its derivatives.
This is an essential observation for the discussion of input/output systems that is initiated
in Section 3.4. As with controllable pairs, in the exercises (See E2.34, E2.35, and E2.36) we
provide alternate canonical forms for observable pairs.

2.5.3 Canonical forms for uncontrollable and/or unobservable systems

As we have seen, for systems that are either controllable or observable, it is possible to
find a set of coordinates in which the system looks simple, in some sense. Now let us address
the situation when we know that the system is not both controllable and observable.

First we consider the situation when (A, b) is not controllable. The following result
expresses the “simplest” form such a pair may take.

2.39 Theorem If (A, b) ∈ Rn×n × Rn is not controllable then there exist an invertible matrix T
and a positive integer ` < n with the property that

TAT−1 =

[
A11 A12

0n−`,` A22

]
, Tb =

[
b1

0n−`

]
. (2.13 )

Furthermore, T may be chosen so that (A11, b1) ∈ R`×` × R` are in controller canonical
form.

Proof Let V be the smallestA-invariant subspace containing b, and suppose that dim(V ) =
`. Since (A, b) is not controllable, by Theorem 2.23, ` < n. Choose a basis {v1, . . . ,vn} for
Rn with the property that {v1, . . . ,v`} is a basis for V . We define T so that

T−1 =
[
v1 · · · vn

]
.

Since V is A-invariant and since b ∈ V , the relations in (2.13) must hold. Note that A11

is simply the representation in the basis {v1, . . . ,v`} of the restriction of A to V , and that
b1 is the representation of b ∈ V in this same basis. Now we look at the final assertion. By
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the very definition of V , the pair (A11, b1) is controllable. Therefore, by Theorem 2.37 there
exists an `× ` invertible matrix T t so that

T tA11T
−t, T tb1

is in controller canonical form. �

Now let us do the same thing, except now we look at the situation when (A, c) is not
observable.

2.40 Theorem If (A, c) ∈ Rn×n × Rn is not observable then there exist an invertible matrix T
and a positive integer k < n with the property that

TAT−1 =

[
A11 0k,n−k
A21 A22

]
, ctT−1 =

[
ct1 0tn−k

]
. (2.14 )

Furthermore, T may be chosen so that (A11, c1) ∈ Rk×k×Rk are in observer canonical form.

Proof Since (A, c) is not observable, (At, c) is not controllable. Therefore, by Theorem 2.39,
there exists an invertible matrix T̃ so that

T̃AtT̃−1 =

[
Ã11 Ã12

0n−k,k Ã22

]
, T̃ c =

[
c1

0n−k

]
,

with (Ã11, c1) in controller canonical form. Therefore,

T̃−tAT̃ t, ctT̃ t

will have the form stated in the theorem, and thus the result follows by taking T = T̃−1.�

Finally, we look at the case where (A, b) is not controllable and where (A, c) is not
observable.

2.41 Theorem Suppose that Σ = (A, b, c′,D) is neither controllable nor observable. Then there
exists integers j, k, ` > 0 and an invertible matrix T so that

TAT−1 =




A11 A12 A13 A14

0k,j A22 0j,` A24

0`,j 0`,k A33 A34

0m,j 0m,k 0m,` A44


 , Tb =




b1

b2

0`
0m


 , ctT−1 =

[
0j c2 0` c4

]
,

where m = n− j − k − `, and where the pair
[
A11 A12

0k,j A22

]
,

[
b1

b2

]

is controllable and the pair [
A22 A24

0m,k A44

]
,

[
c2

c4

]

is observable.

Proof Choose a basis {v1, . . . ,vn} for Rn with the property that

1. {v1, . . . ,vj} is a basis for image(C(A, b)) ∩ ker(O(A, c)),
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2. {v1, . . . ,vj,vj+1, . . . ,vj+k} is a basis for image(C(A, b)), and

3. {v1, . . . ,vj,vj+k+1, . . . ,vj+k+`} is a basis for ker(O(A, c)).

Now define T by

T−1 =
[
v1 · · · vj vj+1 · · · vj+k vj+k+1 · · · vj+k+` vj+k+`+1 · · · vn

]
.

From the properties of the basis vectors it follows that

b ∈ span(v1, . . . ,vj,vj+1, . . . ,vj+k)

and that
c ∈ span(vj+1, . . . ,vj+k,vj+k+`+1, . . . ,vn).

From these two observations follow the form of Tb and ctT−1 in the theorem statement. Fur-
thermore, since image(C(A, b)) and ker(O(A, c)) areA-invariant (Theorems 2.17 and 2.23),
it follows that image(C(A, b)) ∩ ker(O(A, c)) is A-invariant and that image(C(A, b)) +
ker(O(A, c)) is A-invariant. From these observations we conclude the following:

1. Avi ∈ span(v1, . . . ,vj+k) for i ∈ {1, . . . , j + k};
2. Avi ∈ span(v1, . . . ,vj,vj+k+1, . . . ,vj+k+`) for i ∈ {1, . . . , j, j + k + 1, . . . , j + k + `};
3. Avi ∈ span(v1, . . . ,vj) for i ∈ {1, . . . , j};
4. Avi ∈ span(v1, . . . ,vj,vj+1, . . . ,vj+k,vj+k+1, . . . ,vj+k+`), i ∈ {1, . . . , j + k + `}.

From these observations follow the form of TAT−1 in the theorem statement.
Now let us show that the pair

Ã1 =

[
A11 A12

0k,j A22

]
, b̃1 =

[
b1

b2

]

is controllable. First, by direct calculation, we have

C(TAT−1,Tb) =

[
b̃1 Ã1b̃1 · · · Ãn−1b̃1

0`+m 0`+m · · · 0`+m

]
.

Now, by our choice of basis vectors we also have

image(C(TAT−1,Tb)) = span(v1, . . . ,vj,vj+1, . . . ,vj+k).

Thus the matrix [
b̃1 Ã1b̃1 · · · Ãn−1b̃1

]

must have maximal rank. However, by the Cayley-Hamilton Theorem it follows that the
matrix [

b̃1 Ã1b̃1 · · · Ãj+k−1b̃1

]

also has full rank, showing that (Ã, b̃) is controllable.
That the pair [

A22 A24

0m,k A44

]
,

[
c2

c4

]

is observable follows in the same manner as the previous step, noting that

ker(O(TAT−1,T−tc)) = span(v1, . . . ,vj,vj+k+1, . . . ,vj+k+`). �
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If we write the state vector as x = (x1,x2,x3,x4) in the decomposition given by the
theorem then we may roughly say that

1. x1 represents the states that are controllable but not observable,

2. x2 represents the states that are controllable and observable,

3. x3 represents the states that are neither controllable nor observable,

4. x4 represents the states that are observable but not controllable.

2.6 Summary

This is, as we mentioned in the introduction to the chapter, a difficult bit of mate-
rial. Here’s what you should take away with you, and make sure you are clear on before
proceeding.

1. You should know exactly what we mean when we say “SISO linear system.” This termi-
nology will be used constantly in the remainder of the book.

2. You should be able to take a physical system and put it into the form of an SISO linear
system if requested to do so. To do this, linearisation may be required.

3. Given a SISO linear system with a specified input u(t), you should know how to deter-
mine, both on paper and with the computer, the output y(t) given an initial value x(0)
for the state.

4. You should be able to determine whether a SISO linear system is observable or control-
lable, and know how the lack of observability or controllability affects a system.

5. You should know roughly the import of ker(O(A, c)) and of the columnspace of C(A, b).

6. You should know that there is a thing called “zero dynamics,” and you should convince
yourself that you can work through Algorithm 2.28 to determine this, at least if you had
some time to work it out. We will revisit zero dynamics in Section 3.3, and there you will
be given an easy way to determine whether the zero dynamics are stable or unstable.

7. You should be able to determine, by hand and with the computer, the impulse response of
a SISO linear system. You should also understand that the impulse response is somehow
basic in describing the behaviour of the system—this will be amply borne out as we
progress through the book.

8. You should know that a controllable pair (A, b) has associated to it a canonical form, and
you should be able to write down this canonical form given the characteristic polynomial
for A.
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Exercises

The next three exercises are concerned with interconnections of SISO linear systems. We
shall be discussing system interconnections briefly at the beginning of Chapter 3, and thor-
oughly in Chapter 6. Indeed system interconnections are essential to the notion of feedback.

E2.1 Consider two SISO linear systems governed by the differential equations

System 1 equations

{
ẋ1(t) = A1x1(t) + b1u1(t)

y1(t) = ct1x1(t)

System 2 equations

{
ẋ2(t) = A2x2(t) + b2u2(t)

y2(t) = ct2x2(t),

where x1 ∈ Rn1 and x2 ∈ Rn2 . The input and output signals of System 1, denoted
u1(t) and y1(t), respectively, are both scalar. The input and output signals of System 2,
denoted u2(t) and y2(t), respectively, are also both scalar. The matrices A1 and A2

and the vectors b1, b2, and c1, and c2 are of appropriate dimension.
Since each system is single-input, single-output we may “connect” them as shown

in Figure E2.1. The output of System 1 is fed into the input of System 2 and so the

u1(t) System 1 System 2 y2(t)
y1(t) = u2(t)

Figure E2.1 SISO linear systems connected in series

interconnected system becomes a single-input, single-output system with input u1(t)
and output y2(t).

(a) Write the state-space equations for the combined system in the form

[
ẋ1

ẋ2

]
= A

[
x1

x2

]
+ bu1

y2 = ct
[
x1

x2

]
+Du1,

where you must determine the expressions for A, b, c, and D. Note that the
combined state vector is in Rn1+n2 .

(b) What is the characteristic polynomial of the interconnected system A matrix?
Does the interconnected system share any eigenvalues with either of the two
component systems?

E2.2 Consider again two SISO linear systems governed by the differential equations

System 1 equations

{
ẋ1(t) = A1x1(t) + b1u1(t)

y1(t) = ct1x1(t)

System 2 equations

{
ẋ2(t) = A2x2(t) + b2u2(t)

y2(t) = ct2x2(t),
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where x1 ∈ Rn1 and x2 ∈ Rn2 . The input and output signals of System 1, denoted
u1(t) and y1(t), respectively, are both scalar. The input and output signals of System 2,
denoted u2(t) and y2(t), respectively, are also both scalar. The matrices A1 and A2

and the vectors b1, b2, and c1, and c2 are of appropriate dimension.
Since each system is single-input, single-output we may “connect” them as shown

in Figure E2.2. The input to both systems is the same, and their outputs are added

u1(t) = u2(t) = u(t)

System 1

y(t) = y1(t) + y2(t)

System 2

y1(t)

y2(t)

Figure E2.2 SISO linear systems connected in parallel

to get the new output.

(a) Write the state-space equations for the combined system in the form

[
ẋ1

ẋ2

]
= A

[
x1

x2

]
+ bu

y = ct
[
x1

x2

]
+Du,

where you must determine the expressions for A, b, c, and D. Note that the
combined state vector is in Rn1+n2 .

(b) What is the characteristic polynomial of the interconnected system A matrix?
Does the interconnected system share any eigenvalues with either of the two
component systems?

E2.3 Consider yet again two SISO linear systems governed by the differential equations

System 1 equations

{
ẋ1(t) = A1x1(t) + b1u1(t)

y1(t) = ct1x1(t)

System 2 equations

{
ẋ2(t) = A2x2(t) + b2u2(t)

y2(t) = ct2x2(t),

where x1 ∈ Rn1 and x2 ∈ Rn2 . The input and output signals of System 1, denoted
u1(t) and y1(t), respectively, are both scalar. The input and output signals of System 2,
denoted u2(t) and y2(t), respectively, are also both scalar. The matrices A1 and A2

and the vectors b1, b2, and c1, and c2 are of appropriate dimension.
Since each system is single-input, single-output we may “connect” them as shown

in Figure E2.3. Thus the input to System 1 is the actual system input u, minus the
output from System 2. The input to System 2 is the output from System 1, and the
actual system output is the output of System 2.
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u(t) System 1 System 2 y(t)
y1(t) = u2(t)

u1(t) =
u(t)− y2(t)

−

Figure E2.3 SISO linear systems connected in a negative feedback
loop

(a) Write the state-space equations for the combined system in the form

[
ẋ1

ẋ2

]
= A

[
x1

x2

]
+ bu

y = ct
[
x1

x2

]
+Du,

where you must determine the expressions for A, b, c, and D. Note that the
combined state vector is in Rn1+n2 .

(b) What is the characteristic polynomial of the interconnected system A matrix?
Does the interconnected system share any eigenvalues with either of the two
component systems?
Hint: See Exercise E3.7.

E2.4 Consider the pendulum/cart system of Exercise E1.5. If one adds a force that is
applied horizontally to the cart, this leads to a natural input for the system. As
output, there are (at least) four natural possibilities: the position of the cart, the
velocity of the cart, the pendulum angle, and the pendulum angular velocity. For
each of the following eight cases, determine the linearised equations of the form (2.2)
for the linearisations:

(a) the equilibrium point (0, 0) with cart position as output;

(b) the equilibrium point (0, 0) with cart velocity as output;

(c) the equilibrium point (0, 0) with pendulum angle as output;

(d) the equilibrium point (0, 0) with pendulum angular velocity as output;

(e) the equilibrium point (0, π) with cart position as output;

(f) the equilibrium point (0, π) with cart velocity as output;

(g) the equilibrium point (0, π) with pendulum angle as output;

(h) the equilibrium point (0, π) with pendulum angular velocity as output.

In this problem you first need to determine the nonlinear equations of the form (2.5),
and then linearise.

E2.5 Consider the double pendulum of Exercise E1.6. There are at least two ways in which
one can provide a single input to the system. The two we consider are

1. a torque at the base of the bottom link relative to the ground (we call this the
“pendubot” configuration), and

2. a torque applied to top link from the bottom link (we call this the “acrobot”
configuration).
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There are various outputs we can consider, but let us choose the angle θ2 of the “top”
pendulum arm.

For each of the following cases, determine the equations in the form (2.2) for the
linearisations:

(a) the equilibrium point (0, 0, 0, 0) with the pendubot input;

(b) the equilibrium point (0, π, 0, 0) with the pendubot input;

(c) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(d) the equilibrium point (π, π, 0, 0) with the pendubot input;

(e) the equilibrium point (0, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (0, π, 0, 0) with the acrobot input;

(g) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(h) the equilibrium point (π, π, 0, 0) with the acrobot input.

The equilibrium points are written using coordinates (θ1, θ2, θ̇1, θ̇2). In this problem
you first need to determine the nonlinear equations of the form (2.5), and then lin-
earise.

E2.6 Consider the coupled tanks of Exercise E1.11. Take the input u to be Fin. Suppose
the system is at equilibrium with the height in tank 1 denoted δ1, and the input flow
and height in tank 2 as determined in parts (d) and (e) of Exercise E1.11. Obtain the
linearised equations for the system at this equilibrium.

E2.7 Obtain the output y(t) for the SISO linear system
[
ẋ1

ẋ2

]
=

[
σ ω
−ω σ

] [
x1

x2

]
+

[
0
1

]
u

y =
[
1 0

] [x1

x2

]
,

for σ ∈ R and ω > 0 when u(t) = cos t and when x(0) = 0.

E2.8 Use a computer package to determine the output response of the SISO linear system
(A, b, ct,D) to a unit step input when

A =




−2 3 1 0
−3 −2 0 1
0 0 −2 3
0 0 −3 −2


 , b =




0
0
0
1


 , c =




1
0
0
0


 , D = 01.

E2.9 (a) Come up with (A, c) ∈ R3×3 × R3 so that (A, c) is observable.

(b) Come up with (A, c) ∈ R3×3 × R3 so that (A, c) is not observable. Choosing
either A or c to be zero is not acceptable.

E2.10 (a) Come up with (A, b) ∈ R4×4 × R4 so that (A, b) is controllable.

(b) Come up with (A, b) ∈ R4×4 × R4 so that (A, b) is not controllable. Choosing
either A or b to be zero is not acceptable.

E2.11 Define (A, b) ∈ Rn×n × Rn by

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, b =




0
0
0
...
0
1
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for p0, p1, . . . , pn−1 ∈ R. Show that (A, b) is controllable by verifying that the con-
trollability matrix has full rank.

E2.12 Define (A, c) ∈ Rn×n × Rn by

A =




0 0 0 · · · 0 −p0

1 0 0 · · · 0 −p1

0 1 0 · · · 0 −p2

0 0 1 · · · 0 −p3
...

...
...

. . .
...

...
0 0 0 · · · 0 −pn−2

0 0 0 · · · 1 −pn−1




, ct =
[
0 0 0 · · · 0 1

]
.

for p0, p1, . . . , pn−1 ∈ R. Show that (A, c) is observable by verifying that the observ-
ability matrix has full rank.

The next two exercises give conditions for controllability and observability called the Popov-
Belevitch-Hautus conditions [see Hautus 1969].

E2.13 Show that (A, b) ∈ Rn×n × Rn is controllable if and only if the matrix

[
sIn −A b

]

has rank n for all s ∈ C.

E2.14 Show that (A, c) ∈ Rn×n × Rn is observable if and only if the matrix

[
sIn −A
ct

]

has rank n for all s ∈ C.

E2.15 Show that the definitions of controllability and observability are invariant under linear
changes of state variable.

E2.16 Consider the circuit of Exercise E1.7. Take as output the current through the resistor.

(a) Give conditions under which the system is observable.

(b) Give conditions under which the system is controllable.

E2.17 Consider the circuit of Exercise E1.8. Take as output the current through the resistor
R1.

(a) Give conditions under which the system is observable.

(b) Give conditions under which the system is controllable.

E2.18 Consider the circuit of Exercise E1.9. Take as output the current emanating from
the voltage source (by the Kirchhoff current law, this is also the sum of the currents
through the two resistors).

(a) Give conditions under which the system is observable.

(b) Give conditions under which the system is controllable.

E2.19 For the coupled masses of Exercise E1.4 (assume no damping), suppose you apply a
force to the leftmost mass of magnitude F1 = u(t). You also apply a force to the
rightmost mass that is proportional to F1; thus you take F2 = αu(t) for some α ∈ R.
The system is still single-input since the two forces are essentially determined by u(t).
As an output for the system take the displacement of the rightmost mass.
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(a) Determine for which values of α the system is observable. For those cases when
the system is not observable, can you give a physical interpretation of why it is
not by looking at ker(O(A, c))?

(b) Determine for which values of α the system is controllable. For those cases when
the system is not controllable, can you give a physical interpretation of why it is
not by looking at image(C(A, b))?

E2.20 For the pendulum/cart system of Exercises E1.5 and E2.4, determine whether the
linearisations in the following cases are observable and/or controllable:

(a) the equilibrium point (0, 0) with cart position as output;

(b) the equilibrium point (0, 0) with cart velocity as output;

(c) the equilibrium point (0, 0) with pendulum angle as output;

(d) the equilibrium point (0, 0) with pendulum angular velocity as output;

(e) the equilibrium point (0, π) with cart position as output;

(f) the equilibrium point (0, π) with cart velocity as output;

(g) the equilibrium point (0, π) with pendulum angle as output;

(h) the equilibrium point (0, π) with pendulum angular velocity as output.

Make sense of your answers by examining ker(C(A, b)) and image(O(A, c)).

E2.21 Consider the the double pendulum of Exercises E1.6 and E2.5. For each of the follow-
ing cases, determine whether the linearisation is controllable and/or observable:

(a) the equilibrium point (0, 0, 0, 0) with the pendubot input;

(b) the equilibrium point (0, π, 0, 0) with the pendubot input;

(c) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(d) the equilibrium point (π, π, 0, 0) with the pendubot input;

(e) the equilibrium point (0, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (0, π, 0, 0) with the acrobot input;

(g) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(h) the equilibrium point (π, π, 0, 0) with the acrobot input.

In each case, the output is the angle of the second link.

E2.22 Consider the coupled tank system of Exercises E1.11 and E2.6. Determine whether
the system is controllable and/or observable for the following outputs:

(a) the output is the level in tank 1;

(b) the output is the level in tank 2;

(c) the output is the difference in the levels.

E2.23 Determine the zero dynamics for the pendulum/cart system of Exercises E1.5 and E2.4
for each of the following linearisations:

(a) the equilibrium point (0, 0) with cart position as output;

(b) the equilibrium point (0, 0) with cart velocity as output;

(c) the equilibrium point (0, 0) with pendulum angle as output;

(d) the equilibrium point (0, 0) with pendulum angular velocity as output;

(e) the equilibrium point (0, π) with cart position as output;

(f) the equilibrium point (0, π) with cart velocity as output;

(g) the equilibrium point (0, π) with pendulum angle as output;

(h) the equilibrium point (0, π) with pendulum angular velocity as output.
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E2.24 For the double pendulum of Exercises E1.6 and E2.5, and for each of the following
cases, determine the zero dynamics:

(a) the equilibrium point (0, 0, 0, 0) with the pendubot input;

(b) the equilibrium point (0, π, 0, 0) with the pendubot input;

(c) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(d) the equilibrium point (π, π, 0, 0) with the pendubot input;

(e) the equilibrium point (0, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (0, π, 0, 0) with the acrobot input;

(g) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(h) the equilibrium point (π, π, 0, 0) with the acrobot input.

In each case, use the angle of the second link as output.

E2.25 Determine the linearised zero dynamics of for the coupled tank system of Exer-
cises E1.11 and E2.6 for the following outputs:

(a) the height in tank 1;

(b) the height in tank 2;

(c) the difference of the heights in the tanks.

E2.26 Define a SISO linear system Σ = (A, b, ct,01) with

A =

[
σ ω
−ω σ

]
, b =

[
0
1

]
, c =

[
1
0

]

for σ ∈ R and ω > 0. Determine the impulse response hΣ(t). Plot the impulse
response for various values of σ.

E2.27 Consider the pendulum/cart system of Exercises E1.5 and E2.4, and determine the
impulse response of the system for the following linearisations:

(a) the equilibrium point (0, 0) with cart position as output;

(b) the equilibrium point (0, 0) with cart velocity as output;

(c) the equilibrium point (0, 0) with pendulum angle as output;

(d) the equilibrium point (0, 0) with pendulum angular velocity as output;

(e) the equilibrium point (0, π) with cart position as output;

(f) the equilibrium point (0, π) with cart velocity as output;

(g) the equilibrium point (0, π) with pendulum angle as output;

(h) the equilibrium point (0, π) with pendulum angular velocity as output.

E2.28 Select values for the parameters of the double pendulum system of Exercises E1.6
and E2.5. For each of the following cases, determine the impulse response for the
linearisation:

(a) the equilibrium point (0, 0, 0, 0) with the pendubot input;

(b) the equilibrium point (0, π, 0, 0) with the pendubot input;

(c) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(d) the equilibrium point (π, π, 0, 0) with the pendubot input;

(e) the equilibrium point (0, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (0, π, 0, 0) with the acrobot input;

(g) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(h) the equilibrium point (π, π, 0, 0) with the acrobot input.
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In each case, use the angle of the second link as output.

E2.29 Determine the linearised impulse response for the coupled tank system of Exer-
cises E1.11 and E2.6 for the following outputs:

(a) the height in tank 1;

(b) the height in tank 2;

(c) the difference of the heights in the tanks.

E2.30 Let

A =



−2 1 3
0 −2 1
0 0 1


 , b =




0
1
1


 .

(a) Verify that (A, b) is controllable.

(b) Find the controller canonical form for (A, b).

The next few exercises deal with alternative canonical forms for controllable pairs (A, b) and
for observable pairs (A, c).

E2.31 Let (A, b) be a controllable pair. Show that the representations of A and b in the
basis {b,Ab, . . . ,An−1b} are given by

TAT−1 =




0 0 · · · 0 −p0

1 0 · · · 0 −p1

0 1 · · · 0 −p2
...

...
. . .

...
...

0 0 · · · 0 −pn−2

0 0 · · · 1 −pn−1



, Tb =




1
0
0
...
0
0



,

where
T−1 =

[
b Ab · · · An−1b

]
.

This is the controllability canonical form or the first Luenberger-Brunovsky
canonical form for (A, b).

E2.32 Again let (A, b) be controllable. Recall from Exercise E2.31 that if

T−1
1 =

[
b Ab · · · An−1b

]
,

then

T 1AT
−1
1 =




0 0 · · · 0 −p0

1 0 · · · 0 −p1

0 1 · · · 0 −p2
...

...
. . .

...
...

0 0 · · · 1 −pn−1



, T 1b =




1
0
0
...
0



,

Now answer the following questions.

(a) Let

T 2 =




1 −pn−1 0 · · · 0 0
0 1 −pn−1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −pn−1

0 0 0 · · · 0 1



.
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Use mathematical induction to show that

T−1
2 =




1 pn−1 p2
n−1 · · · pn−2

n−1 pn−1
n−1

0 1 pn−1 · · · pn−3
n−1 pn−2

n−1
...

...
...

. . .
...

0 0 0 · · · 1 pn−1

0 0 0 · · · 0 1



.

(b) Define T = T 2T 1 and show that

TAT−1 =




−pn−1 −pn−2 · · · −p1 −p0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



, Tb =




1
0
0
...
0



.

E2.33 Let (A, b) be controllable. Find an invertible matrix T so that

TAT−1 =




−pn−1 1 0 · · · 0
−pn−2 0 1 · · · 0
−pn−3 0 0 · · · 0

...
...

...
. . .

...
−p1 0 0 · · · 1
−p0 0 0 · · · 0



, Tb =




0
0
0
...
0
1



.

E2.34 Let (A, c) be an observable pair. Show that the representations of A and c in the
basis formed from the columns of the matrix

[
c Atc · · · (At)n−1c

]−1

are given by

TAT−1 =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, ctT−1 =

[
1 0 · · · 0

]
,

where
T =

[
c Atc · · · (At)n−1c

]
.

This is the observability canonical form or the first Luenberger-Brunovsky
canonical form for (A, c).

E2.35 Again let (A, c) be observable. Recall from Exercise E2.34 that if

T 1 =
[
c Atc · · · (At)n−1c

]
,
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then

T 1AT
−1
1 =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, ctT−1

1 =
[
1 0 · · · 0

]
.

Now answer the following questions.

(a) Let

T−1
2 =




1 0 0 · · · 0 0
−pn−1 1 0 · · · 0 0

0 −pn−1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −pn−1 1




and use mathematical induction to show that

T 2 =




1 0 · · · 0 0
pn−1 1 · · · 0 0
p2
n−1 pn−1 · · · 0 0
...

...
. . .

...
...

pn−2
n−2 pn−3

n−1 · · · 1 0
pn−1
n−1 pn−2

n−1 · · · pn−1 1



.

(b) Define T = T 2T 1 and show that

TAT−1 =




−pn−1 1 0 · · · 0
−pn−2 0 1 · · · 0
−pn−3 0 0 · · · 0

...
...

...
. . .

...
−p1 0 0 · · · 1
−p0 0 0 · · · 0



, ctT−1 =




1
0
0
...
0



.

E2.36 Let (A, c) be observable. Find an invertible matrix T so that

TAT−1 =




−pn−1 −pn−2 · · · −p1 −p0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



, ctT−1 =

[
0 0 · · · 0 1

]
.

E2.37 Consider the SISO linear system Σ = (A, b, ct,01) of Example 2.19:

A =

[
1 0
1 −1

]
, b =

[
0
1

]
, c =

[
0
1

]
.



72 2 State-space representations (the time-domain) 2016/09/21

Does there exist an invertible matrix P for which

TAT−1 =

[
0 1
−p0 −p1

]
, Tb =

[
0
1

]

for some p0, p1 ∈ R?

E2.38 Let (A, b) ∈ Rn×n × Rn be controllable. Show that there exists a unique invertible
T ∈ Rn×n for which (TAT−1,Tb) is in controller canonical form.

For a given matrix A ∈ Rn×n it may not be possible to find a vector b ∈ Rn so that (A, b)
is controllable. This is related to the Jordan canonical form for A, and in the next two
exercises you are asked to look into this a little.

E2.39 Let Σ = (A, b, ct,D) be a SISO linear system where A has repeated eigenvalues and
is diagonalisable.

(a) Is (A, b) controllable?

(b) Is (A, c) observable?

(c) When is the matrix




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1




diagonalisable?

E2.40 Define

A1 =




σ ω 0 0
−ω σ 0 0
0 0 σ ω
0 0 −ω σ


 , A2 =




σ ω 1 0
−ω σ 0 1
0 0 σ ω
0 0 −ω σ




(a) Show that there is no vector b ∈ R4 so that (A1, b) is controllable.

(b) Let V ⊂ R4 be the subspace spanned by {(1, 0, 0, 0), (0, 1, 0, 0)}. Show that
(A2, b) is controllable if and only if b 6∈ V .
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Chapter 3

Transfer functions (the s-domain)

Although in the previous chapter we occasionally dealt with MIMO systems, from now
on we will deal exclusively with SISO systems unless otherwise stated. Certain aspects of
what we say can be generalised to the MIMO setting, but it is not our intention to do this
here.

Much of what we do in this book revolves around looking at things in the “s-
domain,” i.e., the complex plane. This domain comes about via the use of the Laplace
transform. It is assumed that the reader is familiar with the Laplace transform, but we
review some pertinent aspects in Section E.3. We are a little more careful with how we
use the Laplace transform than seems to be the norm. This necessitates the use of some
Laplace transform terminology that may not be familiar to all students. This may make
more desirable than usual a review of the material in Section E.3. In the s-domain, the
things we are interested in appear as quotients of polynomials in s, and so in Appendix C we
provide a review of some polynomial things you have likely seen before, but perhaps not as
systematically as we shall require. The “transfer function” that we introduce in this chapter
will be an essential tool in what we do subsequently.
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3.1 Block diagram algebra

We have informally drawn some block diagrams, and it is pretty plain how to handle
them. However, let us make sure we are clear on how to do things with block diagrams.
In Section 6.1 we will be looking at a more systematic way of handling system with inter-
connected blocks of rational functions, but our discussion here will serve for what we need
immediately, and actually serves for a great deal of what we need to do.

The blocks in a diagram will contain rational functions with indeterminate being the
Laplace transform variable s. Thus when you see a block like the one in Figure 3.1 where

x̂1(s) R(s) x̂2(s)

Figure 3.1 The basic element in a block diagram

R ∈ R(s) is given by

R(s) =
pns

n + pn−1s
n−1 + · · ·+ p1s+ p0

qksk + qk−1sk−1 + · · ·+ q1s+ q0

means that x̂2(s) = R(s)x̂1(s) or that x1 and x2 are related in the time-domain by

pnx
(n)
1 + pn−1x

(n−1)
1 + · · ·+ p1x

(1)
1 + p0x1 = qkx

(k)
2 + qk−1x

(k−1)
2 + · · ·+ q1x

(1)
2 + q0x2

(ignoring initial conditions). We shall shortly see just why this should form the basic element
for the block diagrams we construct.

Now let us see how to assemble blocks and obtain relations. First let’s look at two blocks
in series as in Figure 3.2. If one wanted, one could introduce a variable ˆ̃x that represents

x̂1(s) R1(s) R2(s) x̂2(s)

Figure 3.2 Blocks in series

the signal between the blocks and then one has

ˆ̃x(s) = R1(s)x̂1(s), x̂2(x) = R2(s)ˆ̃x(s)

=⇒ x̂2(s) = R1(s)R2(s)x̂1(s).

Since multiplication of rational functions is commutative, it does not matter whether we
write R1(s)R2(s) or R2(s)R1(s).

We can also assemble blocks in parallel as in Figure 3.3. If one introduces temporary
signals ˆ̃x1 and ˆ̃x2 for what comes out of the upper and lower block respectively, then we have

ˆ̃x1(s) = R1(s)x̂1(s), ˆ̃x2(s) = R2(s)x̂1(s).

Notice that when we just split a signal like we did before piping x̂1 into both R1 and R2,
the signal does not change. The temporary signals ˆ̃x1 and ˆ̃x2 go into the little circle that is
a summer . This does what its name implies and sums the signals. That is

x̂2(s) = ˆ̃x1(s) + ˆ̃x2(s).
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x̂1(s)

R1(s)

x̂2(s)

R2(s)

Figure 3.3 Blocks in parallel

Unless it is otherwise depicted, the summer always adds the signals. We’ll see shortly what
one has to do to the diagram to subtract. We can now solve for x̂2 in terms of x̂1:

x̂2(s) = (R1(s) +R2(s))x̂1(s).

The final configuration we examine is the negative feedback configuration depicted
in Figure 3.4. Observe the minus sign attributed to the signal coming out of R2 into the

x̂1(s) R1(s) x̂2(s)

R2(s)

−

Figure 3.4 Blocks in negative feedback configuration

summer. This means that the signal going into the R1 block is x̂1(s) − R2(s)x̂2(s). This
then gives

x̂2(s) = R1(s)(x̂1(s)−R2(s)x̂2(s))

=⇒ x̂2(s) =
R1(s)

1 +R1(s)R2(s)
x̂1(s).

We emphasise that when doing block diagram algebra, one need not get upset when dividing
by a rational function unless the rational function is identically zero. That is, don’t be
thinking to yourself, “But what if this blows up when s = 3?” because this is just not
something to be concerned about for rational function arithmetic (see Appendix C).

We shall sometimes consider the case where we have unity feedback (i.e., R2(s) = 1)
and to do so, we need to show that the situation in Figure 3.4 can be captured with unity
feedback, perhaps with other modifications to the block diagram. Indeed, one can check
that the relation between x̂2 and x̂1 is the same for the block diagram of Figure 3.5 as it is
for the block diagram of Figure 3.4.

In Section 6.1 we will look at a compact way to represent block diagrams, and one that
enables one to prove some general structure results on how to interconnect blocks with
rational functions.
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x̂1(s) R−1
2 (s) R1(s) R2(s) x̂2(s)−

Figure 3.5 A unity feedback equivalent for Figure 3.4

3.2 The transfer function for a SISO linear system

The first thing we do is look at our linear systems formalism of Chapter 2 and see how
it appears in the Laplace transform scheme.

We suppose we are given a SISO linear system Σ = (A, b, ct,D), and we fiddle with
Laplace transforms a bit for such systems. Note that one takes the Laplace transform of a
vector function of time by taking the Laplace transform of each component. Thus we can
take the left causal Laplace transform of the linear system

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t) +Du(t)
(3.1)

to get

sL +
0−(x)(s) = AL +

0−(x)(s) + bL +
0−(u)(s)

L +
0−(y)(s) = ctL +

0−(x)(s) +DL +
0−(u)(s).

It is convenient to write this in the form

L +
0−(x)(s) = (sIn −A)−1bL +

0−(u)(s)

L +
0−(y)(s) = ctL +

0−(x)(s) +DL +
0−(u)(s).

(3.2)

We should be careful how we interpret the inverse of the matrix sIn −A. What one does
is think of the entries of the matrix as being polynomials, so the matrix will be invertible
provided that its determinant is not the zero polynomial. However, the determinant is simply
the characteristic polynomial which is never the zero polynomial. In any case, you should
not really think of the entries as being real numbers that you evaluate depending on the
value of s. This is best illustrated with an example.

3.1 Example Consider the mass-spring-damper A matrix:

A =

[
0 1
− k
m
− d
m

]
=⇒ sI2 −A =

[
s −1
k
m

s+ d
m

]
.

To compute (sI2 −A)−1 we use the formula (A.2):

(sI2 −A)−1 =
1

det(sI2 −A)
adj(sI2 −A),

where adj is the adjugate defined in Section A.3.1. We compute

det(sI2 −A) = s2 + d
m
s+ k

m
.



2016/09/21 3.2 The transfer function for a SISO linear system 77

This is, of course, the characteristic polynomial for A with indeterminant s! Now we use
the cofactor formulas to ascertain

adj(sI2 −A) =

[
s+ d

m
1

− k
m

s

]

and so

(sI2 −A)−1 =
1

s2 + d
m
s+ k

m

[
s+ d

m
1

− k
m

s

]
.

Note that we do not worry whether s2 + d
m
s + k

m
vanishes for certain values of s because

we are only thinking of it as a polynomial, and so as long as it is not the zero polynomial,
we are okay. And since the characteristic polynomial is never the zero polynomial, we are
always in fact okay. •

Back to the generalities for the moment. We note that we may, in the Laplace transform
domain, solve explicitly for the output L +

0−(y) in terms of the input L +
0−(u) to get

L +
0−(y)(s) = ct(sIn −A)−1bL +

0−(u)(s) +DL +
0−(u)(s).

Note we may write

TΣ(s) , L +
0−(y)(s)

L +
0−(u)(s)

= ct(sIn −A)−1b+D

and we call TΣ the transfer function for the linear system Σ = (A, b, ct,D). Clearly if
we put everything over a common denominator, we have

TΣ(s) =
ctadj(sIn −A)b+DPA(s)

PA(s)
.

It is convenient to think of the relations (3.2) in terms of a block diagram, and we show
just such a thing in Figure 3.6. One can see in the figure why the term corresponding to the

û(s) b (sIn −A)−1 ct ŷ(s)

D

x̂(s)

x0

Figure 3.6 The block diagram representation of (3.2)

D matrix is called a feedforward term, as opposed to a feedback term. We have not yet
included feedback, so it does not show up in our block diagram.

Let’s see how this transfer function looks for some examples.
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3.2 Examples We carry on with our mass-spring-damper example, but now considering the vari-
ous outputs. Thus we take

A =

[
0 1
− k
m
− d
m

]
, b =

[
0
1
m

]
.

1. The first case is when we have the position of the mass as output. Thus c = (1, 0) and
D = 01, and we compute

TΣ(s) =
1
m

s2 + d
m
s+ k

m

.

2. If we take the velocity of the mass as output, then c = (0, 1) and D = 01 and with this
we compute

TΣ(s) =
s
m

s2 + d
m
s+ k

m

.

3. The final case was acceleration output, and here we had c = (− k
m
,− d

m
) and D = I1.

We compute in this case

TΣ(s) =
s2

m

s2 + d
m
s+ k

m

. •

To top off this section, let’s give an alternate representation for ctadj(sIn −A)b.

3.3 Lemma ctadj(sIn −A)b = det

[
sIn −A b
−ct 0

]
.

Proof By Lemma A.1 we have

det

[
sIn −A b
−ct 0

]
= det(sIn −A) det(ct(sIn −A)−1b)

=⇒ ct(sIn −A)−1b =

det

[
sIn −A b
−ct 0

]

det(sIn −A)

Since we also have

ct(sIn −A)−1b =
ctadj(sIn −A)b

det(sIn −A)
,

we may conclude that

ctadj(sIn −A)b = det

[
sIn −A b
−ct 0

]
,

as desired. �

3.3 Properties of the transfer function for SISO linear systems

Now that we have constructed the transfer function as a rational function TΣ, let us
look at some properties of this transfer function. For the most part, we will relate these
properties to those of linear systems as discussed in Section 2.3. It is interesting that we
can infer from the transfer function some of the input/output behaviour we have discussed
in the time-domain.

It is important that the transfer function be invariant under linear changes of state
variable—we’d like the transfer function to be saying something about the system rather
than just the set of coordinates we are using. The following result is an obvious one.
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3.4 Proposition Let Σ = (A, b, ct,D) be a SISO linear system and let T be an invertible n× n
matrix (where A is also in Rn×n). If Σ′ = (TAT−1,Tb, ctT−1,D) then TΣ′ = TΣ.

By Proposition 2.5 this means that if we make a change of coordinate ξ = T−1x for the
SISO linear system (3.1), then the transfer function remains unchanged.

3.3.1 Controllability and the transfer function

We will first concern ourselves with cases when the GCD of the numerator and denomi-
nator polynomials is not 1.

3.5 Theorem Let Σ = (A, b, ct,01) be a SISO linear system. If (A, b) is controllable, then the
polynomials

P1(s) = ctadj(sIn −A)b, P2(s) = PA(s)

are coprime as elements of R[s] if and only if (A, c) is observable.

Proof Although A, b, and c are real, let us for the moment think of them as being complex.
This means that we think of b, c ∈ Cn and A as being a linear map from Cn to itself. We
also think of P1, P2 ∈ C[s].

Since (A, b) is controllable, by Theorem 2.37 and Proposition 3.4 we may without loss
of generality suppose that

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, b =




0
0
0
...
0
1



. (3.3)

Let us first of all determine TΣ with A and b of this form. Since the first n − 1 entries
of b are zero, we only need the last column of adj(sIn − A). By definition of adj, this
means we only need to compute the cofactors for the last row of sIn −A. A tedious but
straightforward calculation shows that

adj(sIn −A) =




∗ · · · ∗ 1
∗ · · · ∗ s
...

. . .
...

...
∗ · · · ∗ sn−1


 .

Thus, if c = (c0, c1, . . . , cn−1) then it is readily seen that

adj(sIn −A)b =




1
s
...

sn−1




=⇒ P1(s) = ctadj(sIn −A)b = cn−1s
n−1 + cn−2s

n−2 + · · ·+ c1s+ c0.

(3.4)

With these preliminaries out of the way, we are ready to proceed with the proof proper.
First suppose that (A, c) is not observable. Then there exists a nontrivial subspace

V ⊂ Cn with the property that A(V ) ⊂ V and V ⊂ ker(ct). Furthermore, we know by
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Theorem 2.17 that V is contained in the kernel of O(A, c). Since V is a C-vector space and
since A restricts to a linear map on V , there is a nonzero vector z ∈ V with the property
Az = αz for some α ∈ C. This is a consequence of the fact that the characteristic polynomial
of A restricted to V will have a root by the fundamental theorem of algebra. Since z is an
eigenvector for A with eigenvalue α, we may use (3.3) to ascertain that the components of
z satisfy

z2 = αz1

z3 = αz2 = α2z1

...

zn−1 = αzn−2 = αn−2z1

−p0z1 − p1z2 − · · · − pn−1zn = αzn.

The last of these equations then reads

αzn + pn−1zn + αn−2pn−2z1 + · · ·+ αp1z1 + p0z1 = 0.

Using the fact that α is a root of the characteristic polynomial P2 we arrive at

αzn + pn−1zn = αn−1(α + pn−1)z1

from which we see that zn = αn−1z1 provided α 6= −pn−1. If α = −pn−1 then zn is left free.
Thus the eigenspace for the eigenvalue α is

span((1, α, . . . , αn−1))

if α 6= −pn−1 and
span((1, α, . . . , αn−1), (0, . . . , 0, 1))

if α = −pn−1. In either case, the vector z0 , (1, α, . . . , αn−1) is an eigenvector for the
eigenvalue α. Thus z0 ∈ V ⊂ ker(ct). Thus means that

ctz0 = c0 + c1α + · · ·+ cn−1α
n−1 = 0,

and so α is a root of P1 (by (3.4)) as well as being a root of the characteristic polynomial
P2. Thus P1 and P2 are not coprime.

Now suppose that P1 and P2 are not coprime. Since these are complex polynomials, this
means that there exists α ∈ C so that P1(s) = (s − α)Q1(s) and P2(s) = (s − α)Q2(s) for
some Q1, Q2 ∈ C[s]. We claim that the vector z0 = (1, α, . . . , αn−1) is an eigenvector for A.
Indeed the components of w = Az0 are

w1 = α

w2 = α2

...

wn−1 = αn−2

wn = − p0 − p1α− · · · − pn−1α
n−1.

However, since α is a root of P2 the right-hand side of the last of these equations is simply
αn. This shows that Az0 = w = αz0 and so z0 is an eigenvector as claimed. Now we claim
that z0 ∈ ker(O(A, c)). Indeed, since α is a root of P1, by (3.4) we have

ctz0 = c0 + c1s+ · · ·+ cn−1α
n−1 = 0.
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Therefore, z0 ∈ ker(ct). Since Akz0 = αkz0 we also have z0 ∈ ker(ctAk) for any k ≥ 1.
But this ensures that z0 ∈ ker(O(A, c)) as claimed. Thus we have found a nonzero vector
in ker(O(A, c)) which means that (A, c) is not observable.

To complete the proof we must now take into account the fact that, in using the Funda-
mental Theorem of Algebra in some of the arguments above, we have constructed a proof
that only works when A, b, and c are thought of as complex. Suppose now that they are
real, and first assume that (A, c) is not observable. The proof above shows that there is
either a one-dimensional real subspace V of Rn with the property that Av = αv for some
nonzero v ∈ V and some α ∈ R, or that there exists a two-dimensional real subspace V of
Rn with vectors v1,v2 ∈ V with the property that

Av1 = σv1 − ωv2, Av2 = ωv1 + σv2

for some σ, ω ∈ R with ω 6= 0. In the first case we follow the above proof and see that α ∈ R
is a root of both P1 and P2, and in the second case we see that σ + iω is a root of both P1

and P2. In either case, P1 and P2 are not coprime.
Finally, in the real case we suppose that P1 and P2 are not coprime. If the root they share

is α ∈ R then the nonzero vector (1, α, . . . , αn−1) is shown as above to be in ker(O(A, c)).
If the root they share is α = σ + iω then the two nonzero vectors Re(1, α, . . . , αn−1) and
Im(1, α, . . . , αn−1) are shown to be in ker(O(A, c)), and so (A, c) is not observable. �
I hope you agree that this is a non-obvious result! That one should be able to infer observ-
ability merely by looking at the transfer function is interesting indeed. Let us see that this
works in an example.

3.6 Example (Example 2.13 cont’d) We consider a slight modification of the example Exam-
ple 2.13 that, you will recall, was not observable. We take

A =

[
0 1
1 −ε

]
, b =

[
0
1

]
, c =

[
1
−1

]
,

from which we compute

ctadj(sI2 −A)b = 1− s
det(sI2 −A) = s2 − εs− 1.

Note that when ε = 0 we have exactly the situation of Example 2.13. The controllability
matrix is

C(A, b) =

[
0 1
1 ε

]

and so the system is controllable. The roots of the characteristic polynomial are

s =
−ε±

√
4 + ε2

2

and ctadj(sI2 −A)b has the single root s = 1. The characteristic polynomial has a root of
1 when and only when ε = 0. Therefore, from Theorem 3.5 (which applies since (A, b) is
controllable) we see that the system is observable if and only if ε 6= 0. This can also be seen
by computing the observability matrix:

O(A, c) =

[
1 −1
−1 1− ε

]
.

This matrix has full rank except when ε = 0, and this is as it should be. •
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Note that Theorem 3.5 holds only when (A, b) is controllable. When they are not con-
trollable, the situation is somewhat disastrous, as the following result describes.

3.7 Theorem If (A, b) ∈ Rn×n × Rn is not controllable, then for any c ∈ Rn the polynomials

P1(s) = ctadj(sIn −A)b, P2(s) = PA(s)

are not coprime.

Proof By Theorem 2.39 we may suppose that A and b are given by

A =

[
A11 A12

0n−`,` A22

]
, b =

[
b1

0n−`

]
,

for some ` < n. Therefore,

sIn −A =

[
sI`A11 −A12

0n−`,` sIn−`A22

]
=⇒ (sIn −A)−1 =

[
(sI`A11)−1 ∗

0n−`,` (sIn−`A
−1
22

]
,

where the ∗ denotes a term that will not matter to us. Thus we have

(sIn −A)−1b =

[
(sI`A11)−1b1

0n−`.

]

This means that if we write c = (c1, c2) ∈ R` × Rn−` we must have

ct(sIn −A)−1b = ct1(sI`A11)−1b1.

This shows that
ctadj(sIn −A)b

det(sIn −A)
=
ct1adj(sI` −A11)b1

det(sI` −A11)
.

The denominator on the left is monic of degree n and the denominator on the right is monic
and degree `. This must mean that there is a monic polynomial P of degree n− ` so that

ctadj(sIn −A)b

det(sIn −A)
=
P (s)ct1adj(sI` −A11)b1

P (s) det(sI` −A11)
,

which means that the polynomials ctadj(sIn −A)b and det(sIn −A) are not coprime. �

This result shows that when (A, b) is not controllable, the order of the denominator in TΣ,
after performing pole/zero cancellations, will be strictly less than the state dimension. Thus
the transfer function for an uncontrollable system, is never representing the complete state
information.

Let’s see how this works out in our uncontrollable example.

3.8 Example (Example 2.19 cont’d) We consider a slight modification of the system in Exam-
ple 2.19, and consider the system

A =

[
1 ε
1 −1

]
, b =

[
0
1

]
.

The controllability matrix is given by

C(A, b) =

[
0 ε
1 −1

]
,
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which has full rank except when ε = 0. We compute

adj(sI2 −A) =

[
s+ 1 ε

1 s− 1

]
=⇒ adj(sI2 −A)b =

[
ε

s− 1

]
.

Therefore, for c = (c1, c2) we have

ctadj(sI2 −A)b = c2(s− 1) + c1ε.

We also have det(sI2 −A) = s2 − 1 = (s + 1)(s − 1) which means that there will always
be a pole/zero cancellation in TΣ precisely when ε = 0. This is precisely when (A, b) is not
controllable, just as Theorem 3.7 predicts. •

3.3.2 Observability and the transfer function

The above relationship between observability and pole/zero cancellations in the numera-
tor and denominator of TΣ relies on (A, b) being controllable. There is a similar story when
(A, c) is observable, and this is told by the following theorem.

3.9 Theorem Let Σ = (A, b, ct,01) be a SISO linear system. If (A, c) is observable, then the
polynomials

P1(s) = ctadj(sIn −A)b, P2(s) = PA(s)

are coprime as elements of R[s] if and only if (A, b) is controllable.

Proof First we claim that

btadj(sIn −At)c = ctadj(sIn −A)b

det(sIn −At) = det(sIn −A).
(3.5)

Indeed, since the transpose of a 1 × 1 matrix, i.e., a scalar, is simply the matrix itself, and
since matrix inversion and transposition commute, we have

ct(sIn −A)−1b = bt(sIn − sAt)−1c.

This implies, therefore, that

ctadj(sIn −A)b

det(sIn −A)
=
btadj(sIn −At)c

det(sIn −At)
.

Since the eigenvalues of A and At agree,

det(sIn −At) = det(sIn −A),

and from this it follows that

btadj(sIn −At)c = ctadj(sIn −A)b.

Now, since (A, c) is observable, (At, c) is controllable (cf. the proof of Theorem 2.38).
Therefore, by Theorem 3.5, the polynomials

P̃1(s) = btadj(sIn −At)c, P̃2(s) = PAt(s)

are coprime if and only if (At, b) is observable. Thus the polynomials P̃1 and P̃2 are coprime
if and only if (A, b) is controllable. However, by (3.5) P1 = P̃1 and P2 = P̃2, and the result
now follows. �

Let us illustrate this result with an example.
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3.10 Example (Example 2.19 cont’d) We shall revise slightly Example 2.19 by taking

A =

[
1 ε
1 −1

]
, b =

[
0
1

]
, c =

[
0
1

]
.

We determine that

ctadj(sI2 −A)b = s− 1

det(sI2 −A) = s2 − ε− 1.

The observability matrix is computed as

O(A, c) =

[
0 1
1 −1

]
,

so the system is observable for all ε. On the other hand, the controllability matrix is

C(A, b) =

[
0 ε
1 −1

]
,

so the (A, b) is controllable if and only if ε = 0. What’s more, the roots of the characteristic
polynomial are s = ±

√
1 + ε. Therefore, the polynomials ctadj(sI2−A)b and det(sI2−A)

are coprime if and only if ε = 0, just as predicted by Theorem 3.9. •
We also have the following analogue with Theorem 3.7.

3.11 Theorem If (A, c) ∈ Rn×n × Rn is not observable, then for any b ∈ Rn the polynomials

P1(s) = ctadj(sIn −A)b, P2(s) = PA(s)

are not coprime.

Proof This follows immediately from Theorem 3.7, (3.5) and the fact that (A, c) is observ-
able if and only if (At, b) is controllable. �

It is, of course, possible to illustrate this in an example, so let us do so.

3.12 Example (Example 2.13 cont’d) Here we work with a slight modification of Example 2.13
by taking

A =

[
0 1
1 −ε

]
, c =

[
1
−1

]
.

As the observability matrix is

O(A, c) =

[
1 −1
−1 1 + ε

]
,

the system is observable if and only if ε = 0. If b = (b1, b2) then we compute

ctadj(sI2 −A)b = (b1 − b2)(s− 1) + εb1.

We also have det(sI2−A) = s2+εs−1. Thus we see that indeed the polynomials ctadj(sI2−
A)b and det(sI2 −A) are not coprime for every b exactly when ε = 0, i.e., exactly when
the system is not observable. •

The following corollary summarises the strongest statement one may make concerning
the relationship between controllability and observability and pole/zero cancellations in the
transfer functions.
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3.13 Corollary Let Σ = (A, b, ct,01) be a SISO linear system, and define the polynomials

P1(s) = ctadj(sIn −A)b, P2(s) = det(sIn −A).

The following statements are equivalent:

(i) (A, b) is controllable and (A, c) is observable;

(ii) the polynomials P1 and P2 are coprime.

Note that if you are only handed a numerator polynomial and a denominator polyno-
mial that are not coprime, you can only conclude that the system is not both controllable
and observable. From the polynomials alone, one cannot conclude that the system is, say,
controllable but not observable (see Exercise E3.9).

3.3.3 Zero dynamics and the transfer function

It turns out that there is another interesting interpretation of the transfer function as
it relates to the zero dynamics. The following result is of general interest, and is also an
essential part of the proof of Theorem 3.15. We have already seen that det(sIn − A) is
never the zero polynomial. This result tells us exactly when ctadj(sIn − A)b is the zero
polynomial.

3.14 Lemma Let Σ = (A, b, ct,D) be a SISO linear system, and let ZΣ be the subspace constructed
in Algorithm 2.28. Then ctadj(sIn −A)b is the zero polynomial if and only if b ∈ ZΣ.

Proof Suppose that b ∈ ZΣ. By Theorem 2.31 this means that ZΣ is A-invariant, and so
also is (sIn −A)-invariant. Furthermore, from the expression (A.3) we may ascertain that
ZΣ is (sIn − A)−1-invariant, or equivalently, that ZΣ is adj(sIn − A)-invariant. Thus we
must have adj(sIn −A)b ∈ ZΣ. Since ZΣ ⊂ ker(ct), we must have ctadj(sIn −A)b = 0.

Conversely, suppose that ctadj(sIn−A)b = 0. By Exercise EE.4 this means that cteAtb =
0 for t ≥ 0. If we Taylor expand eAt about t = 0 we get

c
∞∑

k=0

tk

k!
Akb = 0.

Evaluating the kth derivative of this expression with respect to t at t = 0 gives cAkb = 0,
k = 0, 1, 2, . . . . Given these relations, we claim that the subspaces Zk, k = 1, 2, . . . of
Algorithm 2.28 are given by Zk = ker(ctAk−1). Since Z1 = ker(ct), the claim holds for
k = 1. Now suppose that the claim holds for k = m > 1. Thus we have Zm = ker(ctAm−1).
By Algorithm 2.28 we have

Zm+1 = {x ∈ Rn | Ax ∈ Zm + span(b)}
= {x ∈ Rn | Ax ∈ ker(ctAm−1) + span(b)}
= {x ∈ Rn | Ax ∈ ker(ctAm−1)}
= {x ∈ Rn | x ∈ ker(ctAm)}
= ker(ctAm),

where, on the third line, we have used the fact that b ∈ ker(ctAm−1). Since our claim
follows, and since b ∈ ker(ctAk) = Zk−1 for k = 0, 1, . . . , it follows that b ∈ ZΣ. �
The lemma, note, gives us conditions on so-called invertibility of the transfer function. In
this case we have invertibility if and only if the transfer function is non-zero.

With this, we may now prove the following.
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3.15 Theorem Consider a SISO control system of the form Σ = (A, b, ct,01). If ct(sIn −A)b is
not the zero polynomial then the zeros of ctadj(sIn −A)b are exactly the spectrum for the
zero dynamics of Σ.

Proof Since ctadj(sIn−A)b 6= 0, by Lemma 3.14 we have b 6∈ ZΣ. We can therefore choose
a basis B = {v1, . . . ,vn} for Rn with the property that {v1, . . . ,v`} is a basis for ZΣ and
v`+1 = b. With respect to this basis we can write c = (0, c2) ∈ R`×Rn−` since ZΣ ⊂ ker(ct).
We can also write b = (0, (1, 0, . . . , 0)) ∈ R`×Rn−`, and we denote b2 = (1, 0, . . . , 0) ∈ Rn−`.
We write the matrix for the linear map A in this basis as

[
A11 A12

A21 A22

]
.

Since A(ZΣ) = ZΣ + span(b), for k = 1, . . . ` we must have Avk = uk + αkv`+1 for some
uk ∈ ZΣ and for some αk ∈ R. This means that A21 must have the form

A21 =




α1 α2 · · · α`
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 . (3.6)

Therefore f 1 = (−α1, . . . ,−α`) is the unique vector for which b2f
t
1 = −A21. We then define

f = (f 1,0) ∈ R` × Rn−` and determine the matrix for A+ bf t in the basis B to be

[
A11 A12

0n−`,` A22

]
.

Thus, by (A.3), A+ bf t has ZΣ as an invariant subspace. Furthermore, by Algorithm 2.28,
we know that the matrix NΣ describing the zero dynamics is exactly A11.

We now claim that for all s ∈ C the matrix
[
sIn−` −A22 b2

−ct2 0

]
(3.7)

is invertible. To show this, suppose that there exists a vector (x2, u) ∈ Rn−` × R with the
property that

[
sIn−` −A22 b2

−ct2 0

] [
x2

u

]
=

[
(sIn−` −A22)x2 + b2u

−ct2x2

]
=

[
0
0

]
. (3.8)

Define
Z = ZΣ + span((0,x2)).

Since ZΣ ⊂ ker(ct) and since −ct2x2 = 0 we conclude that Z ⊂ ker(ct). Given the form of
A21 in (3.6), we see that if v ∈ ZΣ, then Av ∈ ZΣ + span(b). This shows that Z ⊂ ZΣ, and
from this we conclude that (0,x2) ∈ ZΣ and so x2 must be zero. It then follows from (3.8)
that u = 0, and this shows that the kernel of the matrix (3.7) contains only the zero vector,
and so the matrix must be invertible.

Next we note that
[
sIn −A− bf t b

−ct 0

]
=

[
sIn −A b
−ct 0

] [
In 0
−f t 1

]
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and so

det

[
sIn −A− bf t b

−ct 0

]
= det

[
sIn −A b
−ct 0

]
. (3.9)

We now rearrange the matrix on the left-hand side corresponding to our decomposition. The
matrix for the linear map corresponding to this matrix in the basis B is



sI` −A11 −A12 0

0n−`,` sIn−` −A22 b2

0t ct2 0


 .

The determinant of this matrix is therefore exactly the determinant on the left-hand side
of (3.9). This means that

det

[
sIn −A b
−ct 0

]
= det



sI` −A11 −A12 0

0n−`,` sIn−` −A22 b2

0t ct2 0


 .

By Lemma 3.3 we see that the left-hand determinant is exactly ctadj(sIn−A)b. Therefore,
the values of s for which the left-hand side is zero are exactly the roots of the numerator of
the transfer function. On the other hand, since the matrix (3.7) is invertible for all s ∈ C,
the values of s for which the right-hand side vanish must be those values of s for which
det(sI` −A11) = 0, i.e., the eigenvalues of A11. But we have already decided that A11 is
the matrix that represents the zero dynamics, so this completes the proof. �

This theorem is very important as it allows us to infer—at least in those cases where the
transfer function is invertible—the nature of the zero dynamics from the transfer function.
If there are zeros, for example, with positive real part we know our system has unstable zero
dynamics, and we ought to be careful.

To further illustrate this connection between the transfer function and the zero dynamics,
we give an example.

3.16 Example (Example 2.27 cont’d) Here we look again at Example 2.27. We have

A =

[
0 1
−2 −3

]
, b =

[
0
1

]
, c =

[
1
−1

]
.

We had computed ZΣ = span((1, 1)), and so b 6∈ ZΣ. Thus ctadj(sI2 −A)b is not the zero
polynomial by Lemma 3.14. Well, for pity’s sake, we can just compute it:

ctadj(sI2 −A)b = 1− s.

Since this is non-zero, we can apply Theorem 3.15 and conclude that the spectrum for the
zero dynamics is {1}. This agrees with our computation in Example 2.29 where we computed

NΣ =
[
1
]
.

Since spec(NΣ) ∩ C+ 6= ∅, the system is not minimum phase. •
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3.17 Remark We close with an important remark. This section contains some technically demand-
ing mathematics. If you can understand this, then that is really great, and I encourage you
to try to do this. However, it is more important that you get the punchline here which is:

The transfer function contains a great deal of information about the behaviour of
the system, and it does so in a deceptively simple manner.

We will be seeing further implications of this as things go along. •

3.4 Transfer functions presented in input/output form

The discussion of the previous section supposes that we are given a state-space model
for our system. However, this is sometimes not the case. Sometimes, all we are given is a
scalar differential equation that describes how a scalar output behaves when given a scalar
input. We suppose that we are handed an equation of the form

y(n)(t) + pn−1y
(n−1)(t) + · · ·+ p1y

(1)(t) + p0y(t) =

cn−1u
(n−1)(t) + cn−1u

(n−2)(t) + · · ·+ c1u
(1)(t) + c0u(t) (3.10)

for real constants p0, . . . , pn−1 and c0, . . . , cn−1. How might such a model be arrived at? Well,
one might perform measurements on the system given certain inputs, and figure out that a
differential equation of the above form is one that seems to accurately model what you are
seeing. This is not a topic for this book, and is referred to as “model identification.” For
now, we will just suppose that we are given a system of the form (3.10). Note here that
there are no states in this model! All there is is the input u(t) and the output y(t). Our
system may possess states, but the model of the form (3.10) does not know about them.
As we have already seen in the discussion following Theorem 2.37, there is a relationship
between the systems we discuss in this section, and SISO linear systems. We shall further
develop this relationship in this section.

For the moment, let us alleviate the nuisance of having to ever again write the expres-
sion (3.10). Given the differential equation (3.10) we define two polynomials in R[ξ] by

D(ξ) = ξn + pn−1ξ
n−1 + · · ·+ p1ξ + p0

N(ξ) = cn−1ξ
n−1 + cn−2ξ

n−2 + · · ·+ c1ξ + c0.

Note that if we let ξ = d
dt

then we think of D( d
dt

) and N( d
dt

) as a differential operator, and
we can write

D( d
dt

)(y) = y(n)(t) + pn−1y
(n−1)(t) + · · ·+ p1y

(1)(t) + p0y(t).

In like manner we can think of N( d
dt

) as a differential operator, and so we write

N( d
dt

)(u) = cn−1u
(n−1)(t) + cn−1u

(n−2)(t) + · · ·+ c1u
(1)(t) + c0u(t).

In this notation the differential equation (3.10) reads D( d
dt

)(y) = N( d
dt

)(u). With this little
bit of notation in mind, we make some definitions.

3.18 Definition A SISO linear system in input/output form is a pair of polynomials (N,D)
in R[s] with the properties

(i) D is monic and
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(ii) D and N are coprime.

The relative degree of (N,D) is deg(D)− deg(N). The system is proper (resp. strictly
proper) if its relative degree is nonnegative (resp. positive). If (N,D) is not proper, it is
improper . A SISO linear system (N,D) in input/output form is stable if D has no roots
in C+ and minimum phase if N has no roots in C+. If (N,D) is not minimum phase, it
is nonminimum phase . The transfer function associated with the SISO linear system
(N,D) in input/output form is the rational function TN,D(s) = N(s)

D(s)
. •

3.19 Remarks

1. Note that in the definition we allow for the numerator to have degree greater than that
of the denominator, even though this is not the case when the input/output system is
derived from a differential equation (3.10). Our reason for doing this is that occasionally
one does encounter transfer functions that are improper, or maybe situations where a
transfer function, even though proper itself, is a product of rational functions, at least one
of which is not proper. This will happen, for example, in Section 6.5 with the “derivative”
part of PID control. Nevertheless, we shall for the most part be thinking of proper, or
even strictly proper SISO linear systems in input/output form.

2. At this point, it is not quite clear what is the motivation behind calling a system (N,D)
stable or minimum phase. However, this will certainly be clear as we discuss properties
of transfer functions. This being said, a realisation of just what “stable” might mean
will not be made fully until Chapter 5. •
If we take the causal left Laplace transform of the differential equation (3.10) we get

simply D(s)L +
0−(y)(s) = N(s)L +

0−(u)(s), provided that we suppose that both the input u
and the output y are causal signals. Therefore we have

TN,D(s) =
L +

0−(y)(s)

L +
0−(u)(s)

=
N(s)

D(s)
=
cn−1s

n−1 + cn−2s
n−2 + · · ·+ c1s+ c0

sn + pn−1sn−1 + · · ·+ p1s+ p0

.

Block diagrammatically, the situation is illustrated in Figure 3.7. We should be very clear

û(s)
N(s)

D(s)
ŷ(s)

Figure 3.7 The block diagram representation of (3.10)

on why the diagrams Figure 3.6 and Figure 3.7 are different: there are no state variables x
in the differential equations (3.10). All we have is an input/output relation. This raises the
question of whether there is a connection between the equations in the form (3.1) and those
in the form (3.10). Following the proof of Theorem 2.37 we illustrated how one can take
differential equations of the form (3.1) and produce an input/output differential equation
like (3.10), provided (A, b) is controllable. To go from differential equations of the form (3.10)
and produce differential equations of the form (3.1) is in some sense artificial, as we would
have to “invent” states that are not present in (3.10). Indeed, there are infinitely many
ways to introduce states into a given input/output relation. We shall look at the one that is
related to Theorem 2.37. It turns out that the best way to think of making the connection
from (3.10) to (3.1) is to use transfer functions.
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3.20 Theorem Let (N,D) be a proper SISO linear system in input/output form. There exists a
complete SISO linear control system Σ = (A, b, ct,D) with A ∈ Rn×n so that TΣ = TN,D.

Proof Let us write

D(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0

N(s) = c̃ns
n + c̃n−1s

n−1 + c̃n−2s
n−2 + · · ·+ c̃1s+ c̃0.

We may write N(s)
D(s)

as

N(s)

D(s)
=
c̃ns

n + c̃n−1s
n−1 + c̃n−2s

n−2 + · · ·+ c̃1s+ c̃0

sn + pn−1sn−1 + · · ·+ p1s+ p0

= c̃n
sn + pn−1s

n−1 + · · ·+ p1s+ p0

sn + pn−1sn−1 + · · ·+ p1s+ p0

+

(c̃n−1 − c̃npn−1)sn−1 + (c̃n−2 − c̃npn−2)sn−2 + · · ·+ (c̃1 − c̃np1)s+ (c̃0 − c̃np0)

sn + pn−1sn−1 + · · ·+ p1s+ p0

= c̃n +
cn−1s

n−1 + cn−2s
n−2 + · · ·+ c1s+ c0

sn + pn−1sn−1 + · · ·+ p1s+ p0

,

where ci = c̃i − c̃npi, i = 0, . . . , n− 1. Now define

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, b =




0
0
0
...
0
1



, c =




c0

c1

c2
...

cn−2

cn−1



, D =

[
c̃n
]
.

(3.11)
By Exercise E2.11 we know that (A, b) is controllable. Since D and N are by definition
coprime, by Theorem 3.5 (A, c) is observable. In the proof of Theorem 3.5 we showed that

ctadj(sIn −A)b

det(sIn −A)
=
cn−1s

n−1 + cn−2s
n−2 + · · ·+ c1s+ c0

sn + pn−1sn−1 + · · ·+ p1s+ p0

,

(see equation (3.4)), and from this follows our result. �

We shall denote the SISO linear control system Σ of the theorem, i.e., that one given
by (3.11), by ΣN,D to make explicit that it comes from a SISO linear system in input/output
form. We call ΣN,D the canonical minimal realisation of the transfer function TN,D.
Note that condition (ii) of Definition 3.18 and Theorem 3.5 ensure that (A, c) is observable.
This establishes a way of getting a linear system from one in input/output form. However,
it not the case that the linear system ΣN,D should be thought of as representing the physical
states of the system, but rather it represents only the input/output relation. There are
consequences of this that you need to be aware of (see, for example, Exercise E3.20).

It is possible to represent the above relation with a block diagram with each of the
states x1, . . . , xn appearing as a signal. Indeed, you should verify that the block diagram of
Figure 3.8 provides a transfer function which is exactly

L +
0−(y)s)

L +
0−(u)(s)

=
cn−1s

n−1 + · · ·+ c1s+ c0

sn + pn−1sn−1 + · · ·+ p1s+ p0

+D.
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û
1

s

1

s
. . . 1

s
c0 ŷ

−pn−1

−pn−2

−p1

−p0

c1

cn−2

cn−1

x̂n x̂n−1 x̂2 x̂1

D

Figure 3.8 A block diagram for the SISO linear system of Theo-
rem 3.20

Note that this also provides us with a way of constructing a block diagram corresponding
to a transfer function, even though the transfer function may have been obtained from a
different block diagram. The block diagram of Figure 3.8 is particularly useful if you live in
mediaeval times, and have access to an analogue computer . . .

3.21 Remark Note that we have provided a system in controller canonical form corresponding to
a system in input/output form. Of course, it is also possible to give a system in observer
canonical form. This is left as Exercise E3.19 for the reader. •

Theorem 3.20 allows us to borrow some concepts that we have developed for linear sys-
tems of the type (3.1), but which are not obviously applicable to systems in the form (3.10).
This can be a useful thing to do. For example, motivated by Theorem 3.15, our notion that
a SISO linear system (N,D) in input/output form is minimum phase if all roots of N lie in
C+, and nonminimum phase otherwise, makes some sense.

Also, we can also use the correspondence of Theorem 3.20 to make a sensible notion
of impulse response for SISO systems in input/output form. The problem with a direct
definition is that if we take u(t) to be a limit of inputs from U as described in Theorem 2.34,
it is not clear what we should take for u(k)(t) for k ≥ 1. However, from the transfer function
point of view, this is not a problem. To wit, if (N,D) is a strictly proper SISO linear system
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in input/output form, its impulse response is given by

hN,D(t) = 1(t)cteAtb

where (A, b, c,01) = ΣN,D. As with SISO linear systems, we may define the causal impulse
response h+

N,D : [0,∞) → R and the anticausal impulse response h−N,D : (−∞, 0] → R. Also,
as with SISO linear systems, it is the causal impulse response we will most often use, so we
will frequently just write hN,D, as we have already done, for h+

N,D.
We note that it is not a simple matter to define the impulse response for a SISO linear

system in input/output form that is proper but not strictly proper. The reason for this is
that the impulse response is not realisable by a piecewise continuous input u(t). However, if
one is willing to accept the notion of a “delta-function,” then one may form a suitable notion
of impulse response. How this may be done without explicit recourse to delta-functions is
outlined in Exercise E3.1.

3.5 The connection between the transfer function and the impulse
response

We can make some statements about how the transfer function impinges upon the impulse
response. We made some off the cuff remarks about how the impulse response contained
the essential time-domain character of the system Σ = (A, b, ct,01). We justified this in
some way by stating Proposition 2.32. We will now see that the information contained in
the impulse response is also directly contained in the transfer function, and further in about
the simplest way possible.

3.5.1 Properties of the causal impulse response

We begin by looking at the case that is the most interesting for us; the causal impulse
response. Our discussions in this section will be important for the development of certain
fundamental aspects of, for example, input/output stability.

We begin by making the essential connection between the impulse and the transfer func-
tion. We state the result for both the left and right causal Laplace transform of the impulse
response.

3.22 Theorem For a SISO linear system Σ = (A, b, ct,01), we have

L +
0+(hΣ)(s) = L +

0−(hΣ)(s) = TΣ(s)

provided that Re(s) > σmin(h+
Σ).1

Proof Since h+
Σ has no delta-function at t = 0 as we are supposing D = 01, we have

L +
0+(hΣ)(s) = L +

0−(hΣ)(s) =

∫ ∞

0

h+
Σ(t)e−st dt.

Thus clearly it does not matter in this case whether we use the left or right Laplace transform.
We have

L +
0−(hΣ)(s) =

∫ ∞

0

h+
Σ(t)e−st dt =

∫ ∞

0

cteAtbe−st dt =

∫ ∞

0

cte−steAtb dt.

1Here is an occasion where we actually think of TΣ as a function of the complex variable s rather than
as a rational function.
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Recall that the matrix exponential has the property that

eax = eaInx

for a ∈ R and x ∈ Rn. Therefore we have

L +
0−(hΣ)(s) =

∫ ∞

0

cte−stIneAtb dt.

Now recall that if B,C ∈ Rn×n have the property that BC = CB then eB+C = eBeC .
Noting that the n× n matrices −stIn and At commute, we then have

L +
0−(hΣ)(s) =

∫ ∞

0

cte(−sIn+A)tb dt.

Now we note that
d

dt
(−sIn +A)−1e(−sIn+A)t = e(−sIn+A)t,

from which we ascertain that

L +
0−(hΣ)(s) = ct(−sIn +A)−1e(−sIn+A)tb

∣∣∣
∞

0
.

Since the terms in the matrix e(−sIn+A)t satisfy an inequality like (E.2), the upper limit on
the integral is zero so we have

L +
0−(hΣ)(s) = −ct(−sIn +A)−1b = ct(sIn −A)−1b = TΣ(s)

as claimed. �

3.23 Remark Note that we ask that the feedforward term D be zero in the theorem. This can
be relaxed provided that one is willing to think about the “delta-function.” The manner in
which this can be done is the point of Exercise E3.1. When one does this, the theorem no
longer holds for both the left and right causal Laplace transforms, but only holds for the left
causal Laplace transform. •

We should, then, be able to glean the behaviour of the impulse response by looking only
at the transfer function. This is indeed the case, and this will now be elucidated. You will
recall that if f(t) is a positive real-valued function then

lim sup
t→∞

f(t) = lim
t→∞

(
sup
τ>t

f(τ)
)
.

The idea is that lim supt→∞ will exist for bounded functions that “oscillate” whereas limt→∞
may not exist for such functions. With this notation we have the following result.

3.24 Proposition Let Σ = (A, b, ct,01) be a SISO linear system with impulse response h+
Σ and

transfer function TΣ. Write

TΣ(s) =
N(s)

D(s)

where (N,D) is the c.f.r. of TΣ. The following statements hold.

(i) If D has a root in C+ then
lim
t→∞
|h+

Σ(t)| =∞.
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(ii) If all roots of D are in C− then

lim
t→∞
|h+

Σ(t)| = 0.

(iii) If D has no roots in C+, but has distinct roots on iR, then

lim sup
t→∞

|h+
Σ(t)| = M

for some M > 0.

(iv) If D has repeated roots on iR then

lim
t→∞
|h+

Σ(t)| =∞.

Proof (i) Corresponding to a root with positive real part will be a term in the partial fraction
expansion of TΣ of the form

β

(s− σ)k
or

β1s+ β0(
(s− σ)2 + ω2

)k

with σ > 0. By Proposition E.11, associated with such a term will be a term in the impulse
response that is a linear combination of functions of the form

t`eσt or t`eσt cosωt or t`eσt sinωt.

Such terms will clearly blow up to infinity as t increases.
(ii) If all roots lie in the negative half-plane then all terms in the partial fraction expansion

for TΣ will have the form
β

(s+ σ)k
or

β1s+ β0(
(s+ σ)2 + ω2

)k

for σ > 0. Again by Proposition E.11, associated with these terms are terms in the impulse
response that are linear combinations of functions of the form

t`e−σt or t`e−σt cosωt or t`e−σt sinωt.

All such functions decay to zero at t increases.
(iii) The roots in the negative half-plane will give terms in the impulse response that

decay to zero, as we saw in the proof for part (ii). For a distinct complex conjugate pair of
roots ±iω on the imaginary axis, the corresponding terms in the partial fraction expansion
for TΣ will be of the form

β1s+ β0

s2 + ω

which, by Proposition E.11, lead to terms in the impulse response that are linear combina-
tions of cosωt and sinωt. This will give a bounded oscillatory time response as t→∞, and
so the resulting lim sup will be positive.

(iv) If there are repeated imaginary roots, these will lead to terms in the partial fraction
expansion for TΣ of the form

β1s+ β0

(s2 + ω2)k
.

The corresponding terms in the impulse response will be linear combinations of functions
like t` cosωt or t` sinωt. Such functions clearly are unbounded at t→∞. �
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This result is important because it tells us that we can understand a great deal about
the “stability” of a system by examining the transfer function. Indeed, this is the whole
idea behind classical control: one tries to make the transfer function look a certain way. In
this section we have tried to ensure that we fully understand the relationship between the
time-domain and the transfer function, as this relationship is a complete one most of the
time (you’ll notice that we have made controllability and/or observability assumptions quite
often, but many systems you encounter will be both controllable and observable).

3.5.2 Things anticausal

We will have occasion to make a few computations using the anticausal impulse response,
and the causal impulse response in relation to anticausal inputs. In this section we collect
the relevant results.

The first result is a natural analogue of Theorem 3.22. Since the proof is exactly the
same with the exception of some signs, it is omitted.

3.25 Theorem For a SISO linear system Σ = (A, b, ct,01) we have

L −
0+(h−Σ)(s) = L −

0−(h−Σ)(s) = TΣ(s),

provided that Re(s) < σmax(h−Σ).

Of course, we also have an analogue of Proposition 3.24 for the anticausal impulse re-
sponse, where the statement is altered by replacing C+ with C−, and vice versa, and by
replacing limt→∞ with limt→−∞. However, we shall not make use of this result, so do not
state it. Instead, let us state a few results about causal inputs and the anticausal impulse
response, and vice versa.

3.26 Proposition Let Σ = (A, b, ct,01) be a SISO linear system. For NP suff proof

(i)

Proof �

3.6 The matter of computing outputs

Given a SISO linear system Σ = (A, b, ct,D), Theorem 2.6 gives us a manner of de-
termining the state, and therefore the output, using the matrix exponential. While this is
certainly a valid way to compute the output, it is really only useful in simple cases, where
the matrix exponential formalism provides a way of determining a nice symbolic expression
for the output. Similarly, using the right causal Laplace transform, it is a simple matter to
compute outputs in cases where the Laplace transform can be inverted. However, this is
often not the case. Furthermore, the matrix exponential and Laplace transform techniques
are not readily implemented numerically. Therefore, in this section we look at ways of writ-
ing scalar differential equations for determining output that can be readily implemented
numerically.

In the course of this discussion we shall be forced to come to grips with the difference
between the left and right causal Laplace transform. To be in any way accurate, this must be
done. That this is normally glossed over is a reflection of the willingness to oversimplify the
use of the Laplace transform. What we shall essentially see is a dichotomy of the following
type for the use of the two forms of causal transform.
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1. For solving differential equations whose right-hand side involves no delta-function, the
right causal Laplace transform is the most convenient tool. Note that this precludes
the convenient use of the right causal Laplace transform with the impulse response
since the impulse response involves a delta-function on the right-hand side.

2. For general control theoretic discussions, the left causal Laplace transform is more con-
venient since it eliminates the appearance of the pesky initial condition terms present
in the expressions for derivatives. Indeed, in the places in the discussion above where
the Laplace transform was used, it was the left causal transform that was used.

Thus we see that there is a natural tension between whether to use the left or right causal
Laplace transform. It is important to realise that the two things are different, and that their
differences sometimes make one preferable over the other.

3.6.1 Computing outputs for SISO linear systems in input/output form using the
right causal Laplace transform

We begin looking at systems that are given to us in input/output form. Thus we have
a SISO linear system (N,D) in input/output form with deg(D) = n, and we are concerned
with obtaining solutions to the initial value problem

D
(

d
dt

)
y(t) = N

(
d
dt

)
u(t), y(0+) = y0, y

(1)(0+) = y1, . . . , y
(n−1)(0+) = yn−1, (3.12)

for a known function u(t). We shall assume that u is sufficiently differentiable that the
needed derivatives exist at t = 0+, and that u possesses a right causal Laplace transform.
Then, roughly speaking, if one wishes to use Laplace transforms one determines the right
causal Laplace transform L +

0+(u), and then inverse Laplace transforms the function

L +
0+(y)(s) =

N(s)

D(s)
L +

0+(u)(s)

to get y(t). This is indeed very rough, of course, because we have lost track of the initial
conditions in doing this. The following result tells us how to use the Laplace transform
method to obtain the solution to (3.12), properly keeping track on initial conditions.

3.27 Proposition Let (N,D) be a proper SISO linear system in input/output form, let u : [0,∞)→
R possess a right causal Laplace transform, and assume that u, u(1), . . . , u(deg(N)−1) are con-
tinuous on [0,∞) and that u(deg(N)) is piecewise continuous on [0,∞). Then the right causal
Laplace transform of the solution to the initial value problem (3.12) is

L +
0+(y)(s) =

1

D(s)

(
N(s)L +

0+(u)(s) +
n∑

k=1

k−1∑

j=0

(
pks

jy(k−j−1)(0+)− cksju(k−j−1)(0+)
))
,

where

N(s) = cns
n + cn−1s

n−1 + cn−2s
n−2 + · · ·+ c1s+ c0

D(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0,

and where we take pn = 1.

Proof Note that by Corollary E.8 the right causal Laplace transform of y(k)(t) is given by

skL +
0+(y)(s)−

k−1∑

j=0

sjy(k−j−1)(0+), (3.13)
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with a similar formula holding, of course, for u(k)(t). Thus, if we take the Laplace transform
of the differential equation in (3.12) and use the initial conditions given there we get the
relation

n∑

k=0

pk

(
skL +

0+(y)(s)−
k−1∑

j=0

sjy(k−j−1)(0+)
)

=
n∑

k=0

ck

(
skL +

0+(u)(s)−
k−1∑

j=0

sju(k−j−1)(0+)
)
,

where we take pn = 1. The result now follows by a simple manipulation. �

3.28 Remark The assumptions of differentiability on the input can be relaxed as one can see by
looking at the proof that one really only needs for u to satisfy the conditions of the Laplace
transform derivative theorem, Theorem E.7, for a sufficiently large number of derivatives.
This can be made true for a large class of functions by using the definition of the Laplace
transform on distributions. This same observation holds for results that follow and possess
the same hypotheses. •

One may, if it is possible, use Proposition 3.27 to obtain the solution y(t) by using the
inverse Laplace transform. Let’s see how this works in an example.

3.29 Example We have (N(s), D(s)) = (1− s, s2 + 2s+ 2) and we take as input u(t) = 1(t)t. The
initial value problem we solve is

ÿ(t) + 2ẏ(t) + 2y(t) = t− 1, y(0+) = 1, ẏ(0+) = 0.

Taking the Laplace transform of the left-hand side of this equation gives

(s2 + 2s+ 2)L +
0+(y)(s)− (s+ 2)y(0+)− ẏ(0+) = (s2 + 2s+ 2)L +

0+(y)(s)− s− 2.

One may verify that (s+ 2)y(0+) + ẏ(0+) is exactly the expression

n∑

k=1

k−1∑

j=0

pks
jy(k−j−1)(0+)

in the statement of Proposition 3.27 with D as given. The Laplace transform of the right-
hand side of the differential equation is

(1− s)L +
0+(u)(s) + u(0+) =

1− s
s2

,

using the fact that the Laplace transform of u(t) is 1
s2

. As with the expression involving the
left-hand side of the equation, we note that −u(0+) is exactly the expression

−
n∑

k=1

k−1∑

j=0

cks
ju(k−j−1)(0+)

in the statement of Proposition 3.27. Combining our work, the Laplace transform of the
differential equation gives

L +
0+(y)(s) =

1− s
s2(s2 + 2s+ 2)

+
s+ 2

s2 + 2s+ 2
.
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To compute the inverse Laplace transform we perform the partial fraction expansion for the
first term to get

1− s
s2(s2 + 2s+ 2)

=
1

2s2
− 1

s
+

s+ 3
2

s2 + 2s+ 2
.

Thus we obtain

L +
0+(y)(s) =

1

2s2
− 1

s
+

2s+ 7
2

s2 + 2s+ 2

The inverse Laplace transform of the first term is 1
2
t, and of the second term is −1. To

determine the Laplace transform of the third term we note that the inverse Laplace of

1

s2 + 2s+ 2

is e−t sin t, and the inverse Laplace transform of

s+ 1

s2 + 2s+ 2

is e−t cos t. Putting this all together we have obtained the solution

y(t) = e−t
(

3
2

sin t+ 2 cos t
)

+ t
2
− 1

to our initial value problem. •
This example demonstrates how tedious can be the matter of obtaining “by hand” the
solution to even a fairly simple initial value problem.

It is sometimes preferable to obtain the solution in the time-domain, particularly for
systems of high-order since the inverse Laplace transform will typically be difficult to obtain
in such cases. One way to do this is proposed in Section 3.6.3.

3.6.2 Computing outputs for SISO linear systems in input/output form using the left
causal Laplace transform

Finish

As mentioned in the preamble to this section, the right causal Laplace transform is the
more useful than its left brother for solving initial value problems, by virtue of its encoding
the initial conditions in a convenient manner. However, it is possible to solve these same
problems using the left causal Laplace transform. To do so, since the initial conditions at
t = 0− are all zero (we always work with causal inputs and outputs), it turns out that the
correct way to encode the initial conditions at t = 0+ is to add delta-function inputs. While
this is not necessarily the recommended way to solve such equations, it does make precise
the connection between the left and right causal transforms in this case. Also, it allows us
to better understand such things as the impulse response.

Let us begin by considering a proper SISO linear system (N,D) in input/output form.
For this system, let us consider inputs of the form

u(t) = 1(t)u0(t) + cδ(t) (3.14)

where u0 : R → R has the property that u0, u
(1)
0 , . . . , u

(deg(N)−1)
0 are continuous on [0,∞)

and that u
(deg(N))
0 is piecewise continuous on [0,∞). Thus we allow inputs which satisfy

the derivative rule for the right causal Laplace transform (cf. Theorem E.7), and which
additionally allows a delta-function as input. This allows us to consider the impulse response
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as part of the collection of problems considered. Note that by allowing a delta-function in
our input, we essentially mandate the use of the left causal Laplace transform to solve the
equation. Since we are interested in causal outputs, we ask that the output have initial
conditions

y(0−) = 0, y(1)(0−), . . . , y(n−1)(0−) = 0, (3.15)

where, as usual, n = deg(D).
Let us first state the solution of the problem just formulated.

3.30 Proposition Let (N,D) be a proper SISO linear system in input/output form with input u as
given by (3.14). The solution y of the initial value problem

D
(

d
dt

)
y(t) = N

(
d
dt

)
u(t)

with initial conditions (3.15) has the form y(t) = y0(t) + dδ(t) where d = and where y0 is
the solution of the initial value problem

D
(

d
dt

)
y0(t) = N

(
d
dt

)
u0(t), y0(0+) =, y

(1)
0 (0+) =, . . . , y

(n−1)
0 (0+) =,

where

N(s) = cns
n + cn−1s

n−1 + cn−2s
n−2 + · · ·+ c1s+ c0

D(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0.

Proof Taking the left causal Laplace transform of the differential equation, using Corol-
lary E.8, gives

D(s)L +
0−(y)(s) = N(s)L +

0−(u0)(s) +
n∑

j=0

cjcs
j.

Since the initial conditions at t = 0− for y are all zero, we may express y = y0 + y1 where

D(s)L +
0−(y0)(s) = N(s)L +

0−(u0)(s)

and

D(s)L +
0−(y1)(s) =

n∑

j=0

cjcs
j.

�

3.6.3 Computing outputs for SISO linear systems in input/output form using the
causal impulse response

To see how the Laplace transform method is connected with solving equations in the time-
domain, we make the observation, following from Theorem 3.22, that the Laplace transform
of the impulse response hN,D is the transfer function TN,D in the case where (N,D) is strictly
proper. Therefore, by Exercise EE.5, the inverse Laplace transform of TN,D(s)L +

0+(u)(s) is

∫ t

0

hN,D(t− τ)u(τ) dτ. (3.16)

Let us address the question of which initial value problem of the form (3.12) has the expres-
sion (3.16) as its solution. That is, let us determine the proper initial conditions to obtain
the solution (3.16).
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3.31 Proposition Let (N,D) be a strictly proper SISO linear system in input/output form,
let u : [0,∞) → R possess a right causal Laplace transform, and assume that
u, u(1), . . . , u(deg(N)−1) are continuous on [0,∞) and that u(deg(N)) is piecewise continuous on
[0,∞). Then the integral (3.16) is the solution to the initial value problem (3.12) provided
that the initial values y(0+), y(1)(0+), . . . , y(n−1)(0+) are chosen as follows:

(i) let y(0+) = 0;

(ii) recursively define y(k)(0+) =
k∑

j=1

(
cn−ju

(k−j)(0+)− pn−jy(k−j)(0+)
)
, k = 1, . . . , n− 1.

Proof From Proposition 3.27 it suffices to show that the initial conditions we have defined
are such that

n∑

k=1

k−1∑

j=0

(
pks

jy(k−j−1)(0+)− cksju(k−j−1)(0+)
)

= 0, k = 1, . . . , n− 1.

This will follow if the coefficient of each power of s in the preceding expression vanishes.
Starting with the coefficient of sn−1 we see that y(0+) = 0. The coefficient of sn−2 is then
determined to be

y(1)(0+) + pn−1y(0+)− cn−1u(0+),

which gives y(1)(0+) = cn−1u(0+) − pn−1y(0+). Proceeding in this way, we develop the
recursion relation as stated in the proposition. �

Let’s see how we may use this to obtain a solution to an initial value problem in the
time-domain using the impulse response hN,D.

3.32 Proposition Let (N,D) be a strictly proper SISO linear system in input/output form,
let u : [0,∞) → R possess a right causal Laplace transform, and assume that
u, u(1), . . . , u(deg(N)−1) are continuous on [0,∞) and that u(deg(N)) is piecewise continuous
on [0,∞). Let ỹ0, ỹ1, . . . , ỹn−1 be the initial conditions as defined in Proposition 3.31, and
suppose that yh(t) solves the initial value problem

D
(

d
dt

)
yh(t) = 0, y(0+) = y0 − ỹ0, , y

(1)(0+) = y1 − ỹ1, . . . , y
(n−1)(0+) = yn−1 − ỹn−1.

Then the solution to the initial value problem (3.12) is given by

y(t) = yh(t) +

∫ t

0

hN,D(t− τ)u(τ) dτ. (3.17 )

Proof That every solution of (3.12) can be expressed in the form of (3.17) follows from
Proposition 2.32. It thus suffices to show that the given solution satisfies the initial condi-
tions. However, by the definition of yh and by Proposition 3.31 we have

y(0+) = yh(0+) +

∫ 0

0

hN,D(−τ)u(τ) dτ = y0 − ỹ0 = y0

y(1)(0+) = y
(1)
h (0+) +

d

dt

∣∣∣
t=0

∫ t

0

hN,D(t− τ)u(τ) dτ = y1 − ỹ1 + ỹ1 = y1

...

y(n−1)(0+) = y
(1)
h (0+) +

dn−1

dtn−1

∣∣∣∣
t=0

∫ t

0

hN,D(t− τ)u(τ) dτ = yn−1 − ỹn−1 + ỹn−1 = yn−1,

which are the desired initial conditions. �
Let’s see how this works in a simple example.
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3.33 Example (Example 3.29 cont’d) We take (N(s), D(s)) = (1−s, s2+2s+2) so the differential
equation is

ÿ(t) + 2ẏ(t) + 2y(t) = u(t)− u̇(t).

As input we take u(t) = t and as initial conditions we take y(0+) = 1 and ẏ(0+) = 0.
We first obtain the homogeneous solution yh(t). We first determine the initial conditions,
meaning we need to determine the initial conditions ỹ0 and ỹ1 from Proposition 3.31. These
we readily determine to be ỹ0 = 0 and ỹ1 = c1u(0+) − p1ỹ0 = 0. Thus yh should solve the
initial value problem

ÿh(t) + 2ẏh(t) + 2yh(t) = 0, yh(0+) = 1, ẏh(0+) = 0.

Recall how to solve this equation. One first determines the roots of the characteristic poly-
nomial that in this case is s2 + 2s+ 2. The roots we compute to be −1± i. This gives rise to
two linearly independent solutions to the homogeneous differential equation, and these can
be taken to be

y1(t) = e−t cos t, y2(t) = e−t sin t.

Any solution to the homogeneous equation is a sum of these two solutions, so we must have
yh(t) = C1y1(t)+C2y2(t) for appropriate constants C1 and C2. To determine these constants
we use the initial conditions:

yh(0+) = C1 = 1

ẏh(0+) = −C1 + C2 = 0,

from which we ascertain that C1 = C2 = 1 so that yh(t) = e−t(cos t+ sin t).
We now need the impulse response that we can compute however we want (but see

Example 3.41 for a slick way to do this) to be

hN,D(t) = e−t(2 sin t− cos t).

Now we may determine

∫ t

0

hN,D(t− τ)u(τ) dτ =

∫ t

0

e−(t−τ)(2 sin(t− τ)− cos(t− τ))τ dτ = t
2
−1 + e−t

(
cos t+ 1

2
sin t

)

Therefore, the solution to the initial value problem

ÿ(t) + 2ẏ(t) + 2y(t) = t− 1, y(0+) = 1, ẏ(0+) = 0

is
y(t) = e−t

(
3
2

sin t+ 2 cos t
)

+ t
2
− 1,

agreeing with what we determined using Laplace transforms in Example 3.29. •
In practice, one does not—at least I do not—solve simple differential equations this

way. Rather, I typically use the “method of undetermined coefficients” where the idea is
that after solving the homogeneous problem, the part of the solution that depends on the
right-hand side is made a general function of the same “form” as the right-hand side, but
with undetermined coefficients. One then resolves the coefficients by substitution into the
differential equation. This method can be found in your garden variety text on ordinary
differential equations, for example [Boyce and Diprima 1972]. A too quick overview is given
in Section B.1.
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3.6.4 Computing outputs for SISO linear systems

Next we undertake the above constructions for SISO linear systems Σ = (A, b, c,D).
Of course, we may simply compute the transfer function TΣ and proceed using the tools
we developed above for systems in input/output form. However, we wish to see how the
additional structure for state-space systems comes into play. Thus in this section we consider
the initial value problem

ẋ(t) = Ax(t) + bu(t), x(0+) = x0

y(t) = ctx(t) +Du(t).
(3.18)

Let us first make a somewhat trivial observation.

3.34 Lemma Let y(t) be the output for the SISO linear system Σ = (A, b, ct,D) subject to the
input u(t) and the initial condition x(0+) = x0: thus y(t) is defined by (3.18). Then there
exists unique functions y1, y2, y3 : [0,∞)→ R satisfying:

(i) y1(t) satisfies

ẋ(t) = Ax(t), x(0+) = x0

y1(t) = ctx(t);

(ii) y2(t) satisfies

ẋ(t) = Ax(t) + bu(t), x(0+) = 0

y1(t) = ctx(t);

(iii) y3(t) satisfies
y3(t) = Du(t);

(iv) y(t) = y1(t) + y2(t) + y3(t).

Proof First note that y1(t), y2(t), and y3(t) are indeed uniquely defined by the conditions
of (i), (ii), and (iii), respectively. It thus remains to show that (iv) is satisfied. However,
this is a straightforward matter of checking that y1(t) + y2(t) + y3(t) as defined by the
conditions (i), (ii), and (iii) satisfies (3.18). �

The idea here is that to obtain the output for (3.18) we first look at the case where D = 01

and u(t) = 0, obtaining the solution y1(t). To this we add the output y2(t), defined again
with D = 01, but this time with the input as the given input u(t). Note that to obtain y1

we use the given initial condition x0, but to obtain y2(t) we use the zero initial condition.
Finally, to these we add y3(t) = Du(t) to get the actual output.

Our objective in this section is to provide scalar initial value problems whose solutions are
y1(t), y2(t), and y3(t). These are easily implemented numerically. We begin by determining
the scalar initial value problem for y1(t).

3.35 Lemma Let Σ = (A, b, ct,01) be a SISO linear system and let y1(t) be the output determined
by condition (i) of Lemma 3.34. Then y1(t) solves the initial value problem

D
(

d
dt

)
y1(t) = 0, y1(0+) = ctx0, y

(1)
1 (0+) = ctAx0, . . . , y

(n−1)
1 (0+) = ctAn−1x0,

where (N,D) is the c.f.r. for TΣ.
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Proof Note that y1(t) = cteAtx0. Taking Laplace transforms and using Exercise EE.4 gives

L +
0+(y1)(s) = ct(sIn −A)−1x0 =

ctadj(sIn −A)x0

det(sIn −A)
.

Thus we have
D(s)L +

0+(y)1(s) = ctadj(sIn −A)x0,

and since the right-hand side is a polynomial of degree at most n − 1 (if deg(D) = n),
by (3.13) this means that there are some initial conditions for which y1(t) is a solution to
D
(

d
dt

)
y1(t) = 0. It remains to compute the initial conditions. However, this is a simple

computation, giving exactly the conditions of the lemma. �

Now we look at a scalar differential equation for y2(t).

3.36 Lemma Let Σ = (A, b, ct,01) be a SISO linear system, let u : [0,∞) → R possess a right
causal Laplace transform, and assume that u, u(1), . . . , u(deg(N)−1) are continuous on [0,∞)
and that u(deg(N)) is piecewise continuous on [0,∞). If y2(t) is the output determined by
condition (ii) of Lemma 3.34, then

y2(t) =

∫ t

0

hΣ(t− τ)u(τ) dτ,

and furthermore y2(t) solves the initial value problem

D
(

d
dt

)
y2(t) = N

(
d
dt

)
u(t), y2(0+) = 0, y

(1)
2 (0+) = ctbu(0+), . . . ,

y
(k)
2 (0+) =

∑

i,j
i+j=k−1

ctAibu(j)(0+), . . . , y
(n−1)
2 (0+) =

∑

i,j
i+j=n−2

ctAibu(j)(0+),

where (N,D) is the c.f.r. for TΣ.

Proof That y2(t) =
∫ t

0
hΣ(t − τ)u(τ) dτ is a simple consequence of the definition of y2(t)

and Proposition 2.32. What’s more, taking the Laplace transform of y2(t) we get

L +
0+(y2)(s) = TΣ(s)L +

0+(u)(s) =⇒ D(s)L +
0+(y2)(s) = N(s)L +

0+(u)(s),

using Theorem 3.22, Exercise EE.5, and the fact that (N,D) is the c.f.r. of TΣ. This means
that y2(t) is indeed a solution of the differential equation D

(
d
dt

)
y2(t) = N

(
d
dt

)
u(t). To

determine the initial conditions for y2(t), we simply differentiate the formula we have. Thus
we immediately get y2(0+) = 0. For the first derivative we have

y
(1)
2 (t) =

d

dt

∫ t

0

hΣ(t− τ)u(τ) dτ

= hΣ(t)u(t) +

∫ t

0

h
(1)
Σ (t− τ)u(τ) dτ.

Thus y(1)(0+) = hΣ(0+)u(0+). We may proceed, using mathematical induction if one wishes
to do it properly, to derive

y
(k)
2 (t) =

∑

i,j
i+j=k−1

h
(i)
Σ (0+)u(j)(t) +

∫ t

0

h
(k)
Σ (t− τ)u(τ) dτ.
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Now we observe that a simple computation given hΣ(t) = cteAtb demonstrates that

h
(k)
Σ (0+) = ctAkb,

and using this expression, the result follows. �

The above two lemmas give us the “hard part” of the output for (3.18)—all that remains
is to add y3(t) = Du(t). Let us therefore summarise how to determine the output for the
system (3.18) from a scalar differential equation.

3.37 Proposition Let Σ = (A, b, ct,D) be a SISO linear system, let u : [0,∞)→ R possess a right
causal Laplace transform, and assume that u, u(1), . . . , u(deg(N)−1) are continuous on [0,∞)
and that u(deg(N)) is piecewise continuous on [0,∞). If y(t) is the output defined by (3.18)
for the input u(t) and initial state x0, then y(t) is the solution of the differential equation

D
(

d
dt

)
ỹ(t) = N

(
d
dt

)
u(t),

subject to the initial conditions

y(0+) = ctx0 +Du(0+),

y(1)(0+) = ctAx0 + ctbu(0+) +Du(1)(0+),

...

y(k)(0+) = cAkx0 +
∑

i,j
i+j=k−1

ctAibu(j)(0+) +Du(k)(0+),

...

y(n−1)(0+) = cAn−1x0 +
∑

i,j
i+j=n−2

ctAibu(j)(0+) +Du(n−1)(0+).

Proof That y satisfies the differential equation D
(

d
dt

)
y(t) = N

(
d
dt

)
u(t) follows since

L +
0+(y)(s) =

(
ct(sIn −A)−1b+D

)
L +

0+(u)(s),

modulo initial conditions. The initial conditions for y are derived as in Lemma 3.36, using
the fact that we now have

y(t) = eAtx0 +

∫ t

0

hΣ̃(t− τ)u(τ) dτ +Du(t),

where Σ̃ = (A, b, ct,01). �

Now admittedly this is a lengthy result, but with any given example, it is simple enough
to apply. Let us justify this by applying the result to an example.

3.38 Example (Example 3.29 cont’d) We take Σ = (A, b, ct,D) with

A =

[
0 1
−2 −2

]
, b =

[
0
1

]
, c =

[
1
−1

]
, D = 01.
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Thus this is simply the state-space version of the system we dealt with in Examples 3.29
and 3.33. As input we take again u(t) = t, and as initial state we select x0 = (4

5
, 1

5
).

Following Proposition 3.37 we compute

ctx0 = 1, ctAx0 + ctbu(0+) = 0,

and we compute the transfer function to be

TΣ(s) =
1− s

s2 + 2s+ 2
.

Therefore, the initial value problem given to us by Proposition 3.37 is

ÿ(t) + 2ẏ(t) + 2y(t) = t− 1, y(0+) = 1, ẏ(0+) = 0.

Well now, if this isn’t the same initial value problem encountered in Examples 3.29 and 3.33!
Of course, the initial state vector x0 was designed to accomplish this. In any case, we may
solve this initial value problem in the manner of either of Examples 3.29 and 3.33, and you
will recall that the answer is

y(t) = e−t(3
2

sin t+ 2 cos t) + t
2
− 1. •

3.6.5 Formulae for impulse, step, and ramp responses

In this section we focus on developing initial value problems for obtaining some of the
basic outputs for SISO systems. We provide this for both SISO linear systems, and those
in input/output form. Although the basic definitions are made in the Laplace transform
domain, the essential goal of this section is to provide initial value problems in the time-
domain, and in so doing provide the natural method for numerically obtaining the various
responses. These responses can be obtained by various control packages available, but it is
nice to know what they are doing, since they certainly are not performing inverse Laplace
transforms!

3.39 Definition Let (N,D) be a SISO linear system in input/output form. The step response for
(N,D) is the function 1N,D(t) whose Laplace transform is 1

s
TN,D(s). The ramp response

is the function RN,D(t) whose Laplace transform is 1
s2
TN,D(s). •

Note that 1
s

is the Laplace transform of the unit step 1(t) and that 1
s2

is the Laplace
transform of the unit slope ramp input u(t) = t1(t). Of course, we could define the response
to an input u(t) = tk1(t) for k ≥ 2 by noting that the Laplace transform of such an input is
k!
sk+1 . Indeed, it is a simple matter to produce the general formulas following what we do in
this section, but we shall not pursue this level of generality here.

We now wish to produce the scalar initial value problems whose solutions are the im-
pulse, step, and ramp responses Fortunately, the hard work has been done already, and we
essentially have but to state the answer.

3.40 Proposition Let (N,D) be a proper SISO linear system in input/output form with

D(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0

N(s) = cns
n + cn−1s

n−1 + · · ·+ c1s+ c0,

and let ΣN,D = (A, b, ct,D) be the canonical minimal realisation of (N,D). The following
statements hold.
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(i) If (N,D) is strictly proper then the impulse response hN,D is the solution to the initial
value problem

D
(

d
dt

)
hN,D(t) = 0, hN,D(0+) = ctb, h

(1)
N,D(0+) = ctAb, . . . , h

(n−1)
N,D (0+) = ctAn−1b.

(ii) The step response 1N,D(t) is the solution to the initial value problem

D
(

d
dt

)
1N,D(t) = c0, 1N,D(0+) = D, 1

(1)
N,D(0+) = ctb, . . . , 1

(n−1)
N,D (0+) = ctAn−2b.

(iii) The ramp response RN,D(t) is the solution to the initial value problem

D
(

d
dt

)
RN,D(t) = c1 + c0t, RN,D(0+) = 0, R

(1)
N,D(0+) = D, . . . ,

R
(2)
N,D(0+) = ctb, . . . , R

(n−1)
N,D (0+) = ctAn−3b.

Proof Let us look first at the impulse response. Since the Laplace transform of hN,D is the
transfer function TN,D we have

D(s)L +
0+(hN,D)(s) = N(s).

As we saw in the course of the proof of Proposition 3.27, the fact that the right-hand side
of this equation is a polynomial in s of degree at most n − 1 (if deg(D) = n) implies that
hN,D is a solution of the differential equation D

(
d
dt

)
hN,D(t) = 0. The determination of the

initial conditions is a simple matter of differentiating hN,D(t) = cteAtb the required number
of times, and evaluating at t = 0.

The last two statements follow from Lemma 3.36 choosing u(t) = 1(t) for the step
response, and u(t) = t1(t) for the ramp response. �

The impulse response is generalised for proper systems in Exercise E3.1. One can, I
expect, see how the proposition gets generalised for inputs like u(t) = tk1(t). Let’s now
determine the impulse, step, and ramp response for an example so the reader can see how
this is done.

3.41 Example We take (N(s), D(s)) = (1− s, s2 + 2s+ 2), the same example we have been using
throughout this section. We shall merely produce the initial value problems that give the
step and ramp response for this problem, and not bother with going through the details of
obtaining the solutions to these initial value problems. The canonical minimal realisation is
ΣN,D = (A, b, ct,D) where

A =

[
0 1
−2 −2

]
, b =

[
0
1

]
, c =

[
1
−1

]
, D = 01.

We readily compute ctb = −1 and ctAb = 3.
For the impulse response, we solve the initial value problem

ḧN,D(t) + 2ḣN,D(t) + 2hN,D(t) = 0, hN,D(0+) = −1, ḣN,D(0+) = 3.

We obtain the solution by looking for a solution of the form est, and so determine that s
should be a root of s2 + 2s + 2 = 0. Thus s = −1 ± i, and so our homogeneous solution
will be a linear combination of the two linearly independent solutions y1(t) = e−t cos t and
y2(t) = e−t sin t. That is,

hN,D(t) = C1e
−t cos t+ C2e

−t sin t.
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To determine C1 and C2 we use the initial conditions. These give

hN,D(0+) = C1 = −1

ḣN,D(0+) = − C1 + C2 = 3.

Solving gives C1 = −1 and C2 = 2, and so we have

hN,D(t) = e−t(2 sin t+ cos t).

For the step response the initial value problem is

1̈N,D(t) + 21̇N,D(t) + 21N,D(t) = 1, 1N,D(0+) = 0, 1̇N,D(0+) = ctb = −1.

In like manner, the initial value for the ramp response is

R̈N,D(t) + 2ṘN,D(t) + 2RN,D(t) = t− 1, RN,D(0+) = 0, ṘN,D(0+) = 0.

Doing the requisite calculations gives

1N,D(t) = 1
2
− 1

2
e−t(cos t+ 3 sin t), RN,D(t) = t

2
− 1 + e−t

(
cos t+ 1

2
sin t

)
. •

You may wish to refer back to this section on computing step responses later in the
course of reading this book, since the step response is something we shall frequently write
down without saying much about how we did it.

3.42 Remark Those of you who are proponents of the Laplace transform will wonder why one does
not simply obtain the impulse response or step response by obtaining the inverse Laplace
transform of the transfer function or the transfer function multiplied by 1

s
. While this

is theoretically possible, in practice it is not really a good alternative. Even numerically,
determining the inverse Laplace transform is very difficult, even when it is possible.

To indicate this, let us consider a concrete example. We take (N(s), D(s)) = (s2 + 3s+
1, s5 + 5s4 + 10s3 + 20s2 + 10s+ 5). The impulse response and step response were generated
numerically and are shown in Figure 3.9. Both of these were generated in two ways: (1) by

Figure 3.9 Impulse response hN,D(t) (left) and step response
1N,D(t) (right) for (N(s), D(s)) = (s2 +3s+1, s5 +5s4 +10s3 +
20s2 + 10s+ 5)

computing numerically the inverse Laplace transform, and (2) by solving the ordinary dif-
ferential equations of Proposition 3.40. In Table 3.1 can be seen a rough comparison of the
time taken to do the various calculations. Obviously, the differential equation methods are
far more efficient, particularly on the step response. Indeed, the inverse Laplace transform
methods will sometimes not work, because they rely on the capacity to factor a polynomial. •
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Table 3.1 Comparison of using inverse Laplace transform and or-
dinary differential equations to obtain impulse and step re-
sponse

Computation Time using inverse Laplace transform Time taken using ode

Impulse response 14s < 1s
Step response 5m15s 1s

3.7 Summary

This chapter is very important. A thorough understanding of what is going on here is
essential and let us outline the salient facts you should assimilate before proceeding.

1. You should know basic things about polynomials, and in particular you should not hesi-
tate at the mention of the word “coprime.”

2. You need to be familiar with the concept of a rational function. In particular, the words
“canonical fractional representative” (c.f.r.) will appear frequently later in this book.

3. You should be able to determine the partial fraction expansion of any rational function.

4. The definition of the Laplace transform is useful, and you ought to be able to apply it
when necessary. You should be aware of the abscissa of absolute convergence since it can
once in awhile come up and bite you.

5. The properties of the Laplace transform given in Proposition E.9 will see some use.

6. You should know that the inverse Laplace transform exists. You should recognise the
value of Proposition E.11 since it will form the basis of parts of our stability investigation.

7. You should be able to perform block diagram algebra with the greatest of ease. We will
introduce some powerful techniques in Section 6.1 that will make easier some aspects of
this kind of manipulation.

8. Given a SISO linear system Σ = (A, b, ct,D) you should be able to write down its
transfer function TΣ.

9. You need to understand some of the features of the transfer function TΣ; for example,
you should be able to ascertain from it whether a system is observable, controllable, and
whether it is minimum phase.

10. You really really need to know the difference between a “SISO linear system” and a “SISO
linear system in input/output form.” You should also know that there are relationships
between these two different kinds of objects—thus you should know how to determine
ΣN,D for a given strictly proper SISO linear system (N,D) in input/output form.

11. The connection between the impulse response and the transfer function is very impor-
tant.

12. You ought to be able to determine the impulse response for a transfer function (N,D)
in input/output form (use the partial fraction expansion).
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Exercises

The impulse response hN,D for a strictly proper SISO linear system (N,D) in input/output
form has the property that every solution of the differential equation D

(
d
dt

)
y(t) = N

(
d
dt

)
u(t)

can be written as

y(t) = yh(t) +

∫ t

0

hN,D(t− τ)u(τ) dτ

where yh(t) is a solution of D
(

d
dt

)
yh(t) = 0 (see Proposition 3.32). In the next exercise, you

will extend this to proper systems.

E3.1 Let (N,D) be a proper, but not necessarily strictly proper, SISO linear system in
input/output form.

(a) Show that the transfer function TN,D for (N,D) can be written as

TN,D(s) = TÑ,D̃(s) + C

for a uniquely defined strictly proper SISO linear system (Ñ, D̃) in input/output
form, and constant C ∈ R. Explicitly determine (Ñ, D̃) and C in terms of (N,D).

(b) Show that every solution of D
(

d
dt

)
y(t) = N

(
d
dt

)
u(t) can be written as a linear

combination of u(t) and ỹ(t) where ỹ(t) is a solution of D̃
(

d
dt

)
ỹ(t) = Ñ

(
d
dt

)
u(t).

(c) Conclude that the solution of D
(

d
dt

)
y(t) = N

(
d
dt

)
u(t) can be written as

y(t) = yh(t) +

∫ t

0

hÑ,D̃(t− τ)u(τ) dτ + C

∫ t

0

δ(t− τ)u(τ) dτ

where δ(t) satisfies ∫ ∞

−∞
δ(t− t0)f(t) dt = f(t0)

for any integrable function f . Is δ(t) really a map from R to R?

E3.2 Determine the transfer function from r̂ to ŷ for the block diagram depicted in Fig-
ure E3.1.

r̂(s) R1(s) R2(s) R3(s) ŷ(s)

R5(s)

−

R6(s)

−

R4(s)

−

Figure E3.1 A block diagram with three loops

At various time throughout the text, we will want to have some properties of real rational
functions as s becomes large. In the following simple exercise, you will show that this notion
does not depend on the sense in which s is allowed to go to infinity.

E3.3 Let (N,D) be a proper SISO linear system in input/output form.
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(a) Show that the limit
lim
R→∞

TN,D(Reiθ)

is real and independent of θ ∈ (−π, π]. Thus it makes sense to write

lim
s→∞

TN,D(s),

and this limit will be in R.

(b) Show that the limit in part (a) is zero if (N,D) is strictly proper.

(c) If (N,D) is not strictly proper (but still proper), give an expression for the limit
from part (a) in terms of the coefficients of D and N .

E3.4 For the SISO linear system Σ = (A, b, ct,01) with

A =

[
σ ω
−ω σ

]
, b =

[
0
1

]
, c =

[
1
0

]

for σ ∈ R and ω > 0, determine TΣ.

E3.5 For the SISO linear systems connected in series in Exercise E2.1, determine the transfer
function for the interconnected SISO linear system (i.e., for the A, b, c, and D
determined in that exercise).

E3.6 For the SISO linear systems connected in parallel in Exercise E2.2, determine the
transfer function for the interconnected SISO linear system (i.e., for the A, b, c, and
D determined in that exercise).

E3.7 For the SISO linear systems connected in the negative feedback configuration of Ex-
ercise E2.3, we will determine the transfer function for the interconnected SISO linear
system (i.e., for the A, b, c, and D determined in that exercise).

(a) Use Lemma A.2 to show that

ct(sIn1+n2 −A)−1b =
[
0t ct2

] [sIn1 −A1 b1c
t
2

−b2c
t
1 sIn2 −A2

]−1 [
b1

0

]
= ct2Ub1,

where

U =
(
(sIn2 −A2) + b2c

t
1(sIn1 −A1)−1b1c

t
2

)−1
b2c

t
1(sIn1 −A1)−1.

(b) Use your answer from part (a), along with Lemma A.3, to show that

TΣ(s) = (1 + TΣ2(s)TΣ1(s))−1TΣ2(s)TΣ1(s).

(c) Thus we have

TΣ(s) =
TΣ1(s)TΣ2(s)

1 + TΣ1(s)TΣ2(s)
.

Could you have deduced this otherwise?

(d) Use the computed transfer function to determine the characteristic polynomial
for the system. (Thus answer Exercise E2.3(b).)

E3.8 Let Σ = (A, b, ct,D) be a SISO linear system with transfer function TΣ. Show that
TΣ is proper, and is strictly proper if and only if D = 01.
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E3.9 Consider the two polynomials that are not coprime:

P1(s) = s2 + 1, P2(s) = s3 + s2 + s+ 1.

Answer the following questions:

(a) Construct two SISO linear system Σi = (Ai, bi, c
t
i,01), i = 1, 2, each with state

dimension 3, and with the following properties:

1. Σ1 is controllable but not observable;

2. Σ2 is observable but not controllable;

3. TΣi(s) = P1(s)
P2(s)

, i = 1, 2.

Do not take any of Ai, bi, ci, i = 1, 2, to be zero.

(b) Is it possible to find a controllable and observable system Σ3, with state dimension

3, for which TΣ3(s) = P1(s)
P2(s)

? If so find such a system, and if not explain why not.

(c) Is it possible to find an uncontrollable and unobservable system Σ4, with state

dimension 3, for which TΣ3(s) = P1(s)
P2(s)

? If so find such a system, and if not explain
why not.
Hint: Use Theorem 2.41.

E3.10 Consider a SISO linear system (N,D) in input/output form, and suppose that N has
a real root z > 0 with multiplicity one. Thus, in particular, (N,D) is nonminimum
phase. Let u(t) = 1(t)ezt.

(a) Show that there exists a unique set of initial conditions y(0), y(1)(0), . . . , y(n−1)(0)
for which the solution to the differential equation D( d

dt
)y(t) = N( d

dt
)u(t), with

these initial conditions, is identically zero.
Hint: Think about what Proposition 3.27 says about the method of Laplace trans-
forms for solving ordinary differential equations.

(b) Comment on this in light of the material in Section 2.3.3.

For the following three exercises we will consider “open-circuit” and “short-circuit” behaviour
of circuits. Let us make the definitions necessary here in a general setting by talking about
a SISO linear system Σ = (A, b, ct,D). A pair of functions (u(t), y(t)) satisfying

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t) +Du(t)

is open-circuit for Σ if y(t) = 0 for all t and is short-circuit for Σ if u(t) = 0 for all t.

E3.11 Consider the circuit of Exercise E1.7 with the output of Exercise E2.16.

(a) Compute the transfer function for the system.

(b) Determine all open-circuit pairs (u(t), y(t)).

(c) Determine all short-circuit pairs (u(t), y(t)).

(d) Comment on the open/short-circuit behaviour in terms of controllability, observ-
ability, and zero dynamics.

E3.12 Consider the circuit of Exercise E1.8 with the output of Exercise E2.17.

(a) Compute the transfer function for the system.

(b) Determine all open-circuit pairs (u(t), y(t)).

(c) Determine all short-circuit pairs (u(t), y(t)).

(d) Comment on the open/short-circuit behaviour in terms of controllability, observ-
ability, and zero dynamics.
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E3.13 Consider the circuit of Exercise E1.9 with the output of Exercise E2.18.

(a) Compute the transfer function for the system.

(b) Determine all open-circuit pairs (u(t), y(t)).

(c) Determine all short-circuit pairs (u(t), y(t)).

(d) Comment on the open/short-circuit behaviour in terms of controllability, observ-
ability, and zero dynamics.

E3.14 For the coupled mass system of Exercises E1.4 and E2.19 (assume no damping), take
as input the case of α = 0 described in Exercise E2.19—thus the input is a force
u(t) applied to the leftmost mass. Determine an output that renders the system
unobservable.

E3.15 Using Theorem 3.15, determine the spectrum of the zero dynamics for the pendu-
lum/cart system of Exercises E1.5 and E2.4 for each of the following linearisations:

(a) the equilibrium point (0, 0) with cart position as output;

(b) the equilibrium point (0, 0) with cart velocity as output;

(c) the equilibrium point (0, 0) with pendulum angle as output;

(d) the equilibrium point (0, 0) with pendulum angular velocity as output;

(e) the equilibrium point (0, π) with cart position as output;

(f) the equilibrium point (0, π) with cart velocity as output;

(g) the equilibrium point (0, π) with pendulum angle as output;

(h) the equilibrium point (0, π) with pendulum angular velocity as output.

E3.16 Consider the double pendulum of Exercises E1.6 and E2.5. In the following cases, use
Theorem 3.15 to determine the spectrum of the zero dynamics:

(a) the equilibrium point (0, 0, 0, 0) with the pendubot input;

(b) the equilibrium point (0, π, 0, 0) with the pendubot input;

(c) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(d) the equilibrium point (π, π, 0, 0) with the pendubot input;

(e) the equilibrium point (0, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (0, π, 0, 0) with the acrobot input;

(g) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(h) the equilibrium point (π, π, 0, 0) with the acrobot input.

In each case, use the angle of the second link as output.

E3.17 Determine the spectrum of the zero dynamics for the linearised coupled tank system
of Exercises E1.11 and E2.6 for the following outputs:

(a) the height in tank 1;

(b) the height in tank 2;

(c) the difference of the heights in the tanks.

E3.18 Given the SISO linear system (N,D) in input/output form with

D(s) = s3 + 4s2 + s+ 1, N(s) = 3s2 + 1,

determine the canonical minimal realisation ΣN,D. Is the triple (A, b, c) you found
complete? Was your first impulse to answer the previous question by doing calcula-
tions? Explain why these are not necessary.
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E3.19 State and prove a version of Theorem 3.20 that assigns to a SISO system (N,D) in
input/output form a SISO linear system Σ = (A, b, ct,D) so that A and c are in
observer canonical form. Also produce the block diagram analogous to Figure 3.8 in
this case.

E3.20 Suppose you are handed a SISO linear system (N,D) in input/output form, and are
told that it comes from a SISO linear system Σ = (A, b, ct,01)—that is, you are told
that TΣ = TN,D. Is it possible for you to tell whether (A, b) is controllable?
Hint: Consider Example 2.19 and Theorem 3.20.

E3.21 For a SISO linear system (N,D) in input/output form, show that the transfer function
TN,D has the property that TN,D(s̄) = TN,D(s) for all s ∈ C. In particular, show that
s0 ∈ C is a zero or pole of TN,D if and only if s̄0 is a zero or pole, respectively.

E3.22 Verify Theorem 3.22 and Proposition 3.24 for Exercise E3.4 (recall that you had
computed the impulse response for this problem in Exercise E2.26).

E3.23 For the following SISO linear systems in input/output form, use Proposition 3.32 to
obtain the output corresponding to the given input and initial conditions.

(a) (N(s), D(s)) = (1, s+ 3), u(t) = 1(t) (the unit step input), and y(0) = 1.

(b) (N(s), D(s)) = (1, s+ 3), u(t) = 1(t)eat, a ∈ R, and y(0) = 0.

(c) (N(s), D(s)) = (s, s3 + s), u(t) = 1(t) cos t, and y(0) = 1, ẏ(0) = 0, and ÿ(0) = 0.

(d) (N(s), D(s)) = (1, s2), u(t) = 1(t), and y(0) = 0 and ẏ(0) = 1.

E3.24 For the SISO linear systems in input/output form from Exercise E3.23 for which you
obtained the solution, apply Proposition 3.27 to obtain the same solution.

E3.25 For the following SISO systems in input/output form, use Proposition 3.40 to setup
the initial value problem for the step response, and use a computer package to plot
the step response.

(a) (N(s), D(s)) = (s+ 1, s2 + s+ 1).

(b) (N(s), D(s)) = (s2 + 2s+ 1, s3 + 3s+ 1).

(c) (N(s), D(s)) = (s− 1, s4 + 15s3 + 20s2 + 10s+ 2).

(d) (N(s), D(s)) = (s3 + 1, s5 + 9s4 + 20s3 + 40s2 + 50s+ 25).

E3.26 Consider the differential equation

ÿ(t) + 4ẏ(t) + 8y(t) = 2u̇(t) + 3u(t), (E3.1)

where u(t) is a specified function of time. If we define

uε(t) =

{
1
ε
, t ∈ [0, ε]

0, otherwise,

and let yε(t) be the solution to the differential equation (E3.1) when u = uε, determine
limε→0 yε(t). (Note that in this problem although uε is in U , u̇ε is not in U . Thus to
compute “directly” the solution to the differential equation (E3.1) with u = uε is not
actually something you know how to do!)

E3.27 Consider the SISO linear system Σ = (A, b, ct,D) given by

A =
[
0
]
, b =

[
1
]
, c =

[
1
]
, D =

[
0
]
,

and let u(t) = 1(t)et
2
.
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(a) Show that if x(0) = 0 then the output for the input u is y(t) =
√
π

2i
erf(it), where

erf is the error function given by

erf(t) =
2√
π

∫ t

0

e−τ
2

dτ.

(b) Laplace transform techniques are always limited by one’s ability to compute the
inverse transform. Are there limitations in this example beyond the difficulty in
determining the inverse transform?
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Chapter 4

Frequency response (the frequency domain)

The final method we will describe for representing linear systems is the so-called “fre-
quency domain.” In this domain we measure how the system responds in the steady-state
to sinusoidal inputs. This is often a good way to obtain information about how your system
will handle inputs of various types.

The frequency response that we study in this section contains a wealth of information,
often in somewhat subtle ways. This material, that builds on the transfer function discussed
in Chapter 3, is fundamental to what we do in this course.
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4.1 The frequency response of SISO linear systems

We first look at the state-space representation:

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t) +Du(t).
(4.1)

Let us first just come right out and define the frequency response, and then we can give its
interpretation. For a SISO linear control system Σ = (A, b, c,D) we let ΩΣ ⊂ R be defined
by

ΩΣ = {ω ∈ R | iω is a pole of TΣ}.
The frequency response for Σ is the function HΣ : R\ΩΣ → C defined by HΣ(ω) = TΣ(iω).
Note that we do wish to think of the frequency response as a C-valued function, and not a
rational function, because we will want to graph it. Thus when we write TΣ(iω), we intend
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to evaluate the transfer function at s = iω. In order to do this, we suppose that all poles
and zeroes of TΣ have been cancelled.

The following result gives a key interpretation of the frequency response.

4.1 Theorem Let Σ = (A, b, ct,01) be an complete SISO control system and let ω > 0. If TΣ has
no poles on the imaginary axis that integrally divide ω,1 then, given u(t) = u0 sinωt there is
a unique periodic output yp(t) with period T = 2π

ω
satisfying (4.1) and it is given by

y(t) = u0Re(HΣ(ω)) sinωt+ u0Im(HΣ(ω)) cosωt.

Proof We first look at the state behaviour of the system. Since (A, c) is complete, the
numerator and denominator polynomials of TΣ are coprime. Thus the poles of TΣ are exactly
the eigenvalues ofA. If there are no such eigenvalues that integrally divide ω, this means that
there are no periodic solutions of period T for ẋ(t) = Ax(t). Therefore the linear equation
eATu = u has only the trivial solution u = 0. This means that the matrix eAT − In is
invertible. We define

xp(t) = u0e
At(e−AT − In)−1

∫ T

0

e−Aτb sinωτ dτ + u0

∫ t

0

eA(t−τ)b sinωτ dτ, (4.2)

and we claim that x(t) is a solution to the first of equations (4.1) and is periodic with period
2π
ω

. If T = 2π
ω

we first note that

xp(t+ T ) = u0e
A(t+T )(e−AT − In)−1

∫ T

0

e−Aτb sinωτ dτ+

u0

∫ t+T

0

eA(t+T−τ)b sinωτ dτ

= eAteAT (e−AT − In)−1

∫ T

0

e−Aτb sinωτ dτ+

u0e
AteAT

∫ T

0

e−Aτb sinωτ dτ + u0

∫ t+T

T

eA(t+T−τ)b sinωτ dτ

= eAt(eAT (e−AT − In)−1 + eAT )

∫ T

0

e−Aτb sinωτ dτ+

u0

∫ t

0

eA(t−τ)b sinωτ dτ.

Periodicity of xp(t) will follow then if we can show that

eAT (e−AT − In)−1 + eAT = (e−AT − In)−1.

But we compute

eAT (e−AT − In)−1 + eAT = (eAT + eAT (e−AT − In))(e−AT − In)−1

= (e−AT − In)−1.

Thus xp(t) has period T . That xp(t) is a solution to (4.1) with the u(t) = u0 sinωt follows
since xp(t) is of the form

x(t) = eAtx0 + u0

∫ t

0

eA(t−τ)b sinωτ dτ

1Thus there are no poles for TΣ of the form iω̃ where ω
ω̃ ∈ Z.
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provided we take

x0 = (e−AT − In)−1

∫ T

0

e−Aτb sinωτ dτ.

For uniqueness, suppose that x(t) is a periodic solution of period T . Since it is a solution
it must satisfy

x(t) = eAtx0 + u0

∫ t

0

eA(t−τ)b sinωτ dτ

for some x0 ∈ Rn. If x(t) has period T then we must have

eAtx0 + u0

∫ t

0

eA(t−τ)b sinωτ dτ = eAteATx0 + u0e
AteAT

∫ T

0

eA(t−τ)b sinωτ dτ+

u0

∫ t+T

T

eA(t+T−τ)b sinωτ dτ

= eAteATx0 + u0e
AteAT

∫ T

0

eA(t−τ)b sinωτ dτ+

u0

∫ t

0

eA(t−τ)b sinωτ dτ.

But this implies that we must have

x0 = eATx0 + u0e
AT

∫ T

0

e−Aτb sinωτ dτ,

which means that x(t) = xp(t).
This shows that there is a unique periodic solution in state space. This clearly implies

a unique output periodic output yp(t) of period T . It remains to show that yp(t) has the
asserted form. We will start by giving a different representation of xp(t) than that given
in (4.2). We look for constant vectors x1,x2 ∈ Rn with the property that

xp(t) = x1 sinωt+ x2 cosωt.

Substitution into (4.1) with u(t) = u0 sinωt gives

ωx1 cosωt− ωx2 sinωt = Ax1 sinωt+Ax2 cosωt+ u0b sinωt

=⇒ ωx1 −Ax2, −Ax1 − ωx2 = u0b

=⇒ iω(x1 + ix2)−A(x1 + ix2) = u0b.

Since iω is not an eigenvalue for A we have

x1 + ix2 = (iωIn −A)−1b

=⇒ ctx1 = Re(HΣ(ω)), ctx2 = Im(HΣ(ω)).

The result follows since yp(t) = ctxp(t). �
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4.2 Remarks

1. It turns out that any output from (4.1) with u(t) = u0 sinωt can be written as a sum
of the periodic output yp(t) with a function yh(t) where yh(t) can be obtained with zero
input. This is, of course, reminiscent of the procedure in differential equations where you
find a homogeneous and particular solution.

2. If the eigenvalues of A all lie in the negative half-plane, then it is easy to see that
limt→∞|yh(t)| = 0 and so after a long enough time, we will essentially be left with the
periodic solution yp(t). For this reason, one calls yp(t) the steady-state response and
yh(t) the transient response . Note that the steady-state response is uniquely defined
(under the hypotheses of Theorem 4.1), but that there is no unique transient response—it
depends upon the initial conditions for the state vector.

3. One can generalise this slightly to allow for imaginary eigenvalues iω̃ of A for which ω̃
integrally divide ω, provided that b does not lie in the eigenspace of these eigenvalues. •

4.2 The frequency response for systems in input/output form

The matter of defining the frequency response for a SISO linear system in input/output
form is now obvious, I hope. Indeed, if (N,D) is a SISO linear system in input/output form,
then we define its frequency response by HN,D(ω) = TN,D(iω).

Let us see how one may recover the transfer function from the frequency response. Note
that it is not obvious that one should be able to do this. After all, the frequency response
function only gives us data on the imaginary axis. However, because the transfer function
is analytic, if we know its value on the imaginary axis (as is the case when we know the
frequency response), we may assert its value off the imaginary axis. To be perfectly precise
on these matters requires some effort, but we can sketch how things go.

The first thing we do is indicate a direct correspondence between the frequency response
and the impulse response. For this we refer to Section E.2 for a definition of the Fourier
transform. With the notion of the Fourier transform in hand, we establish the correspondence
between the frequency response and the impulse response as follows.

4.3 Proposition Let (N,D) be a strictly proper SISO linear control system in input/output form,
and suppose that the poles of TN,D are in the negative half-plane. Then HN,D(ω) = ȟN,D(ω).

Proof We have HN,D(ω) = TN,D(iω) and so

HN,D(ω) =

∫ ∞

0+

hN,D(t)e−iωt dt.

By Exercise EE.2, σmin(hN,D) < 0 since we are assuming all poles are in the negative half-
plane. Therefore this integral exists. Furthermore, since hN,D(t) = 0 for t < 0 we have

HN,D(ω) =

∫ ∞

−∞
hN,D(t)e−iωt dt = ȟN,D(ω).

This completes the proof. �

Now we recover the transfer function TN,D from the frequency response HN,D. In the
following result we are thinking of the transfer function not as a rational function, but as a
C-valued function.
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4.4 Proposition Let (N,D) be a strictly proper SISO linear control system in input/output form,
and suppose that the poles of TN,D are in the negative half-plane. Then, provided Re(s) >
σmin(hN,D), we have

TN,D(s) =
1

2π

∫ ∞

−∞

HN,D(ω)

s− iω dω.

Proof By Proposition 4.3 we know that hN,D is the inverse Fourier transform of HN,D:

hN,D(t) =
1

2π

∫ ∞

−∞
HN,D(ω)eiωt dω.

On the other hand, by Theorem 3.22 the transfer function TN,D is the Laplace transform of
hN,D so we have, for Re(s) > σmin(hN,D).

TN,D(s) =

∫ ∞

0+

hN,D(t)e−st dt

=
1

2π

∫ ∞

−∞

∫ ∞

0+

HN,D(ω)eiωte−st dt dω

=
1

2π

∫ ∞

−∞

HN,D(ω)

s− iω dω.

This completes the proof. �

4.5 Remarks

1. I hope you can see the importance of the results in this section. What we have done is
establish the perfect correspondence between the three domains in which we work: (1)
the time-domain, (2) the s-plane, and (3) the frequency domain. In each domain, one
object captures the essence of the system behaviour: (1) the impulse response, (2) the
transfer function, and (3) the frequency response. The relationships are summarised in
Figure 4.1. Note that anything you say about one of the three objects in Figure 4.1 must
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//

F

%%❏❏
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transfer function
(Laplace domain)

L−1
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rrr

rrr
rrr

rrr
rrr

rrr

frequency response
(frequency domain)

F−1

ee❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏ analytic continuation

99rrrrrrrrrrrrrrrrrrrrr

Figure 4.1 The connection between impulse response, transfer
function, and frequency response

be somehow reflected in the others. We will see that this is true, and will form the centre
of discussion of much of the rest of the course.

2. Of course, the results in this section may be made to apply to SISO linear systems in the
form (4.1) provided that D = 01 and that the polynomials ctadj(sIn −A)b and PA(s)
are coprime. •
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4.3 Graphical representations of the frequency response

One of the reasons why frequency response is a powerful tool is that it is possible to
succinctly understand its primary features by means of plotting functions or parameterised
curves. In this section we see how this is done. Some of this may seem a bit pointless at
present. However, as matters develop, and we get closer to design methodologies, the power
of these graphical representations will become clear. The first obvious application of these
ideas that we will encounter is the Nyquist criterion for stability in Chapter 7.

4.3.1 The Bode plot

What one normally does with the frequency response is plot it. But one plots it in a very
particular manner. First write HΣ in polar form:

HΣ(ω) = |HΣ(ω)|ei]HΣ(ω)

where |HΣ(ω)| is the absolute value of the complex number HΣ(ω) and ]HΣ(ω) is the
argument of the complex number HΣ(ω). We take −180◦ < ]HΣ(ω) ≤ 180◦. One then
constructs two plots, one of 20 log|HΣ(ω)| as a function of logω, and the other of ]HΣ(ω)
as a function of logω. (All logarithms we talk about here are base 10.) Together these
two plots comprise the Bode plot for the frequency response HΣ. The units of the plot of
20 log|HΣ(ω)| are decibels .2 One might think we are losing information here by plotting
the magnitude and phase for positive values of ω (which we are restricted to doing by using
logω as the independent variable). However, as we shall see in Proposition 4.13, we do
not lose any information since the magnitude is symmetric about ω = 0, and the phase is
anti-symmetric about ω = 0.

Let’s look at the Bode plots for our mass-spring-damper system. I used Mathematica®

to generate all Bode plots in this book. We will also be touching on a method for roughly
determining Bode plots “by hand.”

4.6 Examples In all cases we have

A =

[
0 1
− k
m
− d
m

]
, b =

[
0
1
m

]
.

We take m = 1 and consider the various cases of d and k as employed in Example 2.33. Here
we can also consider the case when D 6= 01.

1. We take d = 3 and k = 2.

(a) With c = (1, 0) and D = 01 we compute

HΣ(ω) =
1

−ω2 + 3iω + 2
.

The corresponding Bode plot is the first plot in Figure 4.2.

(b) Next, with c = (0, 1) and D = 01 we compute

HΣ(ω) =
iω

−ω2 + 3iω + 2
,

and the corresponding Bode plot is the second plot in Figure 4.2.

2Decibels are so named after Alexander Graham Bell. The unit of “bell” was initially proposed, but when
it was found too coarse a unit, the decibel was proposed.
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Figure 4.2 The displacement (top left), velocity (top right), and
acceleration (bottom) frequency response for the mass-spring
damper system when d = 3 and k = 2

(c) If we have c = (− k
m
,− d

m
) and D = [1] we compute

HΣ(ω) =
−ω2

−ω2 + 3iω + 2
,

The Bode plot for this frequency response function is the third plot in Figure 4.2.

2. We take d = 2 and k = 1.

(a) With c = (1, 0) and D = 01 we compute

HΣ(ω) =
1

−ω2 + 2iω + 1
.

The corresponding Bode plot is the first plot in Figure 4.3.

(b) Next, with c = (0, 1) and D = 01 we compute

HΣ(ω) =
iω

−ω2 + 2iω + 1
,
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Figure 4.3 The displacement (top left), velocity (top right), and
acceleration (bottom) frequency response for the mass-spring
damper system when d = 2 and k = 1

and the corresponding Bode plot is the second plot in Figure 4.3.

(c) If we have c = (− k
m
,− d

m
) and D = [1] we compute

HΣ(ω) =
−ω2

−ω2 + 2iω + 1
,

The Bode plot for this frequency response function is the third plot in Figure 4.3.

3. We take d = 2 and k = 10.

(a) With c = (1, 0) and D = 01 we compute

HΣ(ω) =
1

−ω2 + 2iω + 10
.

The corresponding Bode plot is the first plot in Figure 4.4.
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Figure 4.4 The displacement (top left), velocity (top right), and
acceleration (bottom) frequency response for the mass-spring
damper system when d = 2 and k = 10

(b) Next, with c = (0, 1) and D = 01 we compute

HΣ(ω) =
iω

−ω2 + 2iω + 10
,

and the corresponding Bode plot is the second plot in Figure 4.4.

(c) If we have c = (− k
m
,− d

m
) and D = [1] we compute

HΣ(ω) =
−ω2

−ω2 + 2iω + 10
,

The Bode plot for this frequency response function is the third plot in Figure 4.4.

4. We take d = 0 and k = 1.

(a) With c = (1, 0) and D = 01 we compute

HΣ(ω) =
1

−ω2 + 1
.
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Figure 4.5 The displacement (top left), velocity (top right), and
acceleration (bottom) frequency response for the mass-spring
damper system when d = 0 and k = 1

The corresponding Bode plot is the first plot in Figure 4.5.

(b) Next, with c = (0, 1) and D = 01 we compute

HΣ(ω) =
iω

−ω2 + 1
,

and the corresponding Bode plot is the second plot in Figure 4.5.

(c) If we have c = (− k
m
,− d

m
) and D = [1] we compute

HΣ(ω) =
−ω2

−ω2 + 1
,

The Bode plot for this frequency response function is the third plot in Figure 4.5. •

4.3.2 A quick and dirty plotting method for Bode plots

It is possible, with varying levels of difficulty, to plot Bode plots by hand. The first thing
we do is rearrange the frequency response in a particular way suitable to our purposes. The
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form desired is

H(ω) =

K

k1∏

j1=1

(1 + iωτj1)

k2∏

j2=1

(
1 + 2iζj2

ω
ωj2
− ( ω

ωj2
)2
)

(iω)k3

k4∏

j4=1

(1 + iωτj4)

k5∏

j5=1

(
1 + 2iζj5

ω
ωj5
− ( ω

ωj5
)2
)

(4.3)

where the τ ’s, ω’s, and ζ’s are real, the ζ’s are all further between −1 and 1, and the ω’s are
all positive. The frequency response for any stable, minimum phase system can always be
put in this form. For nonminimum phase systems, or for unstable systems, the variations
to what we describe here are straightforward. The form given reflects our transfer function
having

1. k1 real zeros at the points − 1
τj1

, j1 = 1, . . . , k1,

2. k2 pairs of complex zeros at ωj2(−ζj2 ±
√

1− ζ2
j2

), j2 = 1, . . . , k2,

3. k3 poles at the origin,

4. k4 real poles at the points − 1
τj4

, j4 = 1, . . . , k4, and

5. k5 pairs of complex poles at ωj5(−ζj5 ±
√

1− ζ2
j5

), j5 = 1, . . . , k5.

Although we exclude the possibility of having zeros or poles on the imaginary axis, one can
see how to handle such functions by allowing ζ to become zero in one of the order two terms.

Let us see how to perform this in practice.

4.7 Example We consider the transfer function

T (s) =
s+ 1

10

s(s2 + 4s+ 8)
.

To put this in the desired form we write

s+ 1
10

= 1
10

(
1 + 10s

)

s2 + 4s+ 8 = 8
(
1 + 1

2
s+ 1

8
s2
)

= 8
(
1 + 21

4

√
8 s√

8
+ ( s√

8
)2)

= 8
(
1 + 2 1√

2
s√
8

+ ( s√
8
)2
)
.

Thus we have a real zero at − 1
10

, a pole at 0, and a pair of complex poles at −2± 2i. Thus
we write

T (s) =
1

80

1 + 10s

s(1 + 2 1√
2
s√
8

+ ( s√
8
)2)

and so

H(ω) =
1

80

1 + i10ω

iω(1 + 2i 1√
2
ω√
8
− ( ω√

8
)2)
.

I find it easier to work with transfer functions first to avoid imaginary numbers as long as
possible. You may do as you please, of course. •
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One can easily imagine that one of the big weaknesses of our computer-absentee plots is that
we have to find roots by hand. . .

Let us see what a Bode plot looks like for each of the basic elements. The idea is to see
what the magnitude and phase looks like for small and large ω, and to “fill in the gaps” in
between these asymptotes .

1. H(ω) = K: The Bode plot here is simple. It takes the magnitude 20 logK for all values
of logω. The phase is 0◦ for all logω if K is positive, and 180◦ otherwise.

2. H(ω) = 1 + iωτ : For ω near zero the frequency response looks like 1 and so has the
value of 0dB. For large ω the frequency response looks like iωτ , and so the log of the
magnitude will look like logωτ . Thus the magnitude plot for large frequencies we have
|H(ω)| ≈ 20 logωτdB. These asymptotes meet when 20 logωτ = 0 or when ω = 1

τ
. This

point is called the break frequency . Note that the slope of the frequency response for
large ω is independent of τ (since logωτ = logω + log τ), but its break frequency does
depend on τ . The phase plot starts at 0 for ω small and for large ω, since the frequency
response is predominantly imaginary, becomes 90◦. This Bode plot is shown in Figure 4.6
for τ = 1.

Figure 4.6 Bode plot for H(ω) = 1 + iω (left) and for H(ω) =
1 + 2iζω − ω2 for ζ = 0.2, 0.4, 0.6, 0.8 (right)

3. H(ω) = 1 + 2iζ ω
ω0
− ( ω

ω0
)2: For small ω the magnitude is 1 or 0dB. For large ω the

frequency response looks like −( ω
ω0

)2 and so the magnitude looks like 40 log ω
ω0

. The two
asymptotes meet when 40 log ω

ω0
= 0 or when ω = ω0. One has to be a bit more careful

with what is happening around the frequency ω0. The behaviour here depends on the
value of ζ, and various plots are shown in Figure 4.6 for ω0 = 1. As ζ decreases, the
undershoot increases. The phase starts out at 0◦ and goes to 180◦ as ω increases.

4. H(ω) = (iω)−1: The magnitude is 1
ω

over the entire frequency range which gives |H(ω)| =
−20 logωdB. The phase is −90◦ over the entire frequency range, and the simple Bode
plot is shown in Figure 4.7.
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Figure 4.7 Bode plot for H(ω) = (iω)−1 (left) and for H(ω) =
(1 + iω)−1 (right)

5. H(ω) = (1 + iωτ)−1: The analysis here is just like that for a real zero except for signs.
The Bode plot is shown in for τ = 1.

6. H(ω) = (1 + 2iζ ω
ω0
− ( ω

ω0
)2)−1: The situation here is much like that for a complex zero

with sign reversal. The Bode plots are shown in Figure 4.8 for ω0 = 1.

Figure 4.8 Bode plot for H(ω) = (1 + 2iζω − ω2)−1 for ζ =
0.2, 0.4, 0.6, 0.8
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4.8 Remark We note that one often sees the language “20dB/decade.” With what we have done
above for the typical elements in a frequency response function. A first-order element in
the numerator increases like 20 log τω for large frequencies. Thus as ω increases by a factor
of 10, the magnitude will increase by 20dB. This is where “20dB/decade” comes from. If
the first-order element is in the denominator, then the magnitude decreases at 20dB/decade.
Second-order elements in the numerator increase at 40dB/decade, and second-order elements
in the denominator decrease at 40dB/decade. In this way, one can ascertain the relative
degree of the numerator and denominator of a frequency response function by looking at its
slope for large frequencies. Indeed, we have the following rule:

The slope of the magnitude Bode plot for HN,D at large frequencies is 20(deg(N)−
deg(D))dB/decade. •

To get a rough idea of how to sketch a Bode plot, the above arguments illustrate that the
asymptotes are the most essential feature. Thus we illustrate these asymptotes in Figure 4.19
(see the end of the chapter) for the essential Bode plots in the above list. From these one
can determine the character of most any Bode plot. The reason for this is that in (4.3) we
have ensured that any frequency response is a product of the factors we have individually
examined. Thus when we take logarithms as we do when generating a Bode plot, the graphs
simply add! And the same goes for phase plots. So by plotting each term individually by
the above rules, we end up with a pretty good rough approximation by adding the Bode
plots.

Let us illustrate how this is done in an example.

4.9 Example (Example 4.7 cont’d) We take the frequency response

H(ω) =
1

80

1 + i10ω

iω
(
1 + 2i 1√

2
ω√
8
− ( ω√

8
)2
) .

Four essential elements will comprise the frequency response:

1. H1(ω) = 1
80

;

2. H2(ω) = 1 + i10ω;

3. H3(ω) = (iω)−1;

4. H4(ω) =
(
1 + 2i 1√

2
ω√
8
− ( ω√

8
)2
)−1

.

Let’s look first at the magnitudes.

1. H1 will contribute 20 log 1
80
≈ −38.1dB. The asymptotes for H1 are shown in Fig-

ure 4.9.

2. H2 has a break frequency of ω = 1
10

or logω = −1. The asymptotes for H2 are shown
in Figure 4.9.

3. H3 gives −20 logω across the board. The asymptotes for H3 are shown in Figure 4.10.

4. H4 has a break frequency of ω =
√

8 or logω ≈ 0.45. The asymptotes for H4 are shown
in Figure 4.10. Note that here we have ζ = 1√

2
, which is a largish value. Thus we do

not need to adjust the magnitude peak too much around the break frequency when we
use the asymptotes to approximate the actual Bode plot.

Now the phase angles.

1. H1 has phase exactly 0 for all frequencies.
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Figure 4.9 Asymptotes for Example 4.7: H1 (left) and H2 (right)

Figure 4.10 Asymptotes for Example 4.7: H3 (left) and H4 (right)

2. For H2, the phase is approximately 0◦ for log 10ω < −1 or logω < −2. For log 10ω > 1
(or logω > 0) the phase is approximately 90◦. Between the frequencies logω = −2
and logω = 0 we interpolate linearly between the two asymptotic phase angles.

3. The phase for H3 is −90◦ for all frequencies.

4. For H4, the phase is 0◦ for log ω√
8
< −1 or logω < log

√
8−1 ≈ −0.55. For log ω√

8
> 1,
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(logω > log
√

8 + 1 ≈ 1.45), the phase is approximately −180◦.

The sum of the asymptotes are plotted in Figure 4.11 along with the actual Bode plot so you

Figure 4.11 The sum of the asymptotes (left) and the actual Bode
plot (right) for Example 4.7

can see how the Bode plot is essentially the sum of the individual Bode plots. You should
take care that you always account for ζ, however. In our example, the value of ζ in H4 is
quite large, so not much of an adjustment had to be made. If ζ were small, we have to add
a little bit of a peak in the magnitude around the break frequency logω = log

√
8, and also

make the change in the phase a bit steeper. •

4.3.3 The polar frequency response plot

We will encounter in Chapter 12 another representation of the frequency response H.
The idea here is that rather than plotting magnitude and phase as one does in a Bode plot,
one plots the real and imaginary part of the frequency response as a curve in the complex
plane parameterised by ω ∈ (0,∞). Doing this yields the polar plot for the frequency
response. One could do this, for example, by taking the Bode plot, and for each point
ω on the independent variable axis, put a point at a distance |H(ω)| from the origin in
the direction ]H(ω). Indeed, given the Bode plot, one can typically make a pretty good
approximation of the polar plot by noting (1) the maxima and minima of the magnitude
response, and the phase at these maxima and minima, and (2) the magnitude when the
phase is 0, ±90◦, or ±180◦.

In Figure 4.12 are shown the polar plots for the basic frequency response functions.
Recall that in (4.3) we indicated that any frequency response will be a product of these
basic elements, and so one can determine the polar plot for a frequency response formed by
the product of such elements by performing complex multiplication that, you will recall, is
done in polar coordinates merely by multiplying radii, and adding angles.

For a lark, let’s look at the minimum/nonminimum phase example in polar form.
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Figure 4.12 Polar plots for H(ω) = 1 + iω (top left), H(ω) =
1 + 2iζω − ω2, ζ = 0.2, 0.4, 0.6, 0.8 (top right), H(ω) =
(1 + iω)−1 (bottom left), and H(ω) = (1 + 2iζω − ω2)−1,
ζ = 0.2, 0.4, 0.6, 0.8

4.10 Example (Example 4.12) Recall that we contrasted the two transfer functions

HΣ1(ω) =
1 + iω

−ω2 + iω + 1
, HΣ2(ω) =

1− iω
−ω2 + iω + 1

.

We contrast the polar plots for these frequency responses in Figure 4.13. Note that, as
expected, the minimum phase system undergoes a smaller phase change if we follow it along
its parameterised polar curve. We shall see the potential dangers of this in Chapter 12. •

Note that when making a polar plot, the thing one looses is frequency information. That
is, one can no longer read from the plot the frequency at which, say, the magnitude of the
frequency response is maximum. For this reason, it is not uncommon to place at intervals
along a polar plot the frequencies corresponding to various points.
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Figure 4.13 Polar plots for minimum phase (left) and nonmini-
mum phase (right) systems

4.4 Properties of the frequency response

It turns out that in the frequency response can be seen some of the behaviour we have
encountered in the time-domain and in the transfer function. We set out in this section to
scratch the surface behind interpreting the frequency response. However, this is almost an
art as much as a science, so plain experience counts for a lot here.

4.4.1 Time-domain behaviour reflected in the frequency response

We have seen in Section 3.2 we saw that some of the time-domain properties discussed
in Section 2.3 were reflected in the transfer function. We anticipate being able to see these
same features reflected in the frequency response, and ergo in the Bode plot. In this section
we explore these expected relationships. We do this by looking at some examples.

4.11 Example The first example we look at is one where we have a pole/zero cancellation. As per
Theorem 3.5 this indicates a lack of observability in the system. It is most beneficial to look
at what happens when the pole and zero do not actually cancel, and compare it to what
happens when the pole and zero really do cancel. We take

A =

[
0 1
1 −ε

]
, b =

[
0
1

]
, c =

[
1
1

]
, (4.4)

and we compute

HΣ(ω) =
1 + iω

−ω2 + iεω − 1
.

The Bode plots for three values of ε are shown in Figure 4.14. What are the essential features
here? Well, by choosing the values of ε 6= 0 to deviate significantly from zero, we can see
accentuated two essential points. Firstly, when ε 6= 0 the magnitude plot has two regions
where the magnitude drops off at different slopes. This is a consequence of there being two
different exponents in the characteristic polynomial. When ε = 0 the plot tails off at one
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Figure 4.14 Bode plots for (4.4) for ε = −5, ε = 0, and ε = 5

slope, indicating that the system is first-order and has only one characteristic exponent. This
is a consequence of the pole/zero cancellation that occurs when ε = 0. Note, however, that
we cannot look at one Bode plot and ascertain whether or not the system is observable. •

There is also an effect that can be observed in the Bode plot for a system that is not
minimum phase. An example illustrates this well.

4.12 Example We consider two SISO linear systems, both with

A =

[
0 1
−1 −1

]
, b =

[
0
1

]
. (4.5)

The two output vectors we look at are

c1 =

[
1
1

]
, c2 =

[
1
−1

]
. (4.6)

Let us then denote Σ1 = (A, b, c1,01) and Σ2 = (A, b, c2,01). The two frequency response
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functions are

HΣ1(ω) =
1 + iω

−ω2 + iω + 1
, HΣ2(ω) =

1− iω
−ω2 + iω + 1

.

The Bode plots are shown in Figure 4.15. What should one observe here? Note that the

Figure 4.15 Bode plots for the two systems of (4.5) and (4.6)—HΣ1

is on the left and HΣ2 is on the right

magnitude plots are the same, and this can be verified by looking at the expressions for HΣ1

and HΣ2 . The differences occur in the phase plots. Note that the phase angle varies only
slightly for Σ1 across the frequency range, but it varies more radically for Σ2. It is from this
behaviour that the term “minimum phase” is derived. •

4.4.2 Bode’s Gain/Phase Theorem

In Bode’s book (1945) one can find a few chapters on some properties of the frequency
response. In this section we begin this development, and from it derive Bode’s famous
“Gain/Phase Theorem.” The material in this section relies on some ideas from complex
function theory

that we review in Appendix D. We start by examining some basic properties of frequency
response functions. Here we begin to see that the real and imaginary parts of a frequency
response function are not arbitrary functions.

4.13 Proposition Let (N,D) be a SISO linear system in input/output form with HN,D the frequency
response. The following statements hold:

(i) Re(HN,D(−ω)) = Re(HN,D(ω));

(ii) Im(HN,D(−ω)) = −Im(HN,D(ω));

(iii) |HN,D(−ω)| = |HN,D(ω)|;
(iv) ]HN,D(−ω) = −]HN,D(ω) provided ]HN,D(ω) ∈ (−π, π).

Proof We prove (i) and (ii) together. It is certainly true that the real parts of D(iω)
and N(iω) will involve terms that have even powers of ω and that the imaginary parts of
D(iω) and N(iω) will involve terms that have odd powers of ω. Therefore, if we denote by
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D1(ω) and D2(ω) the real and imaginary parts of D(iω) and N1(ω) and N2(ω) the real and
imaginary parts of N(iω), we have

N1(−ω) = N1(ω), D1(−ω) = D1(ω), N2(−ω) = −N2(ω), D2(−ω) = −D2(ω). (4.7)

We also have

HN,D(ω) =
N1(ω) + iN2(ω)

D1(ω) + iD2(ω)

=
N1(ω)D1(ω) +N2(ω)D2(ω)

D2
1(ω) +D2

2(ω)
+ i

N2(ω)D1(ω)−N1(ω)D2(ω)

D2
1(ω) +D2

2(ω)
,

so that

Re(HN,D(ω)) =
N1(ω)D1(ω) +N2(ω)D2(ω)

D2
1(ω) +D2

2(ω)
,

Im(HN,D(ω)) =
N2(ω)D1(ω)−N1(ω)D2(ω)

D2
1(ω) +D2

2(ω)
.

Using the relations (4.7) we see that

N1(−ω)D1(−ω) +N2(−ω)D2(−ω) = N1(ω)D1(ω) +N2(ω)D2(ω),

N2(−ω)D1(−ω)−N1(−ω)D2(−ω) = N2(ω)D1(ω)−N1(ω)D2(ω),

and from this the assertions (i) and (ii) obviously follow.
(iii) This is a consequence of (i) and (ii) and the definition of |·|.
(iv) This follows from (i) and (ii) and the properties of arctan. �

Now we turn our attention to the crux of the material in this section—a look at how the
magnitude and phase of the frequency response are related. To relate these quantities, it is
necessary to represent the frequency response in the proper manner. To this end, for a SISO
linear system (N,D) in input/output form, we define ZPN,D ⊂ C to be the set of zeros and
poles of TN,D. We may then define SN,D : C \ ZPN,D → C by

SN,D(s) = ln(TN,D(s)),

noting that SN,D is analytic on C\ZPN,D. We recall that from the properties of the complex
logarithm we have

Re(SN,D(s)) = ln|TN,D(s)|, Im(SN,D(s)) = ]TN,D(s)

for s ∈ C \ ZPN,D. Along similar lines we define ZPN,D ⊂ R by

ZPN,D = {ω ∈ R | iω ∈ ZPN,D}.

Then we may define GN,D : R \ ZPN,D → C by

GN,D(ω) = SN,D(iω) = ln(HN,D(ω)). (4.8)

We can employ our previous use of the properties of the complex logarithm to assert that

Re(GN,D(ω)) = ln|HN,D(ω)|, Im(GN,D(ω)) = ]HN,D(ω).
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Note that these are almost the quantities one plots in the Bode plot. The phase is precisely
what is plotted in the Bode plot (against a logarithmic frequency scale), and Re(GN,D(ω))
is related to the magnitude plotted in the Bode plot by

Re(GN,D(ω)) = ln 10 log|HN,D(ω)| = ln 10

20
|HN,D(ω)| dB.

Note that the relationship is a simple one as it only involves scaling by a constant factor.
The quantity Re(GN,D(ω)) is measured in the charming units of neppers .

Recall that (N,D) is stable if all roots of D lie in C− and is minimum phase if all roots
of N lie in C−. Here we will require the additional assumption that N have no roots on the
imaginary axis. Let us say that a SISO linear system (N,D) for which all roots of N lie in
C− is strictly minimum phase .

4.14 Proposition Let (N,D) be a proper SISO linear system in input/output form that is stable
and strictly minimum phase, and let ω0 > 0. We then have

Im(GN,D(ω0)) =
2ω0

π

∫ ∞

0

Re(GN,D(ω))− Re(GN,D(ω0))

ω2 − ω2
0

dω.

Proof Throughout the proof we denote by G1(ω) the real part of GN,D(ω) and by G2(ω)
the imaginary part of GN,D(ω).

Let Uω0 ⊂ C be the open subset defined by

Uω0 = {s ∈ C | Re(s) > 0, Im(s) 6= ±ω0}.

We now define a closed contour whose interior contains points in Uω0 . We do this in parts.
First, for R > ω0 define a contour ΓR in Uω0 by

ΓR = {Reiθ | − π
2
≤ θ ≤ π

2
}.

Now for r > 0 define two contours

Γr,1 = {iω0 + reiθ | − π
2
≤ θ ≤ π

2
}, Γr,2 = {−iω0 + reiθ | − π

2
≤ θ ≤ π

2
}.

Finally define a contours Γr,j, j = 3, 4, 5, by

Γω0,3 = {iω | −∞ < ω0 ≤ −ω0 − r}
Γω0,4 = {iω | − ω0 + r ≤ ω0 ≤ ω0 − r}

Γω0,5 = {iω | ω + r ≤ ω0 <∞}.

The closed contour we take is then

ΓR,r = ΓR

5⋃

j=1

Γr,j.

We show this contour in Figure 4.16. Now define a function Fω0 : Uω0 → C by

Fω0(s) =
2iω0(SN,D(s)−G1(ω0))

s2 + ω2
0

.

Since (N,D) is stable and strictly minimum phase, SN,D is analytic on C+, and so Fω0 is
analytic on Uω0 , and so we may apply Cauchy’s Integral Theorem to the integral of Fω0

around the closed contour ΓR,r.
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Re

Im

iω0

−iω0

Γr,1

Γr,2

Γr,3

Γr,5

Γr,4

ΓR

Figure 4.16 The contour ΓR,r used in the proof of Proposition 4.14

Let us evaluate that part of this contour integral corresponding to the contour ΓR as R
get increasingly large. We claim that

lim
R→∞

∫

ΓR

Fω0(s) ds = 0.

Indeed we have

Fω0(Reiθ) =
2iω0SN,D(Reiθ)

−R2e2iθ + ω2
0

− 2iω0G1(ω0)

−R2e2iθ + ω2
0

.

Since deg(N) < deg(D) the first term on the right will behave like R−2 as R→∞ and the
second term will also behave like R−2 as R→∞. Since ds = iReiθ on ΓR, the integrand in∫

ΓR
Fω0(s) ds will behave like R−1 as R→∞, and so our claim follows.
Now let us examine what happens as we let r → 0. To evaluate the contributions of Γr,1

and Γr,2 we write

Fω0(s) =
SN,D(s)−G1(ω0)

s− iω0

− SN,D(s)−G1(ω0)

s+ iω0

.

On Γr,1 we have s = iω0 + reiθ so that on Γr,1 we have

Fω0(iω0 + reiθ) =
SN,D(iω0 + reiθ)−G1(ω0)

reiθ
− SN,D(iω0 + reiθ)−G1(ω0)

2iω0 + reiθ
.

We parameterise Γr,1 with the curve c : [−π
2
, π

2
] → C defined by c(t) = iω0 + reit so that

c′(t) = ireit. Thus, as r → 0, Fω0(s) ds behaves like

Fω0(s) ds ≈ (SN,D(iω0)−G1(ω0))ireit

reit
= i(GN,D(ω0)−G1(ω0)),



138 4 Frequency response (the frequency domain) 2016/09/21

using the parameterisation specified by c. Integrating gives

∫

Γr,1

Fω0(s) ds = iπ(GN,D(ω0)−G1(ω0)).

In similar fashion one obtains
∫

Γr,2

Fω0(s) ds = −iπ(GN,D(−ω0)−G1(ω0)).

Now we use Proposition 4.13 to assert that

GN,D(ω0)−GN,D(−ω0) = 2iG2(ω0).

Therefore
∫

Γr,1

Fω0(s) ds+

∫

Γr,2

Fω0(s) ds = iπ(GN,D(ω0)−G1(ω0)− (GN,D(−ω0)−G1(ω0)))

= − 2πG2(ω0).

Finally, we look at the integrals along the contours Γr,3, Γr,4, and Γr,5 as r → 0 and for
fixed R > ω0. These contour integrals in the limit will yield a single integral along the a
portion of the imaginary axis: ∫

i[−R,R]

Fω0(s) ds.

We can parameterise the contour in this integral by the curve c : [−R,R] → C defined by
c(t) = it. Thus c′(t) = i, giving

∫

i[−R,R]

Fω0(s) ds =

∫ R

−R

2iω0(SN,D(it)−G1(ω0))

ω2
0 − t2

i dt

=

∫ R

−R

2ω0(SN,D(it)−G1(ω0))

t2 − ω2
0

dt.

Using Proposition 4.13 we can write this as

∫

i[−R,R]

Fω0(s) ds =

∫ R

0

4ω0(G1(t)−G1(ω0))

t2 − ω2
0

dt.

Collecting this with our expression for the integrals along Γr,1 and Γr,2, as well as noting
our claim that the integral along ΓR vanishes as R→∞, we have shown that

lim
r→0

lim
R→∞

∫

ΓR,r

Fω0(s) ds =

∫ ∞

0

4ω0(G1(ω)−G1(ω0))

ω2 − ω2
0

dω − 2πG2(ω0).

By Cauchy’s Integral Theorem, this integral should be zero, and our result now follows from
straightforward manipulation. �

The following result gives an important property of stable strictly minimum phase sys-
tems.
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4.15 Theorem (Bode’s Gain/Phase Theorem) Let (N,D) be a proper, stable, strictly minimum
phase SISO linear system in input/output form, and let GN,D(ω) be as defined in (4.8). For
ω0 > 0 define Mω0

N,D : R→ R by Mω0
N,D(u) = Re(GN,D(ω0e

U)). Then we have

]HN,D(ω0) =
1

π

∫ ∞

−∞

dMω0
N,D

du
ln coth

∣∣u
2

∣∣ du.

Proof The theorem follows fairly easily from Proposition 4.14. By that result we have

]HN,D(ω0) =
2ω0

π

∫ ∞

0

Re(GN,D(ω))− Re(GN,D(ω0))

ω2 − ω2
0

dω. (4.9)

We make the change of variable ω = ω0e
u, upon which the integral in (4.9) becomes

2

π

∫ ∞

−∞

Mω0
N,D(u)−Mω0

N,D(0)

eu − e−u du =
1

π

∫ ∞

−∞

Mω0
N,D(u)−Mω0

N,D(0)

sinhu
du.

We note that ∫
du

sinhu
= ln coth u

2
,

and we may use this formula, combined with integration by parts, to determine that

1

π

∫ ∞

0

Mω0
N,D(u)−Mω0

N,D(0)

sinhu
du =

1

π

∫ ∞

0

dMω0
N,D

du
ln coth u

2
− 1

π
(Mω0

N,D(u)−Mω0
N,D(0)) ln coth u

2

∣∣∣
∞

0
, (4.10)

and

1

π

∫ 0

−∞

Mω0
N,D(u)−Mω0

N,D(0)

sinhu
du =

1

π

∫ 0

∞

dMω0
N,D

du
ln coth −u

2
+

1

π
(Mω0

N,D(u)−Mω0
N,D(0)) ln coth −u

2

∣∣∣
∞

0
. (4.11)

Let us look at the first term in each of these integrals. At the limit u = 0 we may
compute

coth u
2
≈ 2

u
+
u

6
− u3

360
+ · · ·

so that near u = 0, ln coth u
2
≈ − ln u

2
. Also, since Mω0

N,D(u) is analytic at u = 0, Mω0
N,D(u)−

Mω0
N,D(0) will behave linearly in u for u near zero. Therefore,

lim
u→0

Mω0
N,D(u)−Mω0

N,D(0)) ln coth u
2
≈ −u ln

u

2
.

Recalling that limu→0 u lnu = 0, we see that the lower limit in the above integrated ex-
pressions is zero. At the other limits as u → ±∞, ln coth u

2
behaves like e−u as u → +∞

and like eu as u → −∞. This, combined with the fact that Mω0
N,D(u) behaves like lnu as

u→∞, implies the vanishing of the upper limits in the integrated expressions in both (4.10)
and (4.11). Thus we have shown that these integrated terms both vanish. From this the
result follows easily. �
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It is not perhaps perfectly clear what is the import of this theorem, so let us examine it
for a moment. In this discussion, let us fix ω0 > 0. Bode’s Gain/Phase Theorem is telling
us that the phase angle for the frequency response can be determined from the slope of the
Bode plot with decibels plotted against the logarithm of frequency. The contribution to
the phase of the slope at some u = ω0 lnω is determined by the weighting factor ln coth

∣∣u
2

∣∣
which we plot in Figure 4.17. From the figure we see that the slopes near u = 0, or ω = ω0,

Figure 4.17 The weighting factor in Bode’s Gain/Phase Theorem

contribute most to the phase angle. But keep in mind that this only works for stable strictly
minimum phase systems. What it tells us is that for such systems, if one wishes to specify
a certain magnitude characteristic for the frequency response, the phase characteristic is
completely determined.

Let’s see how this works in an example.

4.16 Example Suppose we have a Bode plot with y = |HN,D(ω)|dB versus x = logω, and that
y = 20kx + b for k ∈ Z and b ∈ R. Thus the magnitude portion of the Bode plot is linear.
To employ the Gain/Phase Theorem we should convert this to a relation in ỹ = ln|HN,D(ω)|
versus x̃ = ln ω

ω0
. The coordinates are then readily seen to be related by

x =
x̃

ln 10
+ logω0, y =

20

ln 10
ỹ.

Therefore the relation y = 20kx+ b becomes

ỹ = kx̃+ k lnω0 +
b ln 10

20
.

In the terminology of Theorem 4.15 we thus have

Mω0
N,D(u) = ku+ k lnω0 +

b ln 10

20

so that
dM

ω0
N,D

du
= k. The Gain/Phase Theorem tells us that we may obtain the phase at any

frequency ω0 as

]HN,D(ω0) =
k

π

∫ ∞

−∞
ln coth

∣∣u
2

∣∣ du.
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The integral is one that can be looked up (Mathematica® evaluated it for me) to be π2

2
, so

that we have ]HN,D(ω0) = kπ
2

.
Let’s see if this agrees with what we have seen before. We know, after all, a transfer

function whose magnitude Bode plot is 20k logω. Indeed, one can check that choosing
the transfer function TN,D(s) = sk gives 20 log|HN,D(ω)| = 20k logω, and so this transfer
function is of the type for which we are considering in the case when b = 0. For systems of
this type we can readily determine the phase to be kπ

2
, which agrees with Bode’s Gain Phase

Theorem. •
Despite the fact that it might be possible to explicitly apply Bode’s Gain/Phase Theo-

rem in some examples to directly compute the phase characteristic for a certain magnitude
characteristic, the value of the theorem lies not in the ability to do such computations, but
rather in its capacity to give us approximate information for stable and strictly minimum
phase systems. Indeed, it is sometimes useful to make the approximation

]HN,D(ω0) =
dMω0

N,D

du

∣∣∣
u=0

π

2
, (4.12)

and this approximation becomes better when one is in a region where the slope of the
magnitude characteristic on the Bode plot is large at ω0 compared to the slope at other
frequencies. Uses of Gain/Phase

theorem

4.5 Uncertainly in system models

As hinted at in Section 1.2 in the context of the simple DC servo motor example, ro-
bustness of a design to uncertainties in the model is a desirable feature. In recent years,
say the last twenty years, rigorous mathematical techniques have been developed to handle
model uncertainty, these going under the name of “robust control.” These matters will be
touched upon in this book, and in this section, we look at the first aspect of this: representing
uncertainty in system models. The reader will observe that this uncertainty representation
is done in the frequency domain. The reason for this is merely that the tools for controller
design that have been developed up to this time rely on such a description. In the context
of this book, this culminates in Chapter 15 with a systematic design methodology keeping
robustness concerns foremost.

In this section it is helpful to introduce the H∞-norm for a rational function. Given
R ∈ R(s) we denote

‖R‖∞ = sup
ω∈R
{|R(iω)|}.

This will be investigated rather more systematically in Section 5.3.2, but for now the meaning
is rather pedestrian: it is the maximum value of the magnitude Bode plot.

4.5.1 Structured and unstructured uncertainty

The reader may wish to recall our general control theoretic terminology from Section 1.1.
In particular, recall that a “plant” is that part of a control system that is given to the control
designer. What is given to the control designer is a model, hopefully in something vaguely
resembling one of the three forms we have thus far discussed: a state-space model, a transfer
function, of a frequency response function. Of course, this model cannot be expected to be
perfect. If one is uncertain about a plant model, one should make an attempt to come up
with a mathematical description of what this means. There are many possible candidates,
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and they can essentially be dichotomised as structured uncertainty and unstructured
uncertainty . The idea with structured uncertainty is that one has a specific type of plant
model in mind, and parameters in that plant model are regarded as uncertain. In this
approach, one wishes to design a controller that has desired properties for all possible values
of the uncertain parameters.

4.17 Example Suppose a mass is moving under a the influence of a control force u. The precise
value of the mass could be unknown, say m ∈ [m1,m2]. In this case, a control design should
be thought of as being successful if it accomplishes stated objectives (the reader does not
know what these might be at this point in the book!) for all possible values of the mass
parameter m.

Typically, structured uncertainty can be expected to be handled on a case by case basis,
depending on the nature of the uncertainty. An approach to structured uncertainty is put
forward by Doyle [1982]. For unstructured uncertainty, the situation is typically different as
one considers a set of plant transfer functions P that are close to a nominal plant R̄P in
some way. Again the objective is to design a controller that works for every plant in the set
of allowed plants.

4.18 Example (Example 4.17 cont’d) Let us look at the mass problem above in a different

manner. Let us suppose that we choose a nominal plant R̄P (s) = 1/m
s2

and define a set of
candidate plants

P = {RP ∈ R(s) | ‖RP − R̄P‖∞ ≤ ε} (4.13)

for some ε > 0. In this case, we have clearly allowed a much larger class of uncertainty that
was allowed in Example 4.17. Indeed, not only is the mass no longer uncertain, even the
form of the transfer function is uncertain. •

Thus we see that unstructured uncertainty generally forces us to consider a larger class
of plants, and so is a more stringent and, therefore, conservative manner for modelling
uncertainty. That is to say, by designing a controller that will work for all plants in P, we
are designing a controller for plants that are almost certainly not valid models for the plant
under consideration. Nevertheless, it turns out that this conservatism of design is made up
for by the admission of a consistent design methodology that goes along with unstructured
uncertainty. We shall now turn our attention to describing how unstructured uncertainty
may arise in examples.

4.5.2 Unstructured uncertainty models

We shall consider four unstructured uncertainty models, although others are certainly
possible. Of the four types of uncertainty we present, only two will be treated in detail. A
general account of uncertainty models is the subject of Chapter 8 in [Dullerud and Paganini
1999]. Consistent with our keep our treatment of robust control to a tolerable level of
simplicity, we shall only look at rather straightforward types of uncertainty.

The first type we consider is called multiplicative uncertainty . We start with a
nominal plant R̄P ∈ R(s) and let Wu ∈ R(s) be a proper rational function with no poles in
C+. Denote by P×(R̄P ,Wu) the set of rational functions RP ∈ R(s) with the properties

1. RP and R̄P have the same number of poles in C+,

2. RP and R̄P have the same imaginary axis poles, and
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3.
∣∣∣RP (iω)

R̄P (iω)
− 1
∣∣∣ ≤ |Wu(iω)| for all ω ∈ R.

Another way to write this set of plants is to note that RP ∈P×(R̄P ,Wu) if and only if

RP = (1 + ∆Wu)R̄P

where ‖∆‖∞ ≤ 1. Of course, ∆ is not arbitrary, even given ‖∆‖∞ ≤ 1. Indeed, this condition
only ensures condition 3 above. If ∆ further satisfies the first two conditions, it is said to be
allowable . In this representation, it is perhaps more clear where the term multiplicative
uncertainty comes up.

The following example is often used as one where multiplicative uncertainty is appropri-
ate.

4.19 Example Recall from Exercise EE.6 that the transfer function for the time delay of a function
g by T is e−Tsĝ(s). Let us suppose that we have a plant transfer function

RP (s) = e−TsR(s)

for some R(s) ∈ R(s). We wish to ensure that this plant is modelled by multiplicative
uncertainty. To do so, we note that the first two terms in the Taylor series for e−Ts are
1− Ts, and thus we suppose that when T is small, a nominal plant of the form

R̄P (s) =
R(s)

1− Ts
will do the job. Thus we are charged with finding a rational function Wu so that

∣∣∣RP (iω)

R̄(iω)
− 1
∣∣∣ ≤ |Wu(iω)|, ω ∈ R.

Let us suppose that T = 1
10

. In this case, the condition on Wu becomes

|Wu(iω)| ≥
∣∣∣e
−0.1iω

1− s
10

− 1
∣∣∣, ω ∈ R.

From Figure 4.18 (the solid curve) one can see that the magnitude of

∣∣∣ e
− iω

10

1− s
10

− 1
∣∣∣

has the rough behaviour of tailing off at 40dB/decade at low frequency and having constant
magnitude at high frequency. Thus a model of the form

Wu(s) =
Ks2

τs+ 1

is a likely candidate, although other possibilities will work as well, as long as they capture
the essential features. Some fiddling with the Bode plot yields τ = 1

15
and K = 1

100
as

acceptable choices. Thus this choice of Wu will include the time delay plant in its set of
plants. •

The next type of uncertainty we consider is called additive uncertainty . Again we
start with a nominal plant R̄P and a proper Wu ∈ R(s) having no poles in C+. Denote by
P×(R̄P ,Wu) the set of rational functions RP ∈ R(s) with the properties
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Figure 4.18
∣∣ e− iω10

1− s
10
− 1
∣∣ (solid) and Wu =

1
100

(1−ω2

15
)

(dashed)

1. RP and R̄P have the same number of poles in C+,

2. RP and R̄P have the same imaginary axis poles, and

3. |RP (iω)− R̄P (iω)| ≤ |Wu(iω)| for all ω ∈ R.

A plant in P+(R̄P ,Wu) will have the form

RP = R̄P + ∆Wu

where ‖∆‖∞ ≤ 1. As with multiplicative uncertainty, ∆ will be allowable if properties 1
and 2 above are met.

4.20 Example This example has a generic flavour. Suppose that we make measurements of our
plant to get magnitude information about its frequency response at a finite set of frequencies
{ω1, . . . , ωk}. If the test is repeated at each frequency a number of times, we might try to
find a nominal plant transfer function R̄P with the property that at the measured frequencies
its magnitude is roughly the average of the measured magnitudes. One then can determine
Wu so that it covers the spread in the data at each of the measured frequencies. Such a Wu

should have the property, by definition, that

|RP (iωj)− R̄P (iωj)| ≤ |Wu(iωj)|, j = 1, . . . , k.

One could then hope that at the frequencies where data was not taken, the actual plant data
is in the data of the set P+(R̄P ,Wu). •

The above two classes of uncertainty models, P×(R̄P ,Wu) and P+(R̄P ,Wu) are the
two for which analysis will be carried out in this book. The main reason for this choice
is convenience of analysis. Fortunately, many interesting cases of plant uncertainty can be
modelled as multiplicative or additive uncertainty. However, for completeness, we shall give
two other types of uncertainty representations.

The first situation we consider where the set of plants are related to the nominal plant
as

RP =
R̄P

1 + ∆WuRP

, ‖∆‖∞ ≤ 1. (4.14)

This uncertainty representation can arise in practice.
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4.21 Example Suppose that we have a plant of the form

RP (s) =
1

s2 + as+ 1

where all we know is that a ∈ [amin, amax]. By taking

R̄P (s) =
1

s2 + aavgs+ 1
, Wu(s) = 1

2
δas,

where aavg = 1
2
(amax + amin) and δa = amax − amin, then the set of plant is exactly as

in (4.14), if ∆ is a number between −1 and 1. If ∆ is allowed to be a rational function
satisfying ‖∆‖∞ ≤ 1 then we have embedded our actual set of plants inside the larger
uncertainty set described by (4.14). One can view this example of one where the structured
uncertainty is included as part of an unstructured uncertainty model. •

The final type of uncertainty model we present allows plants that are related to the
nominal plant as

RP =
R̄P

1 + ∆Wu

, ‖∆‖∞ ≤ 1.

Let us see how this type of uncertainty can come up in an example.

4.22 Example • finish

4.23 Remarks

1. In our definitions of P×(R̄P ,Wu) and P+(R̄P ,Wu) we made some assumptions about the
poles of the nominal plant and the poles of the plants in the uncertainty set. The reason
for these assumptions is not evident at this time, and indeed they can be relaxed with the
admission of additional complexity of the results of Section 7.3, and those results that
depend on these results. In practice, however, these assumptions are not inconvenient to
account for.

2. All of our choices for uncertainty modelling share a common defect. They allow plants
that will almost definitely not be possible models for our actual plant. That is to say,
our sets of plants are very large. This has something of a drawback in our employment
of these uncertainty models for controller design—they will lead to a too conservative
design. However, this is mitigated by the existence of effective analysis tools to do robust
controller design for such uncertainty models.

3. When deciding on a rational function Wu with which to model plant uncertainty with
one of the above schemes, one typically will not want Wu to tend to zero as s→∞. The
reason for this is that at higher frequencies is typically where model uncertainty is the
greatest. This becomes a factor when choosing starting point for Wu. •

4.6 Summary

In this section we have introduced a nice piece of equipment—the frequency response
function—and a pair of slick representations of it—the Bode plot and the polar plot. Here
are the pertinent things you should know from this chapter.

1. For a given SISO linear system Σ, you should be able to compute ΩΣ and HΣ.
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2. The interpretation of the frequency response given in Theorem 4.1 is fundamental in
understanding just what it is that the frequency response means.

3. The complete equivalence of the impulse response, the transfer function, and the fre-
quency response is important to realise. One should understand that something that one
observes in one of these must also be reflected somehow in the other two.

4. The Bode plot as a representation of the frequency response is extremely important.
Being able to look at it and understand things about the system in question is part of
the “art” of control engineering, although there is certainly a lot of science in this too.

5. You should be able to draw by hand the Bode plot for any system whose numerator
and denominator polynomials you can factor. Really the only subtle thing here is the
dependence on ζ for the second-order components of the frequency response. If you think
of ζ as damping, the interpretation here becomes straightforward since one expects larger
magnitudes for lower damping when the second-order term is in the denominator.

6. The polar plot as a representation of the frequency response will be useful to us in
Chapter 12. You should at least be able to sketch a polar plot given the corresponding
Bode plot.

7. You should be aware of why minimum phase system have the name they do, and be able
to identity these in “obvious” cases.

8. The developments of Section 4.4.2 are somehow essential, and at the same time somewhat
hard. If one is to engage in controller design using frequency response, clearly the fact that
there are essential restrictions on how the frequency response may behave is important.

9. It might be helpful on occasion to apply the approximation (4.12).



Exercises for Chapter 4 147

Figure 4.19 Asymptotes for magnitude and phase plots for
H(ω) = 1 + iω (top left), H(ω) = 1 + 2iζω − ω2 (top right),
H(ω) = (1+iω)−1 (bottom left), and H(ω) = (1+2iζω−ω2)−1

(bottom right)

Exercises

E4.1 Consider the vector initial value problem

ẋ(t) = Ax(t) + u0 sinωtb, x(0) = x0

where there are no eigenvalues for A of the form iω̃ where ω̃ integrally divides ω. Let
xp(t) be the unique periodic solution constructed in the proof of Theorem 4.1, and
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write the solution to the initial value problem as x(t) = xp(t) + xh(t). Determine an
expression for xh(t). Check that xh(t) is a solution to the homogeneous equation.

E4.2 Consider the SISO linear system Σ = (A, b, ct,01) with

A =

[
σ0 ω0

−ω0 σ0

]
, b =

[
0
1

]
, c =

[
1
0

]

for σ0 ∈ R and ω0 > 0.

(a) Determine ΩΣ and compute HΣ.

(b) Take u(t) = u0 sinωt, and determine when the system satisfies the hypotheses of
Theorem 4.1, and determine the unique periodic output yp(t) guaranteed by that
theorem.

(c) Do periodic solutions exist when the hypotheses of Theorem 4.1 are not satisfied?

(d) Plot the Bode plot for HΣ for various values of σ0 ≤ 0 and ω0 > 0. Make sure
you get all cases where the Bode plot assumes a different “character.”

We have two essentially differing characterisations of the frequency response, one as the
way in which sinusoidal outputs appear under sinusoidal inputs (cf. Theorem 4.1) and one
involving Laplace and Fourier transforms (cf. Proposition 4.3). In the next exercise you will
explore the differing domains of validity for the two interpretations.

E4.3 Let Σ = (A, b, ct,D) be complete. Show that the Fourier transform of h+
Σ is defined if

and only if all eigenvalues of A lie in C−. Does the characterisation of the frequency
response provided in Theorem 4.1 share this restriction?

E4.4 For the SISO linear system (N(s), D(s)) = (1, s + 1) in input/output form, verify
explicitly the following statements, stating hypotheses on arguments of the functions
where necessary.

(a) TN,D is the Laplace transform of hN,D.

(b) hN,D is the inverse Laplace transform of TN,D.

(c) HN,D is the Fourier transform of hN,D.

(d) hN,D is the inverse Fourier transform of HN,D.

(e) TN,D(s) =
1

2π

∫ ∞

−∞

HN,D(ω)

s− iω dω.

(f) HN,D(ω) = TN,D(iω).

When discussing the impulse response, it was declared that to obtain the output for an
arbitrary input, one can use a convolution with the impulse response (plus a bit that depends
upon initial conditions). In the next exercise, you will come to an understanding of this in
terms of Fourier transforms.

E4.5 Suppose that f̌ and ǧ are functions of ω, and that they are the Fourier transforms
of functions f, g : (−∞,∞)→ R. You know from your course on transforms that the
inverse Fourier transform of the product f̌ ǧ is the convolution

(f ∗ g)(t) =

∫ ∞

−∞
f(t− τ)g(τ) dτ.

Now consider a SISO linear system Σ = (A, b, ct,01) with causal impulse response
h+

Σ. Recall that the output for zero state initial condition corresponding to the input
u : [0,∞)→ R is

y(t) =

∫ t

0

h+
Σ(t− τ)u(τ) dτ.
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Make sense of the statement, “The output y is equal to the convolution h+
Σ ∗u.” Note

that you are essentially being asked to resolve the conflict in the limits of integration
between convolution in Fourier and Laplace transforms.

E4.6 We will consider in detail here the mass-spring-damper system whose Bode plots are
produced in Example 4.6. We begin by scaling the input u by the spring constant k
so that, upon division by m, the governing equations are

ẍ+ 2ζω0ẋ+ ω2
0x = ω2

0u,

where ω0 =
√

k
m

and ζ = d
2
√
km

. As output we shall take y = x. We allow d to be

zero, but neither m nor k can be zero.

(a) Write this system as a SISO linear system Σ = (A, b, ct,D) (that is, determine
A, b, c, and D), and determine the transfer function TΣ.

(b) Determine ΩΣ for the various values of the parameters ω0 and ζ, and then deter-
mine the frequency response HΣ.

(c) Show that

|HΣ(ω)| = ω2
0√

(ω2
0 − ω2)2 + 4ζ2ω2

0ω
2
.

(d) How does |HΣ(ω)| behave for ω � ω0? for ω � ω0?

(e) Show that d
dω
|HΣ(ω)| = 0 if and only if d

dω
|HΣ(ω)|2 = 0.

(f) Using the previous simplification, show that for ζ < 1√
2

there is a maximum for

HΣ(ω). The maximum you determine should occur at the frequency

ωmax = ω0

√
1− 2ζ2,

and should take the value

|HΣ(ωmax)| = 1

2ζ
√

1− ζ2
.

(g) Show that
]HΣ(ω) = atan2(ω2

0 − ω2,−2ζω0ω),

where atan2 is the smart inverse tangent function that knows in which quadrant
you are.

(h) How does ]HΣ(ω) behave for ω � ω0? for ω � ω0?

(i) Determine an expression for ]HΣ(ωmax).

(j) Use your work above to give an accurate sketch of the Bode plot for Σ in cases
when ζ ≤ 1√

2
, making sure to mark on your plot all the features you determined

in the previous parts of the question. What happens to the Bode plot as ζ is
decreased? What would the Bode plot look like when ζ = 0?

E4.7 Construct Bode plots by hand for the following first-order SISO linear systems in
input/output form:

(a) (N(s), D(s)) = (1, s+ 1);

(b) (N(s), D(s)) = (s, s+ 1);

(c) (N(s), D(s)) = (s− 1, s+ 1);

(d) (N(s), D(s)) = (2, s+ 1).
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E4.8 Construct Bode plots by hand for the following second-order SISO linear systems in
input/output form:

(a) (N(s), D(s)) = (1, s2 + 2s+ 2);

(b) (N(s), D(s)) = (s, s2 + 2s+ 2);

(c) (N(s), D(s)) = (s− 1, s2 + 2s+ 2);

(d) (N(s), D(s)) = (s+ 2, s2 + 2s+ 2).

E4.9 Construct Bode plots by hand for the following third-order SISO linear systems in
input/output form:

(a) (N(s), D(s)) = (1, s3 + 3s2 + 4s+ 2);

(b) (N(s), D(s)) = (s, s3 + 3s2 + 4s+ 2);

(c) (N(s), D(s)) = (s2 − 4, s3 + 3s2 + 4s+ 2);

(d) (N(s), D(s)) = (s2 + 1, s3 + 3s2 + 4s+ 2).

E4.10 For each of the SISO linear systems given below do the following:

1. calculate the eigenvalues of A;

2. calculate the transfer function;

3. sketch the Bode plots of the magnitude and phase of the frequency response;

4. by trial and error playing with the parameters, on your sketch, indicate the rôle
played by the parameters of the system (e.g., ω0 in parts (a) and (b));

5. try to justify the name of the system by looking at the shapes of the Bode plots.

Here are the systems (assume all parameters are positive):

(a) low-pass filter :

A =
[
−ω0

]
, b =

[
1
]
, c =

[
ω0

]
, D =

[
0
]

;

(b) high-pass filter :

A =
[
−ω0

]
, b =

[
1
]
, c =

[
−ω0

]
, D =

[
1
]

;

(c) notch filter :

A =

[
0 1
−ω2

0 −δω0

]
, b =

[
0
1

]
, c =

[
0
−δω0

]
, D =

[
1
]

;

(d) bandpass filter :

A =

[
0 1
−ω2

0 −δω0

]
, b =

[
0
1

]
, c =

[
0
δω0

]
, D =

[
0
]
.

E4.11 Consider the coupled mass system of Exercises E1.4, E2.19, and E3.14. Assume no
damping and take the input from Exercise E2.19 in the case when α = 0. In Ex-
ercise E3.14, you constructed an output vector c0 for which the pair (A, c0) was
unobservable.

(a) Construct a family of output vectors cε by defining cε = c0 + εc1 for ε ∈ R and
c1 ∈ R4. Make sure you choose c1 so that cε is observable for ε 6= 0.

(b) Determine ΩΣ, and the frequency response HΣ using the output vector cε (allow
ε to be an arbitrary real number).
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(c) Choose the parameters m = 1 and k = 1 and determine the Bode plot for values
of ε around zero. Do you notice anything different in the character of the Bode
plot when ε = 0?

E4.12 Consider the pendulum/cart system of Exercises E1.5, E2.4, and E3.15. For each of
the following linearisations:

(a) the equilibrium point (0, 0) with cart position as output;

(b) the equilibrium point (0, 0) with cart velocity as output;

(c) the equilibrium point (0, 0) with pendulum angle as output;

(d) the equilibrium point (0, 0) with pendulum angular velocity as output;

(e) the equilibrium point (0, π) with cart position as output;

(f) the equilibrium point (0, π) with cart velocity as output;

(g) the equilibrium point (0, π) with pendulum angle as output;

(h) the equilibrium point (0, π) with pendulum angular velocity as output,

do the following:

1. determine ΩΣ, and the frequency response HΣ for the system;

2. for parameters M = 11
2
, m = 1, g = 9.81, and ` = 1

2
, produce the Bode plot for

the pendulum/cart system;

3. can you see reflected in your Bode plot the character of the spectrum of the zero
dynamics as you determined in Exercise E3.15?

E4.13 Consider the double pendulum system of Exercises E1.6, E2.5, E1.6 and E3.16. For
each of the following linearisations:

(a) the equilibrium point (0, 0, 0, 0) with the pendubot input;

(b) the equilibrium point (0, π, 0, 0) with the pendubot input;

(c) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(d) the equilibrium point (π, π, 0, 0) with the pendubot input;

(e) the equilibrium point (0, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (0, π, 0, 0) with the acrobot input;

(g) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(h) the equilibrium point (π, π, 0, 0) with the acrobot input,

do the following:

1. determine ΩΣ, and the frequency response HΣ for the system;

2. for parameters m1 = 1, m2 = 2, `1 = 1
2
, and `2 = 1

3
, produce the Bode plot for

the double pendulum;

3. can you see reflected in your Bode plot the character of the spectrum of the zero
dynamics as you determined in Exercise E3.16?

In each case, use the angle of the second link as output.

E4.14 Consider the coupled tank system of Exercises E1.11, E2.6, and E3.17. For the lin-
earisations in the following cases:

(a) the output is the level in tank 1;

(b) the output is the level in tank 2;

(c) the output is the difference in the levels,

do the following:

1. determine ΩΣ, and the frequency response HΣ for the system;
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2. for parameters α = 1
3
, δ1 = 1, A1 = 1, A2 = 1

2
, a1 = 1

10
, a2 = 1

20
, and g = 9.81,

produce the Bode plot for the tank system;

3. can you see reflected in your Bode plot the character of the spectrum of the zero
dynamics as you determined in Exercise E3.17?

E4.15 Suppose you are shown a Bode plot for a stable SISO linear system Σ. Can you
tell from the character of the plot whether Σ is controllable? observable? minimum
phase?

E4.16 Construct two transfer functions, one minimum phase and the other not, whose fre-
quency response magnitudes are the same (you cannot use the one in the book). Make
Bode plots for each system, and make the relevant observations.

E4.17 Let (N,D) be a proper, stable SISO linear system of relative degree m. Characterise
the total phase shift,

]HN,D(∞)− ]HN,D(0),

in terms of the roots of N , assuming that N has no roots on iR.

In the next exercise, you will provide a rigorous justification for the term “minimum phase.”

E4.18 Let (N,D) be a SISO linear system in input/output form, and suppose that it is
minimum phase (thus N has no roots in C+). Let M(N,D) denote the collection of
SISO linear systems (Ñ, D̃) in input/output form for which

|HN,D(ω)| = |HÑ,D̃(ω)|, ω ∈ R.

Thus the magnitude Bode plots for all systems in M(N,D) are exactly the magnitude
Bode plot for (N,D).

(a) How are systems in M(N,D) related to (N,D)? This boils down, of course, to
identifying SISO linear systems that have a plot magnitude of 1 at all frequencies.

For (Ñ, D̃) ∈ M(N,D) denote φ0(Ñ, D̃) = limω→0]HÑ,D̃(ω) and φ∞(Ñ, D̃) =
limω→∞]HÑ,D̃(ω). Now let

∆φ(Ñ, D̃) = φ∞(Ñ, D̃)− φ0(Ñ, D̃).

With this notation prove the following statement.

(b) ∆φ(N,D) ≤ ∆φ(Ñ, D̃) for any (Ñ, D̃) ∈M(N,D).

E4.19 Construct polar plots corresponding to the Bode plots you made in Exercise E4.7.

E4.20 Construct polar plots corresponding to the Bode plots you made in Exercise E4.8.

E4.21 Construct polar plots corresponding to the Bode plots you made in Exercise E4.9.

E4.22 For the SISO linear system Σ of Exercise E4.2, plot the polar plots for various σ0 ≤ 0
and ω0 > 0.

It is not uncommon to encounter a scheme for control design that relies on a plant being
stable, i.e., having all poles in C−. This is in conflict with many plants—for example, the
simple mass— that have a pole at s = 0. In the next exercise, you will investigate a
commonly employed hack to get around plants having poles at s = 0.

E4.23 The transfer function

T (s) =
K

τs+ 1

is put forward as providing a “stable approximation to 1
s
.”
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(a) Comment on how fiddling K and τ , particularly τ , render the approximation
better or worse.

(b) Explain in what sense this approximation is valid, and also how it is invalid.

E4.24 For the following SISO linear systems in input/output form, determine whether they
satisfy the hypotheses of Bode’s Gain/Phase Theorem. If the system does satisfy
the hypotheses, verify explicitly that the theorem holds, and determine how good is
the approximation (4.12) at various frequencies. If the system does not satisfy the
hypotheses, determine explicitly whether the theorem does in fact hold.

(a) (N(s), D(s)) = (1, s).

(b) (N(s), D(s)) = (s, 1).

(c) (N(s), D(s)) = (1, s+ 1).

(d) (N(s), D(s)) = (1, s− 1).

(e) (N(s), D(s)) = (s+ 1, 1).

(f) (N(s), D(s)) = (s− 1, 1).

E4.25 Exercise on the approximate version of Bode’s Gain/Phase Theorem. complete
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Chapter 5

Stability of control systems

We will be trying to stabilise unstable systems, or to make an already stable system even
more stable. Although the essential goals are the same for each class of system we have
encountered thus far (i.e., SISO linear systems and SISO linear systems in input/output
form), each has its separate issues. We first deal with these. In each case, we will see that
stability boils down to examining the roots of a polynomial. In Section 5.5 we give algebraic
criteria for determining when the roots of a polynomial all lie in the negative complex plane.
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5.1 Internal stability

Internal stability is a concept special to SISO linear systems i.e., those like

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t) +Du(t).
(5.1)

Internal stability refers to the stability of the system without our doing anything with the
controls. We begin with the definitions.
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5.1 Definition A SISO linear system Σ = (A, b, ct,D) is

(i) internally stable if
lim sup
t→∞

‖x(t)‖ <∞

for every solution x(t) of ẋ(t) = Ax(t);

(ii) internally asymptotically stable if

lim
t→∞
‖x(t)‖ = 0

for every solution x(t) of ẋ(t) = Ax(t);

(iii) internally unstable if it is not internally stable. •
Of course, internal stability has nothing to do with any part of Σ other than the matrix
A. If one has a system that is subject to the problems we discussed in Section 2.3, then
one may want to hope the system at hand is one that is internally stable. Indeed, all the
bad behaviour we encountered there was a direct result of my intentionally choosing systems
that were not internally stable—it served to better illustrate the problems that can arise.

Internal stability can almost be determined from the spectrum of A. The proof of the
following result, although simple, relies on the structure of the matrix exponential as we
discussed in Section B.2. We also employ the notation

C− = {z ∈ C | Re(z) < 0}, C+ = {z ∈ C | Re(z) > 0},
C− = {z ∈ C | Re(z) ≤ 0}, C+ = {z ∈ C | Re(z) ≥ 0},

iR = {z ∈ C | Re(z) = 0}.

With this we have the following result, recalling notation concerning eigenvalues and eigen-
vectors from Section A.5.

5.2 Theorem Consider a SISO linear system Σ = (A, b, ct,D). The following statements hold.

(i) Σ is internally unstable if spec(A) ∩ C+ 6= ∅.
(ii) Σ is internally asymptotically stable if spec(A) ⊂ C−.

(iii) Σ is internally stable if spec(A) ∩ C+ = ∅ and if mg(λ) = ma(λ) for λ ∈ spec(A) ∩
(iR).

(iv) Σ is internally unstable if mg(λ) < ma(λ) for λ ∈ spec(A) ∩ (iR).

Proof (i) In this case there is an eigenvalue α + iω ∈ C+ and a corresponding eigenvector
u+ iv which gives rise to real solutions

x1(t) = eαt(cosωtu− sinωtv), x2(t) = eαt(sinωtu+ cosωtv).

Clearly these solutions are unbounded as t→∞ since α > 0.
(ii) If all eigenvalues lie in C−, then any solution of ẋ(t) = Ax(t) will be a linear

combination of n linearly independent vector functions of the form

tke−αtu or tke−αt(cosωtu− sinωtv) or tke−αt(sinωtu+ cosωtv) (5.2)

for α > 0. Note that all such functions tend in length to zero as t → ∞. Suppose that we
have a collection x1, . . . ,xn(t) of such vector functions. Then, for any solution x(t) we have,
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for some constants c1, . . . , cn,

lim
t→∞
‖x(t)‖ = lim

t→∞
‖c1x1(t) + · · ·+ cnxn(t)‖

≤ |c1| lim
t→∞
‖x1(t)‖+ · · ·+ |cn| lim

t→∞
‖xn(t)‖

= 0,

where we have used the triangle inequality, and the fact that the solutions x1(t), . . . ,xn(t)
all tend to zero as t→∞.

(iii) If spec(A) ∩ C+ = ∅ and if further spec(A) ⊂ C−, then we are in case (ii), so Σ
is internally asymptotically stable, and so internally stable. Thus we need only concern
ourselves with the case when we have eigenvalues on the imaginary axis. In this case,
provided all such eigenvalues have equal geometric and algebraic multiplicities, all solutions
will be linear combinations of functions like those in (5.2) or functions like

sinωtu or cosωtu. (5.3)

Let x1(t), . . . ,x`(t) be ` linearly independent functions of the form (5.2), and let
x`+1(t), . . . ,xn(t) be linearly independent functions of the form (5.3) so that x1, . . . ,xn
forms a set of linearly independent solutions for ẋ(t) = Ax(t). Thus we will have, for some
constants c1, . . . , cn,

lim sup
t→∞

‖x(t)‖ = lim sup
t→∞

‖c1x1(t) + · · ·+ cnxn(t)‖

≤ |c1| lim sup
t→∞

‖x1(t)‖+ · · ·+ |c`| lim sup
t→∞

‖x`(t)‖+

|c`+1| lim sup
t→∞

‖x`+1(t)‖+ · · ·+ |cn| lim sup
t→∞

‖xn(t)‖

= |c`+1| lim sup
t→∞

‖x`+1(t)‖+ · · ·+ |cn| lim sup
t→∞

‖xn(t)‖.

Since each of the terms ‖x`+1(t)‖, . . . , ‖xn(t)‖ are bounded, their lim sup’s will exist, which
is what we wish to show.

(iv) If A has an eigenvalue λ = iω on the imaginary axis for which mg(λ) < ma(λ) then
there will be solutions of ẋ(t) = Ax(t) that are linear combinations of vector functions of
the form tk sinωtu or tk cosωtv. Such functions are unbounded as t → ∞, and so Σ is
internally unstable. �

5.3 Remarks

1. A matrix A is Hurwitz if spec(A) ⊂ C−. Thus A is Hurwitz if and only if Σ =
(A, b, ct,D) is internally asymptotically stable.

2. We see that internal stability is almost completely determined by the eigenvalues of A.
Indeed, one says that Σ is spectrally stable if A has no eigenvalues in C+. It is only
in the case where there are repeated eigenvalues on the imaginary axis that one gets to
distinguish spectral stability from internal stability.

3. One does not generally want to restrict oneself to systems that are internally stable.
Indeed, one often wants to stabilise an unstable system with feedback. In Theorem 6.49
we shall see, in fact, that for controllable systems it is always possible to choose a
“feedback vector” that makes the “closed-loop” system internally stable. •
The notion of internal stability is in principle an easy one to check, as we see from an

example.



160 5 Stability of control systems 2016/09/21

5.4 Example We look at a SISO linear system Σ = (A, b, ct,D) where

A =

[
0 1
−b −a

]
.

The form of b, c, and D does not concern us when talking about internal stability. The
eigenvalues of A are the roots of the characteristic polynomial s2 + as+ b, and these are

−a
2
± 1

2

√
a2 − 4b.

The situation with the eigenvalue placement can be broken into cases.

1. a = 0 and b = 0: In this case there is a repeated zero eigenvalue. Thus we have spectral
stability, but we need to look at eigenvectors to determine internal stability. One readily
verifies that there is only one linearly independent eigenvector for the zero eigenvalue, so
the system is unstable.

2. a = 0 and b > 0: In this case the eigenvalues are purely imaginary. Since the roots are
also distinct, they will have equal algebraic and geometric multiplicity. Thus the system
is internally stable, but not internally asymptotically stable.

3. a = 0 and b < 0: In this case both roots are real, and one will be positive. Thus the
system is unstable.

4. a > 0 and b = 0: There will be one zero eigenvalue if b = 0. If a > 0 the other root will
be real and negative. In this case then, we have a root on the imaginary axis. Since it is
distinct, the system will be stable, but not asymptotically stable.

5. a > 0 and b > 0: One may readily ascertain (in Section 5.5 we’ll see an easy way to do
this) that all eigenvalues are in C− if a > 0 and b > 0. Thus when a and b are strictly
positive, the system is internally asymptotically stable.

6. a > 0 and b < 0: In this case both eigenvalues are real, one being positive and the other
negative. Thus the system is internally unstable.

7. a < 0 and b = 0: We have one zero eigenvalue. The other, however, will be real and
positive, and so the system is unstable.

8. a < 0 and b > 0: We play a little trick here. If s0 is a root of s2 + as + b with a, b < 0,
then −s0 is clearly also a root of s2 − as + b. From the previous case, we know that
−s0 ∈ C−, which means that s0 ∈ C+. So in this case all eigenvalues are in C+, and so
we have internal instability.

9. a < 0 and b < 0: In this case we are guaranteed that all eigenvalues are real, and
furthermore it is easy to see that one eigenvalue will be positive, and the other negative.
Thus the system will be internally unstable. •
Note that one cannot really talk about internal stability for a SISO linear system (N,D)

in input/output form. After all, systems in input/output form do not have built into them a
notion of state, and internal stability has to do with states. In principle, one could define the
internal stability for a proper system as internal stability for ΣN,D, but this is best handled
by talking directly about input/output stability which we now do.

5.2 Input/output stability

We shall primarily be interested in this course in input/output stability. That is, we want
nice inputs to produce nice outputs. In this section we demonstrate that this property is
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intimately related with the properties of the impulse response, and therefore the properties
of the transfer function.

5.2.1 BIBO stability of SISO linear systems

We begin by talking about input/output stability in the context of SISO linear systems.
When we have understood this, it is a simple matter to talk about SISO linear systems in
input/output form.

5.5 Definition A SISO linear system Σ = (A, b, ct,D) is bounded input, bounded output
stable (BIBO stable) if there exists a constant K > 0 so that the conditions (1) x(0) = 0
and (2) |u(t)| ≤ 1, t ≥ 0 imply that y(t) ≤ K where u(t), x(t), and y(t) satisfy (5.1). •
Thus BIBO stability is our way of saying that a bounded input will produce a bounded
output. You can show that the formal definition means exactly this in Exercise E5.8.

The following result gives a concise condition for BIBO stability in terms of the impulse
response.

5.6 Theorem Let Σ = (A, b, ct,D) be a SISO linear system and define Σ̃ = (A, b, ct,01). Then
Σ is BIBO stable if and only if limt→∞|hΣ̃(t)| = 0.

Proof Suppose that limt→∞|hΣ̃(t)| 6= 0. Then, by Proposition 3.24, it must be the case that
either (1) hΣ̃(t) blows up exponentially as t → ∞ or that (2) hΣ̃(t) is a sum of terms, one
of which is of the form sinωt or cosωt. For the first case we can take the bounded input
u(t) = 1(t). Using Proposition 2.32 and Proposition 3.24 we can then see that

y(t) =

∫ ∞

0

hΣ̃(t− τ) dτ +Du(t).

Since hΣ̃(t) blows up exponentially, so too will y(t) if it is so defined. Thus the bounded
input u(t) = 1(t) produces an unbounded output. For case (2) we choose u(t) = sinωt and
compute
∫ t

0

sinω(t− τ) sinωτ dτ = 1
2

(
1
ω

sinωt− t cosωt
)
,

∫ t

0

cosω(t− τ) sinωτ dτ = 1
2
t sinωt.

Therefore, y(t) will be unbounded for the bounded input u(t) = sinωt. We may then
conclude that Σ is not BIBO stable.

Now suppose that limt→∞|hΣ̃(t)| = 0. By Proposition 3.24 this means that hΣ̃(t) dies off
exponentially fast as t→∞, and therefore we have a bound like∫ ∞

0

|hΣ̃(t− τ)| dτ ≤M

for some M > 0. Therefore, whenever u(t) ≤ 1 for t ≥ 0, we have

|y(t)| =|
∫ t

0

hΣ̃(t− τ)u(τ) dτ +Du(t)|

≤
∫ t

0

|hΣ̃(t− τ)u(τ)| dτ + |D|

≤
∫ t

0

|hΣ̃(t− τ)||u(τ)| dτ + |D|

≤
∫ t

0

|hΣ̃(t− τ)| dτ + |D|

≤M + |D|.
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This means that Σ is BIBO stable. �

This result gives rise to two easy corollaries, the first following from Proposition 3.24, and
the second following from the fact that if the real part of all eigenvalues of A are negative
then limt→∞|hΣ(t)| = 0.

5.7 Corollary Let Σ = (A, b, ct,D) be a SISO linear system and write

TΣ(s) =
N(s)

D(s)

where (N,D) is the c.f.r. Then Σ is BIBO stable if and only if D has roots only in the
negative half-plane.

5.8 Corollary Σ = (A, b, ct,D) is BIBO stable if spec(A) ⊂ C−.

The matter of testing for BIBO stability of a SISO linear system is straightforward, so
let’s do it for a simple example.

5.9 Example (Example 5.4 cont’d) We continue with the case where

A =

[
0 1
−b −a

]
,

and we now add the information

b =

[
0
1

]
, c =

[
1
0

]
, D = 01.

We compute

TΣ(s) =
1

s2 + as+ b
.

From Example 5.4 we know that we have BIBO stability if and only if a > 0 and b > 0.
Let’s probe the issue a bit further by investigating what actually happens when we do

not have a, b > 0. The cases when Σ is internally unstable are not altogether interesting
since the system is “obviously” not BIBO stable in these cases. So let us examine the cases
when we have no eigenvalues in C+, but at least one eigenvalue on the imaginary axis.

1. a = 0 and b > 0: Here the eigenvalues are ±i
√
b, and we compute

hΣ(t) =
sin
√
bt√
b

.

Thus the impulse response is bounded, but does not tend to zero as t→∞. Theorem 5.6
predicts that there will be a bounded input signal that produces an unbounded output
signal. In fact, if we choose u(t) = sin

√
bt and zero initial condition, then one verifies

that the output is

y(t) =

∫ t

0

cteA(t−τ)b sin(
√
bτ) dτ =

sin(
√
bt)

2b
− t cos(

√
bt)

2
√
b

.

Thus a bounded input gives an unbounded output.
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2. a > 0 and b = 0: The eigenvalues here are {0,−a}. One may determine the impulse
response to be

hΣ(t) =
1− e−at

a
.

This impulse response is bounded, but again does not go to zero as t → ∞. Thus
there ought to be a bounded input that gives an unbounded output. We have a zero
eigenvalue, so this means we should choose a constant input. We take u(t) = 1 and zero
initial condition and determine the output as

y(t) =

∫ t

0

cteA(t−τ)b dτ =
t

a
− 1− e−at

a2
.

Again, a bounded input provides an unbounded output. •
As usual, when dealing with input/output issues for systems having states, one needs to

exercise caution for the very reasons explored in Section 2.3. This can be demonstrated with
an example.

5.10 Example Let us choose here a specific example (i.e., one without parameters) that will illus-
trate problems that can arise with fixating on BIBO stability while ignoring other consider-
ations. We consider the system Σ = (A, b, ct,01) with

A =

[
0 1
2 −1

]
, b =

[
0
1

]
, c =

[
1
−1

]
.

We determine that hΣ(t) = −e−2t. From Theorem 5.6 we determine that Σ is BIBO stable.
But is everything really okay? Well, no, because this system is actually not observable.

We compute

O(A, c) =

[
1 −1
−2 2

]
,

and since this matrix has rank 1 the system is not observable. How is this manifested in
the system behaviour? In exactly the way one would predict. Thus let us look at the state
behaviour for the system with a bounded input. We take u(t) = 1(t) as the unit step input,
and take the zero initial condition. The resulting state behaviour is defined by

x(t) =

∫ t

0

eA(t−τ)b dτ =

[
1
3
et + 1

6
e−t − 1

2
1
3
et − 1

3
e−2t

]
.

We see that the state is behaving poorly, even though the output may be determined as

y(t) = 1
2
(e−2t − 1),

which is perfectly well-behaved. But we have seen this sort of thing before. •
Let us state a result that provides a situation where one can make a precise relationship

between internal and BIBO stability.
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Figure 5.1 Summary of various stability types for SISO linear sys-
tems

5.11 Proposition If a SISO linear system Σ = (A, b, c′,D) is controllable and observable, then the
following two statements are equivalent:

(i) Σ is internally asymptotically stable;

(ii) Σ is BIBO stable.

Proof When Σ is controllable and observable, the poles of TΣ are exactly the eigenvalues of
A. �

When Σ is not both controllable and observable, the situation is more delicate. The
diagram in Figure 5.1 provides a summary of the various types of stability, and which types
imply others. Note that there are not many arrows in this picture. Indeed, the only type of
stability which implies all others is internal asymptotic stability. This does not mean that
if a system is only internally stable or BIBO stable that it is not internally asymptotically
stable. It only means that one cannot generally infer internal asymptotic stability from
internal stability or BIBO stability. What’s more, when a system is internally stable but not
internally asymptotically stable, then one can make some negative implications, as shown in
Figure 5.2. Again, one should be careful when interpreting the absence of arrows from this

internally stable but not
internally asymptotically

stable

+3

if controllable and observable

"*▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼

not internally
asymptotically

stable

not BIBO stable

Figure 5.2 Negative implication when a system is internally stable,
but not internally asymptotically stable

diagram. The best approach here is to understand that there are principles that underline
when one can infer one type of stability from another. If these principles are understood,
then matters are quite straightforward. A clearer resolution of the connection between BIBO
stability and internal stability is obtained in Section 10.1 when we introduce the concepts
of “stabilisability” and “detectability.” The complete version of Figures 5.1 and 5.2 is given
by Figure 10.1. Note that we have some water to put under the bridge to get there. . .
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5.2.2 BIBO stability of SISO linear systems in input/output form

It is now clear how we may extend the above discussion of BIBO stability to systems in
input/output form, at least when they are proper.

5.12 Definition A proper SISO linear system (N,D) in input/output form is bounded input,
bounded output stable (BIBO stable) if the SISO linear system ΣN,D is BIBO stable. •

From Corollary 5.7 follows the next result giving necessary and sufficient conditions for
BIBO stability of strictly proper SISO systems in input/output form.

5.13 Proposition A proper SISO linear system (N,D) in input/output form is BIBO stable if and
only if TN,D has no poles in C+.

The question then arises, “What about SISO linear systems in input/output form that
are not proper?” Well, such systems can readily be shown to be not BIBO stable, no matter
what the character of the denominator polynomial D. The following result shows why this
is the case.

5.14 Proposition If (N,D) is an improper SISO linear system in input/output form, then there
exists an input u satisfying the properties

(i) |u(t)| ≤ 1 for all t ≥ 0 and

(ii) if y satisfies D
(

d
dt

)
y(t) = N

(
d
dt

)
u(t), then for any M > 0 there exists t > 0 so that

|y(t)| > M .

Proof From Theorem C.6 we may write

N(s)

D(s)
= R(s) + P (s)

where R is a strictly proper rational function and P is a polynomial of degree at least 1.
Therefore, for any input u, the output y will be a sum y = y1 + y2 where

ŷ1(s) = R(s)û(s), ŷ2(s) = P (s)û(s). (5.4)

If R has poles in C+, then the result follows in usual manner of the proof of Theorem 5.6.
So we may as well suppose that R has no poles in C+, so that the solution y1 is bounded.
We will show, then, that y2 is not bounded. Let us choose u(t) = sin(t2). Any derivative of
u will involve terms polynomial in t and such terms will not be bounded as t→∞. But y2,
by (5.4), is a linear combination of derivatives of u, so the result follows. �

5.3 Norm interpretations of BIBO stability

In this section, we offer interpretations of the stability characterisations of the previous
section in terms of various norms for transfer functions and for signals. The material in
this section will be familiar to those who have had a good course in signals and systems.
However, it is rare that the subject be treated in the manner we do here, although its value
for understanding control problems is now well established.
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5.3.1 Signal norms

We begin our discussion by talking about ways to define the “size” of a signal. The
development in this section often is made in a more advanced setting where the student is
assumed to have some background in measure theory. However, it is possible to get across
the basic ideas in the absence of this machinery, and we try to do this here.

For p ≥ 1 and for a function f : (−∞,∞)→ R denote

‖f‖p =
(∫ ∞

−∞
|f(t)|p dt

)1/p

which we call the Lp-norm of y. Denote

Lp(−∞,∞) =
{
f : (−∞,∞)→ R

∣∣ ‖f‖p <∞
}
.

Functions in Lp(−∞,∞) are said to be Lp-integrable . The case where p = ∞ is handled
separately by defining

‖f‖∞ = sup
α≥0
{|f(t)| ≤ α for almost every t}

as the L∞-norm of y. The L∞-norm is sometimes referred to as the sup norm . Here
“almost every” means except on a set T ⊂ (−∞,∞) having the property that

∫

T

dt = 0.

We denote
L∞(−∞,∞) = {f : (−∞,∞)→ R | ‖f‖∞ <∞}

as the set of functions that we declare to be L∞-integrable . Note that we are dealing
here with functions defined on (−∞,∞), whereas with control systems, one most often has
functions that are defined to be zero for t < 0. This is still covered by what we do, and the
extra generality is convenient.

Most interesting to us will be the Lp spaces L2(−∞,∞) and L∞(−∞,∞). The two sets
of functions certainly do not coincide, as the following collection of examples indicate.

5.15 Examples

1. The function cos t is in L∞(−∞,∞), but is in none of the spaces Lp(−∞,∞) for 1 ≤
p <∞. In particular, it is not L2-integrable.

2. The function f(t) = 1
1+t

is not L1-integrable, although it is L2-integrable; one computes
‖f‖2 = 1.

3. Define

f(t) =

{√
1
t
, t ∈ (0, 1]

0, otherwise.

One then checks that ‖f‖1 = 2, but that f is not L2-integrable. Also, since limt→1− f(t) =
∞, the function is not L∞-integrable.

4. Define

f(t) =

{
ln t, t ∈ (0, 1]

0, otherwise.
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Note that limt→0+ f(t) = ∞; thus f is not L∞-integrable. Nonetheless, one checks that
if p is an integer, ‖f‖p = (p!)1/p, so f is Lp-integrable for integers p ∈ [1,∞). More
generally one has ‖f‖p = Γ(1 + p)1/p where the Γ-function generalises the factorial to
non-integer values. •
There is another measure of signal size we shall employ that differs somewhat from the

above measures in that it is not a norm. We let f : (−∞,∞) → R be a function and say
that f is a power signal if the limit

lim
T→∞

1

2T

∫ T

−T
f 2(t) dt

exists. For a power signal f we then define

pow(f) =
(

lim
T→∞

1

2T

∫ T

−T
f 2(t) dt

)1/2

,

which we call the average power of f . If we consider the function f(t) = 1
(1+t)2 we observe

that pow(f) = 0 even though f is nonzero. Thus pow is certainly not a norm. Nevertheless,
it is a useful, and often used, measure of a signal’s size.

The following result gives some relationships between the various Lp-norms and the pow
operation.

5.16 Proposition The following statements hold:

(i) if f ∈ L2(−∞,∞) then pow(f) = 0;

(ii) if f ∈ L∞(−∞,∞) is a power signal then pow(f) ≤ ‖f‖∞;

(iii) if f ∈ L1(−∞,∞) ∩ L∞(−∞,∞) then ‖f‖2 ≤
√
‖f‖∞‖f‖1.

Proof (i) For T > 0 we have
∫ T

−T
f 2(t) dt ≤ ‖f‖2

2

=⇒ 1

2T

∫ T

−T
f 2(t) dt ≤ 1

T
‖f‖2

2.

The result follows since as T →∞, the right-hand side goes to zero.
(ii) We compute

pow(f) = lim
T→∞

1

2T

∫ T

−T
f 2(t) dt

≤ ‖f‖2
∞ lim
T→∞

1

2T

∫ T

−T
dt

= ‖f‖2
∞.

(iii) We have

‖f‖2
2 =

∫ ∞

−∞
f 2(t) dt

=

∫ ∞

−∞
|f(t)||f(t)| dt

≤ ‖f‖∞
∫ ∞

−∞
|f(t)| dt

= ‖f‖∞‖f‖1,
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as desired. �
The relationships between the various Lp-spaces we shall care about and the pow opera-

tion are shown in Venn diagrammatic form in Figure 5.3.

pow

L2

L∞

L1

Figure 5.3 Venn diagram for relationships between Lp-spaces and
pow

5.3.2 Hardy spaces and transfer function norms

For a meromorphic complex-valued function f we will be interested in measuring the
“size” by f by evaluating its restriction to the imaginary axis. To this end, given a mero-
morphic function f , we follow the analogue of our time-domain norms and define, for p ≥ 1,
the Hp-norm of f by

‖f‖p =
( 1

2π

∫ ∞

−∞
|f(iω)|p dω

)1/p

.

In like manner we define the H∞-norm of f by

‖f‖∞ = sup
ω
|f(iω)|.

While these definitions make sense for any meromorphic function f , we are interested in
particular such functions. In particular, we denote

RLp = {R ∈ R(s) | ‖R‖p <∞}

for p ∈ [1,∞) ∪ {∞}. Let us call the class of meromorphic functions f that are analytic in
C+ Hardy functions .1 We then have

H+
p = {f | f is a Hardy function with ‖f‖p <∞},

for p ∈ [0,∞)∪ {∞}. We also have RH+
p = R(s)∩Hp as the Hardy functions with bounded

Hp-norm that are real rational. In actuality, we shall only be interested in the case when

1After George Harold Hardy (1877-1947).
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p ∈ {1, 2,∞}, but the definition of the Hp-norm holds generally. One must be careful when
one sees the symbol ‖·‖p that one understands what the argument is. In one case we mean
it to measure the norm of a function of t defined on (−∞,∞), and in another case we use it
to define the norm of a complex function measured by looking at its values on the imaginary
axis.

Note that with the above notation, we have the following characterisation of BIBO sta-
bility.

5.17 Proposition A proper SISO linear system (N,D) in input/output form is BIBO stable if and
only if TN,D ∈ RH+

∞.

The following result gives straightforward characterisations of the various rational func-
tion spaces we have been talking about.

5.18 Proposition The following statements hold:

(i) RL∞ consists of those functions in R(s) that

(a) have no poles on iR and

(b) are proper;

(ii) RH+
∞ consists of those functions in R(s) that

(a) have no poles in C+ and

(b) are proper;

(iii) RL2 consists of those functions in R(s) that

(a) have no poles on iR and

(b) are strictly proper.

(iv) RH+
2 consists of those functions in R(s) that

(a) have no poles in C+ and

(b) are strictly proper.

Proof Clearly we may prove the first and second, and then the third and fourth assertions
together.

(i) and (ii): This part of the proposition follows since a rational Hardy function is proper
if and only if lims→∞|R(s)| <∞, and since |R(iω)| is bounded for all ω ∈ R if and only if R
has no poles on iR. The same applies for RL∞.

(iii) and (iv) Clearly if R ∈ RH+
2 then lims→∞|R(s)| = 0, meaning that R must be strictly

proper. We also need to show that R ∈ RH+
2 implies that R has no poles on iR. We shall

do this by showing that if R has poles on iR then R 6∈ RH+
2 . Indeed, if R has a pole at ±iω0

then near iω0, R will essentially look like

R(s) ≈ C

(s− iω0)k

for some positive integer k and some C ∈ C. Let us define R̃ to be the function on the right
hand side of this approximation, and note that

∫ ω0+ε

ω0−ε

∣∣R̃(iω)
∣∣2 dω =

∫ ω0+ε

ω0−ε

∣∣∣ C

(i(ω − ω0))k

∣∣∣
2

dω

= |C|2
∫ ε

−ε

∣∣∣ 1

ξk

∣∣∣
2

dξ

=∞.
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Thus the contribution to ‖R‖2 of a pole on the imaginary axis will always be unbounded.
Conversely, if R is strictly proper with no poles on the imaginary axis, then one can find

a sufficiently large M > 0 and a sufficiently small τ > 0 so that

∣∣∣ M

1 + iτω

∣∣∣ ≥ |R(iω)|, ω ∈ R.

One then computes ∫ ∞

−∞

∣∣∣ M

1 + iτω

∣∣∣
2

dω =
M√
2τ
.

This implies that ‖R‖2 ≤ M√
2τ

and so R ∈ RH+
2 .

Clearly the above argument for RH+
2 also applies for RL2. �

5.3.3 Stability interpretations of norms

To characterise BIBO stability in terms of these signal norms, we consider a SISO linear
system (N,D) in input/output form. We wish to flush out the input/output properties of
a transfer function relative to the Lp signal norms and the pow operation. For notational
convenience, let us adopt the notation ‖·‖pow = pow and let Lpow(−∞,∞) denote those
functions f for which pow(f) is defined. This is an abuse of notation since pow is not a
norm. However, the abuse is useful for making the following definition.

5.19 Definition Let R ∈ R(s) be a proper rational function, and for u ∈ L2(−∞,∞) let
yu : (−∞,∞) → R be the function satisfying ŷu(s) = R(s)û(s). For p1, p2 ∈ [1,∞) ∪
{∞} ∪ {pow}, the Lp1 → Lp2-gain of R is defined by

‖R‖p1→p2 = sup
u∈Lp1 (−∞,∞)
u not zero

‖yu‖p2

‖u‖p1

.

If (N,D) is SISO linear system in input/output form, then (N,D) is Lp1 → Lp2-stable if
‖TN,D‖p1→p2 <∞. •
This definition of Lp1 → Lp2-stability is motivated by the following obvious result.

5.20 Proposition Let (N,D) be an Lp1 → Lp2 stable SISO linear system in input/output form and
let u : (−∞,∞) → R be an input with yu : (−∞,∞) → R the function satisfying ŷu(s) =
TN,D(s)û(s). If u ∈ Lp1(−∞,∞) then

‖yu‖p2 ≤ ‖TN,D‖p1→p2‖u‖p1 .

In particular, u ∈ Lp1(−∞,∞) implies that yu ∈ Lp2(−∞,∞).

Although our definitions have been made in the general context of Lp-spaces, we are
primarily interested in the cases where p1, p2 ∈ {1, 2,∞}. In particular, we would like to
be able to relate the various gains for transfer functions to the Hardy space norms of the
previous section. The following result gives these characterisations. The proofs, as you will
see, is somewhat long and involved.



2016/09/21 5.3 Norm interpretations of BIBO stability 171

5.21 Theorem For a proper BIBO stable SISO linear system (N,D) in input/output form, let
C ∈ R be defined by TN,D(s) = TÑ,D̃(s) + C where (Ñ, D̃) is strictly proper. Thus C = 0 if
(N,D) is itself strictly proper. The following statements then hold:

(i) ‖TN,D‖2→2 = ‖TN,D‖∞;

(ii) ‖TN,D‖2→∞ = ‖TN,D‖2;

(iii) ‖TN,D‖2→pow = 0;

(iv) ‖TN,D‖∞→2 =∞;

(v) ‖TN,D‖∞→∞ ≤ ‖hÑ,D̃‖1 + |C|;
(vi) ‖TN,D‖∞→pow ≤ ‖TN,D‖∞;

(vii) ‖TN,D‖pow→2 =∞;

(viii) ‖TN,D‖pow→∞ =∞;

(ix) ‖TN,D‖pow→pow = ‖TN,D‖∞.

If (N,D) is strictly proper, then part (v) can be improved to ‖TN,D‖∞→∞ = ‖hN,D‖1.

Proof (i) By Parseval’s Theorem we have ‖f‖2 = ‖f̂‖2 for any function f ∈ L2(−∞,∞).
Therefore

‖yu‖2
2 = ‖ŷu‖2

2

=
1

2π

∫ ∞

−∞
|ŷu(iω)|2 dω

=
1

2π

∫ ∞

−∞
|TN,D(iω)|2|û(iω)|2 dω

≤ ‖TN,D‖2
∞

1

2π

∫ ∞

−∞
|û(iω)|2 dω

= ‖TN,D‖2
∞‖û‖2

2

= ‖TN,D‖2
∞‖u‖2

2.

This shows that ‖TN,D‖2→2 ≤ ‖TN,D‖∞. We shall show that this is the least upper bound.
Let ω0 ∈ R+ be a frequency at which ‖TN,D‖∞ is attained. First let us suppose that ω0 is
finite. For ε > 0 define uε to have the property

ûε(iω) =

{√
π/2ε, |ω − ω0| < ε or |ω + ω0| < ε

0, otherwise.

Then, by Parseval’s Theorem, ‖u‖2 = 1. We also compute

lim
ε→0
‖ŷuε‖ =

1

2π

(
π|TN,D(−iω0)|2 + π|TN,D(iω0)|2

)

= |TN,D(iω0)|2
= ‖TN,D‖2

∞.

If ‖TN,D‖∞ is not attained at a finite frequency, then we define uε so that

ûε(iω) =

{√
π/2ε, |ω − 1

ε
| < ε or |ω + 1

ε
| < ε

0, otherwise.

In this case we still have ‖u‖2 = 1, but now we have

lim
ε→0
‖ŷuε‖ = lim

ω→∞
|TN,D(iω)|2 = ‖TN,D‖2.

In either case we have shown that ‖TN,D‖∞ is a least upper bound for ‖TN,D‖2→2.
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(ii) Here we employ the Cauchy-Schwartz inequality to determine

|yu(t)| =
∫ ∞

−∞
hN,D(t− τ)u(τ) dτ

≤
(∫ ∞

−∞
h2
N,D(t− τ) dτ

)1/2(∫ ∞

−∞
u2(τ) dτ

)1/2

= ‖hN,D‖2‖u‖2

= ‖TN,D‖2‖u‖2,

where the last equality follows from Parseval’s Theorem. Thus we have shown that
‖TN,D‖2→∞ ≤ ‖TN,D‖2. This is also the least upper bound since if we take

u(t) =
hN,D(−t)
‖TN,D‖2

,

we determine by Parseval’s Theorem that ‖u‖2 = 1 and from our above computations that
|y(0)| = ‖TN,D‖2 which means that ‖yu‖∞ ≥ ‖TN,D‖2, as desired.

(iii) Since yu is L2-integrable if u is L2-integrable by part (i), this follows from
Proposition 5.16(i).

(iv) Let ω ∈ R+ have the property that TN,D(iω) 6= 0. Take u(t) = sinωt. By Theorem 4.1
we have

yu(t) = Re(TΣ(iω)) sinωt+ Im(TΣ(iω)) cosωt+ ỹh(t) + C

where limt→∞ yh(t) = 0. In this case we have ‖u‖∞ = 1 and ‖yu‖2 =∞.
(v) We compute

|y(t)| =
∣∣∣
∫ ∞

−∞
hÑ,D̃(t− τ)u(τ) dτ + Cu(t)

∣∣∣

=
∣∣∣
∫ ∞

−∞
hÑ,D̃(τ)u(t− τ) dτ + Cu(t)

∣∣∣

≤
∫ ∞

−∞
|hÑ,D̃(τ)u(t− τ)| dτ + |C||u(t)|

≤ ‖u‖∞
(∫ ∞

−∞
|hÑ,D̃(τ)| dτ + |C|

)

=
(
‖hÑ,D̃‖1 + |C|

)
‖u‖∞.

This shows that ‖TN,D‖∞→∞ ≤ ‖hÑ,D̃‖1 + |C| as stated. To see that this is the least upper
bound when (N,D) is strictly proper (cf. the final statement in the theorem), fix t > 0 and
define u so that

u(t− τ) =

{
+1, hN,D(τ) ≥ 0

−1, hN,D(τ) < 0.

Then we have ‖u‖∞ = 1 and

yu(t) =

∫ ∞

−∞
hN,D(τ)u(t− τ) dτ

=

∫ ∞

−∞
|hN,D(τ)| dτ

= ‖hN,D‖1.
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Thus ‖yu‖∞ ≥ ‖hN,D‖1.
(vii) To carry out this part of the proof, we need a little diversion. For a power signal f

define

ρ(f)(t) = lim
T→∞

1

2T

∫ T

−T
f(τ)f(t+ τ) dτ

and note that ρ(f)(0) = pow(f). The limit in the definition of ρ(f) may not exist for all
τ , but it will exist for certain power signals. Let f be a nonzero power signal for which the
limit does exist. Denote by σ(f) the Fourier transform of ρ(f):

σ(f)(ω) =

∫ ∞

−∞
ρ(f)(t)e−iωt dt.

Therefore, since ρ(f) is the inverse Fourier transform of σ(f) we have

pow(f)2 =
1

2π

∫ ∞

−∞
σ(f)(ω) dω. (5.5)

Now we claim that if yu is related to u by ŷu(s) = TN,D(s)û(s) where u is a power signal for
which ρ(u) exists, then we have

σ(yu)(ω) = |TN,D(iω)|2σ(u)(ω). (5.6)

Indeed note that

yu(t)yu(t+ τ) =

∫ ∞

−∞
hN,D(α)y(t)u(t+ τ − α) dα,

so that

ρ(yu)(t) =

∫ ∞

−∞
hN,D(τ)ρ(yu, u)(t− τ) dτ,

where

ρ(f, g)(t) = lim
T→∞

1

2T

∫ T

−T
f(τ)g(t+ τ) dτ.

In like manner we verify that

ρ(yu, u)(t) =

∫ ∞

−∞
h−N,D(t− τ)ρ(u)(τ) dτ,

where h−N,D(t) = hN,D(−t). Therefore we have ρ(yu) = hN,D ∗ h−N,D ∗ ρ(u), where ∗ signifies

convolution. One readily verifies that the Fourier transform of h−N,D is the complex conjugate
of the Fourier transform of hN,D. Therefore

σ(yu)(ω) = TN,D(iω)T̄N,D(iω)σ(u)(ω),

which gives (5.6) as desired. Using (5.5) combined with (5.6) we then have

pow(yu)
2 =

1

2π

∫ ∞

−∞
|TN,D(iω)|2σ(u)(ω). (5.7)

Provided that we choose u so that |TN,D(iω)|2σ(u)(ω) is not identically zero, we see that
pow(yu)

2 > 0 so that ‖yu‖ =∞.
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(ix) By (5.7) we have pow(yu) ≤ ‖TN,D‖∞pow(u). Therefore ‖TN,D‖pow→pow ≤ ‖TN,D‖∞.
To show that this is the least upper bound, let ω0 ∈ R+ be a frequency at which ‖TN,D‖∞ is
realised, and first suppose that ω0 is finite. Now let u(t) =

√
2 sinω0t. One readily computes

ρ(u)(t) = cosω0t, implying by (5.5) that pow(u) = 1. Also we clearly have

σ(u)(ω) = π
(
δ(ω − ω0) + δ(ω + ω0)

)
,

An application of (5.7) then gives

pow(yu)
2 =

1

2

(
|TN,D(iω0)|2 + |TN,D(−iω0)|2

)

= |TN,D(iω0)|2
= ‖TN,D‖2

∞.

If ‖TN,D‖∞ is attained only in the limit as frequency goes to infinity, then the above argument
is readily modified to show that one can find a signal u so that pow(yu) is arbitrarily close
to ‖TN,D‖∞.

(vi) Let u ∈ L∞(−∞,∞) be a power signal. By Proposition 5.16(ii) we have pow(u) ≤
‖u‖∞. It therefore follows that

‖TN,D‖∞→pow = sup
u∈L∞(−∞,∞)
u not zero

‖yu‖pow

‖u‖∞

≤ sup
u∈L∞(−∞,∞)
u∈Lpow(−∞,∞)

u not zero

‖yu‖pow

‖u‖∞

≤ sup
u∈L∞(−∞,∞)
u∈Lpow(−∞,∞)

u not zero

‖yu‖pow

‖u‖pow

.

During the course of the proof of part (ix) we showed that there exists a power signal u with
pow(u) = 1 with the property that pow(yu) = ‖TN,D‖∞. Therefore, this part of the theorem
follows.

(viii) For k ≥ 1 define

uk(t) =

{
k, t ∈ (k, k + 1

k3 )

0, otherwise,

and define an input u by

u(t) =
∞∑

k=1

uk(t).

For T ≥ 1 let k(T ) be the largest integer less than T . One computes

∫ T

−T
u2(t) dt =





∑k(T )−1
k=1

1
k
, T ≤ k(T )− 1∑k(T )

k=1
1
k
, T ≥ k(T )(∑k(T )−1

k=1
1
k

)
+ t 1

k(T )
, t ∈ [k(T )− 1, k(T )].
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Thus we have

lim
T→0

1

2T

∫ T

−T
u2(t) dt = lim

k→∞

1

2N

∫ N

−N
u2(t) dt

= lim
N→∞

N∑

k=1

1

k
.

Since
N∑

k=1

1

k
<

∫ N

1

1

t
dt = lnN

we have

lim
T→0

1

2T

∫ T

−T
u2(t) dt = lim

N→∞

lnN

N
= 0.

Thus u ∈ Lpow. � Finish

Note that our notion of BIBO stability exactly coincides with L∞ → L∞ stability. The
following result summarises this along with our other notions of stability.

5.22 Theorem Let (N,D) be a proper SISO linear system in input/output form. The following
statements are equivalent:

(i) (N,D) is BIBO stable;

(ii) TN,D ∈ RH+
∞;

(iii) (N,D) is L2 → L2-stable;

(iv) (N,D) is L∞ → L∞-stable;

(v) (N,D) is Lpow → Lpow-stable.

Furthermore, if any of the preceding three conditions hold then

‖TN,D‖2,2 = ‖TN,D‖pow→pow = ‖TN,D‖∞.

Proof We shall only prove those parts of the theorem not covered by Theorem 5.21, or other
previous results.

(iii) =⇒ (ii) We suppose that TN,D 6∈ RH+
∞ so that D has a root in C+. Let a < 0 have

the property that all roots of D lie to the right of {s ∈ C | Re(s) = a}. Thus if u(t) = eat1(t)
then u ∈ L2(−∞,∞). Let p ∈ C+ be a root for D of multiplicity k. Then

ŷu(s) = R1(s) +
k∑

j=1

R2,j(s)

(s− p)k ,

where R1, R2,1, . . . , R2,k are rational functions analytic at p. Taking inverse Laplace trans-
forms gives

yu(t) = y1(t) +
k∑

j=1

tjeRe(p)t
(
aj cos(Im(p)t) + bj sin(Im(p)t)

)

with a2
j + b2

j 6= 0, j = 1, . . . , k. In particular, since Re(p) ≥ 0, yu 6∈ L2(−∞,∞).
(v) =⇒ (ii) � Finish
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Note that the theorem can be interpreted as saying that a system is BIBO stable if and
only if the energy/power of the output corresponding to a finite energy/power input is also
finite (here one thinks of the L2-norm of a signal as a measure of its energy and of pow as its
power). At the moment, it seems like this additional characterisation of BIBO stability in
terms of L2 → L2 and Lpow → Lpow-stability is perhaps pointless. But the fact of the matter
is that this is far from the truth. As we shall see in Section 8.5, the use of the L2-norm to
characterise stability has valuable implications for quantitative performance measures, and
their achievement through “H∞ methods.” This is an approach given a thorough treatment
by Doyle, Francis, and Tannenbaum [1990] and Morris [2000].

5.4 Liapunov methods

Liapunov methods for stability are particularly useful in the context of stability for
nonlinear differential equations and control systems. However, even for linear systems where
there are more “concrete” stability characterisations, Liapunov stability theory is useful as it
gives a collection of results that are useful, for example, in optimal control for such systems.
An application along these lines is the subject of Section 14.3.2. These techniques were
pioneered by Aleksandr Mikhailovich Liapunov (1857–1918); see [Liapunov 1893].

5.4.1 Background and terminology

The Liapunov method for determining stability has a general character that we will
present briefly in order that we may understand the linear results in a larger context. Let
us consider a vector differential equation

ẋ(t) = f(x(t)) (5.8)

and an equilibrium point x0 for f ; thus f(x0) = 0. We wish to determine conditions for sta-
bility and asymptotic stability of the equilibrium point. First we should provide definitions
for these notions of stability as they are a little different from their linear counterparts.

5.23 Definition The differential equation (5.8) is:

(i) stable if there exists M > 0 so that for every 0 < δ ≤M there exists ε < 0 so that if
‖x(0)− x0‖ < ε then ‖x(t)− x0‖ < δ for every t > 0;

(ii) asymptotically stable if there exists M > 0 so that the inequality ‖x(0)−x0‖ < M
implies that limt→∞‖x(t)− x0‖ = 0. •

Our definition differs from the definitions of stability for linear systems in that it is only
local. We do not require that all solutions be bounded in order that x0 be stable, only those
whose initial conditions are sufficiently close to x0 (and similarly for asymptotic stability).

The Liapunov idea for determining stability is to find a function V that has a local
minimum at x0 and whose time derivative along solutions of the differential equation (5.8)
is nonpositive. To be precise about this, let us make a definition.

5.24 Definition A function V : Rn → R is a Liapunov function for the equilibrium point x0

of (5.8) if

(i) V (x0) = 0,

(ii) V (x) ≥ 0, and

(iii) there exists M > 0 so that if ‖x(0)− x0‖ < M then d
dt
V (x(t)) ≤ 0.
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If the nonstrict inequalities in parts (ii) and (iii) are strict, then V is a proper Liapunov
function . •

We will not prove the following theorem as we shall prove it in the cases we care about in
the next section. Readers interested in the proof may refer to, for example, [Khalil 2001].

5.25 Theorem Consider the differential equation (5.8) with x0 an equilibrium point. The following
statements hold:

(i) x0 is stable if there is a Liapunov function for x0;

(ii) x0 is asymptotically stable if there is a proper Liapunov function for x0.

Although we do not prove this theorem, it should nonetheless seem reasonable, particularly
the second part. Indeed, since in this case we have d

dt
V (x(t)) < 0 and since x0 is a strict

local minimum for V , it stands to reason that all solutions should be tending towards this
strict local minimum as t→∞.

Of course, we are interested in linear differential equations of the form

ẋ(t) = Ax(t).

Our interest is in Liapunov functions of a special sort. We shall consider Liapunov functions
that are quadratic in x. To define such a function, let P ∈ Rn×n be symmetric and let
V (x) = xtPx. We then compute

dV (x(t))

dt
= ẋt(t)Px(t) + xt(t)P ẋ(t)

= xt(t)(AtP + PA)x(t).

Note that the matrix Q = −AtP − PA is itself symmetric. Now, to apply Theorem 5.25
we need to be able to characterise when the functions xtPx and xtQx is nonnegative. This
we do with the following definition.

5.26 Definition Let M ∈ Rn×n be symmetric.

(i) M is positive-definite (written M > 0) if xtMx > 0 for all x ∈ Rn \ {0}.
(ii) M is negative-definite (written M < 0) if xtMx < 0 for all x ∈ Rn \ {0}.
(iii) M is positive-semidefinite (written M ≥ 0) if xtMx ≥ 0 for all x ∈ Rn.

(iv) M is negative-semidefinite (written M ≤ 0) if xtMx ≤ 0 for all x ∈ Rn. •
The matter of determining when a matrix is positive-(semi)definite or negative-

(semi)definite is quite a simple matter in principle when one remembers that a symmetric
matrix is guaranteed to have real eigenvalues. With this in mind, we have the following
result whose proof is a simple exercise.

5.27 Proposition For M ∈ Rn×n be symmetric the following statements hold:

(i) M is positive-definite if and only if spec(M ) ⊂ C+ ∩ R;

(ii) M is negative-definite if and only if spec(M ) ⊂ C− ∩ R;

(iii) M is positive-semidefinite if and only if spec(M ) ⊂ C+ ∩ R;

(iv) M is negative-semidefinite if and only if spec(M ) ⊂ C− ∩ R.

Another characterisation of positive-definiteness involves the principal minors ofM . The
following result is not entirely trivial, and a proof may be found in [Gantmacher 1959a].
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5.28 Theorem A symmetric n×n matrix M is positive-definite if and only if all principal minors
of M are positive.

Along these lines, the following result from linear algebra will be helpful to us in the next
section.

5.29 Proposition If M ∈ Rn×n is positive-definite then there exists δ, ε > 0 so that for every
x ∈ Rn \ {0} we have

εxtx < xtMx < δxtx.

Proof Let T ∈ Rn×n be a matrix for which D = TMT−1 is diagonal. Recall that T can
be chosen so that it is orthogonal, i.e., so that its rows and columns are orthonormal bases
for Rn. It follows that T−1 = T t. Let us also suppose that the diagonal elements d1, . . . , dn
of D are ordered so that d1 ≤ d2 ≤ · · · ≤ dn. Let us define ε = 1

2
d1 and δ = 2dn. Since for

x = (x1, . . . , xn) we have

xtDx =
n∑

i=1

dix
2
i ,

it follows that
εxtx < xtDx < δxtx

for every x ∈ Rn \ {0}. Therefore, since

xtMx = xtT tDTx = (Tx)tD(Tx),

the result follows. �

With this background and notation, we are ready to proceed with the results concerning
Liapunov functions for linear differential equations.

5.4.2 Liapunov functions for linear systems

The reader will wish to recall from Remark 2.18 our discussion of observability for MIMO
systems, as we will put this to use in this section. A Liapunov triple is a triple (A,P ,Q)
of n× n real matrices with P and Q symmetric and satisfying

AtP + PA = −Q.

We may now state our first result.

5.30 Theorem Let Σ = (A, b, ct,D) be a SISO linear system and let (A,P ,Q) be a Liapunov
triple. The following statements hold:

(i) if P is positive-definite and Q is positive-semidefinite, then Σ is internally stable;

(ii) if P is positive-definite, Q is positive-semidefinite, and (A,Q) is observable, then Σ
is internally asymptotically stable;

(iii) if P is not positive-semidefinite, Q is positive-semi-definite, and (A,Q) is observable,
then Σ is internally unstable.

Proof (i) As in Proposition 5.29, let ε, δ > 0 have the property that

εxtx < xtPx < δxtx
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for x ∈ Rn \ {0}. Let V (x) = xtPx. We compute

dV (x(t))

dt
= xt(AtP + PA)x = −xtQx,

since (A,P ,Q) is a Liapunov triple. As Q is positive-semidefinite, this implies that

V (x(t))− V (x(0)) =

∫ t

0

dV (x(t))

dt
dt ≤ 0

for all t ≥ 0. Thus, for t ≥ 0,

xt(t)Px(t) ≤ xt(0)Px(0)

=⇒ εxt(t)x(t) < δxt(0)x(0)

=⇒ xt(t)x(t) <
δ

ε
xt(0)x(0)

=⇒ ‖x(t)‖ <
√
δ

ε
‖x(0)‖.

Thus ‖x(t)‖ is bounded for all t ≥ 0, and for linear systems, this implies internal stability.
(ii) We suppose that P is positive-definite, Q is positive-semidefinite, (A,Q) is observ-

able, and that Σ is not internally asymptotically stable. By (i) we know Σ is stable, so it
must be the case that A has at least one eigenvalue on the imaginary axis, and therefore
a nontrivial periodic solution x(t). From our characterisation of the matrix exponential in
Section B.2 we know that this periodic solution evolves in a two-dimensional subspace that
we shall denote by L. What’s more, every solution of ẋ = Ax with initial condition in L is
periodic and remains in L. This implies that L is A-invariant. Indeed, if x ∈ L then

Ax = lim
t→0

eAtx− x
t

∈ L

since x, eAtx ∈ L. We also claim that the subspace L is in ker(Q). To see this, suppose that
the solutions on L have period T . If V (x) = xtPx, then for any solution x(t) in L we have

0 = V (x(T ))− V (x(0)) =

∫ T

0

dV (x(t))

dt
dt = −

∫ T

0

xt(t)Qx(t) dt.

Since Q is positive-semidefinite this implies that xt(t)Qx(t) = 0. Thus L ⊂ ker(Q), as
claimed. Thus, with our initial assumptions, we have shown the existence of an nontrivial
A-invariant subspace of ker(Q). This is a contradiction, however, since (A,Q) is observable.
It follows, therefore, that Σ is internally asymptotically stable.

(iii) Since Q is positive-semidefinite and (A,Q) is observable, the argument from (ii)
shows that there are no nontrivial periodic solutions to ẋ = Ax. Thus this part of the theo-
rem will follow if we can show that Σ is not internally asymptotically stable. By hypothesis,
there exists x̄ ∈ Rn so that V (x̄) = x̄tP x̄ < 0. Let x(t) be the solution of ẋ = Ax with
x(0) = x̄. As in the proof of (i) we have V (x(t)) ≤ V (x̄) < 0 for all t ≥ 0 since Q is
positive-semidefinite. If we denote

r = inf{‖x‖ | V (x) ≤ V (x̄)},

then we have shown that ‖x‖(t) > r for all t ≥ 0. This prohibits internal asymptotic
stability, and in this case, internal stability. �
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5.31 Example (Example 5.4 cont’d) We again look at the 2× 2 matrix

A =

[
0 1
−b −a

]
,

letting Σ = (A, b, ct,D) for some b, c, and D. For this example, there are various cases
to consider, and we look at them separately in view of Theorem 5.30. In the following
discussion, the reader should compare the conclusions with those of Example 5.4.

1. a = 0 and b = 0: In this case, we know the system is internally unstable. However, it
turns out to be impossible to find a symmetric P and a positive-semidefinite Q so that
(A,P ,Q) is a Liapunov triple, and so that (A,Q) is observable (cf. Exercise E5.16).
Thus we cannot use part (iii) of Theorem 5.30 to assert internal instability. We are off
to a bad start! But things start to look better.

2. a = 0 and b > 0: The matrices

P =

[
b 0
0 1

]
, Q =

[
0 0
0 0

]

have the property that (A,P ,Q) are a Liapunov triple. Since P is positive-definite and
Q is positive-semidefinite, internal stability follows from part (i) of Theorem 5.30. Note
that (A,Q) is not observable, so internal asymptotic stability cannot be concluded from
part (ii).

3. a = 0 and b < 0: If we define

P =
1

2

[
0 1
1 0

]
, Q =

[
−b 0
0 1

]
,

then one verifies that (A,P ,Q) are a Liapunov triple. Since P is not positive-semidefinite
(its eigenvalues are {±1

2
}) and since Q is positive-definite and (A,Q) is observable (Q

is invertible), it follows from part (iii) of Theorem 5.30 that the system is internally
unstable.

4. a > 0 and b = 0: Here we take

P =

[
a2 a
a 2

]
, Q =

[
0 0
0 2a

]

and verify that (A,P ,Q) is a Liapunov triple. The eigenvalues of P are {1
2
(a2 + 2 ±√

a4 + 4)}. One may verify that a2 + 2 >
√
a4 + 4, thus P is positive-definite. We also

compute

O(A,Q) =




0 0
0 2a
0 0
0 −2a2


 ,

verifying that (A,Q) is not observable. Thus from part (i) of Theorem 5.30 we conclude
that Σ is internally stable, but we cannot conclude internal asymptotic stability from (ii).

5. a > 0 and b > 0: Here we take

P =

[
b 0
0 1

]
, Q =

[
0 0
0 2a

]
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having the property that (A,P ,Q) is a Liapunov triple. We compute

O(A,Q) =




0 0
0 2a
0 0
−2ab −2a2


 ,

implying that (A,Q) is observable. Since P is positive-definite, we may conclude from
part (ii) of Theorem 5.30 that Σ is internally asymptotically stable.

6. a > 0 and b < 0: Again we use

P =

[
b 0
0 1

]
, Q =

[
0 0
0 2a

]
.

Now, since P is not positive-semidefinite, from part (iii) of Theorem 5.30, we conclude
that Σ is internally unstable.

7. a < 0 and b = 0: This case is much like case 1 in that the system is internally unstable,
but we cannot find a symmetric P and a positive-semidefinite Q so that (A,P ,Q) is a
Liapunov triple, and so that (A,Q) is observable (again see Exercise E5.16).

8. a < 0 and b > 0: We note that if

P =

[
−b 0
0 −1

]
, Q =

[
0 0
0 −2a

]
,

then (A,P ,Q) is a Liapunov triple. We also have

O(A,Q) =




0 0
0 −2a
0 0

2ab 2a2


 .

Thus (A,Q) is observable. Since P is not positive-definite and since Q is positive-
semidefinite, from part (iii) of Theorem 5.30 we conclude that Σ is internally unstable.

9. a < 0 and b < 0: Here we again take

P =

[
−b 0
0 −1

]
, Q =

[
0 0
0 −2a

]
.

The same argument as in the previous case tells us that Σ is internally unstable. •
Note that in two of the nine cases in the preceding example, it was not possible to apply

Theorem 5.30 to conclude internal instability of a system. This points out something of a
weakness of the Liapunov approach, as compared to Theorem 5.2 which captures all possible
cases of internal stability and instability. Nevertheless, the Liapunov characterisation of
stability can be a useful one in practice. It is used by us in Chapters 14 and 15.

While Theorem 5.30 tells us how we certain Liapunov triples imply certain stability
properties, often one wishes for a converse to such results. Thus one starts with a system
Σ = (A, b, ct,D) that is stable in some way, and one wishes to ascertain the character of
the corresponding Liapunov triples. While the utility of such an exercise is not immediately
obvious, it will come up in Section 14.3.2 when characterising solutions of an optimal control
problem.
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5.32 Theorem Let Σ = (A, b, ct,D) be a SISO linear system with A Hurwitz. The following
statements hold:

(i) for any symmetric Q ∈ Rn×n there exists a unique symmetric P ∈ Rn×n so that
(A,P ,Q) is a Liapunov triple;

(ii) if Q is positive-semidefinite with P the unique symmetric matrix for which (A,P ,Q)
is a Liapunov triple, then P is positive-semidefinite;

(iii) if Q is positive-semidefinite with P the unique symmetric matrix for which (A,P ,Q)
is a Liapunov triple, then P is positive-definite if and only if (A,Q) is observable.

Proof (i) We claim that if we define

P =

∫ ∞

0

eA
ttQeAt dt (5.9)

then (A,P ,Q) is a Liapunov triple. First note that since A is Hurwitz, the integral does
indeed converge. We also have

AtP + PA = At
(∫ ∞

0

eA
ttQeAt dt

)
+
(∫ ∞

0

eA
ttQeAt dt

)
A

=

∫ ∞

0

d

dt

(
eA

ttQeAt
)

dt

= eA
ttQeAt

∣∣∞
0

= −Q,

as desired. We now show that P as defined is the only symmetric matrix for which (A,P ,Q)
is a Liapunov triple. Suppose that P̃ also has the property that (A, P̃ ,Q) is a Liapunov
triple, and let ∆ = P̃ − P . Then one sees that At∆ + ∆A = 0n×n. If we let

Λ(t) = eA
tt∆eAt,

then
dΛ(t)

dt
= eA

tt
(
At∆ + ∆A

)
eAt = 0n×n.

Therefore Λ(t) is constant, and since Λ(0) = ∆, it follows that Λ(t) = ∆ for all t. However,
since A is Hurwitz, it also follows that limt→∞Λ(t) = 0n×n. Thus ∆ = 0n×n, so that
P̃ = P .

(ii) If P is defined by (5.9) we have

xtPx =

∫ ∞

0

(
eAtx

)t
Q
(
eAtx

)
dt.

Therefore, if Q is positive-semidefinite, it follows that P is positive-semidefinite.
(iii) Here we employ a lemma.

1 Lemma If Q is positive-semidefinite then (A,Q) is observable if and only if the matrix P
defined by (5.9) is invertible.

Proof First suppose that (A,Q) is observable and let x ∈ ker(P ). Then

∫ ∞

0

(
eAtx

)t
Q
(
eAtx

)
dt = 0.
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Since Q is positive-semidefinite, this implies that eAtx ∈ ker(Q) for all t. Differentiating
this inclusion with respect to t k times in succession gives AkeAtx ∈ ker(Q) for any k > 0.
Evaluating at t = 0 shows that x is in the kernel of the matrix

O(A,Q) =




Q
QA

...
QAn−1


 .

Since (A,Q) is observable, this implies that x = 0. Thus we have shown that ker(P ) = {0},
or equivalently that P is invertible.

Now suppose that P is invertible. Then the expression
∫ ∞

0

(
eAtx

)t
Q
(
eAtx

)
dt

is zero if and only if x = 0. Since Q is positive-semidefinite, this means that the expression
(
eAtx

)t
Q
(
eAtx

)

is zero if and only if x = 0. Since eAt is invertible, this implies that Q must be positive-
definite, and in particular, invertible. In this case, (A,Q) is clearly observable. H

With the lemma at hand, the remainder of the proof is straightforward. Indeed, from
part (ii) we know that P is positive-semidefinite. The lemma now says that P is positive-
definite if and only if (A,Q) is observable, as desired. �

5.33 Example (Example 5.4 cont’d) We resume looking at the case where

A =

[
0 1
−b −a

]
.

Let us look at a few cases to flush out some aspects of Theorem 5.32.

1. a > 0 and b > 0: This is exactly the case when A is Hurwitz, so that part (i) of The-
orem 5.32 implies that for any symmetric Q there is a unique symmetric P so that
(A,P ,Q) is a Liapunov triple. As we saw in the proof of Theorem 5.32, one can deter-
mine P with the formula

P =

∫ ∞

0

eA
ttQeAt dt. (5.10)

However, to do this in this example is a bit tedious since we would have to deal with
the various cases of a and b to cover all the various forms taken by eAt. For example,
suppose we take

Q =

[
1 0
0 1

]

and let a = 2 and b = 2. Then we have

et = e−t
[
cos t+ sin t sin t
−2 sin t cos t− sin t

]

In this case one can directly apply (5.10) with some effort to get

P =

[
5
4

1
4

1
4

3
8

]
.
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If we let a = 2 and b = 1 then we compute

eAt = e−t
[
1 + t t
−t 1− t

]
.

Again, a direct computation using (5.10) gives

P =

[
3
2

1
2

1
2

1
2

]
.

Note that our choice of Q is positive-definite and that (A,Q) is observable. Therefore,
part (iii) of Theorem 5.32 implies that P is positive-definite. It may be verified that the
P ’s computed above are indeed positive-definite.

However, it is not necessary to make such hard work of this. After all, the equation

AtP + PA = −Q

is nothing but a linear equation for P . That A is Hurwitz merely ensures a unique
solution for any symmetric Q. If we denote

P =

[
p11 p12

p12 p22

]

and continue to use

Q =

[
1 0
0 1

]
,

then we must solve the linear equations
[
0 −b
1 −a

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1
−b −a

]
=

[
−1 0
0 −1

]
,

subject to a, b > 0. One can then determine P for general (at least nonzero) a and b to
be

P =

[
a2+b+b2

2ab
1
2b

1
2b

b+1
2ab

]
.

In this case, we are guaranteed that this is the unique P that does the job.

2. a ≤ 0 and b = 0: As we have seen, in this case there is not always a solution to the
equation

AtP + PA = −Q. (5.11)

Indeed, when Q is positive-semidefinite and (A,Q) is observable, this equation is guar-
anteed to not have a solution (see Exercise E5.16). This demonstrates that when A is
not Hurwitz, part (i) of Theorem 5.32 can fail in the matter of existence.

3. a > 0 and b = 0: In this case we note that for any C ∈ R the matrix

P 0 = C

[
a2 a
a 1

]

satisfies AtP + PA = 02×2. Thus if P is any solution to (5.11) then P + P 0 is also a
solution. If we take

Q =

[
0 0
0 2a

]
,
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then, as we saw in Theorem 5.30, if

P =

[
a2 a
a 2

]
,

then (A,P ,Q) is a Liapunov triple. What we have shown i that (A,P +P 0,Q) is also
a Liapunov triple. Thus part (i) of Theorem 5.32 can fail in the matter of uniqueness
when A is not Hurwitz. •

5.5 Identifying polynomials with roots in C−

From our discussion of Section 5.2 we see that it is very important that TΣ have poles
only in the negative half-plane. However, checking that such a condition holds may not be
so easy. One way to do this is to establish conditions on the coefficients of the denominator
polynomial of TΣ (after making pole/zero cancellations, of course). In this section, we present
three methods for doing exactly this. We also look at a test for the poles lying in C− when
we only approximately know the coefficients of the polynomial. We shall generally say that
a polynomial all of whose roots lie in C− is Hurwitz .

It is interesting to note that the method of Edward John Routh (1831–1907) was de-
veloped in response to a famous paper of James Clerk Maxwell2 (1831–1879) on the use of
governors to control a steam engine. This paper of Maxwell [1868] can be regarded as the
first paper in mathematical control theory.

5.5.1 The Routh criterion

For the method of Routh, we construct an array involving the coefficients of the poly-
nomial in question. The array is constructed inductively, starting with the first two rows.
Thus suppose one has two collections a11, a12, . . . and a21, a22, . . . of numbers. In practice,
this is a finite collection, but let us suppose the length of each collection to be indeter-
minate for convenience. Now construct a third row of numbers a31, a32, . . . by defining
a3k = a21a1,k+1 − a11a2,k+1. Thus a3k is minus the determinant of the matrix

[ a11 a1,k+1
a21 a2,k+1

]
. In

practice, one writes this down as follows:

a11 a12 · · · a1k · · ·
a21 a22 · · · a2k · · ·

a21a12 − a11a22 a21a13 − a11a23 · · · a21a1,k+1 − a11a2,k+1 · · ·

One may now proceed in this way, using the second and third row to construct a fourth row,
the third and fourth row to construct a fifth row, and so on. To see how to apply this to a
given polynomial P ∈ R[s]. Define two polynomials P+, P− ∈ R[s] as the even and odd part
of P . To be clear about this, if

P (s) = p0 + p1s+ p2s
2 + p3s

3 + · · ·+ pn−1s
n−1 + pns

n,

then
P+(s) = p0 + p2s+ p4s

2 + . . . , P−(s) = p1 + p3s+ p5s
2 + . . . .

Note then that P (s) = P+(s2) + sP−(s2). Let R(P ) be the array constructed as above with
the first two rows being comprised of the coefficients of P+ and P−, respectively, starting

2Maxwell, of course, is better known for his famous equations of electromagnetism.
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with the coefficients of lowest powers of s, and increasing to higher powers of s. Thus the
first three rows of R(P ) are

p0 p2 · · · p2k · · ·
p1 p3 · · · p2k+1 · · ·

p1p2 − p0p3 p1p4 − p0p5 · · · p1p2k+2 − p0p2k+3 · · ·
...

...
...

...
...

In making this construction, a zero is inserted whenever an operation is undefined. It is
readily determined that the first column of R(P ) has at most n + 1 nonzero components.
The Routh array is then the first column of the first n+ 1 rows.

With this as setup, we may now state a criterion for determining whether a polynomial
is Hurwitz.

5.34 Theorem (Routh [1877]) A polynomial

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 ∈ R[s]

is Hurwitz if and only if all elements of the Routh array corresponding to R(P ) are positive.

Proof Let us construct a sequence of polynomials as follows. We let P0 = P+ and P1 = P−
and let

P2(s) = s−1
(
P1(0)P0(s)− P0(0)P1(s)

)
.

Note that the constant coefficient of P1(0)P0(s) − P0(0)P1(s) is zero, so this does indeed
define P2 as a polynomial. Now inductively define

Pk(s) = s−1
(
Pk−1(0)Pk−2(s)− Pk−2(0)Pk−1(s)

)

for k ≥ 3. With this notation, we have the following lemma that describes the statement of
the theorem.

1 Lemma The (k + 1)st row of R(P ) consists of the coefficients of Pk with the constant coef-
ficient in the first column. Thus the hypothesis of the theorem is equivalent to the condition
that P0(0), P1(0), . . . , Pn(0) all be positive.

Proof We have P0(0) = p0, P1(0) = p1, and P2(0) = p1p2−p0p3, directly from the definitions.
Thus the lemma holds for k = 0, 1, 2. Now suppose that the lemma holds for k ≥ 3. Thus
the kth and the (k + 1)st rows of R(P ) are the coefficients of the polynomials

Pk−1(s) = pk−1,0 + pk−1,1s+ · · ·

and
Pk = pk,0 + pk,1s+ · · · ,

respectively. Using the definition of Pk+1 we see that Pk+1(0) = pk,0pk−1,1 − pk−1,0pk,1.
However, this is exactly the term as it would appear in first column of the (k + 2)nd row of
R(P ). H

Now note that P (s) = P0(s2) + sP1(s2) and define Q ∈ R[s] by Q(s) = P1(s2) + sP2(s2).
One may readily verify that deg(Q) ≤ n−1. Indeed, in the proof of Theorem 5.36, a formula
for Q will be given. The following lemma is key to the proof. Let us suppose for the moment
that pn is not equal to 1.
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2 Lemma The following statements are equivalent:

(i) P is Hurwitz and pn > 0;

(ii) Q is Hurwitz, qn−1 > 0, and P (0) > 0.

Proof We have already noted that P (s) = P0(s2) + sP1(s2). We may also compute

Q(s) = P1(s2) + s−1
(
P1(0)P0(s2)− P0(0)P1(s2)

)
. (5.12)

For λ ∈ [0, 1] define Qλ(s) = (1− λ)P (s) + λQ(s), and compute

Qλ(s) =
(
(1− λ) + s−1λP1(0)

)
P0(s2) +

(
(1− λ)s+ λ− s−1λP0(0)

)
P1(s2).

The polynomials P0(s2) and P1(s2) are even so that when evaluated on the imaginary axis
they are real. Now we claim that the roots of Qλ that lie on the imaginary axis are indepen-
dent of λ, provided that P (0) > 0 and Q(0) > 0. First note that if P (0) > 0 and Q(0) > 0
then 0 is not a root of Qλ. Now if iω0 is a nonzero imaginary root then we must have

(
(1− λ)− iω−1

0 λP1(0)
)
P0(−ω2

0) +
(
(1− λ)iω0 + λ+ iω−1

0 λP0(0)
)
P1(−ω2

0) = 0.

Balancing real and imaginary parts of this equation gives

(1− λ)P0(−ω2
0) + λP1(−ω2

0) = 0

λω−1
0

(
P0(0)P1(−ω2

0)− P1(0)P0(−ω2
0)
)

+ ω0(1− λ)P1(−ω2
0).

(5.13)

If we think of this as a homogeneous linear equation in P0(−ω2
0) and P1(ω2

0) one determines
that the determinant of the coefficient matrix is

ω−1
0

(
(1− λ)2ω2

0 + λ((1− λ)P0(0) + λP1(0))
)
.

This expression is positive for λ ∈ [0, 1] since P (0), Q(0) > 0 implies that P0(0), P1(0) > 0.
To summarise, we have shown that, provided P (0) > 0 and Q(0) > 0, all imaginary axis
roots iω0 of Qλ satisfy P0(−ω2

0) = 0 and P1(−ω2
0) = 0. In particular, the imaginary axis

roots of Qλ are independent of λ ∈ [0, 1] in this case.
(i) =⇒ (ii) For λ ∈ [0, 1] let

N(λ) =

{
n, λ ∈ [0, 1)

n− 1, λ = 1.

Thus N(λ) is the number of roots of Qλ. Now let

Zλ = {zλ,i | i ∈ {1, . . . , N(λ)}}

be the set of roots of Qλ. Since P is Hurwitz, Z0 ⊂ C−. Our previous computations then
show that Zλ ∩ iR = ∅ for λ ∈ [0, 1]. Now if Q = Q1 were to have a root in C+ this would
mean that for some value of λ one of the roots of Qλ would have to lie on the imaginary
axis, using the (nontrivial) fact that the roots of a polynomial are continuous functions of
its coefficients. This then shows that all roots of Q must lie in C−. That P (0) > 0 is a
consequence of Exercise E5.18 and P being Hurwitz. One may check that qn−1 = p1 · · · pn
so that qn−1 > 0 follows from Exercise E5.18 and pn > 0.

(ii) =⇒ (i) Let us adopt the notation N(λ) and Zλ from the previous part of the proof.
Since Q is Hurwitz, Z1 ⊂ C−. Furthermore, since Zλ ∩ iR = ∅, it follows that for λ ∈ [0, 1],
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the number of roots of Qλ within C− must equal n − 1 as deg(Q) = n − 1. In particular,
P can have at most one root in C+. This root, then, must be real, and let us denote it by
z0 > 0. Thus P (s) = P̃ (s)(s− z0) where P̃ is Hurwitz. By Exercise E5.18 it follows that all
coefficients of P̃ are positive. If we write

P̃ = p̃n−1s
n−1 + p̃n−2s

n−2 + · · ·+ p̃1s+ p̃0,

then
P (s) = p̃n−1s

n + (p̃n−2 − z0p̃n−1)sn−1 + · · ·+ (p̃0 − z0p̃1)s− p̃0z0.

Thus the existence of a root z0 ∈ C+ contradicts the fact that P (0) > 0. Note that we have
also shown that pn > 0. H

Now we proceed with the proof proper. First suppose that P is Hurwitz. By successive
applications of Lemma 2 it follows that the polynomials

Qk(s) = Pk(s
2) + sPk+1(s2), k = 1, . . . , n,

are Hurwitz and that deg(Qk) = n − k, k = 1, . . . , n. What’s more, the coefficient of sn−k

is positive in Qk. Now, by Exercise E5.18 we have P0(0) > 0 and P1(0) > 0. Now suppose
that P0(0), P1(0), . . . , Pk(0) are all positive. Since Qk is Hurwitz with the coefficient of the
highest power of s being positive, from Exercise E5.18 it follows that the coefficient of s in
Qk should be positive. However, this coefficient is exactly Pk+1(0). Thus we have shown
that Pk(0) > 0 for k = 0, 1, . . . , n. From Lemma 1 it follows that the elements of the Routh
array are positive.

Now suppose that one element of the Routh array is nonpositive, and that P is Hurwitz.
By Lemma 2 we may suppose that Pk0(0) ≤ 0 for some k0 ∈ {2, 3, . . . , n}. Furthermore,
since P is Hurwitz, as above the polynomials Qk, k = 1, . . . , n, must also be Hurwitz,
with deg(Qk) = n − k where the coefficient of sn−k in Qk is positive. In particular, by
Exercise E5.18, all coefficients of Qk0−1 are positive. However, since Qk0−1(s) = Pk0−1(s2) +
sPk0(s2) it follows that the coefficient of s in Qk0−1 is negative, and hence we arrive at a
contradiction, and the theorem follows. �

The Routh criterion is simple to apply, and we illustrate it in the simple case of a degree
two polynomial.

5.35 Example Let us apply the criteria to the simplest nontrivial example possible: P (s) = s2 +
as+ b. We compute the Routh table to be

R(P ) =
b 1
a 0
a 0

.

Thus the Routh array is
[
b a a

]
, and its entries are all positive if and only if a, b > 0.

Let’s see how this compares to what we know doing the calculations “by hand.” The roots
of P are r1 = −a

2
+ 1

2

√
a2 − 4b and r2 = −a

2
− 1

2

√
a2 − 4b. Let us consider the various cases.

1. If a2 − 4b < 0 then the roots are complex with nonzero imaginary part, and with real
part −a. Thus the roots in this case lie in the negative half-plane if and only if a > 0.
We also have b > a2

4
and so b > 0 and hence ab > 0 as in the Routh criterion.

2. If a2 − 4b = 0 then the roots are both −a, and so lie in the negative half-plane if and
only if a > 0. In this case b = a2

4
and so b > 0. Thus ab > 0 as predicted.
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3. Finally we have the case when a2 − 4b > 0. We have two subcases.

(a) When a > 0 then we have negative half-plane roots if and only if a2−4b < a2 which
means that b > 0. Therefore we have negative half-plane roots if and only a > 0
and ab > 0.

(b) When a < 0 then we will never have all negative half-plane roots since −a+
√
a2 − 4b

is always positive.

So we see that the Routh criterion provides a very simple encapsulation of the necessary
and sufficient conditions for all roots to lie in the negative half-plane, even for this simple
example. •

5.5.2 The Hurwitz criterion

The method we discuss in this section is work of Adolf Hurwitz (1859–1919). The key
ingredient in the Hurwitz construction is a matrix formed from the coefficients of a polyno-
mial

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 ∈ R[s].

We denote the Hurwitz matrix by H(P ) ∈ Rn×n and define it by

H(P ) =




pn−1 1 0 0 · · · 0
pn−3 pn−2 pn−1 1 · · · 0
pn−5 pn−4 pn−3 pn−2 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · p0



.

Any terms in this matrix that are not defined are taken to be zero. Of course we also take
pn = 1. Now define H(P )k ∈ Rk×k, k = 1, . . . , n, to be the matrix of elements H(P )ij,
i, j = 1, . . . , k. Thus H(P )k is the matrix formed by taking the “upper left k×k block from
H(P ).” Also define ∆k = detH(P )k.

With this notation, the Hurwitz criterion is as follows.

5.36 Theorem (Hurwitz [1895]) A polynomial

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 ∈ R[s]

is Hurwitz if and only if the n Hurwitz determinants ∆1, . . . ,∆n are positive.

Proof Let us begin by resuming with the notation from the proof of Theorem 5.34. In
particular, we recall the definition of Q(s) = P1(s2)+sP2(s2). We wish to compute H(Q) so
we need to compute Q in terms of the coefficients of P . A computation using the definition
of Q and P2 gives

Q(s) = p1 + (p1p2 − p0p3)s+ p3s
2 + (p1p4 − p0p5)s3 + · · · .

One can then see that when n is even we have

H(Q) =




pn−1 p1pn 0 0 · · · 0 0
pn−3 p1pn−2 − p0pn−1 pn−1 p1pn · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · p1p2 − p0p3 p3

0 0 0 0 · · · 0 p1






190 5 Stability of control systems 2016/09/21

and when n is odd we have

H(Q) =




p1pn−1 − p0pn pn 0 0 · · · 0 0
p1pn−3 − p0pn−2 pn−2 p1pn−1 − p0pn pn · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · p1p2 − p0p3 p3

0 0 0 0 · · · 0 p1



.

Now define T ∈ Rn×n by

T =




1 0 0 · · · 0 0 0
0 p1 0 · · · 0 0 0
0 −p0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · p1 0 0
0 0 0 · · · −p0 1 0
0 0 0 · · · 0 0 1




when n is even and by

T =




p1 0 · · · 0 0 0
−p0 1 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · p1 0 0
0 0 · · · −p0 1 0
0 0 · · · 0 0 1




when n is odd. One then verifies by direct calculation that

H(P )T =




...
H(Q) p4

p2

0 · · · 0 p0


 . (5.14)

We now let ∆1, . . . ,∆n be the determinants defined above and let ∆̃1, . . . , ∆̃n−1 be the similar
determinants corresponding to H(Q). A straightforward computation using (5.14) gives the
following relationships between the ∆’s and the ∆̃’s:

∆1 = p1

∆k+1 =

{
p
−b k

2
c

1 ∆̃k, k even

p
−d k

2
e

1 ∆̃k, k odd
, k = 1, . . . , n− 1,

(5.15)

where bxc gives the greatest integer less than or equal to x and dxe gives the smallest integer
greater than or equal to x.

With this background notation, let us proceed with the proof, first supposing that P is
Hurwitz. In this case, by Exercise E5.18, it follows that p1 > 0 so that ∆1 > 0. By Lemma 2
of Theorem 5.34 it also follows that Q is Hurwitz. Thus ∆̃1 > 0. A trivial induction
argument on n = deg(P ) then shows that ∆2, . . . ,∆n > 0.

Now suppose that one of ∆1, . . . ,∆n is nonpositive and that P is Hurwitz. Since Q is
then Hurwitz by Lemma 2 of Theorem 5.34, we readily arrive at a contradiction, and this
completes the proof. �
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The Hurwitz criterion is simple to apply, and we illustrate it in the simple case of a
degree two polynomial.

5.37 Example (Example 5.35 cont’d) Let us apply the criteria to our simple example of P (s) =
s2 + as+ b. We then have

H(P ) =

[
a 1
0 b

]

We then compute ∆1 = a and ∆2 = ab. Thus ∆1,∆2 > 0 if and only if a, b > 0. This agrees
with our application of the Routh method to the same polynomial in Example 5.35. •

5.5.3 The Hermite criterion

We next look at a manner of determining whether a polynomial is Hurwitz which makes
contact with the Liapunov methods of Section 5.4. This method is due to Charles Hermite
(1822–1901) [see Hermite 1854]. Let us consider, as usual, a monic polynomial of degree n:

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0.

Corresponding to such a polynomial, we construct its Hermite matrix as the n×n matrix
P (P ) given by

P (P )ij =





∑i
k=1(−1)k+ipn−k+1pn−i−j+k, j ≥ i, i+ j even

P (P )ji, j < i, i+ j even

0, i+ j odd.

As usual, in this formula we take pi = 0 for i < 0. One can get an idea of how this matrix
is formed by looking at its appearance for small values of n. For n = 2 we have

P (P ) =

[
p1p2 0

0 p0p1

]
,

for n = 3 we have

P (P ) =



p2p3 0 p0p3

0 p1p2 − p0p3 0
p0p3 0 p0p1


 ,

and for n = 4 we have

P (P ) =




p3p4 0 p1p4 0
0 p2p3 − p1p4 0 p0p3

p1p4 0 p1p2 − p0p3 0
0 p0p3 0 p0p1


 .

The following theorem gives necessary and sufficient conditions for P to be Hurwitz based
on its Hermite matrix. The slick proof using Liapunov methods comes from the paper of
Parks [1962].

5.38 Theorem A polynomial

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 ∈ R[s]

is Hurwitz if and only if P (P ) is positive-definite.
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Proof Let

A(P ) =




−pn−1 −pn−2 · · · −p1 −p0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



, b(P ) =




pn−1

0
pn−3

0
...



.

An unenjoyable computation gives

P (P )A(P ) +A(P )tP (P ) = −b(P )b(P )t.

First suppose that P (P ) is positive-definite. By Theorem 5.30(i), since b(P )b(P )t is positive-
semidefinite, A(P ) is Hurwitz. Conversely, if A(P ) is Hurwitz, then there is only one
symmetric P so that

PA(P ) +A(P )tP = −b(P )b(P )t,

this by Theorem 5.32(i). Since P (P ) satisfies this relation even when A(P ) is not Hurwitz,
it follows that P (P ) is positive-definite. The theorem now follows since the characteristic
polynomial of A(P ) is P . �

Let us apply this theorem to our favourite example.

5.39 Example (Example 5.35 cont’d) We consider the polynomial P (s) = s2 +as+ b which has
the Hermite matrix

P (P ) =

[
a 0
0 ab

]
.

Since this matrix is diagonal, it is positive-definite if and only if the diagonal entries are
zero. Thus we recover the by now well established condition that a, b > 0. •

The Hermite criterion, Theorem 5.38, does indeed record necessary and sufficient condi-
tions for a polynomial to be Hurwitz. However, it is more computationally demanding than
it needs to be, especially for large polynomials. Part of the problem is that the Hermite
matrix contains so many zero entries. To get conditions involving smaller matrices leads
to the so-called reduced Hermite criterion which we now discuss. Given a degree n
polynomial P with its Hermite matrix P (P ), we define matrices C(P ) and D(P ) as follows:

1. C(P ) is obtained by removing the even numbered rows and columns of P (P ) and

2. D(P ) is obtained by removing the odd numbered rows and columns of P (P ).

Thus, if n is even, C(P ) and D(P ) are n
2
× n

2
, and if n is odd, C(P ) is n+1

2
× n+1

2
and D(P )

is n−1
2
× n−1

2
. Let us record a few of these matrices for small values of n. For n = 2 we have

C(P ) =
[
p1p2

]
, D(P ) =

[
p0p1

]
,

for n = 3 we have

C(P ) =

[
p2p3 p0p3

p0p3 p0p1

]
, D(P ) =

[
p1p2 − p0p3

]
,

and for n = 4 we have

C(P ) =

[
p3p4 p1p4

p1p4 p1p2 − p0p3

]
, D(P ) =

[
p2p3 − p1p4 p0p3

p0p3 p0p1

]
.

Let us record a useful property of the matrices C(P ) and D(P ), noting that they are
symmetric.
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5.40 Lemma P (P ) is positive-definite if and only if both C(P ) and D(P ) are positive-definite.

Proof For x = (x1, . . . , xn) ∈ Rn, denote xodd = (x1, x3, . . .) and xeven = (x2, x4, . . .). A
simple computation then gives

xtP (P )x = xtoddC(P )xodd + xtevenD(P )xeven. (5.16)

Clearly, if C(P ) and D(P ) are both positive-definite, then so too is P (P ). Conversely,
suppose that one of C(P ) or D(P ), say C(P ), is not positive-definite. Thus there exists
x ∈ Rn so that xodd 6= 0 and xeven = 0, and for which

xtoddC(P )xodd ≤ 0.

From (5.16) it now follows that P (P ) is not positive-definite. �

The Hermite criterion then tells us that P is Hurwitz if and only if both C(P ) and D(P )
are positive-definite. The remarkable fact is that we need only check one of these matrices
for definiteness, and this is recorded in the following theorem. Our proof follows that of
Anderson [1972].

5.41 Theorem A polynomial

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 ∈ R[s]

is Hurwitz if and only if any one of the following conditions holds:

(i) p2k > 0, k ∈ {0, 1, . . . , bn−1
2
c} and C(P ) is positive-definite;

(ii) p2k > 0, k ∈ {0, 1, . . . , bn−1
2
c} and D(P ) is positive-definite;

(iii) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , bn−2
2
c} and C(P ) is positive-definite;

(iv) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , bn−2
2
c} and D(P ) is positive-definite.

Proof First suppose that P is Hurwitz. Then all coefficients are positive (see Exercise E5.18)
and P (P ) is positive-definite by Theorem 5.38. This implies that C(P ) and D(P ) are
positive-definite by Lemma 5.40, and thus conditions (i)–(iv) hold. For the converse assertion,
the cases when n is even or odd are best treated separately. This gives eight cases to look
at. As certain of them are quite similar in flavour, we only give details the first time an
argument is encountered.

Case 1: We assume (i) and that n is even. Denote

A1(P ) =




−pn−2

pn
−pn−4

pn
· · · − p2

pn
− p0

pn

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



.

A calculation then gives C(P )A1(P ) = −D(P ). Since C(P ) is positive-definite, there exists
an orthogonal matrix R so that RC(P )Rt = ∆, where ∆ is diagonal with strictly positive
diagonal entries. Let ∆1/2 denote the diagonal matrix whose diagonal entries are the square
roots of those of ∆. Now denoteC(P )1/2 = Rt∆1/2R, noting thatC(P )1/2C(P )1/2 = C(P ).
Also note that C(P )1/2 is invertible, and we shall denote its inverse by C(P )−1/2. Note that
this inverse is also positive-definite. This then gives

C(P )1/2A1(P )C(P )−1/2 = −C(P )−1/2D(P )C(P )−1/2. (5.17)
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The matrix on the right is symmetric, so this shows that A1(P ) is similar to a symmetric
matrix, allowing us to deduce that A1(P ) has real eigenvalues. These eigenvalues are also
roots of the characteristic polynomial

sn/2 +
pn−2

pn
sn/2−1 + · · ·+ p2

pn
s+

p0

pn
.

Our assumption (i) ensures that is s is real and nonnegative, the value of the characteristic
polynomial is positive. From this we deduce that all eigenvalues of A1(P ) are negative.
From (5.17) it now follows thatD(P ) is positive-definite, and so P is Hurwitz by Lemma 5.40
and Theorem 5.38.

Case 2: We assume (ii) and that n is even. Consider the polynomial P−1(s) = snP (1
s
).

Clearly the roots of P−1 are the reciprocals of those for P . Thus P−1 is Hurwitz if and only
if P is Hurwitz (see Exercise E5.20). Also, the coefficients for P−1 are obtained by reversing
those for P . Using this facts, one can see that C(P−1) is obtained from D(P ) by reversing
the rows and columns, and that D(P−1) is obtained from C(P ) by reversing the rows and
columns. One can then show that P−1 is Hurwitz just as in Case 1, and from this it follows
that P is Hurwitz.

Case 3: We assume (iii) and that n is odd. In this case we let

A2(P ) =




−pn−2

pn
−pn−4

pn
· · · − p1

pn
0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




and note that one can check to see that

C(P )A2(P ) = −
[
D(P ) 0

0t 0

]
. (5.18)

As in Case 1, we may define the square root, C(P )1/2, of C(P ), and ascertain that

C(P )1/2A2(P )C(P )−1/2 = −C(P )−1/2

[
D(P ) 0

0t 0

]
C(P )−1/2.

Again, the conclusion is that A2(P ) is similar to a symmetric matrix, and so must have real
eigenvalues. These eigenvalues are the roots of the characteristic polynomial

s(n+1)/2 +
pn−2

pn
s(n+1)/2−1 + · · ·+ p1

pn
s.

This polynomial clearly has a zero root. However, since (iii) holds, for positive real values of
s the characteristic polynomial takes on positive values, so the nonzero eigenvalues of A2(P )
must be negative, and there are n+1

2
− 1 of these. From this and (5.18) it follows that the

matrix [
D(P ) 0

0t 0

]

has one zero eigenvalue and n+1
2
− 1 positive real eigenvalues. Thus D(P ) must be positive-

definite, and P is then Hurwitz by Lemma 5.40 and Theorem 5.38.
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Case 4: We assume (i) and that n is odd. As in Case 2, define P−1(s) = snP (1
s
). In this

case one can ascertain that C(P−1) is obtained from C(P ) by reversing rows and columns,
and that D(P−1) is obtained from D(P ) by reversing rows and columns. The difference
from the situation in Case 2 arises because here we are taking n odd, while in Case 2 it was
even. In any event, one may now apply Case 3 to P−1 to show that P−1 is Hurwitz. Then
P is itself Hurwitz by Exercise E5.20.

Case 5: We assume (ii) and that n is odd. For ε > 0 define Pε ∈ R[s] by Pε(s) =
(s+ ε)P (s). Thus the degree of Pε is now even. Indeed,

Pε(s) = pns
n+1 + (pn−1 + εpn)sn + · · ·+ (p0 + εp1)s+ εp0.

One may readily determine that

C(Pε) = C(P ) + εC

for some matrix C which is independent of ε. In like manner, one may show that

D(Pε) =

[
D(P ) + εD11 εD12

εD12 εp2
0

]

where D11 and D12 are independent of ε. Since D(P ) is positive-definite and a0 > 0, for
ε sufficiently small we must have D(Pε) positive-definite. From the argument of Case 2 we
may infer that Pε is Hurwitz, from which it is obvious that P is also Hurwitz.

Case 6: We assume (iv) and that n is odd. We define P−1(s) = snP (1
s
) so that C(P−1)

is obtained from C(P ) by reversing rows and columns, and that D(P−1) is obtained from
D(P ) by reversing rows and columns. One can now use Case 5 to show that P−1 is Hurwitz,
and so P is also Hurwitz by Exercise E5.20.

Case 7: We assume (iii) and that n is even. As with Case 5, we define Pε(s) = (s+ε)P (s)
and in this case we compute

C(Pε) =

[
C(P ) + εC11 εC12

εC12 εp2
0

]

and
D(Pε) = D(P ) + εD,

where C11, C12, and D are independent of ε. By our assumption (iii), for ε > 0 sufficiently
small we have C(Pε) positive-definite. Thus, invoking the argument of Case 1, we may
deduce that D(Pε) is also positive-definite. Therefore Pε is Hurwitz by Lemma 5.40 and
Theorem 5.36. Thus P is itself also Hurwitz.

Case 8: We assume (iv) and that n is even. Taking P−1(s) = snP (1
s
) we see that C(P−1)

is obtained from D(P ) by reversing the rows and columns, and that D(P−1) is obtained
from C(P ) by reversing the rows and columns. Now one may apply Case 7 to deduce that
P−1, and therefore P , is Hurwitz. �

5.5.4 The Liénard-Chipart criterion

Although less well-known than the criterion of Routh and Hurwitz, the test we give due to
Liénard and Chipart [1914]3 has the advantage of delivering fewer determinantal inequalities
to test. This results from their being a dependence on some of the Hurwitz determinants.
This is given thorough discussion by Gantmacher [1959b]. Here we state the result, and give
a proof due to Anderson [1972] that is more elementary than that of Gantmacher.

3Perhaps the relative obscurity of the test reflects that of its authors; I was unable to find a biographical
reference for either Liénard or Chipart. I do know that Liénard did work in differential equations, with the
Liénard equation being a well-studied second-order linear differential equation.
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5.42 Theorem A polynomial

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 ∈ R[s]

is Hurwitz if and only if any one of the following conditions holds:

(i) p2k > 0, k ∈ {0, 1, . . . , bn−1
2
c} and ∆2k+1 > 0, k ∈ {0, 1, . . . , bn−1

2
c};

(ii) p2k > 0, k ∈ {0, 1, . . . , bn−1
2
c} and ∆2k > 0, k ∈ {1, . . . , bn

2
c};

(iii) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , bn−2
2
c} and ∆2k+1 > 0, k ∈ {0, 1, . . . , bn−1

2
c};

(iv) p0 > 0, p2k+1 > 0, k ∈ {0, 1, . . . , bn−2
2
c} and ∆2k > 0, k ∈ {1, . . . , bn

2
c}.

Here ∆1, . . . ,∆n are the Hurwitz determinants.

Proof The theorem follows immediately from Theorems 5.28 and 5.41 and after one checks
that the principal minors of C(P ) are exactly the odd Hurwitz determinants ∆1,∆3, . . ., and
that the principal minors of D(P ) are exactly the even Hurwitz determinants ∆2,∆4, . . ..
This observation is made by a computation which we omit, and appears to be first been
noticed by Fujiwara [1915]. �

The advantage of the Liénard-Chipart test over the Hurwitz test is that one will generally
have fewer determinants to compute. Let us illustrate the criterion in the simplest case, when
n = 2.

5.43 Example (Example 5.35 cont’d) We consider the polynomial P (s) = s2 + as + b. Recall
that the Hurwitz determinants were computed in Example 5.37:

∆1 = a, ∆2 = ab.

Let us write down the four conditions of Theorem 5.42:

1. p0 = b > 0, ∆1 = a > 0;

2. p0 = b > 0, ∆2 = ab > 0;

3. p0 = b > 0, p1 = a > 0, ∆1 = a > 0;

4. p0 = b > 0, p1 = a > 0, ∆2 = ab > 0.

We see that all of these conditions are equivalent in this case, and imply that P is Hurwitz if
and only if a, b > 0, as expected. This example is really too simple to illustrate the potential
advantages of the Liénard-Chipart criterion, but we refer the reader to Exercise E5.22 to see
how the test can be put to good use. •

5.5.5 Kharitonov’s test

It is sometimes the case that one does not know exactly the coefficients for a given
polynomial. In such instances, one may know bounds on the coefficients. That is, for a
polynomial

P (s) = pns
n + pn−1s

n−1 + · · ·+ p1s+ p0, (5.19)

one may know that the coefficients satisfy inequalities of the form

pmin
i ≤ pi ≤ pmax

i , i = 0, 1, . . . , n. (5.20)

In this case, the following remarkable theorem of Kharitonov [1978] gives a simple test for the
stability of the polynomial for all possible values for the coefficients. Since the publication of
Kharitonov’s result, or more properly its discovery by the non-Russian speaking world, there
have been many simplifications of the proof [e.g., Chapellat and Bhattacharyya 1989, Das-
gupta 1988, Mansour and Anderson 1993]. The proof we give essentially follows Minnichelli,
Anagnost, and Desoer [1989].
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5.44 Theorem Given a polynomial of the form (5.19) with the coefficients satisfying the inequali-
ties (5.20), define four polynomials

Q1(s) = pmin
0 + pmin

1 s+ pmax
2 s2 + pmax

3 s3 + · · ·
Q2(s) = pmin

0 + pmax
1 s+ pmax

2 s2 + pmin
3 s3 + · · ·

Q3(s) = pmax
0 + pmax

1 s+ pmin
2 s2 + pmin

3 s3 + · · ·
Q4(s) = pmax

0 + pmin
1 s+ pmin

2 s2 + pmax
3 s3 + · · ·

Then P is Hurwitz for all

(p0, p1, . . . , pn) ∈ [pmin
0 , pmax

0 ]× [pmin
1 , pmax

1 ]× · · · × [pmin
n , pmax

n ]

if and only if the polynomials Q1, Q2, Q3, and Q4 are Hurwitz.

Proof Let us first assume without loss of generality that pmin
j > 0, j = 0, . . . , n. Indeed, by

Exercise E5.18, for a polynomial to be Hurwitz, its coefficients must have the same sign, and
we may as well suppose this sign to be positive. If

p = (p0, p1, . . . , pn) ∈ [pmin
0 , pmin

0 ]× [pmin
1 , pmin

1 ]× · · · × [pmin
n , pmin

n ],

then let us say, for convenience, that p is allowable . For p allowable denote

Pp(s) = pns
n + pn−1s

n−1 + · · ·+ p1s+ p0.

It is clear that if all polynomials Pp are allowable then the polynomials Q1, Q2, Q3, and
Q4 are Hurwitz. Thus suppose for the remainder of the proof that Q1, Q2, Q3, and Q4 are
Hurwitz, and we shall deduce that Pp is also Hurwitz for every allowable p.

For ω ∈ R define
R(ω) = {Pp(iω) | p allowable}.

The following property of R(ω) lies at the heart of our proof. It is first noticed by Dasgupta
[1988].

1 Lemma For each ω ∈ R, R(ω) is a rectangle in C whose sides are parallel to the real and
imaginary axes, and whose corners are Q1(iω), Q2(iω), Q3(iω), and Q4(iω).

Proof We note that for ω ∈ R we have

Re(Q1(iω)) = Re(Q2(iω)) = pmin
0 − pmaxω2 + pmin

4 ω4 + · · ·
Re(Q3(iω)) = Re(Q4(iω)) = pmax

0 − pminω2 + pmax
4 ω4 + · · ·

Im(Q1(iω)) = Im(Q4(iω)) = ω
(
pmin − pmaxω2 + pmin

4 ω4 + · · ·
)

Im(Q2(iω)) = Im(Q3(iω)) = ω
(
pmax − pminω2 + pmax

4 ω4 + · · ·
)
.

From this we deduce that for any allowable p we have

Re(Q1(iω)) = Re(Q2(iω)) ≤ Re(Pp(iω)) ≤ Re(Q3(iω)) = Re(Q4(iω))

Im(Q1(iω)) = Im(Q4(iω)) ≤ Im(Pp(iω)) ≤ Im(Q2(iω)) = Im(Q3(iω)).

This leads to the picture shown in Figure 5.4 for R(ω). The lemma follows immediately
from this. H

Using the lemma, we now claim that if p is allowable, then Pp has no imaginary axis
roots. To do this, we record the following useful property of Hurwitz polynomials.



198 5 Stability of control systems 2016/09/21

Q1(iω) Q4(iω)

Q3(iω)Q2(iω)

Figure 5.4 R(ω)

2 Lemma If P ∈ R[s] is monic and Hurwitz with deg(P ) ≥ 1, then ]P (iω) is a continuous
and strictly increasing function of ω.

Proof Write

P (s) =
n∏

j=1

(s− zj)

where zj = σj + iωj with σj < 0. Thus

]P (iω) =
n∑

j=1

](iω + |σj| − iωj) =
n∑

j=1

arctan
(ω − ωj
|σj|

)
.

Since |σj| > 0, each term in the sum is continuous and strictly increasing, and thus so too is
]P (iω). H

To show that 0 6∈ R(ω) for ω ∈ R, first note that 0 6∈ R(0). Now, since the corners of
R(ω) are continuous functions of ω, if 0 ∈ R(ω) for some ω > 0, then it must be the case that
for some ω0 ∈ [0, ω] the point 0 ∈ C lies on the boundary of R(ω0). Suppose that 0 lies on
the lower boundary of the rectangle R(ω0). This means that Q1(iω0) < 0 and Q4(iω0) > 0
since the corners of R(ω) cannot pass through 0. Since Q1 is Hurwitz, by Lemma 2 we must
have Q1(i(ω0 + δ)) in the (−,−) quadrant in C and Q4(i(ω0 + δ)) in the (+,+) quadrant in
C for δ > 0 sufficiently small. However, since Im(Q1(iω)) = Im(Q4(iω)) for all ω ∈ R, this
cannot be. Therefore 0 cannot lie on the lower boundary of R(ω0) for any ω0 > 0. Similar
arguments establish that 0 cannot lie on either of the other three boundaries either. This
then prohibits 0 from lying in R(ω) for any ω > 0.

Now suppose that Pp0
is not Hurwitz for some allowable p0. For λ ∈ [0, 1] each of the

polynomials
λQ1 + (1− λ)Pp0

(5.21)

is of the form Ppλ for some allowable pλ. Indeed, the equation (5.21) defines a straight line
from Q1 to Pp0

, and since the set of allowable p’s is convex (it is a cube), this line remains
in the set of allowable polynomial coefficients. Now, since Q1 is Hurwitz and Pp0

is not, by
continuity of the roots of a polynomial with respect to the coefficients, we deduce that for
some λ ∈ [0, 1), the polynomial Ppλ must have an imaginary axis root. However, we showed
above that 0 6∈ R(ω) for all ω ∈ R, denying the possibility of such imaginary axis roots.
Thus all polynomials Pp are Hurwitz for allowable p. �
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5.45 Remarks

1. Note the pattern of the coefficients in the polynomials Q1, Q2, Q3, and Q4 has the
form (. . . ,max,max,min,min, . . . ) This is charmingly referred to as the Kharitonov
melody .

2. One would anticipate that to check the stability for P one should look at all possible
extremes for the coefficients, giving 2n polynomials to check. That this can be reduced
to four polynomial checks is an unobvious simplification.

3. Anderson, Jury, and Mansour [1987] observe that for polynomials of degree 3, 4, or 5,
it suffices to check not four, but one, two, or three polynomials, respectively, as being
Hurwitz.

4. A proof of Kharitonov’s theorem, using Liapunov methods (see Section 5.4), is given by
Mansour and Anderson [1993]. •
Let us apply the Kharitonov test in the simplest case when n = 2.

5.46 Example We consider
P (s) = s2 + as+ b

with the coefficients satisfying

(a, b) ∈ [amin, amax]× [bmin, bmax].

The polynomials required by Theorem 5.44 are

Q1(s) = s2 + amins+ bmin

Q2(s) = s2 + amaxs+ bmin

Q3(s) = s2 + amaxs+ bmax

Q4(s) = s2 + amins+ bmax.

We now apply the Routh/Hurwitz criterion to each of these polynomials. This indicates
that all coefficients of the four polynomials Q1, Q2, Q3, and Q4 should be positive. This
reduces to requiring that

amin, amax, bmin, bmax > 0.

That is, amin, bmin > 0. In this simple case, we could have guessed the result ourselves since
the Routh/Hurwitz criterion are so simple to apply for degree two polynomials. Nonetheless,
the simple example illustrates how to apply Theorem 5.44. •

5.6 Summary

The matter of stability is, of course, of essential importance. What we have done in this
chapter is quite simple, so let us outline the major facts.

1. It should be understood that internal stability is a notion relevant only to SISO linear
systems. The difference between stability and asymptotic stability should be understood.

2. The conditions for internal stability are generally simple. The only subtleties occur when
there are repeated eigenvalues on the imaginary axis. All of this needs to be understood.

3. BIBO stability is really the stability type of most importance in this book. One should
understand when it happens. One should also know how, when it does not happen, to
produce an unbounded output with a bounded input.
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4. Norm characterisations if BIBO stability provide additional insight, and offer a clarifying
language with which to organise BIBO stability. Furthermore, some of the technical
results concerning such matters will be useful in discussions of performance in Section 9.3
and of robustness in Chapter 15.

5. One should be able to apply the Hurwitz and Routh criteria freely.

6. The Liapunov method offer a different sort of characterisation of internal stability. One
should be able to apply the theorems presented.
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Exercises

E5.1 Consider the SISO linear system Σ = (A, b, c,D) of Example 5.4, i.e., with

A =

[
0 1
−b −a

]
.

By explicitly computing a basis of solutions to ẋ(t) = Ax(t) in each case, verify by
direct calculation the conclusions of Example 5.4. If you wish, you may choose specific
values of the parameters a and b for each of the eight cases of Example 6.4. Make sure
that you cover sub-possibilities in each case that might arise from eigenvalues being
real or complex.

E5.2 Determine the internal stability of the linearised pendulum/cart system of Exer-
cise E1.5 for each of the following cases:

(a) the equilibrium point (0, 0);

(b) the equilibrium point (0, π).

E5.3 For the double pendulum system of Exercise E1.6, determine the internal stability for
the linearised system about the following equilibria:

(a) the equilibrium point (0, 0, 0, 0);

(b) the equilibrium point (0, π, 0, 0);

(c) the equilibrium point (π, 0, 0, 0);

(d) the equilibrium point (π, π, 0, 0).

E5.4 For the coupled tank system of Exercise E1.11 determine the internal stability of the
linearisation.

E5.5 Determine the internal stability of the coupled mass system of Exercise E1.4, both
with and without damping. You may suppose that the mass and spring constant are
positive and that the damping factor is nonnegative.

E5.6 Consider the SISO linear system Σ = (A, b, ct,01) defined by

A =

[
σ ω
−ω σ

]
, b =

[
0
1

]
, c =

[
1
0

]

for σ ∈ R and ω > 0.

(a) For which values of the parameters σ and ω is Σ spectrally stable?

(b) For which values of the parameters σ and ω is Σ internally stable? Internally
asymptotically stable?

(c) For zero input, describe the qualitative behaviour of the states of the system
when the parameters σ and ω are chosen so that the system is internally stable
but not internally asymptotically stable.

(d) For zero input, describe the qualitative behaviour of the states of the system when
the parameters σ and ω are chosen so that the system is internally unstable.

(e) For which values of the parameters σ and ω is Σ BIBO stable?

(f) When the system is not BIBO stable, determine a bounded input that produces
an unbounded output.
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E5.7 Consider the SISO linear system Σ = (A, b, ct,01) defined by

A =




σ ω 1 0
−ω σ 0 1
0 0 σ ω
0 0 −ω σ


 , b =




0
0
0
1


 , c =




1
0
0
0


 ,

where σ ∈ R and ω > 0.

(a) For which values of the parameters σ and ω is Σ spectrally stable?

(b) For which values of the parameters σ and ω is Σ internally stable? Internally
asymptotically stable?

(c) For zero input, describe the qualitative behaviour of the states of the system
when the parameters σ and ω are chosen so that the system is internally stable
but not internally asymptotically stable.

(d) For zero input, describe the qualitative behaviour of the states of the system when
the parameters σ and ω are chosen so that the system is internally unstable.

(e) For which values of the parameters σ and ω is Σ BIBO stable?

(f) When the system is not BIBO stable, determine a bounded input that produces
an unbounded output.

E5.8 Show that (N,D) is BIBO stable if and only if for every u ∈ L∞[0,∞), the function
y satisfying D

(
d
dt

)
y(t) = N

(
d
dt

)
u(t) also lies in L∞[0,∞).

E5.9 Determine whether the pendulum/cart system of Exercises E1.5 and E2.4 is BIBO
stable in each of the following linearisations:

(a) the equilibrium point (0, 0) with cart position as output;

(b) the equilibrium point (0, 0) with cart velocity as output;

(c) the equilibrium point (0, 0) with pendulum angle as output;

(d) the equilibrium point (0, 0) with pendulum angular velocity as output;

(e) the equilibrium point (0, π) with cart position as output;

(f) the equilibrium point (0, π) with cart velocity as output;

(g) the equilibrium point (0, π) with pendulum angle as output;

(h) the equilibrium point (0, π) with pendulum angular velocity as output.

E5.10 Determine whether the double pendulum system of Exercises E1.6 and E2.5 is BIBO
stable in each of the following cases:

(a) the equilibrium point (0, 0, 0, 0) with the pendubot input;

(b) the equilibrium point (0, π, 0, 0) with the pendubot input;

(c) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(d) the equilibrium point (π, π, 0, 0) with the pendubot input;

(e) the equilibrium point (0, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (0, π, 0, 0) with the acrobot input;

(g) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(h) the equilibrium point (π, π, 0, 0) with the acrobot input.

In each case, use the angle of the second link as output.

E5.11 Consider the coupled tank system of Exercises E1.11 and E2.6. Determine the BIBO
stability of the linearisations in the following cases:

(a) the output is the level in tank 1;
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(b) the output is the level in tank 2;

(c) the output is the difference in the levels,

E5.12 Consider the coupled mass system of Exercise E1.4 and with inputs as described in
Exercise E2.19. For this problem, leave α as an arbitrary parameter. We consider a
damping force of a very special form. We ask that the damping force on each mass be
given by −d(ẋ1 + ẋ2). The mass and spring constant may be supposed positive, and
the damping constant is nonnegative.

(a) Represent the system as a SISO linear system Σ = (A, b, c,D)—note that in
Exercises E1.4 and E2.19, everything except the matrix A has already been de-
termined.

(b) Determine for which values of α, mass, spring constant, and damping constant
the system is BIBO stable.

(c) Are there any parameter values for which the system is BIBO stable, but for
which you might not be confident with the system’s state behaviour? Explain
your answer.

E5.13 Let (N,D) be a SISO linear system in input/output form. In this exercise, if
u : [0,∞)→ R is an input, yu will be the output defined so that ŷu(s) = TN,D(s)û(s).

(a) For ε > 0 define an input uε by

uε(t) =

{
1
ε
, t ∈ [0, ε]

0, otherwise.

Determine

(i) limε→0‖yuε‖2;

(ii) limε→0‖yuε‖∞;

(iii) limε→0 pow(yuε).

(b) If u(t) = sin(ωt) determine

(i) ‖yu‖2;

(ii) ‖yu‖∞;

(iii) pow(yu).

E5.14 Let Σ = (A, b, ct,D) be a SISO linear system.

(a) Show that if A+At is negative-semidefinite then Σ is internally stable.

(b) Show that ifA+At is negative-definite then Σ is internally asymptotically stable.

E5.15 Let (A,P ,Q) be a Liapunov triple for which P and Q are positive-definite. Show
that A is Hurwitz.

E5.16 Let

A =

[
0 1
0 a

]

for a ≥ 0. Show that if (A,P ,Q) is a Liapunov triple for which Q is positive-
semidefinite, then (A,Q) is not observable.

E5.17 Consider the polynomial P (s) = s3 + as2 + bs+ c.

(a) Use the Routh criteria to determine conditions on the coefficients a, b, and c that
ensure that the polynomial P is Hurwitz.
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(b) Use the Hurwitz criteria to determine conditions on the coefficients a, b, and c
that ensure that the polynomial P is Hurwitz.

(c) Verify that the conditions on the coefficients from parts (a) and (b) are equivalent.

(d) Give an example of a polynomial of the form of P that is Hurwitz.

(e) Give an example of a polynomial of the form of P for which all coefficients are
strictly positive, but that is not Hurwitz.

E5.18 A useful necessary condition for a polynomial to have all roots in C− is given by the
following theorem.

Theorem If the polynomial

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0 ∈ R[s]

is Hurwitz, then the coefficients p0, p1, . . . , pn−1 are all positive.

(a) Prove this theorem.

(b) Is the converse of the theorem true? If so, prove it, if not, give a counterexample.

The Routh/Hurwitz method gives a means of determining whether the roots of a polynomial
are stable, but gives no indication of “how stable” they are. In the following exercise, you
will examine conditions for a polynomial to be stable, and with some margin for error.

E5.19 Let P (s) = s2 + as+ b, and for δ > 0 denote

Rδ = {s ∈ C | Re(s) < −δ}.

Thus Rδ consists of those points lying a distance at least δ to the left of the imaginary
axis.

(a) Using the Routh criterion as a basis, derive necessary and sufficient conditions
for all roots of P to lie in Rδ.
Hint: The polynomial P̃ (s) = P (s+ δ) must be Hurwitz.

(b) Again using the Routh criterion as a basis, state and prove necessary and sufficient
conditions for the roots of a general polynomial to lie in Rδ.

Note that one can do this for any of the methods we have provided for characterising
Hurwitz polynomials.

E5.20 Consider a polynomial

P (s) = pns
n + pn−1s

n−1 + · · ·+ p1s+ p0 ∈ R[s]

with p0, pn 6= 0, and define P−1 ∈ R[s] by P−1(s) = snP (1
s
).

(a) Show that the roots for P−1 are the reciprocals of the roots for P .

(b) Show that P is Hurwitz if and only if P−1 is Hurwitz.

E5.21 For the following two polynomials,

(a) P (s) = s3 + as2 + bs+ c,

(b) P (s) = s4 + as3 + bs2 + cs+ d,

do the following:

1. Using principal minors to test positive-definiteness, write the conditions of the
Hermite criterion, Theorem 5.38, for P to be Hurwitz.
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2. Again using principal minors to test positive-definiteness, write the four condi-
tions of the reduced Hermite criterion, Theorem 5.41, for P to be Hurwitz, and
ascertain which is the least restrictive.

E5.22 For the following two polynomials,

(a) P (s) = s3 + as2 + bs+ c,

(b) P (s) = s4 + as3 + bs2 + cs+ d,

write down the four conditions of the Liénard-Chipart criterion, Theorem 5.42, and
determine which is the least restrictive.

E5.23 Consider a general degree three polynomial

P (s) = s3 + as2 + bs+ c,

where the coefficients satisfy

(a, b, c) ∈ [amin, amax]× [bmin, bmax]× [cmin, cmax]. (E5.1)

Use Kharitonov’s test, Theorem 5.44, to give conditions on the bounds for the intervals
for a, b, and c so that P is Hurwitz for all coefficients satisfying (E5.1).
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Chapter 6

Interconnections and feedback

We now begin to enter into the more “design” oriented parts of the course. The concept of
feedback is central to much of control, and we will be employing the analysis tools developed
in the time-domain, the s-domain, and the frequency domain to develop ways of evaluating
and designing feedback control systems. The value of feedback is at the same time obvious
and mysterious. It is clear that it ought to be employed, but it often has effects that are
subtle. Somehow the most basic feedback scheme is the PID controller that we discuss in
Section 6.5. Here we can get an idea of how feedback can effect a closed-loop system.

You may wish to take a look at the DC motor system we talked about in Section 1.2 in
order to see a very concrete display of the disadvantages of open-loop control, and how this
can be repaired to advantage with a closed-loop scheme.
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6.1 Signal flow graphs

We have seen in our discussion of block diagrams in Section 3.1 that one might be
interested in connecting a bunch of transfer functions like the one depicted in Figure 3.7. In
this section we indicate how one does this in a systematic and general way. This will enable
us to provide useful results on stability of such interconnected systems in Section 6.2.3. The
advantage of doing this systematically is that we can provide results that will hold for any
block diagram setup, not just a few standard ones.

The signal flow graph was first studied systematically in control by Mason(1953, 1953).
Many of the issues surrounding signal flow graphs are presented nicely in the paper of Lynch
[1961]. A general discussion of applications of graph theory may be found in the book of
Chen [1976]. Here the signal flow graph can be seen as a certain type of graph, and its
properties are revealed in this context. Our presentation will often follow that of Zadeh and
Desoer [1979].

6.1.1 Definitions and examples

The notion of a signal flow graph can be seen as a modification of the concept of a block
diagram The idea is to introduce nodes to represent the signals in a system, and then connect
the nodes with branches, and assign to each branch a rational function that performs the
duty of a block in a block diagram. For example, Figure 3.1 would simply appear as shown
in Figure 6.1. Before we proceed to further illustrations of how to construct signal flow

x1
R // x2

Figure 6.1 A simple signal flow graph

graphs along the lines of what we did with block diagrams, let’s say just what we are talking
about. Part of the point of signal flow graphs is that we can do this in a precise way.

6.1 Definition Denote n = {1, 2, . . . , n} and let I ⊂ n× n.

(i) A signal flow graph with interconnections I is a pair (S,G) where S is a collection
{x1, . . . , xn} of nodes or signals , and

G = {Gij ∈ R(s) | (i, j) ∈ I}

is a collection of rational functions that we call branches or gains . The branch Gij

originates from the node xj and terminates at the node xi.

(ii) A node xi is a sink if no branches originate from xi.

(iii) A node xi is a source if no branches terminate at xi.

(iv) A source xi is an input if only one branch originates from xi, and the gain of this
branch is 1.

(v) A sink xi is an output if only one branch terminates at xi and this branch has weight
1. •

For example, for the simple signal flow graph of Figure 6.1, we have n = {1, 2}, I = {(1, 2)},
S = {x1, x2}, and G = {G21 = R}. The node x1 is a source and the node x2 is a sink. In
this case note that we do not have the branch from x2 to x1. This is why we define I as we
do—we will almost never want all n2 possible interconnections, and those that we do want
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are specified by I. Note that we assume that at most one branch can connect two given
nodes. Thus, if we have a situation like that in Figure 6.2, we will replace this with the

x1

G21

++

G′
21

33 x2

Figure 6.2 Two branches connecting the same nodes

situation in Figure 6.3.

x1

G21+G′
21 // x2

Figure 6.3 Branches added to give a single branch

If you think this obtuse and abstract, you are right. But if you work at it, you will
see why we make the definitions as we do. Perhaps a few more examples will make things
clearer.

6.2 Examples

1. The signal flow graph corresponding to the series block diagram of Figure 3.2 is shown in
Figure 6.4. Note that here we have n = {1, 2, 3}, I = {(1, 2), (2, 3)}, S = {x1, x2, x3}, and

x1
G21 // x2

G32 // x3

Figure 6.4 The signal flow graph for a series interconnection

G = {G21, G32}. The node x1 is a source and x3 is a sink. There are a possible n2 = 9
interconnections, and we only have two of them realised in this graph. The transfer
function from x1 to x2 is simply G21; that is, x2 = G21x1. We also read off x3 = G32x2,
and so x3 = G21G32x3.

2. We now look at the representation of a parallel interconnection. The signal flow graph
is shown in Figure 6.5, and we have n = {1, 2, 3, 4}, I = {(1, 2), (1, 3), (2, 4), (3, 4)},

x2

1

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

x1

G21

77♦♦♦♦♦♦♦♦♦♦♦♦♦

G31 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖ x4

x3

1

77♦♦♦♦♦♦♦♦♦♦♦♦♦

Figure 6.5 The signal flow graph for a parallel interconnection

S = {x1, x2, x3, x4}, and G = {G21, G31, G42 = 1, G43 = 1}. One sees that x1 is a source
and x4 is a sink. From the graph we read the relations x2 = G21x1, x3 = G31x1, and
x4 = x2 + x3. This gives x4 = (G21 +G31)x1.
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3. The preceding two signal flow graphs are very simple in some sense. To obtain the transfer
function from the signal flow graph is a matter of looking at the graph and applying the
obvious rules. Let us now look at a “feedback loop” as a signal flow graph. The graph
is in Figure 6.6, and we have n = {1, 2, 3, 4, 5}, I = {(1, 2), (2, 3), (3, 4), (4, 2), (4, 5)},

x1
1 // x2

G32 // x3
G43 // x4

1 //

−1

gg x5

Figure 6.6 The signal flow graph for a negative feedback loop

S = {x1, x2, x3, x4, x5}, and G = {G21 = 1, G32, G43, G24 = −1, G54 = 1}. Clearly, x1 is
an input and x5 is an output. From the graph we read the relationships x2 = x1 − x4,
x3 = G32x2, x4 = G43x3, and x5 = x4. This gives, in the usual manner,

x5 = x4 = G43x3 = G43G32x2 = G43G32(x1 − x4)

=⇒ x4 = x5 =
G43G32

1 +G43G32

x1. •

4. Suppose we wish to extract more information from the negative feedback loop of the
previous example. In Figure 6.7 we depict a situation where we have added an input

x6

1

��
x1

1 // x2
G32 //

1

��

x3
G43 // x4

1 //

−1

gg x5

x7

Figure 6.7 Signal flow graph for negative feedback loop with extra
structure

signal x6 to the graph, and tapped an output signal x7 = x2. Thinking about the control
situation, one might wish to think of x6 as a disturbance to the system, and of x7 as
being the error signal (this will be seen in a better context in Sections 6.3, 8.3, and 8.4).
In doing so we have added the input x6 to the existing input x1 and the output x7 to the
existing output x5. Let us see how the two outputs get expressed as functions of the two
inputs. We have the relations x2 = x1 − x4, x3 = G32x2 + x6, x4 = G43x3, x5 = x4, and
x7 = x2. We combine these to get

x5 = x4 = G43x3 = G32G43x2 +G43x6 = G32G43x1 −G32G43x4 +G43x6

=⇒ x5 = x4 =
G32G43

1 +G32G43

x1 +
G43

1 +G32G43

x6

x7 = x2 = x1 − x4 = x1 −G43x3 = x1 −G43G32x2 −G43x6

=⇒ x7 = x2 =
1

1 +G32G43

x1 −
G43

1 +G32G43

x6.

We see that we essentially obtain a system of two linear equations that expresses the
input/output relations for the graph. •
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One can consider any node xj to effectively be an output by adding to the signal flow graph
a node xn+1 and a branch Gn+1,j with gain equal to 1. One can also add an input to any
node xj by adding a node xn+1 and a branch Gj,n+1 whose gain is 1.

6.1.2 Signal flow graphs and systems of equations

A signal flow graph is also a representation of a set of linear equations whose coefficients
belong to any field. That is to say, we consider a set of linear equations where the coefficients
are anything that can be added, multiplied, and divided. The particular field that is of
interest to us is R(s). What’s more, we consider a very particular type of linear equation;
one of the form

(1−G11)x1 −G12x2 − · · · −G1nxn = u1

−G21x1 + (1−G22)x2 − · · · −G2nxn = u2

...

−Gn1x1 −Gn2x2 − · · ·+ (1−Gnn)xn = un,

(6.1)

where Gij ∈ R(s), i, j = 1, . . . , n. The reason for using this type of equation will become
clear shortly. However, we note that corresponding to the equations (6.1) is a natural signal
flow graph. The following construction indicates how this is determined.

6.3 From linear equation to signal flow graph Given a set of linear equations of the form (6.1),
perform the following steps:

(i) place a node for each variable x1, . . . , xn;

(ii) place a node for each input u1, . . . , un;

(iii) for each nonzero Gij, i, j = 1, . . . , n, draw a branch originating from node j and
terminating in node i, having gain Gij;

(iv) for i = 1, . . . , n, draw a branch of gain 1 from ui to xi.

The result is a signal flow graph with nodes {x1, . . . , xn, xn+1 = u1, . . . , x2n = un} and gains
G = {Gij | i, j = 1, . . . , n} ∪ {G1,n+1 = 1, . . . , Gn,2n = 1}. •
For example, in Figure 6.8 we show how this is done when n = 2. One can readily verify

u1
1 // x1

G11

��

G21

��
u2

1 // x2

G22

FF

G12

GG

Figure 6.8 A general 2 node signal flow graph

that a “balance” at each node will yield the equations (6.1).
This establishes a graph for each set of equations of the form (6.1). It is also true that

one can go from a graph to a set of equations. To state how to do this, we provide the
following recipe.
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6.4 From signal flow graph to linear equation Given a signal flow graph (S,G), to any source xi
that is not an input, add a node xji = ui to S and a branch Giji to G. After doing this for
each such source, we arrive at a new signal flow graph (S′,G′). For each node xi in (S′,G′)
that is not an input perform the following steps:

(i) let xj1 , . . . , xjk be the collection of nodes for which there are branches connecting them
with xi;

(ii) form the product of xj1 , . . . , xjk with the respective branch gains;

(iii) set the sum of these products equal to xi.

The result is an equation defining the node balance at node xi. Some of the inputs may be
zero. •

Thus we establish a 1−1 correspondence between signal flow graphs and linear equations
of the form (6.1) (with some inputs and gains possibly zero). Let us denote by GS,G the
matrix of rational functions that serves as the coefficient matrix in (6.1). Thus

GS,G =




1−G11 −G12 · · · −G1n

−G21 1−G22 · · · −G2n
...

...
. . .

...
−Gn1 −Gn2 · · · 1−Gnn


 . (6.2)

We callGS,G the structure matrix for (S,G). Note thatGS,G is a matrix whose components
are rational functions. We denote the collection of n × n matrices with rational function
components by R(s)n×n. Again we note that for a given signal flow graph, of course, many
of the terms in this matrix might be zero. The objective of making the connection between
signal flow graphs and linear equations is that the matrix formulation puts at our disposal
all of the tools from linear algebra. Indeed, one could simply use the form (6.1) to study
signal flow graphs. However, this would sweep under the carpet the special structure of the
equations that results from their being derived as node equations of a signal flow graph. One
of the main objectives of this section is to deal with this aspect of the signal flow graph. But
for now, let us look at our signal flow graphs of Example 6.2 as systems of equations.

6.5 Examples (Example 6.2 cont’d) We shall simply write down the matrix G that appears
in (6.1). In each case, we shall consider, as prescribed by the above procedure, the system
with an input attached to each source that is not itself an input. Thus we ensure that the
matrix GS,G represents all states of the system.

1. For the series interconnection we work with the signal flow graph of Figure 6.9, and we

u1

1

��
x1

G21 // x2
G32 // x3

Figure 6.9 Series signal flow graph with input added

determine

GS,G =




1 0 0
−G21 1 0

0 −G32 1


 .
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u1

1

��

x2

1

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

x1

G21

77♦♦♦♦♦♦♦♦♦♦♦♦♦

G31 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖ x4

x3

1

77♦♦♦♦♦♦♦♦♦♦♦♦♦

Figure 6.10 Parallel signal flow graph with input added

2. For the parallel interconnection we work with the signal flow graph of Figure 6.10, and
we determine

GS,G =




1 0 0 0
−G21 1 0 0
−G31 0 1 0

0 −G42 −G43 1


 .

3. Finally, for the negative feedback interconnection we work with the signal flow graph of
Figure 6.11, and we determine

u1

1

��
x1

1 // x2
G32 // x3

G43 // x4
1 //

−1

gg x5

Figure 6.11 Negative feedback signal flow graph with input added

GS,G =




1 0 0 0 0
−G21 1 0 −G24 0

0 −G32 1 0 0
0 0 −G43 1 0
0 0 0 −G54 1



.

Note that we may take some of the gains to be 1 when they appear that way in Example 6.2.
•

6.1.3 Subgraphs, paths, and loops

In the constructions of the next section, we need to have a good understanding of paths
through a signal flow graph. To do this, we make some definitions.

6.6 Definition Let (S,G) be a signal flow graph with interconnections I ⊂ n× n.

(i) A subgraph of (S,G) is a pair (S′,G′) where S′ ⊂ S and where G′ ⊂ G satisfies
Gij ∈ G′ implies that xi, xj ∈ S′. If S′ = {xi1 , . . . , xin′}, then we say (S′,G′) has
interconnections {i1, . . . , in′}. We also denote by I′ ⊂ I the subset defined by G′.
Thus (i′, j′) ∈ I′ if and only if Gi′j′ ∈ G′.

(ii) A subgraph (S′,G′) is connected if for any pair xi, xj ∈ S′ there exists nodes xi0 =
xi, xi1 , . . . , xik = xj ∈ S′ and gains G1, . . . , Gk ∈ G′ so that G` ∈ {Gi`,i`+1

, Gi`+1,i`},
` ∈ {0, . . . , k − 1}.
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(iii) A path in (S,G) is a sequence {xi1 , . . . , xik} of nodes with the property that (ij, ij+1) ∈
I for each j ∈ {1, . . . , k−1}. That is to say, there is a branch connecting the jth element
in the sequence with the (j + 1)st element in the sequence.

(iv) A path {xi1 , . . . , xik} is simple if the set {(ij+1, ij) | j ∈ {1, . . . , k − 1}} is distinct.

(v) A path {xi1 , . . . , xik} is directed if the vertices are distinct. We denote the set of all
directed paths in (S,G) by Path(S,G).

(vi) A forward path is a directed path from an input node of (S,G) to a node of (S,G).
The set of forward paths from an input xi to a node xj is denoted Pathji(S,G).

(vii) The number of branches in a directed path is the length of the directed path.

(viii) A loop is a simple path {xi1 , . . . , xik} with the property that xi1 = xik . The set of
loops in (S,G) we denote by Loop(S,G).

(ix) The product of the gains in a directed path is the gain of the directed path.

(x) The loop gain of a loop L is the product of the gains comprising the loop, and is
denoted GL.

(xi) A finite collection of loops is nontouching if they have no nodes or branch gains in
common. •

Perhaps a few words of clarification about the less obvious parts of the definition are in
order.

1. The notion of a connected subgraph has a simplicity that belies its formal definition.
It merely means that it is possible to go from any node to any other node, provided
one ignores the orientation of the branches.

2. Note that the nodes in a loop must be distinct. That a loop cannot follow a path that
goes through any node more than once.

3. It is easy to be misled into thinking that any directed path is a forward path. This is
not necessarily true since for a forward path originates at an input for (S,G).

Again, this looks pretty formidable, but is in fact quite simple. We can illustrate this
easily by looking at the examples we have given of signal flow graphs.

6.7 Examples

1. For the very simple signal flow graph of Figure 6.1 there is but one path of length 1, and
it is {x1, x2}. There are no loops.

2. For the series signal flow graph of Figure 6.4 we have two paths of length 1,

{x1, x2}, {x2, x3},
and one path of length 2,

{x1, x2, x3}.
Again, there are no loops.

3. The parallel signal flow graph of Figure 6.5, forgetting for the moment that some of the
gains are predetermined to be 1, has the paths

{x1, x2}, {x2, x4}, {x1, x3}, {x3, x4},
of length 1, and paths

{x1, x2, x4}, {x1, x3, x4}
of length 2. There are no loops in this graph either.
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4. The negative feedback graph of Figure 6.7 has an infinite number of paths. Let us list
the basic ones.

(a) length 1:

{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x3, x6}, {x2, x7}.

(b) length 2:

{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x3, x4, x6}, {x2, x4, x7}.

(c) length 3:

{x1, x2, x3, x4}, {x2, x3, x5, x5}, {x3, x4, x5, x6}.

(d) length 4:
{x1, x2, x3, x4, x5}.

Some of these paths may be concatenated to get paths of any length desired. The reason
for this is that there is a loop given by

{x2, x3, x4}. •

6.1.4 Cofactors and the determinants

Next we wish to define, and state some properties of, some quantities associated with the
matrix GS,G. These quantities we will put to use in the next section in proving an important
theorem in the subject of signal flow graphs: Mason’s Rule. This is a rule for determining
the transfer function between any input and any output of a signal flow graph. But this is
getting ahead of ourselves. We have a lot of work to do in the interim.

Let us proceed with the development. For k ≥ 1 we denote

Loopk(S,G) = {(Lj1 , . . . , Ljk) ∈ (Loop(S,G))k | L1, . . . , Lk are nontouching}.

That is, Loopk(S,G) consists of those k-tuples of loops, none of which touch the others. Note
that Loop1(S,G) = Loop(S,G) and that for k sufficiently large (and not very large at all in
most examples we shall see), Loopk(S,G) = ∅. The determinant of a signal flow graph
(S,G) is defined to be

∆S,G = 1 +
∑

k≥1

(
(−1)k

k!

∑

(L1,...,Lk)∈
Loopk(G,S)

(
GL1 · · ·GLk

))
. (6.3)

It turns out that ∆S,G is exactly the determinant of GS,G.

6.8 Proposition ∆S,G = detGS,G.

Proof The proof is involved, but not difficult. We accomplish it with a series of lemmas.
First we note that the definition of the determinant gives an expression of the form

detGS,G = 1 +
∑

α

Gα, (6.4)

where Gα is a product of branch gains. We denote by (Sα,Gα) the subgraph of (S,G)
comprised of the nodes and branches that are involved in a typical term Gα.

We explore some properties of the subgraph (SG,GG).
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1 Lemma For each node xi ∈ Sα, there is at most one branch in Gα terminating at xi, and at
most one branch in Gα originating from xi.

Proof Let G = {Gα1, . . . , Gαk} be the gains that form Gα. By the definition of the deter-
minant, for each row of GS,G there is at most one j ∈ {1, . . . , k} so that Gαj is an element
of that row. A similar statement holds for each column of GS,G. However, from these state-
ments exactly follows the lemma. H

2 Lemma Gα is a product of loop gains of nontouching loops.

Proof Suppose that (Sα,Gα) consists of a collection (Sα1,Gα1), . . . , (Sα`,Gα`) of connected
subgraphs. We shall show that each of these connected subgraphs is a loop. It then follows
from Lemma 1 that the loops will be nontouching. We proceed by contradiction, supposing
that one of the connected components, say (Sα1,Gα1), is not a loop. From Lemma 1 it follows
that (Sα1,Gα1) is a directed path between two nodes; suppose that these nodes are xi and xj.
Since no branches terminate at xi, there are no elements from row i of GS,G in Gα. Since no
branches originate from xj, there are no elements from column j of GS,G in Gα. It therefore
follows that the 1’s in position (i, i) and (j, j) appear in the expression for Gα. However,
since Sα1,Gα1) is a directed path between xi and xj it follows that there are some ki, kj ∈ n
so that Gkii and Gj,kj appear in Gα. This is in contradiction to Lemma 1. H

3 Lemma If Gα is the product of the loop gains from k loops, then it has sign (−1)k in the
expression for detGS,G.

Proof First note that the determinant of GS,G is unaffected by the numbering of the nodes.
Indeed, if one interchanges i and j in a given numbering scheme, then in GS,G, both the ith
and jth columns and the ith and jth rows are swapped. Since each of these operations gives
a change of sign in the determinant, the determinant itself is the same.

Suppose that (Sα,Gα) is comprised of k nontouching loops of lengths `1, . . . , `k. Denote
the nodes in these loops by

{x1, . . . , x`1 , x1}, {x`1+1, . . . , x`2 , x`+1}, . . . , {x`k−1+1, . . . , x`k , x`k−1+1}.

According to the definition (A.1) of the determinant, to determine the sign of the contribu-
tion of Gα, we should determine the sign of the permutation

σ =

(
1 · · · `1 − 1 `1 `1 + 1 · · · `2 − 1 `2 · · · `k−1 + 1 · · · `k − 1 `k
2 · · · `1 1 `1 + 2 · · · `2 `1 + 1 · · · `k−1 · · · `k `k−1 + 1

)
.

By `1−1 transpositions we may shift the 1 in the `1st position to the 1st position. By `2−1
transpositions, the `1 + 1 in the (`1 + `2)th position can be shifted to the (`1 + 1)st position.
Proceeding in this manner, we see that the sign of the permutation is given by

sgn(σ) =
k∏

j=1

(−1)`j−1 (6.5)

Since each of the gains occurs with sign −1 in GS,G, they will contribute the sign

sgn(σ)
k∏

j=1

(−1)`j
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to Gα. However, by (6.5), we have

sgn(σ)
k∏

j=1

(−1)`j = (−1)k,

and so the lemma follows. H
The three previous lemmas show that the terms Gα in the expression (6.4) for detGS,G

have the form of the terms in ∆S,G. It remains to show that every term in ∆G,G appears in
detGS,G. Thus suppose that (Sα1,Gα1), . . . , (Sα`,Gα`) is a collection of nontouching loops.
Since these loops are nontouching, it follows that in any given row or column, there can reside
at most one gain from the set Gα1 ∪ . . .Gα`. Therefore, an expansion of the determinant will
contain the product of the gains from the set Gα1 ∪ . . .Gα`. Furthermore, they must have
the same sign in detGS,G as in ∆S,G by Lemma 3. This concludes the proof. �

Let us see how to apply this in two examples, one of which we have seen, and one of
which is complicated enough to make use of the new terminology we have introduced.

6.9 Examples

1. Let us first look at the signal flow graph depicted in Figure 6.7. For clarity it helps to
ignore the fact that G24 = −1. This graph has a single loop

L = {x2, x3, x4, x2}.

This means that Loop1(S,G) = {L} and Loopk(S,G) = ∅ for k ≥ 2. The gain of the loop
is simply the product G32G43G24. Therefore, in this case, the determinant as per (6.3) is

∆S,G = 1−G32G43G24.

If we now remember that G24 = −1 we get the term 1 + G32G43 which appears in the
denominators in Example 6.2–4. This, of course, is no coincidence.

2. Next we consider a new signal flow graph, namely the one depicted in Figure 6.12. This

x2
G32

// x3
G43

//

G23

~~
x4

G34

~~

G54

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

x1

G21

77♦♦♦♦♦♦♦♦♦♦♦♦♦

G61 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖ x5

x6
G76 // x7

G87 //

G67

aa x8

G85

77♦♦♦♦♦♦♦♦♦♦♦♦♦

G78

aa

Figure 6.12 A signal flow graph with multiple loops

graph has four loops:

L1 = {x2, x3, x2}, L2 = {x3, x4, x3}, L3 = {x6, x7, x6}, L4 = {x7, x8, x7}.

We have Loop1(S,G) = {L1, L2, L3, L4} and

Loop2(S,G) = {(L1, L3), (L1, L4), (L2, L3), (L2, L4), (L3, L1), (L4, L1), (L3, L1), (L4, L2)}.
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An application of (6.3) gives

∆S,G = 1− (GL1 +GL2 +GL3 +GL4) + (GL1GL3 +GL1GL4 +GL2GL3 +GL2GL4).

One may, of course, substitute into this expression the various gains given in terms of
the branch gains. •
Now we turn to the cofactor of a path. For P ∈ Path(S,G) let GP denote the branches

of G with those comprising P removed, and those branches having a node in common with
P removed. We note that (S,GP ) is itself a signal flow graph. If (S,G) is connected, then
(S,GP ) may not be. For P ∈ Path(S,G) the cofactor of P is defined by CofP (S,G) = ∆S,GP .

Let us illustrate this for the examples whose determinants we have computed.

6.10 Examples

1. For the signal flow graph depicted in Figure 6.7 let us consider various paths. Again we
do not pay attention to specific values assign to branch gains.

(a) P1 = {x1, x2, x3, x4, x5}: If we remove this path, the graph has no loops and so
CofP1(S,G) = 1.

(b) P2 = {x1, x2, x7}: Removing this leaves intact the existing loop, and so the deter-
minant of the graph remains unchanged. Therefore we have CofP2(S,G) = ∆S,G =
1−G32G43G24.

(c) P3 = {x3, x4, x5, x6}: Removal of this path leaves a signal flow graph with no loops
so we must have CofP3(S,G) = 1.

(d) P4 = {x2, x3, x4, x6, x7}: Again, if P4 is removed, we are left with no loops and this
then gives CofP4(S,G) = 1.

2. Next we look at the signal flow graph of Figure 6.12. We consider two paths.

(a) P1 = {x1, x2, x3, x4, x5}: Removing this loop leaves two loops remaining: L3 and
L4. The determinant of the resulting graph is, by (6.3),

CofP1(S,G) = 1− (GL3 +GL4).

(b) P2 = {x1, x6, x7, x8, x5}: This situation is rather like that for the path P1 and we
determine that

CofP2(S,G) = 1− (GL1 +GL2).

Into these expressions for the cofactors, one may substitute the branch gains. •

6.1.5 Mason’s Rule

With the notion of cofactor and determinant clearly explicated, we can state Mason’s
Rule for finding the transfer function between an input to a signal flow graph and any node
in the graph. In this section we suppose that we are working with a signal flow graph (S,G)
with interconnections I ⊂ n × n. In order to simplify matters and make extra hypotheses
for everything we do, let us make a blanket assumption in this section.

The following result gives an easy expression for the transfer function between the input
ui at xi and any other node. The following result can be found in the papers of Mason (1953,
1953). It is not actually given a rigorous proof there, but one is given by Zadeh and Desoer
[1979]. We follow the latter proof.
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6.11 Theorem (Mason’s Rule) Let (S,G) be a signal flow graph. For i, j ∈ {1, . . . , n} we have

xj =
∑

P∈Pathji(S,G)

GPCofP (S,G)

∆S,G

ui.

Proof Without loss of generality, suppose that i = 1 and that node 1 is an input. Denote
x1 = (x1, 0, . . . , 0) and let GS,G(x1, j) be the matrix GS,G with the jth column replaced with
x1. Cramer’s Rule then says that

xj =
detGS,G(x1, j)

detGS,G

.

From Proposition 6.8 the theorem will follow if we can show that

detGS,G(x1, j) =
∑

P∈Pathj1(S,G)

GPCofP (S,G).

Let (Sj,Gj) be the subgraph of (S,G) corresponding to the matrix GS,G(x1, j). One can
readily ascertain that one may arrive at (Sj,Gj) from (S,G) by performing the following
operations:

1. remove all branches originating from xj;

2. add a branch with gain x1 originating from xj and terminating at x1.

Since the only nonzero term in the jth column is the term x1 appearing in the first row, an
expansion of the determinant about the jth column shows that detGS,G(x1, j) has the form

detGS,G(x1, j) = x1

∏

α

Gα.

By Proposition 6.8 we know that detGS,G(x1, j) is comprised of a sum of products of loop
gains for nontouching loops. Thus in each of the products must appear a loop gain of the
form

f1Gk21Gk3k2 · · ·Gjk`−1
.

It follows that detGS,G(x1, j) is a sum of products of terms falling into three types:

1. x1;

2. the gain of a forward path P from x1 to xj;

3. a product of loop gains for loops that share no nodes or branches with P .

Let us fix such a term corresponding to a given forward path Pα. Now let us renumber the
nodes so that we have

GS,G(x1, j) =




1 0 · · · 0 x1

−Gk21 1 · · · 0 0
...

...
. . .

...
... 0`,n−`

0 0 · · · 1 0
0 0 · · · −Gjk`−1

0

0n−`,` G̃




(6.6)
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for some matrix G̃ ∈ R(n−`)×(n−`). Therefore we have

detGS,G(x1, j) = (−1)`−1x1(−Gk21)(−Gk3k2) · · · (−Gjk`−1
) det G̃

= x1Gk21Gk3k2 · · ·Gjk`−1
det G̃.

Now note the form of the matrix in (6.6) shows that the signal flow graph corresponding
to G̃ is obtained from (S,G) by removing all branches associated with the forward path Pα.
From this it follows that all products in detGS,G(x1, j) are of the form GPCofP (S,G) for
some forward path P .

It remains to show that any such expression will appear as a product in the expression
for detGS,G(x1, j). This may be shown as follows. Let P be a forward path comprised of
gains Gk21, Gk3k2 , . . . , Gj,k`−1

. The structure of (Sj,Gj) implies that by adding the gain x1,
we have the gain for a loop in (Sj,Gj). Now, as we saw in the proof of Proposition 6.8,
this term, multiplied by the loop gains of nontouching loops, is ensured to appear in the
determinant of (Sj,Gj). �

If a signal flow graph has multiple inputs u1, . . . , uk, then one can apply Mason’s rule for
each input, and the resulting expression for a non-input node xj is then of the form

xj =
k∑

i=1

Tjiui,

where

Tji =
∑

P∈Pathji(S,G)

GPCofP (S,G)

∆S,G

is the graph transmittance from the input ui to the node xj. Note that it is possible that
for a given i and j, Pathji(S,G) will be empty. In this case, we take the graph transmittance
to be zero.

The following result gives a useful interpretation of the set of all graph transmittances.

6.12 Corollary The matrix T S,G ∈ R(s)n×n whose (i, j)th component is the graph transmittance Tij
is the inverse of GS,G.

Proof As we saw in the proof of Theorem 6.11, the numerator term in the expression for
Tji is the determinant of the matrix obtained by replacing the jth column of GS,G by the ith
standard basis vector ei. By Cramer’s Rule we infer that Tji is the jth component of the
solution vector ti for the linear equation GS,Gti = ei. This means that if we define

T S,G =
[
t1 · · · tn

]
,

then we have
GS,GT S,G =

[
e1 · · · en

]
= In.

From the definition of inverse, the result follows. �

Let us show how the above developments all come together to allow an easy determination
of the various transfer functions for the two examples we are considering.
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6.13 Examples (Example 6.9 cont’d) In each example, we will number paths as we did in
Example 6.9.

1. For the signal flow graph of Figure 6.7 there are two sinks, x1 and x6, and two sources,
x5 and x7. To each of the sources, let us attach an input so that we are properly in the
setup of Theorem 6.11. Recalling our labelling of paths from Example 6.9, we have

Path51(S,G) = {P1}, Path71(S,G) = {P2},
Path56(S,G) = {P3}, Path76(S,G) = {P4}.

These are, of course, the paths whose cofactors we computed in Example 6.9. Now we
can compute, using Mason’s Rule, the coefficients in expressions of our two sinks x5 and
x7 involving the two sources x1 and x6. We have

T51 =
G21G32G43G54

1−G32G43G24

T71 =
G21G72

1−G32G43G24

T56 =
G36G43G54

1−G32G43G24

T76 =
G36G43G24G72

1−G32G43G24

and so we thus obtain the explicit expressions

x5 = T51x1 + T56x6, x7 = T71x1 + T76x6.

Let’s see how this checks out when G21 = G54 = G72 = G36 = −G24 = 1. In this case we
obtain

x5 =
G32G43

1 +G32G43

x1 +
G43

1 +G32G43

x6, x7 =
1

1 +G32G43

x1 −
G43

1 +G32G43

x6

as we did when we performed the calculations “by hand” back in Example 6.2.

2. We shall compute the transfer function from x1 to x5. We have Path51(S,G) = {P1, P2}.
By Mason’s Rule, and using the determinant and cofactors we have already computed,
we have

x5 =
G21G32G43G54

(
1− (GL3 +GL4)

)
+G61G76G87G58

(
1− (GL1 +GL2)

)

∆S,G

x1.

As always, we may substitute into this the values for the branch gains to get an horrific
formula for the transfer function. But just imagine trying to do this “by hand”! •
We have provided in this section a systematic way of deriving the transfer function

between various inputs and outputs in a signal flow graph. What’s more, we have identified
an important piece of structure in any such transfer function: the determinant of the graph.
We shall put this to use when studying stability of interconnected systems in Section 6.2.3.

6.1.6 Sensitivity, return difference, and loop transmittance

Up to this point, the discussion has been centred around the various transfer functions
appearing in a signal flow graph. Let us now look at other interesting objects, sensitivity,
return difference, and loop transmittance. These will turn out to be interesting in the
special context of single-loop systems in Section 6.3. The ideas we discuss in this section are
presented also in the books of Truxal [1955] and Horowitz [1963].

First we consider the notion of sensitivity. Let us first give a precise definition.
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6.14 Definition Let (S,G) be a signal flow graph with interconnections I ⊂ n×n, let i, j ∈ n, and
let (`, k) ∈ I. Let Tji be the graph transmittance from node i to node j and let G`k be the
branch gain from node k to node `. The sensitivity of Tij to Gk` is

Sji`k =
∂(lnTji)

∂(lnG`k)
,

where Tji is regarded as a function of the scalars Gsr, (s, r) ∈ I. •
Let us try to gather some intuition concerning this definition. If f is a scalar function of

a scalar variable x then note that

d(ln f(x))

d(lnx)
=

d(ln f(elnx))

d(lnx)

=
1

f(elnx)

d(f(elnx))

d(lnx)

=
1

f(x)

df(x)

dx

dx

d(lnx)

=
x

f(x)

df(x)

dx

= lim
∆x→0

f(x+ ∆x)/f(x)

(x+ ∆x)/x
.

The punchline is that d(ln f(x))
d(lnx)

, evaluated at a particular x0, gives the rate of f , normalised

by f(x0), with respect to x, normalised by x0. Thus one might say that

d(ln f(x))

d(lnx)
=

d(% change in f)

d(% change in x)
.

In any event, Sji`k measures the dependence of Tji on G`k in some sense.
Let us now give a formula for Sji`k in terms of graph determinants.

6.15 Proposition Let (S,G) be a signal flow graph with interconnections I ⊂ n × n, let i, j ∈ n,
and let (`, k) ∈ I. Let G(`,k) = G \ {G`k}. We then have

Sji`k =
∆S,G(`,k)

∆S,G

−
∑

P ′∈Pathji(S,G(`,k))
GP ′CofP ′(S,G(`,k))∑

P∈Pathji(S,G)GPCofP (S,G)
. (6.7 )

Proof In the proof we shall use the formula d(ln f(x))
d(lnx)

= x
f(x)

df(x)
dx

derived above.

We have Tji =
Fji

∆S,G
where

Fji =
∑

P∈Pathji(S,G)

GPCofP (S,G).

Therefore
∂(lnTij)

∂(lnG`k)
=
∂(lnFji)

∂(lnG`k)
− ∂(ln ∆S,G)

∂(lnG`k)
.

Now we note that each of the expressions Fji and ∆S,G is a sum of terms, each of which is
either independent of G`k or depends linearly on G`k. Therefore we have

G`k
∂Fji
∂G`k

= (Fji)`k, G`k
∂∆S,G

∂G`k

= (∆S,G)`k,
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where (Fji)`k and (∆S,G)`k are the terms in Fji and ∆S,G that involve G`k. Therefore,

∂(lnFji)

∂(lnG`k)
=

(Fji)`k
Fji

=
Fji − F̃ `k

ji

Fji

∂(ln ∆S,G)

∂(lnG`k)
=

(∆S,G)`k
∆S,G

=
∆S,G − ∆̃`k

S,G

∆S,G

,

thus defining F̃ `k
ji and ∆̃`k

S,G. A moments thought tests the veracity of the formulae

F̃ `k
ji =

∑

P ′∈Pathji(S,G(`,k))

GP ′CofP ′(S,G(`,k))

∆̃`k
S,G = ∆S,G(`,k)

,

giving the result. �
It is much easier to say in words what the symbols in the result mean. The signal flow

graph (S,G(`,k)) is that obtained by removing the branch from node k to node `. Thus the
numerators,

∆S,G(`,k)
and

∑

P ′∈Pathji(S,G(`,k))

GP ′CofP ′(S,G(`,k)),

in each of the terms on the right-hand side of (6.7) are simply the numerator and denominator
for the transfer function from node i to node j in the graph (S,G(`,k)) as given by Mason’s
rule. Thus these can often be obtained pretty easily. Let us see how this works in an
example.

6.16 Example We work with the single-loop signal flow graph of Figure 6.11, reproduced in Fig-
ure 6.13. Let us determine the sensitivity of the transfer function T51 to the gain G43. It is

x1
1 // x2

G32 // x3
G43 // x4

1 //

−1

gg x5

Figure 6.13 The signal flow graph for a negative feedback loop

easy to see that

∆S,G(`,k)
= 1

∆S,G = 1 +G32G43∑

P ′∈Path51(S,G(4,3))

GP ′CofP ′(S,G(4,3)) = 0

∑

P∈Pathji(S,G)

GPCofP (S,G) = G32G43.

From this we see that

S51
43 =

1

1 +G32G43

+
0

G32G43

=
1

1 +G32G43

.

We shall see this sensitivity function again in Section 6.3, and it will be an important object
when we come consider design issues throughout the remainder of the text. •
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Now we consider the closely related concepts of return difference and loop transmittance.
First we look at loop transmittance. The loop transmittance is defined relative to a certain
branch in a signal flow graph. The idea is that we cut the branch, in doing so creating a new
signal flow graph with two new nodes, one a sink and one a source. The loop transmittance
is the transmittance in this new graph from the newly created source to the newly created
sink. Let us make this precise.

6.17 Definition Let (S,G) be a signal flow graph with interconnections I ⊂ n×n, and let (j, i) ∈
I. Define a new signal flow graph (Sji,Gji) with nodes {x1, . . . , xn, xn+1, xn+2} and with
branches

Gij = (G \ {Gji) ∪ {Gn+1,i = 1} ∪ {Gj,n+2 = Gji}.
(i) The loop transmittance through Gji is the transmittance from xn+2 to xn+1 in the

graph (Sji,Gji), and is denoted Lji.

(ii) The return difference through Gji is given by Rji = 1− Lji. •
The return difference should be thought of as the difference between a unit signal transmitted
from node xn+2 and the signal that results at xn+1.

As usual, we want to give a characterisation of the loop transmittance in terms of deter-
minants and related notions.

6.18 Proposition Let (S,G) be a signal flow graph with interconnections I ⊂ n×n and let (j, i) ∈ I.
Let G(j,i) = G \ {Gji}. We then have

Rji =
∆S,G

∆S,G(j,i)

, Lji = 1− ∆S,G

∆S,G(j,i)

.

Proof If there is no loop containing the branch Gji then, by definition, Lji = 0 since no
forward path connects node xn+2 with node xn+1 in the graph (Sji,Gji). This is consistent
with the proposition since in this case ∆S,G = ∆S,Gji . Thus the result holds if Gji is not part
of a loop. If it is part of loops L1, . . . , Lk in (S,G), then these loops will be broken when the
graph (Sji,Gji) is formed. What’s more, all elements of Pathn+2,n+1(Sji,Gji) can be arrived
at as follows:

1. Take a loop L ∈ {L1, . . . , Lk}, ordered so that L = ({xi, xj, . . . }, {Gji, . . . }).
2. Define a path P = {xn+2, xj, . . . , xi, xn+1}.

Thus the forward paths from xn+2 to xn+1 in (Sji,Gji) are in 1 − 1-correspondence
with the loops containing Gji in (S,G), and which start with the branch Gji. If P ∈
Pathn+2,n+1(Sji,Gji) then we denote by LP ∈ Loop(S,G) the loop associated to it. The
gain of P ∈ Pathn+2,n+1(Sji,Gji) is clearly exactly the gain of LP . Furthermore, the cofactor
of a path P ∈ Pathn+2,n+1(Sji,Gji) consists exactly of those terms in ∆S,G not involving the
loop L ∈ Loop(S,G) giving rise to P . This fact can be employed to verify the equality

∆S,G = ∆Sji,Gji −
∑

P∈Pathn+2,n+1(Sji,Gji)

GLPCofP (Sji,Gji).

This then means exactly that

∑

P∈Pathn+2,n+1(Sji,Gji)

GPCofP (Sji,Gji) = ∆Sji,Gji −∆S,G.
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We also clearly have ∆Sji,Gji = ∆S,G(j,i)
since the loops in the graphs (Sji,Gji) and (S,G(j,i))

agree. Thus

Lji =

∑
P∈Pathn+2,n+1(Sji,Gji)

GPCofP (Sji,Gji)

∆Sji,Gji

=
∆S,G(j,i)

−∆S,G

∆S,G(j,i)

,

giving the result. �

This is, as always, easily exhibited in an example.

6.19 Example (Example 6.16 cont’d) We consider again the negative feedback loop of Fig-
ure 6.13. We had computed in Example 6.16 that

∆S,G(4,3)
= 1, ∆S,G = 1 +G32G43,

which gives
R43 = 1 +G32G43, L43 = −G32G43.

We see how should interpret the loop transmittance in this example. • finish

6.2 Interconnected SISO linear systems

The discussion of the previous section had a fairly general nature. Although this had the
advantage of allowing us to get a handle on the essential features of a signal flow graph, let us
bring things back into the realm of control systems. We do this in this section by introducing
the notion of an interconnected SISO linear system, and discussing the properties of such
things in a their general context. This treatment does not seem to appear in the current
control literature, oddly enough.

6.2.1 Definitions and basic properties

First of all, let us define what we mean by an interconnected SISO linear system.

6.20 Definition An interconnected SISO linear system is a connected signal flow graph (S,G)
with one source (the input) and one sink (the output). If the nodes for the system are
{x1, . . . , xn},it is always assumed the source is x1 and the sink is xn. We assume that the
single source is an actual input (i.e., that there is one branch originating from x1 and that
the branch has gain 1). This can always be done without loss of generality by adding the
necessary node and branch if needed.

An interconnected SISO linear system (S,G) is proper (resp. strictly proper) if all
gains in G are proper (resp. strictly proper). •

For example, the signal flow graphs of Figures 6.1, 6.4, 6.5, 6.6, and 6.12 are intercon-
nected SISO linear systems, while that of Figure 6.7 is not.

We will want to determine the transfer function between any two signals in the signal
flow graph in order to discuss stability. Of course, Mason’s Rule makes this a comparatively
simple chore. Since our system does not necessarily have any inputs, in order to talk about
the transfer function from any signal to any other signal, we should introduce an input an
arbitrary node. We do this in the obvious way, as follows, supposing (S,G) to have n nodes.
For i ∈ {1, . . . , n} define the ith-appended system to be the signal flow graph (Si,Gi)
with Si = S ∪ {xn+1 = ui} and Gi = G ∪ {Gi,n+1 = 1}. Thus we simply “tack on” another
node with a branch of gain 1 going to node i. This renders the new node ui an input, and
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the transfer function from node i to node j is then the graph transmittance Tji, this being
determined by Mason’s Rule. In particular, we define the transfer function of (S,G) by

TS,G = Tn1 ∈ R(s).

If (NS,G, DS,G) denotes the c.f.r. of TS,G, then we have reduced an interconnected SISO linear
system to a SISO linear system in input/output form.

Let us compute the transfer function for the examples we have been using.

6.21 Examples We simply go through the steps and produce the transfer function after making
the necessary simplifications. In each case, the gain Gij of a branch is represented by its
c.f.r. (Nij, Dij)).

1. For the series interconnection of Figure 6.4 we ascertain that the transfer function is

TS,G =
N21N32

D21D32

.

2. For the parallel signal flow graph we have loops,

TS,G =
N21N42D31D43 +N31N43D21D42

D21D42D31D43

.

3. Next we turn to the feedback loop of Figure 6.6. In Example 6.13–1 we computed the
transfer function from x1 to x5 to be

TS,G =
N21N32N43N54

D21D32D43D54

1− N32N43N24

D32D43D24

.

Simplification gives

TS,G =
N21N32N43N54D24

D32D43D21D24D54 −N32N43N24D21D54

.

In the case when G21 = G54 = −G24 = 1 we get

N32N43

D32D43 +N32N43

. (6.8)

4. For the four loop signal flow graph of Figure 6.12 we determine the transfer function to
be

TS,G =
N61N76N87D67D78

D61(D67D76(D78D87 −N78N87)−N67N76D78D87)
. •

Of course, in simply writing the transfer function for an interconnected SISO linear
system we have eliminated a great deal of the structure of the signal flow graph. As when
one thinks of a SISO linear system Σ = (A, b, ct,D) as being merely an input/output system
(see Section 2.3), one must take care if using only the transfer function to talk about an
interconnected SISO linear system. In order to see how this goes, we need to set up the
appropriate structure for an interconnected SISO linear system.

The first order of business is to set up equations of motion for a SISO linear system. We
give n sets of equations of motion, depending on where the input for the systems appears.
Of course, one can consider all inputs acting together by linearity. Note that the assumption
that x1 is an input, and the only source, ensures that the structure matrices for all of the
n appended systems are actually the same. Now we give a procedure for going from the
structure matrix GS,G of rational functions to a polynomial matrix AS,G and a polynomial
vector biS,G, corresponding to the ith-appended system (Si,Gi).
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6.22 Procedure for constructing (AS,G,b
i
S,G) from GS,G Given GS,G ∈ R(s)n×n, do the following:

(i) let (Nij, Dij) be the c.f.r. of each branch gain Gij ∈ G;

(ii) for each i ∈ {1, . . . , n}, let Gij1 , . . . , Gij` be the nonzero gains appearing in the ith row
of GS,G;

(iii) multiply row i by the denominators Dij1 , . . . , Dij` ;

(iv) after doing this for each row, denote the resulting matrix by AS,G;

(v) define biS,G to be the n-vector whose ith component is Dij1 . . . Dij` , the rest of the

components of biS,G being zero. •
The equations of motion for the ith-appended system (Si,Gi) are then the differential
equations

AS,G

(
d
dt

)
x(t) = biS,G

(
d
dt

)
u(t), (6.9)

where x = (x1, . . . , xn) are the signals for (S,G) and where u = ui is the input at node i.
The procedure above systematises what one would do naturally in writing the equations of
motion obtain by doing a “node balance.” In this case, one would clear the denominators
so that all expressions would be polynomial, and so represent differential equations in the
time-domain. Let us introduce the notation R[s]n×n for an n × n matrix with components
in R[s]. Thus, for example, AS,G ∈ R[s]n×n. Let us also define BS,G ∈ R(s) by

BS,G =
[
b1
S,G · · · bnS,G

]
,

as a convenient way to catalogue the input vectors b1
S,G, . . . , b

n
S,G.

6.23 Remark Clearly, the equations of motion for the ith appended system are exactly equivalent
to the equations GS,G = ei, where ei is the ith standard basis vector. From this it follows
that

A−1
S,GBS,G = G−1

S,G. •
Let us perform these operations for the examples we have been toting around.

6.24 Examples (Example 6.5 cont’d) We shall simply produce (AS,G,BS,G) by applying Proce-
dure 6.22.

1. We determine

AS,G =




1 0 0
−N21 D21 0

0 −N32 D32


 , BS,G =




1 0 0
0 D21 0
0 0 D32


 .

2. We determine

AS,G =




1 0 0 0
−N21 D21 0 0
−N31 0 D31 0

0 −N42D43 −N43D43 D42D43


 , BS,G =




1 0 0 0
0 D21 0 0
0 0 D31 0
0 0 0 D42D43


 .
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3. We determine

AS,G =




1 0 0 0 0
−N21D24 D21D24 0 −N24D21 0

0 −N32 D32 0 0
0 0 −N43 D43 0
0 0 0 −N54 D54




BS,G =




1 0 0 0 0
0 D21D24 0 0 0
0 0 D32 0 0
0 0 0 D43 0
0 0 0 0 D54



.

4. Now let us also look at the four-loop example first introduced in Example 6.9 and shown
in Figure 6.12. We have not yet defined GS,G so let us do so:

GS,G =




1 0 0 0 0 0 0 0
−G21 1 −G23 0 0 0 0 0

0 −G32 1 −G34 0 0 0 0
0 0 −G43 1 0 0 0 0
0 0 0 −G54 1 0 0 −G58

−G61 0 0 0 0 1 −G67 0
0 0 0 0 0 −G76 1 −G78

0 0 0 0 0 0 −G87 1




.

We then have

AS,G =




1 0 0 0 0 0 0 0
−N21D23 D21D23 −N23D21 0 0 0 0 0

0 −N32D34 D32D34 −N34D32 0 0 0 0
0 0 −N43 D43 0 0 0 0
0 0 0 −N54D58 D54D58 0 0 −N58D54

−N61D67 0 0 0 0 D61D67 −N67D61 0
0 0 0 0 0 −N76D78 D76D78 −N78D76

0 0 0 0 0 0 −N87 D87




BS,G =




1 0 0 0 0 0 0
0 D21D23 0 0 0 0 0 0
0 0 D32D34 0 0 0 0 0
0 0 0 D43 0 0 0 0
0 0 0 0 D54D58 0 0 0
0 0 0 0 0 D61D67 0 0
0 0 0 0 0 0 D76D78 0
0 0 0 0 0 0 0 D87




.

This procedure for coming up with (AS,G,BS,G) is clearly simple enough, although perhaps
tedious, in any given example. •

Now that we have the equations of motion (6.9) for an interconnected SISO linear system,
we can proceed to analyse these equations.

6.2.2 Well-posedness

The next matter we deal with is a new one for us, the matter of well-posedness. That
there is something to talk about is best illustrated by an example.
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6.25 Example We consider the signal flow graph of Figure 6.14 where we take RL(s) = 1+s−s2
s2+s+1

.

x1
1 // x2

RL // x3
1 //

−1

aa x4

Figure 6.14 Unity gain feedback loop

Thus we have a perfectly well behaved collection of branch gains, and one can compute the
characteristic polynomial (see next section) to be PS,G(s) = 2(s+ 2), which is Hurwitz. This
indicates that everything is pleasant. However, we compute the transfer function of the
system to be

TS,G(s) =
1− s

2
.

This is problematic: an interconnection of proper branch gains has given rise to an improper
transfer function. Such cases are undesirable as improper transfer functions are certainly
not desirable (cf. Proposition 5.14). •

Clearly one would like all graph transmittances to be proper rational functions, and this
leads to the following definition.

6.26 Definition An interconnected SISO linear system (S,G) is well-posed if for each i ∈
{1, . . . , n} the graph transmittance Tji ∈ R(s) is strictly proper for each j ∈ {1, . . . , n}. •

Thus well-posedness is the requirement that n2 rational functions be proper. One would
like to derive simpler conditions for well-posedness. Starting down this road, the following
result gives an interpretation of well-posedness in terms of the determinant ∆S,G.

6.27 Proposition A proper interconnected SISO linear system (S,G) is well-posed if and only if
lims→∞∆S,G(s) 6= 0.

Proof Suppose that lims→∞∆S,G(s) = L 6= 0. The graph transmittance Tji is given by

Tji =
∑

P∈Pathji(S,G)

GPCofP (S,G)

∆S,G

.

Since (S,G) is proper, it follows that GPCofP (S,G) is proper so that
lims→∞GP (s)CofP (S,G)(s) is finite. Therefore,

lim
s→∞

Tji(s) =
∑

P∈Pathji(S,G)

lims→∞GP (s)CofP (S,G)(s)

lims→∞∆S,G(s)

=
1

L

∑

P∈Pathji(S,G)

lim
s→∞

GP (s)CofP (S,G)(s)

is finite. Thus Tji is proper.
Conversely, suppose that the matrix T S,G = G−1

S,G of transmittances consists of proper
rational functions. Since the determinant of T S,G consists of sums of products of these proper
rational functions, it follows that detT S,G is itself a proper rational function. Therefore

lim
s→∞

detG−1
S,G(s) 6=∞.
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From this we infer that
lim
s→∞

detGS,G(s) 6= 0,

so proving the result. �
This gives the following sufficient condition for well-posedness, one that is satisfied in

many examples.

6.28 Corollary Let (S,G) be a proper interconnected SISO linear system. If each loop in (S,G)
contains a branch whose gain is strictly proper, then (S,G) is well-posed.

Proof Recall that the determinant is given by

∆S,G = 1 +
∑

α

Gα

where Gα is a product of loop gains for nontouching loops. If (S,G) is proper, and each loop
contains a strictly proper branch gain, then we have

lim
s→∞

∆S,G(s) = 1,

implying well-posedness. �
This indicates that for many physical systems, whose branches will be comprised of

strictly proper rational functions, one can expect well-posedness to be “typical.” The fol-
lowing example reexamines our introductory example in light of our better understanding
of well-posedness.

6.29 Example (Example 6.25 cont’d) Let us still use the signal flow graph of Figure 6.14, but
now take

RL(s) =
1 + 2 + as2

s2 + s+ 1
,

where a ∈ R is unspecified. We compute

∆S,G(s) = 1 +RL(s) =
(1 + a)s2 + 2s+ 2

s2 + s+ 1
.

We see that lims→∞∆S,G(s) = 0 if and only if a = −1. Thus, even though this system does
not satisfy the sufficient conditions of well-posedness in Corollary 6.28, it is only in the very
special case when a = −1 that the system is not well-posed. •

Well-posedness in a general context is discussed by Willems [1971], and for general (even
nonlinear) interconnected systems by Vidyasagar [1981]. When talking about well-posedness
for systems outside the rational function context we use here, one no longer has access to
simple notions like properness to characterise what it might mean for a system to be well-
posed. Thus, for general systems, one uses a more basic idea connected with existence and
uniqueness of solutions. This is explored in Exercise E6.8.

6.2.3 Stability for interconnected systems

In Chapter 5 we looked at certain types of stability: internal stability for SISO linear
systems, and BIBO stability for input/output systems. In this chapter, we are concerned
with interconnections of systems in input/output form, and the introduction of such in-
terconnections gives rise to stability concerns that simply do not arise when there are no
interconnections. The difficulty here is that the interconnections make possible some unde-
sirable behaviour that is simply not captured by the transfer function TS,G for the system.
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A motivating example and definitions

The following example makes this clear the difficulties one can encounter due to the intro-
duction of even simple interconnections.

6.30 Example We consider the simple block diagram configuration of Figure 6.15. Thus R1(s) =

r̂(s)
s− 1

s+ 1

1

s− 1
ŷ(s)

Figure 6.15 Trouble waiting to happen

s−1
s+1

and R2(s) = 1
s−1

. As we saw in Section 3.1, ŷ = R1R2r̂. This gives

ŷ(s)

r̂(s)
=

1

s+ 1
.

By Proposition 5.13 we see that this input/output transfer function is BIBO stable, and so
on these grounds we’d wash our hands of the stability question and walk away. In doing so,
we’d be too hasty. To see why this is so, suppose that the system admits some noise n̂ as in
Figure 6.16. The transfer function between n̂ and ŷ is then

r̂(s)
s− 1

s+ 1

1

s− 1
ŷ(s)

n̂(s)

Figure 6.16 Trouble happening

ŷ(s)

n̂(s)
=

1

s− 1

which by Proposition 5.13 is not BIBO stable. So any slight perturbations in the signal as
it goes from the R1 block to the R2 block will potentially be dangerously magnified in the
output. •

We now address the difficulties of the above example with a notion of stability that makes
sense for interconnected systems. The following definition provides notions of stability that
are relevant for interconnected SISO linear systems.

6.31 Definition An interconnected SISO linear system (S,G) with nodes {x1, . . . , xn} is

(i) internally stable if
lim sup
t→∞

‖x(t)‖ <∞

for every solution x(t) of AS,G

(
d
dt

)
x(t) = 0;
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(ii) internally asymptotically stable if

lim
t→∞
‖x(t)‖ = 0

for every solution x(t) of AS,G

(
d
dt

)
x(t) = 0;

(iii) internally unstable if it is not internally stable;

(iv) BIBO stable if there exists a constant K > 0 so that the conditions (1) x(0) = 0
and (2) |u(t)| ≤ 1, t ≥ 0 imply that xn(t) ≤ K where u(t) and x(t) satisfy (6.9) with
i = 1;

(v) interconnected bounded input, bounded output stable (IBIBO stable) if for
each i ∈ {1, . . . , n}, the graph transmittance Tji is BIBO stable for j ∈ {1, . . . , n}. •

For interconnected systems, we have all the notions of stability for “normal” systems, plus
we have this new notion of IBIBO stability that deals with the input/output stability of the
interconnection. This new type of stability formalises the procedure of adding noise to each
signal, and “tapping” the output of each signal to see how the system reacts internally, apart
from just looking at how the given input and output nodes act. Thus, if noise added to a node
gets unstably magnified in the signal at some other node, our definition of IBIBO stability will
capture this. Note that internal stability for these systems does not follow in quite the same
way as for SISO linear systems since the equations for the two systems are fundamentally
different: AS,G

(
d
dt

)
x(t) = 0 versus ẋ(t) = Ax(t). Indeed, one can readily see that the latter

is a special case of the former (see Exercise E6.3). A systematic investigation of equations
of the form P ( d

dt

)
x(t) = 0 for an arbitrary matrix of polynomials P is carried out by

Polderman and Willems [1998]. This can be thought of as a generalisation of the computation
of the matrix exponential. Since we shall not benefit from a full-blown treatment of such
systems, we do not give it, although some aspects of the theory certainly come up in our
characterisation of the internal stability of an interconnected SISO linear system.

Before we proceed to give results that we can use to test for the stability of interconnected
systems, let us see how the above definition of IBIBO stability covers our simple example.

6.32 Example (Example 6.30 cont’d) It is more convenient here to use the signal flow graph,
and we show it in Figure 6.17 with the nodes relabelled to make it easier to apply the

x1(s)
s−1
s+1 // x2(s)

1
s−1 // x3(s)

Figure 6.17 The signal flow diagram corresponding to the block
diagram of Figure 6.15

definition of IBIBO stability. The appended systems are shown in Figure 6.18. We compute
the graph transmittances to be

T21(s) =
s− 1

s+ 1
, T31(s) =

1

s+ 1
, T32(s) =

1

s− 1
.

Note that the transfer function T32 is BIBO unstable by Proposition 5.13. Therefore, the
interconnected system in Figure 6.17 is not IBIBO stable. •
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u1

1

��
x1

s−1
s+1 // x2

1
s−1 // x3

u2

1

��
x1

s−1
s+1 // x2

1
s−1 // x3

Figure 6.18 The ith-appended systems for Figure 6.17 with i = 1
(top) and i = 2 (bottom)

Conditions for internal stability

Let us now produce some results concerning the various types of stability. To get things
rolling, we define the characteristic polynomial to be PS,G = detAS,G. The algebraic
multiplicity of a root λ of PS,G is the multiplicity of the root of a polynomial in the usual
sense (see Section C.1). The geometric multiplicity of a root λ of PS,G is the dimension
of the kernel of the matrix AS,G(λ). Note that AS,G(λ) ∈ Rn×n, so its kernel is defined as
usual. Following what we do for R-matrices, if λ ∈ C is a root of PS,G, let us denote the
algebraic multiplicity by ma(λ) and the geometric multiplicity by mg(λ).

6.33 Theorem Consider a proper interconnected SISO linear system (S,G). The following state-
ments hold.

(i) (S,G) is internally unstable if spec(PS,G) ∩ C+ 6= ∅.
(ii) (S,G) is internally asymptotically stable if spec(PS,G) ⊂ C−.

(iii) (S,G) is internally stable if spec(PS,G) ∩ C+ = ∅ and if mg(λ) = ma(λ) for λ ∈
spec(PS,G) ∩ (iR).

(iv) (S,G) is internally unstable if mg(λ) < ma(λ) for λ ∈ spec(PS,G) ∩ (iR).

Proof Just as the proof of Theorem 5.2 follows easily once one understands the nature of
the matrix exponential, the present result follows easily once one understands the character
of solutions of AS,G

(
d
dt

)
= 0. The following lemma records those aspects of this that are

useful for us. We simplify matters by supposing that we are working with complex signals.
If the signals are real, then the results follow by taking real and imaginary parts of what we
do here.

1 Lemma Let P ∈ C[s]n×n and suppose that detP is not the zero polynomial. Let
{λ1, . . . , λ`} be the roots of detP with respective multiplicities m1, . . . ,m`. Every solution
of P

(
d
dt

)
x(t) = 0 has the form

x(t) =
∑̀

i=1

mi−1∑

j=0

βijt
jeλit

for some appropriate βij ∈ Cn, i = 1, . . . , `, j = 0, . . . ,mi − 1. In particular, the set of

solutions of P
(

d
dt

)
x(t) = 0 forms a R-vector space of dimension deg(detP ).
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Proof We prove the lemma by induction on n. It is obvious for n = 1 by well-known
properties of scalar differential equations as described in Section B.1. Now suppose the
lemma true for n ∈ {1, . . . , k − 1} and let P ∈ R[s]k×k. Note that neither the solutions of
the equations P

(
d
dt

)
x(t) = 0 nor the determinant detP are changed by the performing of

elementary row operations on P . Thus we may suppose that P has been row reduced to
the form

P =




P11 P12 · · · P1k

0
... P̃
0




for some P̃ ∈ R[s](k−1)×(k−1). By the induction hypothesis every solution to Q
(

d
dt

)
x(t) = 0

has the form

x̃(t) =

˜̀∑

i=1

mi−1∑

j=0

β̃ijt
jeλit,

for some appropriate β̃ij ∈ Cn, i = 1, . . . , ˜̀, j = 0, . . . ,mi − 1. Thus {λ1, . . . , λ˜̀} are the

roots of det P̃ with respective multiplicities m1, . . . ,m˜̀. Substituting such a x̃(t) into the
first of the equations P

(
d
dt

)
x(t) = 0 gives a differential equation of the form

P11

(
d
dt

)
x1(t) =

˜̀∑

i=1

mi−1∑

j=0

αijt
jeλit, (6.10)

for some appropriate αij ∈ C, i = 1, . . . , ˜̀, j = 0, . . . ,mi − 1. Thus the constants αij will
depend on the components of the β̃ij’s, the coefficients of P12, . . . , P1k, and roots λ1, . . . , λ˜̀.
To solve this equation (or at least come up with the form of a solution) we recall that it will
be the sum of a homogeneous solution xih(t) satisfying P11

(
d
dt

)
x1h(t) = 0 and a particular

solution. Let us investigate the form of both of these components of the solution. The
homogeneous solution has the form

x1h(t) =
`′∑

i=1

m′i∑

j=0

β′ijt
jeλ

′
it,

where {λ′1, . . . , λ′`′} are the roots of P11 with respective multiplicities m′1, . . . ,m
′
`′ . If there

are no common roots between P11 and det P̃ then the particular solution will have the form

x1p(t) =

˜̀∑

i=1

mi−1∑

j=0

β′′ijt
jeλit,

i.e., the same form as the right-hand side of (6.10). However, if P11 and det P̃ do share
roots, we have to be a little more careful. Suppose that P11 and det P̃ have a common
root λ of multiplicity m′ for P11 and multiplicity m for det P̃ . A moments reflection shows
that the method of undetermined coefficients, as outlined in Procedure B.2, then produces
a particular solution corresponding to this common root of the form

m+m′−1∑

j=0

β′′j t
jeλt.
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Collecting this all together yields the lemma by induction once we realise that detP =
P11 det P̃ . H

(i) If λ ∈ spec(PS,G) ∩ C+ then there exists a vector u ∈ Cn so that AS,G(λ)u = 0. If
x(t) = eλtu then we have

AS,G

(
d
dt

)
x(t) = eλtAS,G(λ)u = 0.

Thus there is a solution of AS,G

(
d
dt

)
x(t) = 0 that is unbounded.

(ii) From Lemma 1 we know that every solution of AS,G

(
d
dt

)
x(t) = 0 is a vector function

with components being linear combinations of functions of the form

tjeλt (6.11)

where λ ∈ spec(PS,G). By hypothesis, it follows that every such function approaches 0 as
t→∞, and so every solution of AS,G

(
d
dt

)
x(t) = 0 approaches 0 as t→∞. We refer to the

proof of Theorem 5.2 to see how this is done properly.
(iii) By Lemma 1, every solution of AS,G

(
d
dt

)
x(t) = 0 is a vector functions whose com-

ponents are linear combinations of terms of the form (6.11) for Re(λ) < 0 and terms of the
form

tjeiωt. (6.12)

We must show that the condition that ma(iω) = mg(iω) implies that the only solutions
of the form (6.12) that are allowed occur with j = 0. Indeed, since ma(iω) = mg(iω), it
follows that there are ` , ma(λ) linearly independent vectors, u1, . . . ,u`, in ker(AS,G(iω)).
Therefore, this implies that the functions

uie
iωt, . . . ,u`e

iωt

are linearly independent solutions corresponding to the root iω ∈ spec(PS,G). By Lemma 1,
there are exactly ` such functions, so this implies that as long as ma(iω) = mg(iω), all
corresponding solutions of AS,G

(
d
dt

)
x(t) = 0 have the form (6.12) with j = 0. Now we

proceed as in the proof of Theorem 5.2 and easily show that this implies internal stability.
(iv) We must show that the hypothesis that ma(iω) > mg(iω) implies that there is at

least one solution of the form (6.12) with j > 0. However, we argued in the proof of part (iii)
that the number of solutions of the form (6.12) with j = 0 is given exactly by mg(iω).
Therefore, if ma(iω) > mg(iω) there must be at least one solution of the form (6.12) with
j > 0. From this, internal instability follows. �

6.34 Remarks

1. Thus, just as with SISO linear systems, internal stability of interconnected systems is a
matter checked by computing roots of a polynomial, and possibly checking the dimension
of matrix kernels.

2. Note that Theorem 6.33 holds for arbitrary systems of the form P
(

d
dt

)
x(t) = 0 where

P ∈ R[s]n×n. •
Lemma 1 of the proof of Theorem 6.33 is obviously important in the study of the system

AS,G

(
d
dt

)
x(t) = 0, as it infers the character of the set of solutions, even if it does not give an

completely explicit formula for the solution as is accomplished by the matrix exponential. In
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particular, if degPS,G = N then there are N linearly independent solutions toAS,G

(
d
dt

)
x(t) =

0. Let us denote these solutions by

x1(t), . . . ,xN(t).

Linear independence implies that for each t the matrix

X(t) =
[
x1(t) · · · xN(t)

]

has full rank in the sense that if there exists a function c : R → RN so that X(t)c(t) = 0
for all t, then it follows that c(t) = 0 for all t.

Since the characteristic polynomial is clearly an interesting object, let us see how the
computation of the characteristic polynomial goes for the systems we are working with.

6.35 Examples As always, we bypass the grotesque calculations, and simply produce the charac-
teristic polynomial.

1. For the series interconnection of Figure 6.4 we ascertain that the characteristic polynomial
is simply PS,G = D21D32.

2. For the parallel signal flow graph we have

PS,G = D21D42D31D43.

3. For the negative feedback loop of Figure 6.6 we compute

PS,G = D21D54(D32D43D54 −N32N43N24).

In the case when G21 = G54 = −G24 = 1 we get

PS,G = D32D43 +N32N43. (6.13)

4. For the four loop interconnection of Figure 6.12 we compute

PS,G = D21D54D58D61 (D23D32 (D34D43 −N34N43)− (D34D43N23N32)) ∗
(D67D76 (D78D87 −N78N87)− (D78D87N67N76)) •

It is important to note that the characteristic polynomial for an interconnected SISO
linear system, is not the denominator of the transfer function, because in simplifying the
transfer function, there may be cancellations that may occur between the numerator and
the denominator. Let us illustrate this with a very concrete example.

6.36 Example We take the negative feedback loop of Figure 6.6 and we take as our gains the
following rational functions:

G21(s) = 1, G32(s) =
s− 1

s+ 1
, G43(s) =

1

s− 1
, G54(s) = 1, G24(s) = −1.

The characteristic polynomial, by (6.13), is

PS,G(s) = (s+ 1)(s− 1) + (s− 1)1 = s2 + s− 2.

If we write the transfer function as given by (6.8) we get

TS,G(s) =
s− 1

s2 + 2− 2
=

1

s+ 2
.

Note that PS,G(s) 6= s+ 2! •
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Conditions for BIBO and IBIBO stability

Next we wish to parlay our understanding of the character of solutions to the equations
of motion gained in the previous section into conditions on IBIBO stability. The following
preliminary result relates PS,G and ∆S,G.

6.37 Proposition Let (S,G) be an interconnected SISO linear system with interconnections I, and
for (i, j) ∈ I, let (Nij, Dij) be the c.f.r. for the gain Gij ∈ G. Then

PS,G = ∆S,G

∏

(i,j)∈I

Dij.

Proof This follows from the manner in which we arrived at AS,G from GS,G. Let us sys-
tematise this in a way that makes the proof easy. Let us order I by ordering n × n as
follows:

(1, 1), (1, 2), . . . , (1, n), (2, 1), (2, 2), . . . , (2, n), . . . , (n, 1), (n, 2), . . . , (n, n).

Thus we order n×n first ordering the rows, then ordering by column if the rows are equal.
This then gives a corresponding ordering of I ⊂ n×n, and let us denote the elements of I by
(i1, j1), . . . , (i`, j`) in order. Now, defineA0 = GS,G and inductively defineAk, k ∈ {1, . . . , `},
by multiplying the ikth row of Ak−1 by Dik,jk . Thus, in particular AS,G = A`. Now note
that by the properties of the determinant,

detAk = Dik,jk detAk−1.

Thus we have

detA1 = Di1,j1 detGS,G

detA2 = Di2,j2 detA1 = Di2,j2Di1,j1 detGS,G

...

detA` = Di`,j` detA`−1 = detGS,G

∏̀

k=1

Dik,jk .

The result now follows since PS,G = detAS,G and ∆S,G = detGS,G. �

Thus we see a strong relationship between the characteristic polynomial and the deter-
minant. Since Theorem 6.33 tells us that the characteristic polynomial has much to do with
stability, we expect that the determinant will have something to do with stability. This
observation forms the basis of the Nyquist criterion of Chapter 7. In the following result,
we clearly state how the determinant relates to matters of stability. The following theorem
was stated for a simple feedback structure, but in the MIMO context, by Desoer and Chan
[1975]. In the SISO context we are employing, the theorem is stated, but strangely not
proved, by Wang, Lee, and He [1999].

6.38 Theorem Let (S,G) be a proper, well-posed interconnected SISO linear system with intercon-
nections I. The following statements are equivalent:

(i) (S,G) is internally asymptotically stable;

(ii) (S,G) is IBIBO stable;
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(iii) the characteristic polynomial PS,G is Hurwitz;

(iv) the following three statements hold:

(a) ∆S,G has all of its zeros in C−;

(b) there are no cancellations of poles and zeros in C+ in the formation of the indi-
vidual loop gains;

(c) for any path P connecting the input of (S,G) to the output there are no cancel-
lations of poles and zeros in C+ in the formation of the gain GP .

Furthermore, each of the above four statements implies the following statement:

(v) (S,G) is BIBO stable.

Proof Theorem 6.33 establishes the equivalence of (i) and (iii). Let us establish the equiva-
lence of (ii) with parts (i) and (iii).

(iii) =⇒ (ii) We must show that all graph transmittances are BIBO stable transfer func-
tions. Let T S,G be the matrix of graph transmittances as in Corollary 6.12. From Corol-
lary 6.12 and Remark 6.23 we know that

T S,G = G−1
S,G = A−1

S,GBS,G.

In particular, it follows that for each (i, j) ∈ I we have

Tji =
Qji

PS,G

for some Qji ∈ R[s]. From this it follows that if PS,G is Hurwitz then (S,G) is IBIBO stable.
(ii) =⇒ (i) From Corollary 6.12 and Remark 6.23 it follows that each of the graph

transmittances can be written as

Tji =
Qji

PS,G

for some Qij ∈ R[s]. We claim that there is at least one (i, j) ∈ I so that the polynomials
Qij and PS,G are coprime.

Now we use Proposition 6.37 to show that parts (iii) and (iv) are equivalent.finish

Finally, (v) follows from (ii), by definition of IBIBO stability. �

6.39 Remark Note that BIBO stability of (S,G) obviously does not necessarily imply IBIBO sta-
bility (cf. Example 6.30). This is analogous to SISO linear systems where internal stability
is not implied by BIBO stability. This is a property of possible pole/zero cancellations when
forming the transfer function TS,G. For SISO linear systems, we saw that this was related
to controllability and observability. This then raises the question of whether one can talk
intelligibly about controllability and observability for interconnected SISO linear systems.
One can, but we will not do so, referring instead to [Polderman and Willems 1998]. •

If one determines the characteristic polynomial by computing the input/output transfer
function, then simplifying, one must not cancel factors in the numerator and denominator.
Let us recall why this is so.
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x1
1 // x2

s−1
s+1 // x3

1
s−1 // x4

1 //

−1

gg x5

Figure 6.19 Be careful computing the characteristic polynomial

6.40 Example (Example 6.36 cont’d) We were looking at the negative feedback system depicted
in Figure 6.19. Here the transfer function was determined to be

TS,G(s) =
1

s+ 2

while the characteristic polynomial is PS,G(s) = s2 + s − 2 = (s + 2)(s − 1). Thus while
the denominator of the transfer function has all roots in C−, the characteristic polynomial
does not. This is also illustrated in this case by the conditions (iv a), (iv b) and (iv c) of
Theorem 6.38. Thus we compute

∆S,G = 1 +
1

s+ 1
=
s+ 2

s+ 1

and so condition (iv a) is satisfied. However, condition (iv b) is clearly not satisfied, and all
three conditions must be met for IBIBO stability. •

6.3 Feedback for input/output systems with a single feedback loop

Although in the previous two sections we introduced a systematic way to deal with very
general system interconnections, SISO control typically deals with the simple case where we
have an interconnection with one loop. In this section we concentrate on this setting, and
provide some details about such interconnections. We first look at the typical single loop
control problem with a plant transfer function that is to be modified by a controller transfer
function. In particular, we say what we mean by open-loop and closed-loop control. Then,
in Section 6.3.2 we simplify things and look at a generic single loop configuration, identifying
in it the features on which we will be concentrating for a large part of the remainder of these
notes.

6.3.1 Open-loop versus closed-loop control

We shall mainly be interested in considering feedback as a means of designing a controller
to accomplish a desired task. Thus we start with a rational function RP ∈ R(s) that describes
the plant (i.e., the system about whose output we care) and we look to design a controller
RC ∈ R(s) that stabilises the system. The plant rational function should be thought of as
unchangeable. One could simply use an open-loop controller and design RC so that the
open-loop transfer function RPRC has the desired properties. This corresponds to the
situation of Figure 6.20.1 However, as we saw in Section 1.2, there are serious drawbacks to
this methodology. To get around these we design the controller to act not on the reference
signal r̂, but on the error signal ê = r̂− ŷ. One may place the controller in other places
in the block diagram, and one may have other rational functions in the block diagram.

1We place a • at a node in the signal flow graph that we do not care to name.
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r̂(s) RC(s) RP (s) ŷ(s)

r̂(s)
RC(s) // • RP (s) // ŷ(s)

Figure 6.20 Open-loop control configuration as a block diagram
(top) and a signal flow graph (bottom)

However, for such systems, the essential methodology is the same, and so let us concentrate
on one type of system interconnection for the moment for simplicity. The block diagram
configuration for the so-called closed-loop system we consider is depicted in Figure 6.21,
and in Figure 6.22 we show some possible alternate feedback loops that we do not look at

r̂(s) RC(s) RP (s) ŷ(s)
−

r̂(s)
1 // • RC(s) // • RP (s) // •

−1

ff
1 // ŷ(s)

Figure 6.21 Closed-loop control configuration as a block diagram
(top) and a signal flow graph (bottom)

in detail.
The closed-loop transfer function from r̂ to ŷ is readily computed as

ŷ

r̂
=

RPRC

1 +RPRC

.

The objective in the input/output scenario is described by the following problem statement.

6.41 Input/output control design problem Given a rational function RP describing the plant, find
a rational function RC describing the controller, that make the closed-loop transfer function
behave in a suitable manner. In particular, one will typically wish for the poles of the closed-
loop transfer function to be in C−. •

When doing this, the concerns that we will raise in Section 6.2.3 need to be taken into
account. What’s more, there are other concerns one needs to be aware of, and some of these
are addressed in Chapter 8. That is, one cannot look at the transfer function ŷ

r̂
as being the

only indicator of system performance.
Let us look at an example of designing a closed-loop control law for a given plant.
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r̂(s) RC(s) RP (s) ŷ(s)

RS(s)

−

r̂(s) RR(s) RC(s) RP (s) ŷ(s)
−

r̂(s) RP (s) ŷ(s)

RC(s)

−

Figure 6.22 Some alternate feedback loops: transfer function in
feedback path (top); modiifed reference signal (middle); con-
troller in feedback path (bottom)

6.42 Example We consider the plant transfer function RP (s) = 1
s
. Suppose we give the system a

step input: u(t) = 1(t). Then we have û(s) = 1
s
, and so the output in the Laplace transform

domain will be ŷ(s) = 1
s2

. From this we determine that y(t) = t. Thus the output blows up
as t→∞.

Let’s try to repair this with an open-loop controller. We seek a plant rational function
RC so that RCRP has all poles in C−. If (NC , DC) is the c.f.r. of RC , we have

RC(s)RP (s) =
NC(s)

sDC(s)
.

Thus the partial fraction expansion of RCRP will always contain a term like a
s

for some
a ∈ R unless we cancel the denominator of the plant transfer function with the numerator
of the controller transfer function. However, this is a bad idea. It essentially corresponds to
introducing unobservable dynamics into the system. So this leaves us with the term a

s
in the

partial fraction expansion, and with a step response, the output will still blow up as t→∞.
This motivates our trying a closed-loop scheme like that in Figure 6.21. We take RC(s) =

1
s+1

so that our closed-loop system is as depicted in Figure 6.23. The closed-loop transfer
function in this case is readily computed to be

RC(s)RP (s)

1 +RC(s)RP (s)
=

1
s+1

1
s

1 + 1
s+1

1
s

=
1

s2 + s+ 1
.

The poles of the closed-loop transfer function are now −1
2
± i
√

3
2

, which are both in C−. The
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r̂(s)
1

s+ 1

1

s
ŷ(s)

−

Figure 6.23 A closed-loop scheme for a simple plant

step response in the Laplace transform domain is

ŷ(s) =
RC(s)RP (s)

1 +RC(s)RP (s)
û(s) =

1

s2 + s+ 1

1

s
.

The inverse Laplace transform can be computed using partial fraction expansion. We have

1

s2 + s+ 1

1

s
=

1

s
− s

s2 + s+ 1
− 1

s2 + s+ 1
,

from which we can use our formulas of Section E.3 to ascertain that

y(t) = 1− et/2
(
cos

√
3

2
t+ 1√

3
sin

√
3

2
t
)
.

We plot this response in Figure 6.24, Note that the closed-loop step response is now

Figure 6.24 Closed-loop step response for simple plant and con-
troller

bounded—something we were not able to legitimately accomplish with the open-loop con-
troller. We shall develop ways of designing controllers for such systems later in the course. •

6.3.2 Unity gain feedback loops

In this section we focus on the feedback loop depicted in Figure 6.25. While in the
previous section we had looked at the case where RL = RCRP , in this section our interests
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r̂(s) RL(s) ŷ(s)
−

ê(s)

n̂(s)

d̂(s)

Figure 6.25 A unity gain feedback loop

are more in the structure of the block diagram than in the desire to design a controller
rational function RC . In this case RL is often called the open-loop transfer function for
the interconnection, meaning that it is the transfer function if the feedback connection is
snipped. It is the relationship between the open-loop transfer function and the closed-loop
transfer function that lies at the heart of classical control design. Although it is true that
by restricting to such an interconnection we loose some generality, it is not difficult to adapt
what we say here to more general single-loop configurations, perhaps with transfer functions
in the feedback loop, or a transfer function between the reference and the input to the loop.

The signals in the block diagram Figure 6.25 are the reference r(t), the output y(t),
the error e(t), the disturbance d(t), and the noise n(t). Throughout this chapter we will
encounter the various transfer functions associated with the block diagram Figure 6.25, so
let us record them here so that we may freely refer to them in the sequel:

ŷ

r̂
=

RL

1 +RL

,
ŷ

d̂
=

1

1 +RL

,
ŷ

n̂
=

RL

1 +RL

,

ê

r̂
=

1

1 +RL

,
ê

d̂
=

1

1 +RL

,
ê

n̂
=

1

1 +RL

.

We see that there are essentially two transfer functions involved here:

TL =
RL

1 +RL

and SL =
1

1 +RL

.

These transfer functions are given the name of complementary sensitivity function ,
and sensitivity function , respectively. Note that

TL + SL = 1.

Of course, the complementary sensitivity function is simply the closed-loop transfer function
from the input to the output. The sensitivity function is, in the parlance of Section 6.1.6,
the sensitivity of TL to RL. In Chapters 8 and 9 we will be seeing the importance of each of
these two transfer functions, and we will get a look at how they can interact in the design
process to make things somewhat subtle.

6.3.3 Well-posedness and stability of single-loop interconnections

When making a single-loop interconnection of the type in Figure 6.26, we have the notions
of stability and well-posedness given in Sections 6.2.3 and 6.2.2. Let us examine these ideas
in our simple single-loop context.

We first show how to easily characterise well-posedness for single-loop interconnections.
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r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 6.26 Block diagram single-loop feedback

6.43 Proposition Let RL = RCRP ∈ R(s) be proper and consider the interconnection of Fig-
ure 6.26. Let ΣL = (A, b, ct,D) be the canonical minimal realisation for RL. The following
statements are equivalent:

(i) the interconnection is well-posed;

(ii) lims→∞RL(s) 6= −1;

(iii) D 6= [−1].

Proof (i) =⇒ (ii) Suppose that (ii) does not hold so that lims→∞RL(s) = −1. Then we
have

lim
s→∞

TL(s) = lim
s→∞

RL(s)

1 +RL(s)
=∞,

and similarly lims→∞ SL(s) = ∞. This implies that both TL and SL must be improper, so
the interconnection cannot be well-posed.

(ii) =⇒ (iii) Recall from the proof of Theorem 3.20 that since ΣL is the canonical minimal
realisation of RL we have

RL(s) = TΣL(s) =
c̃ns

n + c̃n−1s
n−1 + · · ·+ c̃1s+ c̃0

sn + pn−1sn−1 + · · ·+ p1s+ p0

whereD = [c̃n] and c̃i = ci+c̃npi, and where p0, . . . , pn−1 are the coefficients in the character-
istic polynomial for A. One now computes lims→∞ TΣL(s) = c̃n. Thus lims→∞RL(s) 6= −1
implies that D 6= [1], as desired.

(iii) =⇒ (i) From the previous step in the proof, if D = [d] then lims→∞RL(s) = d.
Therefore,

lim
s→∞

TL(s) = lim
s→∞

RL(s)

1 +RL(s)
=

d

1 + d

is finite if d 6= −1. Also, if d 6= −1 then

lim
s→∞

SL(s) =
1

1 + d
.

Thus indicates that if d 6= −1 then TL and SL are both proper. �

The following obvious corollary indicates that well-posedness is not a consideration for
strictly proper loop gains.

6.44 Corollary If the loop gain RL in Figure 6.25 is strictly proper, then the interconnection is
well-posed.

Proof This follows from Proposition 6.43 since if RL is strictly proper than lims→∞RL(s) =
0. �
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Next let us turn to stability of single-loop interconnections. It will be convenient to
introduce some notation. Given a plant RP , let us denote by S (RP ) the collection of IBIBO
stabilising controllers for which the closed-loop system is well-posed. Thus we consider the
interconnection shown Figure 6.26 and we take

S (RP ) = {RC ∈ R(s) the interconnection of Figure 6.26 is IBIBO stable}.

Of course, one can characterise the set of stabilising controllers fairly concretely using the
general machinery of Section 6.2.3. One readily sees that the following result follows directly
from Theorem 6.38 (the reader can provide a direct proof of this in Exercise E6.7).

6.45 Proposition Let RP ∈ R(s) be proper. For RC ∈ R(s) the following statements are equivalent:

(i) RC ∈ S (RP );

(ii) the following two statements hold:

(a) the characteristic polynomial DCDP +NCNP is Hurwitz;

(b) lims→∞RC(s)RP (s) 6= −1;

(iii) the following three statements hold:

(a) RC and RP have no pole/zero cancellations in C+;

(b) 1 +RCRP has no zeros in C+;

(c) lims→∞RC(s)RP (s) 6= −1.

Here (NC , DC) and (NP , DP ) are the c.f.r.’s of RC and RP , respectively.

6.46 Remark While Proposition 6.45 characterises the stabilising controllers, it does not answer
the question concerning their existence, and if they exist, how many there are. We shall deal
with this in subsequent parts of the text, but since the questions are so fundamental, let us
now point to where the answers can be found.

1. For any strictly proper plant RP of order n, there exists a strictly proper controller
RC ∈ S (RP ) of order n (Theorems 10.27 and 13.2) and a proper controller RC ∈ S (RP )
of order n− 1 (Theorem 13.2).

2. For any proper plant RP of order n, there exists a strictly proper controller RC ∈ S (RP )
of order n (Theorems 10.27 and 13.2).

3. For a proper plant RP , there is (essentially) a bijection from the set S (RP ) to RH+
∞

(Theorem 10.37). •

6.4 Feedback for SISO linear systems

We look at our state-space model

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t) +Du(t),
(6.14)

and ask, “What should feedback mean for such a system?” One can, of course, write the
transfer function TΣ as a quotient of coprime polynomials, and then proceed like we did
above in the input/output case. However, it is not immediately clear what this means in
the framework of the SISO linear system Σ = (A, b, ct,D). Indeed, it is not even clear what
types of transfer functions ought to be achievable via a SISO linear system Σ because the
inputs for such a system appear in a specific way.
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What needs to be undertaken is a description of feedback for SISO linear systems, in-
dependent of those in input/output form. The idea is that for the system (6.14) we should
take as feedback a linear function of the state x and the output y. We first consider the case
of pure state feedback, then allow the output to be fed back.

6.4.1 Static state feedback for SISO linear systems

State feedback should be of the form u(t) = r(t) − f tx(t) for some f ∈ Rn, where r is
the reference signal. In block diagram form, the situation is illustrated in Figure 6.27. One

r̂(s) b (sIn −A)−1 ct ŷ(s)

D

f t

x0

−

x0

1

��
r̂(s)

1 // • b //

D

44• (sIn−A)−1

// • ct
//

−ft

��
ŷ(s)

Figure 6.27 The static state feedback configuration for the SISO
linear system (6.14) as a block diagram (top) and a signal flow
graph (bottom)

readily ascertains that the closed-loop equations are

ẋ(t) = (A− bf t)x(t) + br(t)

y(t) = (ct −Df t)x(t) +Dr(t).

Motivated by this, we have the following definition.

6.47 Definition Let Σ = (A, b, ct,D) be a SISO linear system. A state feedback vector is a
vector f ∈ Rn, and to a state feedback vector f we assign the closed-loop SISO linear
system Σf = (A− bf t, b, ct −Df t,D). The transfer function for Σf is called the closed-
loop transfer function . A rational function R ∈ R(s) is state compatible with Σ is
there exists a state feedback vector f with the property that TΣf

= R. •
The control problem here is a bit different than that of the input/output problem.
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6.48 Static state feedback design problem Given the system Σ = (A, b, ct,D), find a state feedback
vector f so that

(i) the closed-loop transfer function Σf has desirable properties and

(ii) the state variables are behaving in a nice fashion.

In particular, one will typically want the matrix A− bf t to be Hurwitz. •
By recognising that we have states, we are forced to confront the issue of their behaviour,

along with the behaviour of the input/output system. Following our notation for stabilising
controller transfer functions for input/output systems, given Σ = (A, b, ct,D), let us denote
by Ss(Σ) the set of stabilising state feedback vectors. Thus

Ss(Σ) = {f ∈ Rn | A− bf t is Hurwitz}.

The subscript “s” means state, as we shall shortly look at output feedback as well.
The following result says, at least, what we can do with the input/output relation. Note

that the result also says that for a controllable system, the eigenvalues of the closed-loop
system can be arbitrarily placed.

6.49 Theorem Let Σ = (A, b, ct,D) be a SISO linear system with (A, b) controllable. A rational
function R ∈ R(s) is state compatible with Σ if and only if there exists a monic polynomial
P ∈ R[s] of degree n so that

R(s) =
ctadj(sIn −A)b+ dPA(s)

P (s)
,

where D = [d], and where PA is the characteristic polynomial for A. In particular, if (A, b)
is controllable, then Ss(Σ) 6= ∅.
Proof The closed-loop transfer function for is

TΣf
(s) =

(ct −Df t)adj(sIn − (A− bf t))b
det(sIn − (A− bf t)) +D.

Since (A, b) is controllable, we may as well suppose that

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1



, b =




0
0
0
...
0
1



,

and let us write c = (c0, c1, . . . , cn−1). If f = (f0, f1, . . . , fn−1) a simple calculation gives

bf t =




0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

f0 f1 f2 · · · fn−1






248 6 Interconnections and feedback 2016/09/21

and so

A− bf t =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

−p0 − f0 −p1 − f1 −p2 − f2 −p3 − f3 · · · −pn−1 − fn−1



.

This shows that by choosing f appropriately, we may make the characteristic polynomial of
A− bf t anything we like.

Now we note that

(ct −Df t)adj(sIn −A)b = (ct −Df t)adj(sIn − (A− bf t))b

for any vector f t. This is because bothA andA−bf t are in controller canonical form, which
means that the polynomials (ct−Df t)adj(sIn−A)b and (ct−Df t)adj(sIn− (A− bf t))b
are both given by

(cn−1 − dfn−1)sn−1 + · · ·+ (c1 − df1)s+ (c0 − df0).

if c = (c0, c1, . . . , cn−1) and D = [d]. Now we observe that if P (s) = det(sIn − (A − bf t))
then we have

fn−1s
n−1 + · · ·+ f1s+ f0 = P (s)− PA(s).

Therefore

(ct −Df t)adj(sIn − (A− bf t))b = ctadj(sIn −A)b− d
(
P (s)− PA(s)

)
.

The theorem now follows by straightforward simplification. �

This result is important because it demonstrates that by choosing the appropriate static
state feedback for a controllable system Σ, we may do as we please with the poles of the
closed-loop transfer function. And, as we have seen in Proposition 3.24 and Corollary 5.7,
the poles of the transfer function have a great deal of effect on the behaviour of the system.

Let us do this in an ad hoc way in an example.

6.50 Example We take

A =

[
0 1
−1 0

]
, b =

[
0
1

]
.

Note that A is not Hurwitz as it has characteristic polynomial s2 + 1. Without any justifi-
cation (for this, refer ahead to Example 10.15) we take as state feedback vector f = (3, 4).
We then have

A− bf t =

[
0 1
−1 0

]
−
[
0
1

] [
3 4

]
=

[
0 1
−4 −4

]
.

Since (A− bf t, b) is in controller canonical form, the characteristic polynomial can be read
from the bottom row: s2 + 4s+ 4.

Let’s look at the behaviour of the open-loop system. We compute

eAt =

[
cos t sin t
− sin t cos t

]
.
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If we provide the periodic input u(t) = 1(t) cos t and zero initial condition, the time-response
of the state of the system is

x(t) =

[
1
2
t sin t

1
2
(t cos t+ sin t)

]

which we plot in Figure 6.28. Taking c = (1, 0), the corresponding output is

Figure 6.28 State response for open-loop system (left) and closed-
loop system (right) under static state feedback

y(t) = 1
2
t sin t

which we plot in Figure 6.29.

Figure 6.29 Output response for open-loop system (left) and
closed-loop system (right) under static state feedback

For the closed-loop system we compute

e(A−bf t)t =

[
e−2t + 2te−2t te−2t

−4te−2t e−2t − 2te−2t

]
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from which we ascertain the state behaviour to be

x(t) =

[
− 3

25
e−2t− 2

5
te−2t + 3

25
cos t+ 4

25
cos t

− 4
25
e−2t − 4

5
te−2t + 4

20
cos t− 3

25
sin t

]

and the output to be

y(t) = − 3

25
e−2t− 2

5
te−2t +

3

25
cos t+

4

25
cos t.

These are shown beside the open-loop response in Figures 6.28 and 6.29, respectively.
As expected, the addition of static state feedback has caused the system to behave in a

more suitable manner. In fact, for this example, it has taken an BIBO unstable system and
made it BIBO stable. •

The matter of static state feedback is also attended to in Section 10.1.1—where a better
understanding of when static state feedback can make a closed-loop system stable—and
in Section 10.2.1—where methods of constructing such feedback laws are discussed. We
also mention that those attracted to the signal flow graph technology for feedback might
be interested in looking at [Reinschke 1988] where a presentation of static state and static
output feedback (see the next section for the latter) appears in terms of graphs.

6.4.2 Static output feedback for SISO linear systems

Now we consider feeding back not the state, but the output itself. Thus we consider as
feedback for the system the quantity u(t) = r(t) − Fy(t) for F ∈ R, and where r is the
reference signal. This is illustrated diagrammatically in Figure 6.30.

Using the equations (6.14) we may determine the closed-loop equations. It turns out
that we require that FD 6= −1, a condition that is true, for instance, when D = 01. This
condition is related to the well-posedness condition for input/output systems discussed in
Section 6.3.3. In any event, when the conputations are carried out we get

ẋ(t) =
(
A− F

1 + FD
bct
)
x(t)−

(
1− FD

1 + FD

)
br(t)

y(t) = (1 + FD)−1ctx(t) + (1 + FD)−1Dr(t),

for a reference signal r(t). These expressions simplify somewhat in the usual case when
D = 01. With this in mind, we make the following definition which is the analogue of
Definition 6.47.

6.51 Definition Let Σ = (A, b, ct,D) be a SISO linear system. An output feedback constant
is a number F ∈ R with the property that FD 6= −1. To an output feedback number
F we assign the closed-loop SISO linear system ΣF = (A − F

1+FD
bct,

(
1 − FD

1+FD

)
b, (1 +

FD)−1ct, (1 +FD)−1D). The transfer function for ΣF is called the closed-loop transfer
function . A rational function R ∈ R(s) is output compatible with Σ is there exists an
output feedback number F with the property that TΣF = R. •

6.52 Remarks Note that static output feedback is somewhat uninteresting for SISO systems. This
is because the feedback parameter is simply a scalar in this case. For MIMO systems, the
feedback is not via a scalar, but by a matrix, so things are more interesting in this case.
Nevertheless, as we shall see in Section 10.2.2, the static output feedback problem is difficult,
even for SISO systems. •
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r̂(s) b (sIn −A)−1 ct ŷ(s)

D

x0

−

F

x0

1

��
r̂(s)

1 // • b //

D

55• (sIn−A)−1

// • ct
// • 1 //

−F

��
ŷ(s)

Figure 6.30 The static output feedback configuration for the SISO
linear system (6.14) as a block diagram (top) and a signal flow
graph (bottom)

Let us say what is the objective with this type of feedback.

6.53 Static output feedback design problem Given the system Σ = (A, b, ct,D), find an output
feedback constant F so that

(i) the closed-loop transfer function ΣF has desirable properties and

(ii) the state variables are behaving in a nice fashion.

In particular, one typically want the matrix A− Fbct to be Hurwitz. •
Following our earlier notation, given Σ = (A, b, ct,D), we denote by So(Σ) the set of

stabilising output feedback constants. That is,

So(Σ) = {F ∈ R | A− Fbct is Hurwitz}.

Let us look at the form of rational functions compatible with a system under static
output feedback. This is analogous to Theorem 6.49, although we cannot make a statement
concerning the nature of the stabilising output feedback constants.

6.54 Theorem Let Σ = (A, b, ct,D) be a SISO linear system with (A, c) observable and D 6= 01.
A rational function R ∈ R(s) is output compatible with Σ if and only if

R(s) =

(
1− FD

1+FD

)
ctadj(sIn −A)b+DP (s)

P (s)
,

where P (s) = PA(s) + F
1+FD

ctadj(sIn −A)b and F ∈ R.
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Proof We without loss of generality assume that (A, c) are in observer canonical form:

A =




0 0 0 · · · 0 −p0

1 0 0 · · · 0 −p1

0 1 0 · · · 0 −p2

0 0 1 · · · 0 −p3
...

...
...

. . .
...

...
0 0 0 · · · 0 −pn−2

0 0 0 · · · 1 −pn−1




, ct =
[
0 0 0 · · · 0 1

]
.

Let us write b = (b0, b1, . . . , bn−1). We then have

bct =




0 0 0 · · · b0

0 0 0 · · · b1

0 0 0 · · · b2
...

...
...

. . .
...

0 0 0 · · · bn−1




so that

A− F

1 + FD
bct =




0 0 0 · · · 0 −p0 − F
1+FD

b0

1 0 0 · · · 0 −p1 − F
1+FD

b1

0 1 0 · · · 0 −p2 − F
1+FD

b2

0 0 1 · · · 0 −p3 − F
1+FD

b3

...
...

...
. . .

...
...

0 0 0 · · · 0 −pn−2 − F
1+FD

bn−2

0 0 0 · · · 1 −pn−1 − F
1+FD

bn−1




.

Thus the characteristic polynomial of A− F
1+FD

bct is PA(s) + F
1+FD

ctadj(sIn −A)b since

ctadj(sIn −A)b = bn−1s
n−1 + · · ·+ b1s+ b0.

We also have

ct
(
sIn −

(
A− F

1 + FD
bct
))(

1− FD

1 + FD

)
b =

(
1− FD

1 + FD

)
ctadj(sIn −A)b,

given that A − F
1+FD

bct is in observer canonical form. Therefore, the closed-loop transfer
function is

TΣF (s) =

(
1− FD

1+FD

)
ctadj(sIn −A)b

PA(s) + F
1+FD

ctadj(sIn −A)b
+D,

and this is exactly as stated in the theorem. �

Unsurprisingly, static output feedback for SISO systems does not give the same freedom
for pole placement as does static state feedback. Nevertheless, it is possible to have a positive
effect on a system’s behaviour by employing static output feedback, as is indicated by the
following cooked example.
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6.55 Example (Example 6.50 cont’d) We consider the SISO system Σ = (A, b, ct,D) where

A =

[
0 1
−1 0

]
, b =

[
0
1

]
, c =

[
3
4

]
, D = 01.

Thus A and b are just as in Example 6.50. Therefore, if we give the open-loop system the
same input u(t) = 1(t) cos t with the same state initial condition x(0) = 0, the open-loop
state evolution will be the same as that in Figure 6.28. However, the output vector c we
now use differs from that of Example 6.50. The open-loop output is

2 sin t+ 2t cos t+ 3
2
t sin t

and shown in Figure 6.31. Let us use static output feedback with F = 1. We then compute

Figure 6.31 Output response for open-loop system (left) and
closed-loop system (right) under static output feedback

A− Fbct =

[
0 1
−2 −2

]
.

This is the same closed-loop matrix as obtained in Example 6.50, so the closed-loop state
response will be the same as that shown in Figure 6.28. The closed-loop output response is
now computed to be

y(t) = (2t− 1)e−2t + cos t,

and this is shown in Figure 6.31. The salient fact, of course, is that where the open-loop
output was unbounded with the given input, the closed-loop output is now bounded. •

It is also not hard to come up with examples where static output feedback is not capable
of providing stable closed-loop behaviour (see Examples E6.17 and E6.18). The matter of
static output feedback is also attended to in Section 10.2.2, where methods of constructing
such feedback laws are discussed.

6.4.3 Dynamic output feedback for SISO linear systems

Thus far, for SISO linear systems, we have investigated only static feedback. This feed-
back is static because we have not use any derivatives of the quantity being fed back. Now
let us consider introducing dynamics into the mix. The objective is not just to feedback the
output, but also maybe derivatives of the output, and to maybe have the fed back quantity
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r(t) ΣP y(t)

controller

−

Figure 6.32 A proposed feedback loop for dynamic output feed-
back

also depend on the input. Thus we start schematically with a block diagram as depicted in
Figure 6.32. In the diagram, ΣP is an abbreviation for the block diagram for a SISO linear
plant ΣP = (AP , bP , c

t
P ,DP ) (i.e., for a block diagram like Figure 3.6). Let us address the

question of what lies within the block labelled “controller.” For dynamic output feedback,
in this block sits ΣC , a controller SISO system ΣC = (AC , bC , c

t
C ,DC). Now note that the

diagram of Figure 6.32 looks schematically just like the bottom input/output feedback loop
in Figure 6.22. Thus, in being consistent with our discussion of Section 6.3, let us agree
to consider a block diagram schematic like Figure 6.33 to model dynamic output feedback.

r(t) ΣC ΣP y(t)
−

u(t)

Figure 6.33 Schematic for dynamic output feedback used in text

Therefore, dynamic output feedback consists of connection two SISO linear systems. Note,
however, that we have come full circle back to the situation in Section 6.3 where we talked
about feedback for input/output systems. Indeed, one can view the designing of a controller
rational function RC as being equivalent to specifying its (say) canonical minimal realisation
ΣC .

Let us get a little more mathematical and write the interconnection of Figure 6.33 is
differential equation form. Let us denote the states for the plant by xP and the states for
the controller by xC . We let u(t) be the input to ΣP which is also the output from ΣC . We
then have

ẋP (t) = APxP (t) + bPu(t)

ẋC(t) = ACxC(t) + bC(r(t)− y(t))

y(t) = ctPxP (t) +DPu(t)

u(t) = ctCxC(t) +DC(r(t)− y(t)).

To obtain the closed-loop system we use the last two equations to solve for y and u in
terms of the other variables. The equations to be solved are

[
1 −DP

DC 1

] [
y(t)
u(t)

]
=

[
ctPxP (t)

ctCxC(t) +DCr(t)

]
.
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We see that in order to solve this equation for y(t) and u(t) we must have 1 +DCDP 6= 0.
If this condition is satisfied, we say the interconnection is well-posed . This, it turns out,
is exactly the same as the definition of well-posed made in Section 6.3.3 (see Exercise E6.9).
After eliminating u, we are left with the input r(t), the output y(t), and the state (xP ,xC).
The following result says that the resulting equations are those for a SISO linear system,
and gives the form of the system. The proof is a direct calculation following the outline
above.

6.56 Proposition Suppose that xP ∈ Rn and xC ∈ Rm. The closed-loop system for Figure 6.33 is
a SISO linear system Σcl = (Acl, bcl, c

t
cl,Dcl) where

Acl =

[
AP 0n,m
0m,n AC

]
+ (1 +DCDP )−1

[
bP 0m
0n bC

] [
1 DC

−DP 1

] [
0tn ctC
−ctP 0m

]
,

bcl = (1 +DCDP )−1

[
bP 0n
0m bC

] [
1 DC

−DP 1

] [
DC

0

]
+

[
0n
bC

]
,

ctcl = (1 +DCDP )−1
[
ctP DPc

t
C

]
,

Dcl = (1 +DCDP )−1DCDP .

Note that this is the content of Exercise E2.3, except that in that exercise no feedforward
terms were included.

Now that we have the closed-loop system on hand, we may state a problem one often
wishes to resolve by the use of dynamic output feedback.

6.57 Dynamic output feedback design problem Given a plant SISO linear system ΣP , find a con-
troller SISO linear system ΣC so that the closed-loop system is internally asymptotically
stable and well-posed. •

As our final symbolic representation for stabilising controllers, given ΣP =
(AP , bP , c

t
P ,DP ), let us denote by S (ΣP ) the set of SISO linear systems ΣC =

(AC , bC , c
t
C ,DC) for which the closed-loop system Σcl is internally asymptotically stable.

The set S (ΣP ) is closely related to the set of stabilising controller rational functions, S (RP ),
if RP = TΣP . In fact, the only essential difference is that all controllers ΣC ∈ S (ΣP ) will
give rise to proper controller transfer functions TΣC .

6.58 Remarks

1. Note that if the closed-loop system is internally asymptotically stable then it is IBIBO
stable. This may not appear obvious, but it actually is. Because all the possible inputs
and outputs in the system will simply be linear combinations of the states xP and xC ,
it follows that if the states behave stably, then so too will all the inputs and outputs.

2. As we mentioned above, the dynamic output feedback control problem, Problem 6.57,
and the input/output control problem, Problem 6.41, are very closely related. In the
input/output control problem, we were a little more vague, and asked for the closed-loop
transfer function to behave in a “suitable manner.” For the dynamic output feedback
control problem, we were a little more specific because we could be. Nevertheless, even
for the dynamic output feedback problem, one often simply wants internal asymptotic
stability as a matter of course, and additional requirements will be imposed additionally.

3. Related to the question we asked at the end of Section 6.3.1 is the question of whether
given a plant SISO linear system ΣP , it is alway possible to come up with a controller SISO
linear system ΣC so that the closed-loop system is internally asymptotically stable. This
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question is answered in the affirmative in Section 10.2.3, at least under mild assumptions.
For example, if ΣP is controllable and observable, this is possible. However, unlike the
analogous situation for input/output systems, it is possible for S (ΣP ) to be empty. •
Let us give an example of how dynamic output feedback can be used to do good. As

with all the controllers we have designed thus far, we simply give an ad hoc controller that
does the job. The matter of coming up with these in a systematic manner is something that
we get into in detail in subsequent chapters.

6.59 Example We look at the problem of a mass with no gravitational effects with the control
being a force applied to the mass. The differential equation is thus

mẍ = u.

As output, let us use the position x(t) of the mass. Putting this into the form ΣP =
(AP , bP , c

t
P ,DP ) gives

AP =

[
0 1
0 0

]
, bP =

[
0
1
m

]
, cP =

[
1
0

]
, DP = 01.

Let us (magically) choose a controller SISO linear system ΣC = (AC , bC , c
t
C ,DC) given by

AC =

[
−2 1
−4 −2

]
, bC =

[
2
2

]
, cC =

[
2m
2m

]
, DC = 01.

A tedious calculation using Proposition 6.56 then gives

Acl =




0 1 0 0
0 0 2 2
−2 0 −2 1
−2 0 −4 −2


 .

One checks that the eigenvalues of Acl are {−1 + i,−1 + i,−1 − i,−1 − i}. Thus Acl is
Hurwitz as desired. This calculation is explained in Example 10.30. The step response for
the plant is shown in Figure 6.34, alongside the step response for the closed-loop system. •

Figure 6.34 Step response for unit mass before (left) and after
(right) using dynamic output feedback
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6.5 The PID control law
Minorsky, 1922

The so-called PID, for Proportional-I ntegral-Derivative, feedback is very popular, mainly
because it is simple and intuitive, and very often quite effective. The PID controller is
intended to apply to systems in input/output form, and so if one is dealing with a SISO linear
system Σ, one needs to be aware that the PID controller only knows about the input/output
behaviour, and not the state behaviour. The idea is that one designs a controller that
provides an input to the plant based upon a sum of three terms, one of which is proportional
to the error, one of which is proportional to the time-derivative of the error, and the other
of which is proportional to the integral of the error with respect to time. In this section we
investigate each of these terms, and how they contribute to the controller’s performance, and
why one should exercise some caution is choosing gains for the PID controller. Knowing what
differentiation and integration look like in the Laplace transform domain, we may represent
the controller transfer function for a PID control law as in Figure 6.35. The transfer function

ê(s) K
1

TIs
û(s)

1

TDs

•
1

&&▼▼
▼▼▼

▼▼▼
▼▼▼

▼▼▼

ê(s)
K // •

1
TIs //

1

88qqqqqqqqqqqqqq

TDs
&&▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼▼ • 1 // û(s)

•
1

88qqqqqqqqqqqqqq

Figure 6.35 The block diagram (top) and signal flow graph for a
PID controller

for this controller is

RC(s) = K
(

1 + TDs+
1

TIs

)
.

The constant K is the gain , and TD and TI are the derivative time and reset time ,
respectively. Note that the transfer function for the term TDs in the controller is not proper.
This can cause problems, and sometimes one considers the form

RC(s) = K
(

1 +
TDs

τDs+ 1
+

1

TIs

)

for the PID controller, ensuring that all terms in the controller are proper. One can think
of the additional factor (τDs + 1)−1 as being a low-pass filter added to the second term.
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In classical PID design, one makes τD small compared to TD, thus minimising its effects.
However, more modern practise allows τD to be set as a design parameter. In this chapter,
however, we shall always take τD = 0, and deal with a straight, classical PID controller. In
the design of such controllers, one wishes to determine these constants to accomplish certain
objectives.

In investigating the PID controller types, we utilise a specific example. In general, the
behaviour of a given controller transfer function will depend to a very large extent upon the
nature of the plant being controlled. However, by looking at an example, we hope that we
can capture some of the essential features of each of “P,” “I,” and “D.” The example we use
will have a plant transfer function

RP (s) =
1

s2 + 3s+ 2

The closed-loop transfer function is then

KRC(s) 1
s2+3s+2

1 +KRC(s) 1
s2+3s+2

, (6.15)

and we consider how choosing a certain type of controller rational function RC and fiddling
with the gain K effects the closed-loop response.

6.5.1 Proportional control

For proportional control we take RC(s) = 1. We compute the closed-loop transfer func-
tion to be

K

s2 + 3s+ 2 +K

and so the characteristic polynomial is s2 + 3s + 2 + K. The roots of the characteristic
polynomial are the poles of the closed-loop transfer function, and so these are of great
interest to us. We compute them to be −3

2
± 1

2

√
1− 4K. In Figure 6.36 we plot the set of

roots as K varies. Note that the roots are imaginary when K > 1
4
. In Figure 6.36, K = 1

4

thus corresponds to where the branches meet at −3
2

+ i0.
Observe that by making K large we end up in a situation where the damping remains

the same as it was for K small (i.e., the value of the real part when the poles are complex
is always −3

2
), but the frequency of the oscillatory component increases. This could be a

rather destructive effect in many systems, and indicates that the system response can suffer
when the proportional gain is too large. This is especially a problem for higher-order plants.
Proportional control can also suffer from giving a nonzero steady-state error.

6.5.2 Derivative control

Here we take RC(s) = TDs for a constant TD called the derivative time . This transfer
function clearly corresponds to differentiating the error signal. The closed-loop transfer
function is

Ks

s2 + (3 +KTD)s+ 2

which yields the roots of the characteristic polynomial as

−3−KTD
2

±
√

1 + 6KTD + (KTD)2

2
.
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Figure 6.36 The locus of roots for (6.15) with proportional control

Figure 6.37 The locus of roots for (6.15) with derivative control

The roots are always real for K > 0, and the locus of roots is shown in Figure 6.37 as K
varies and TD is fixed to be 1. As we increase K, one root of the characteristic polynomial
gets closer and closer to zero. This suggests that for large derivative time, the response
will be slow. Derivative control also can suffer from being difficult to implement because
accurately measuring velocity is sometimes a difficult task. Furthermore, if used alone,
derivative control is incapable of determining steady-state error.
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6.5.3 Integral control

We finally look at integral control where we take RC(s) = 1
TIs

where the constant TI is
called the reset time . The closed-loop transfer function is

K

TIs3 + 3TIs2 + 2TIs+K
.

The roots of this equation are too complicated to represent conveniently in closed form.
However, it is still possible to numerically plot the locus of roots, and we do this in Fig-
ure 6.38. We have fixed in this plot TI = 1 and are varying K. Note that as we increase the

Figure 6.38 The locus of roots for (6.15) with integral control

gain K, the roots of the characteristic polynomial become oscillatory with decreasing real
part. Thus integral control by itself will tend to lead to poor behaviour. But it does have
the advantage of always giving zero steady-state error to certain common input types.

6.5.4 Characteristics of the PID control law

We will discuss more in Chapter 8 the types of behaviour we are looking for in a good
controller, but we summarise some of the features of the various elements of a PID con-
troller in Table 6.1. Often, while each component of the PID controller may by itself not
have completely desirable properties, one can obtain satisfactory results by combining them
appropriately. The table should be regarded as providing some information on what to look
for to better tune a PID controller.

Let’s provide a simple example of a PID control application.
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Table 6.1 Features of PID control

Type Advantages Disadvantages

Proportional
1. Fast response 1. Potentially unstable for

large gains and higher-order
plants

2. Possible steady-state er-
ror for certain types of input

Derivative
1. Good stability properties 1. Difficult to implement

2. Does not correct steady-
state errors

3. Magnifies high-frequency
noise (see Exercise E6.20)

Integral
1. Corrects steady-state er-
ror

1. Large gain leads to lightly
damped oscillatory response

m g

Figure 6.39 Falling mass

6.60 Example We consider a mass m falling under the influence of gravity as in Figure 6.39. At
time t = 0 the mass is at a height y = y0 and moving with velocity ẏ(0) = v0. The mass
has attached to it a fan that is able to provide an upward force u. The differential equations
governing the system are

mÿ(t) = −mg + u.

We take y(t) as our output. Note that this system is not quite of the type we have been
considering because of the presence of the gravitational force. For the moment, therefore,
let’s suppose that g = 0, or equivalently that the motion of the mass is taking place in a
direction orthogonal to the direction of gravity. We will reintroduce the gravitational force
in Section 8.4. At time t = 0 we assume the mass to have state y(0) = 1 and ẏ(0) = 1, and it
is our goal to make it move to the height y = 0. Thus we take the reference signal r(t) = 0.
We shall investigate the effects of using proportional, derivative, and integral control.

First we look at making the applied force u proportional to the error. Thus the force we
apply has the form u = −Ky. The differential equation is then

mÿ(t) +Ky(t) = 0, y(0) = 1, ẏ(0) = 1
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which has the solution

y(t) = cos
√

K
m
t+
√

m
K

sin
√

K
m
t.

In this case the mass simply oscillates forever, only returning to its desired position period-
ically. This output is plotted in Figure 6.40 for m = 1 and K = 28. Note that when we

Figure 6.40 Falling mass under proportional control

increase K this has the effect of decreasing the magnitude of the oscillations while increasing
their frequency.

Now we examine the situation when we have derivative control. Thus we take u =
−KTDẏ. The differential equation is

mÿ(t) +KTDẏ(t) = 0, y(0) = 1, ẏ(0) = 1

which has the solution
y(t) = 1 +

m

KTD

(
1− e−(KTD/m)t

)
.

This output is shown in Figure 6.41 for K = 28, m = 1, and TD = 9
28

. Note here that the
mass ends up maintaining a steady height that is not the desired height. This is the problem
with derivative control—once there is no velocity, the controller stops reacting.

We can also consider integral control. Here we take u = −K
TI

∫ t
0
y(τ) dτ . The differential

equation is thus

mÿ(t) +
K

TI

∫ t

0

y(τ) dτ = 0, y(0) = 1, ẏ(0) = 1. (6.16)

To integrate this equation it is most convenient to differentiate it once to get

m
...
y +

K

TI
y(t) = 0, y(0) = 1, ẏ(0) = 1, ÿ(0) = 0.

The initial condition ÿ(0) = 0 comes to us from evaluating the equation (6.16) at t = 0. This
third-order equation may be explicitly solved, but the resulting expression is not particularly
worth recording. However, the equation may be numerically integrated and the resulting
output is plotted in Figure 6.42 for K = 28, m = 1, TD = 9

28
, and TI = 7

10
. The behaviour

here is oscillatory and unstable.
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Figure 6.41 Falling mass under derivative control

Figure 6.42 Falling mass under integral control

While none of the controllers individually performed in a reasonable manner, when we
combine them, we can get satisfactory performance. When we combine the three controllers,
the differential equation is

mÿ +KTDẏ(t) +Ky(t) +
K

TI

∫ t

0

y(τ) dτ = 0, y(0) = 1, ẏ(0) = 1.

Again, to get rid of the integral sign, we differentiate to get

m
...
y +KTDÿ(t) +Kẏ(t) +

K

TI
y(t) = 0, y(0) = 1, ẏ(0) = 1, ÿ(0) = −K(TD + 1).

This equation may in principle be solved explicitly, but we shall just numerically integrate
and show the results in Figure 6.43 for the same parameter values as were used in the plots
for the individual controllers. Note that the controller is behaving quite nicely, bringing the
mass to the desired height in a reasonable time.
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Figure 6.43 Falling mass under combined PID control

The parameters in the PID controller were not chosen completely by trial and error
here—I don’t expect the number 9

28
often gets generated by trial and error. In Chapter 12

we will see how to do select controller parameters in a more systematic manner. That we
should expect to be able to do what we wish can be seen by the following result.

6.61 Proposition For the falling mass under PID control, the poles of the closed-loop system can be
chosen to duplicate the roots of any cubic polynomial except those of the form s3 +as2 +bs+c
where b 6= 0. If the closed-loop polynomial has the coefficient b = 0 then it must also be the
case that a = c = 0.

Proof The block diagram for the system with the PID feedback is shown in Figure 6.44.
The closed-loop transfer function is therefore

r̂(s) K +KTDs+
K

TIs

1

ms2
ŷ(s)

−

Figure 6.44 Block diagram for falling mass with PID control

ŷ(s)

r̂(s)
=

1
ms2

(
K +KTDs+ K

TIs

)

1 + 1
ms2

(
K +KTDs+ K

TIs

)

=
KTD
m

s2 + 1
TD
s+ 1

TDTI

s3 + K
m
TDs2 + K

m
s+ K

mTI

.

We wish to show that appropriate choices for K, TD, and TI can be made so that

s3 +
K

m
TDs

2 +
K

m
s+

K

mTI
= s3 + as2 + bs+ c
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for arbitrary a, b, c ∈ R. If b 6= 0 then

TD =
a

b
, TI =

b

c
, K = bm

accomplishes the task. If b = 0 case that K = 0 and so a and c must also be zero. �

Thus we can place poles for the closed-loop transfer function pretty much anywhere we wish.
I used the proposition to select poles at {−5,−2± 2i}.

And with that we leave the wee falling mass to its own devices. •

6.6 Summary

Of course, the notion of feedback is an important one in control. In this section, we have
discussed some of the issues surrounding feedback in a fairly general way. In later chapters,
we will be deciding how to deploy feedback in an effective manner. Let us do as we have
been doing, and list some of the more essential points raised in this chapter.

1. The first few sections of the chapter dealt with the setup surrounding “interconnected
SISO linear systems.” The generality here is somewhat extreme, but it serves to properly
illustrate the problems that can arise when interconnecting systems.

2. You might find it helpful to be able to switch freely from block diagrams to signal flow
graphs. Sometimes the latter are the more useful form, although the former are more
commonly used in practice.

3. One should know immediately how to compute the determinant and characteristic poly-
nomial for simple block diagram configurations. One should also be able to use the
signal flow graph technology to determine the transfer function between various inputs
and outputs in a block diagram configuration.

4. One should be able to test a block diagram configuration for IBIBO stability.

5. Although we have not said much about controller design, one should understand the
issues surrounding the design problem for both SISO linear systems in input/output
form and for SISO linear systems.

6. Much of what we say as we go on will apply to the simple unity gain feedback loop. This
is simple, and one ought to be able to work with these fluently.

7. You should know what the PID control law is, and have some feel for how its proportional,
derivative, and integral components affect the performance of a system.



266 6 Interconnections and feedback 2016/09/21

Exercises

E6.1 Let (S,G) be a signal flow graph with GS,G its corresponding matrix. Show that the
gains in the ith column correspond to branches that originate from the ith node, and
that the gains in the jth row correspond to branches that terminate at the jth node.

E6.2 Consider the block diagram of Exercise E3.2.

(a) Draw the corresponding signal flow graph.

(b) Write the signal flow graph as (S,G) as we describe in the text—thus you should
identify the nodes and how the nodes are connected.

(c) Write the structure matrix GS,G.

(d) Determine the pair (AS,G,BS,G) as per Procedure 6.22.

(e) Write all simple paths through the signal flow graph which connect the input r̂
with the output ŷ.

(f) Identify all loops in the graph by writing their gains—that is, determine
Loop(S,G).

(g) For k ≥ 1 determine Loopk(S,G).

(h) Find ∆S,G.

(i) Find TS,G.

(j) Write each of the rational functions R1, . . . , R6 in Figure E3.1 as a numerator
polynomial over a denominator polynomial and then determine PS,G.

E6.3 Let Σ = (A, b, ct,D) be a SISO linear system.

(a) Show that there exists P Σ ∈ R[s]n×n so that ẋ(t) = Ax(t) if and only if
P Σ

(
d
dt

)
x(t) = 0.

(b) Show that Theorem 5.2 then follows from Theorem 6.33. That is, show that the
hypotheses of Theorem 5.2 imply the hypotheses of Theorem 6.33.

E6.4 For the block diagram of Figure E6.1, determine the values of a, b, and c for which

r̂(s)
1

s− b

1

(s+ a)(s+ c)
ŷ(s)

s+ a

−

Figure E6.1 A block diagram for determining IBIBO stability

the interconnected system is IBIBO stable. For which values of a and b can stability
be inferred from the zeros of the determinant, without having to resort to looking at
the characteristic polynomial.

E6.5 For the block diagram of Exercise E3.2 (which you investigated as a signal flow graph
in Exercise E6.2), consider the following assignment of specific rational functions to
the block transfer functions:

R1(s) =
1

s
, R2(s) = s− 1, R3(s) =

1

s+ b
,

R4(s) =
1

s+ 2
, R5(2) =

1

s+ a
, R6(s) = s+ a.
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Answer the following questions.

(a) Use Theorem 6.38 and the Routh/Hurwitz criteria to ascertain for which values
of a and b the interconnected system is IBIBO stable.

(b) For which values of a and b can IBIBO stability of the interconnected system
be inferred from looking only at the determinant of the graph without having to
resort to using the characteristic polynomial?

E6.6 In this exercise, you will investigate the matter of relating BIBO stability of individual
branch gains in a signal flow graph (S,G) to the IBIBO stability of the interconnection.

(a) Is it possible for (S,G) to be IBIBO stable, and yet have branch gains that are
not BIBO stable? If it is not possible, explain why not. If it is possible, give an
example.

(b) Is it true that BIBO stability of all branch gains for (S,G) implies IBIBO sta-
bility of the interconnection? If it is true, prove it. If it is not true, give a
counterexample.

E6.7 Prove Proposition 6.45 directly, without reference to Theorem 6.38.

E6.8 Well-posedness and existence and uniqueness of solutions. finish

E6.9 For the feedback interconnection of Figure E6.2, let ΣC = (A1, b1, c
t
1,D1) be the

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure E6.2 Plant/controller feedback loop

canonical minimal realisation for RC and let ΣP = (A2, b2, c
t
2,D2) be the canonical

minimal realisation for RP . Show that the interconnection is well-posed if and only if
D1D2 6= [−1].

E6.10 For the block diagram configuration of Figure E6.3, show that as K → 0 the poles

r̂(s) K RL(s) ŷ(s)
−

Figure E6.3 Unity gain feedback loop with variable gain

and zeros of the closed-loop transfer function approach those of RL.

E6.11 Let RP ∈ R(s) be a proper plant. For RC ∈ R(s) define RL = RCRP , as usual, and
let TL be the corresponding closed-loop transfer function. Suppose that RP has zeros
z1, . . . , z` ∈ C+ ∪ {∞} and poles p1, . . . , pk ∈ C+ (there may be other poles and zeros
of the plant, but we do not care about these). Prove the following result.
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Proposition RC ∈ S (RP ) if and only if the following four statements hold:

(i) TL ∈ RH+
∞;

(ii) the zeros of 1− TL contain {p1, . . . , pk}, including multiplicities;

(iii) the zeros of TL contain {z1, . . . , z`}, including multiplicities;

(iv) lims→∞RL(s) 6= −1.

E6.12 Let RP ∈ R(s) be a proper plant. For RC ∈ R(s) define RL = RCRP , as usual,
and let SL be the corresponding sensitivity function. Suppose that RP has zeros
z1, . . . , z` ∈ C+ ∪ {∞} and poles p1, . . . , pk ∈ C+ (there may be other poles and zeros
of the plant, but we do not care about these). Prove the following result.

Proposition RC ∈ S (RP ) if and only if the following four statements hold:

(i) SL ∈ RH+
∞;

(ii) the zeros of SL contain {p1, . . . , pk}, including multiplicities;

(iii) the zeros of 1− SL contain {z1, . . . , z`}, including multiplicities;

(iv) lims→∞RL(s) 6= −1.

E6.13 Let RP ∈ R(s) be a BIBO stable plant. Show that there exists a controller RC ∈ R(s)
for which the interconnection of Figure E6.2 is IBIBO stable with closed-loop transfer
function TL if and only if TL,

TL
RP
∈ RH+

∞.

E6.14 Let RP ∈ R(s) be a proper plant transfer function, and let (S,G) be an interconnected
SISO linear system with the property that every forward path from the input to the
output passes through the plant. Show that IBIBO stability of (S,G) implies that

TS,G,
TS,G
RP
∈ RH+

∞.

E6.15 In this exercise you will show that by feedback it is possible to move into C− the
poles of a closed-loop transfer function, even when the poles of the plant are in C+.
Consider the closed-loop system as depicted in Figure 6.21 with

RC(s) = 1, RP (s) =
1

(s+ 1)(s− a)
,

with a > 0. Determine for which values of the gain K the closed-loop system has all
poles in C−. Is the system IBIBO stable when all poles of the closed-loop system are
in C−?

In this exercise we explore the relationship between performing static state feedback for
SISO linear systems, and performing design for controller rational functions for input/output
systems.

E6.16 Consider a SISO linear system Σ = (A, b, ct,D) with (A, b) controllable and (A, c)
observable. Let RP = TΣ. For f = (f0, f1, . . . , fn−1) ∈ Rn define the polynomial

F (s) = fn−1s
n−1 + · · ·+ f1s+ f0 ∈ R[s].

Suppose that (A− bf t, c) is observable.

(a) Show that there exists a controller rational function RC with the property that
the poles of the two transfer functions

TΣf
, T =

RCRP

1 +RCRP
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agree if and only if the polynomial NP divides the polynomial F over R[s]. In
particular, show that if NP is a constant polynomial, then it is always possible
to find a controller rational function RC with the property that the poles of TΣf

and T agree.
Hint: Without loss of generality suppose that (A, b) is in controller canonical
form, and look at the proof of Proposition 10.13.

(b) Suppose that NP divides F over R[s] and by part (a) choose a controller rational
function RC with the property that the poles of TΣf

and T agree. What is the
difference of the numerators polynomials for TΣf

and T .

Thus the problem of placement of poles in feedback design for SISO linear systems
can sometimes be realised as feedback design for input/output systems. The follow-
ing parts of the problem show that there are some important cases where controller
rational function design cannot be realised as design of a state feedback vector.

Let (N,D) be a strictly proper SISO linear system in input/output form with
Σ = (A, b, ct,01) the canonical minimal realisation. Suppose that N has no root at
s = 0. Let RP = TN,D.

(c) Is it possible, if RC is the controller rational function for a PID controller, to find
f ∈ Rn so that the poles of the transfer functions of part (a) agree?

E6.17 Consider the SISO linear system Σ = (A, b, ct,01) with

A =

[
0 1
0 0

]
, b =

[
0
1

]
, c =

[
1
0

]
.

For this system, answer the following.

(a) Show that there is no continuous function u(x1) with the property that for every
solution x(t) of the differential equation

ẋ(t) = Ax(t) + bu(x1(t)) (E6.1)

satisfies limt→∞‖x‖(t) = 0.
Hint: First prove that the function

V (x) =
1

2
x2

2 −
∫ x1

0

u(ξ) dξ

is constant along solutions of the differential equation (E6.1).

(b) If f ∈ R2 is a state feedback vector for which A − bf t is Hurwitz, what can be
said about the form of f from part (a).

E6.18 In this exercise we generalise Exercise E6.17 for linear feedback. We let Σ =
(A, b, ct,01) be a SISO linear system with tr(A) = 0 and ctb = 0.

(a) Show that there is no output feedback number F with the property that the
closed-loop system is internally asymptotically stable.
Hint: Show that if

PA(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0

is the characteristic polynomial of A, then −pn−1 = tr(A) (think of putting the
matrix in complex Jordan canonical form and recall that trace is invariant under
similarity transformations).
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(b) Something with Liapunov finish

E6.19 Let Σ = (A, b, ct,01) be a complete SISO linear system and suppose that z ∈ C
is a zero of TΣ. Show that by static output feedback it is not possible to obtain a
closed-loop system with a pole at z.

One of the potential problems with derivative control is that differentiation can magnify
high frequency noise, as the following exercise points out.

E6.20 For a time signal
y(t) = As sin(ωst) + An sin(ωnt+ φn),

consisting of a sinusoidal signal (the first term) along with sinusoidal noise (the second

term), the signal-to-noise ratio is defined by S/N = |As|
|An| .

(a) Show that for any such signal, the signal-to-noise ratio for ẏ tends to zero as ωn

tends to infinity.

(b) Indicate in terms of Bode plots why differentiation is bad in terms of amplifying
high frequency noise.

E6.21 In this exercise we will investigate in detail the DC servo motor example that was
used in Section 1.2 to provide an illustration of some control concepts.

We begin by making sure we know how to put the model in a form we can deal
with. We model the system as a SISO linear system whose single state is the angular
velocity of the motor. The output is the angular velocity of the motor (i.e., the value
of the system’s only state), and the input is the voltage to the motor.

(a) Determine Σ = (A, b, ct,D). Your model should incorporate the time-constant τ
and motor gain kE as in Section 1.2, but do not include any effects from external
disturbances.

(b) Determine TΣ.

We let the plant transfer function RP be TΣ whose c.f.r. we write as (NP , DP ). For
the reasons we discussed in Section 1.2, an open-loop control scheme, while fine in an
idealised environment, lacks robustness. Thus we employ a closed-loop control scheme
like that depicted in Figure 6.21. For proportional control we use RC(s) = 1.

(c) Determine the closed-loop transfer function with gain K.

(d) Assuming that τ and kE are both positive, determine the range of gains K
for which the closed-loop system has all poles in C−. That is, determine
Kmin and Kmax so that the closed-loop system has poles in C− if and only if
K ∈ (Kmin, Kmax).

Now we will see how the closed-loop system’s frequency response represents its ability
to track sinusoidal inputs.

(e) Determine the frequency response for the closed-loop transfer function.

(f) Determine the output response to system when the reference signal is r(t) = cosωt
for some ω > 0. Assuming that K ∈ (Kmin, Kmax), what is the steady-state
response, yss(t).

(g) Show that limK→∞ yss(t) = cosωt, and so as we boost the gain higher, we can in
principle exactly track a sinusoidal reference signal. Can you see this behaviour
reflected in the frequency response of the system?

E6.22 Consider the coupled masses of Exercise E1.4 (assume no friction). As input take the
situation in Exercise E2.19 with α = 0. Thus the input is a force applied only to the
leftmost mass.
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We wish to investigate the effect of choosing an output on our ability to manipulate
the poles of the closed-loop transfer function. We first consider the case when the
output is the displacement of the rightmost mass.

(a) Determine the transfer function TΣ for the system with this output.

(b) What are the poles for the transfer function? What does this imply about the
uncontrolled behaviour of the coupled mass system?

First we look at an open-loop controller as represented by Figure 6.20. We seek a
controller rational function RC whose c.f.r. we denote (NC , DC). We also let RP = TΣ,
and denote by (NP , DP ) its c.f.r.

(c) Can you find a controller transfer function RC so that

1. DP and NC are coprime and

2. the open-loop transfer function has all poles in C−?

Why do we impose the condition 1?

Now we look for a closed-loop controller as represented by Figure 6.21. For simplicity,
we begin using a proportional control.

(d) For proportional control, suppose that RC(s) = 1, and derive the closed-loop
transfer function with gain K.

(e) Show that it is impossible to design a proportional control law for the system
with the properties

1. DP and NC are coprime and

2. the closed-loop transfer function has all poles in C−?

Hint: Show that for a polynomial s4 + as2 + b ∈ R[s], if s0 = σ0 + iω0 is a root,
then so are σ0 − iω0, −σ0 + iω0, and −σ0 − iω0.

It turns out, in fact, that introducing proportional and/or derivative control into the
problem described to this point does not help. The difficulty is with our plant transfer
function. To change it around, we change what we measure.

Thus, for the remainder of the problem, suppose that the output is the velocity of
the leftmost mass (make sure you use the correct output).

(f) Determine the transfer function TΣ for the system with this output.

(g) What are the poles for the transfer function?

The open-loop control problem here is “the same” as for the previous case where the
output was displacement of the rightmost mass. So now we look for a closed-loop
proportional controller for this transfer function.

(h) For proportional control, suppose that RC(s) = 1, and derive the closed-loop
transfer function with gain K.

(i) Choose m = 1 and k = 1, and show numerically that there exists K > 0 so that
the poles of the closed-loop transfer function all lie in C−.

E6.23 Refer to Exercise E6.21. Set the time constant τ = 1 and the motor constant kE = 1.
Produce the Bode plots for plant transfer function, and for the closed-loop system
with the proportional controller with gains K = {1, 10, 100}. Describe the essential
differences in the Bode plots. How is your discovery of Exercise E6.21(g) reflected in
your Bode plots?

E6.24 Refer to Exercise E6.22, taking m = 1 and k = 1, and use the second output
(i.e., the velocity of the leftmost mass). Produce the Bode plots for plant transfer
function, and for the closed-loop system with the proportional controller with gains
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K = {1, 10, 100}. Describe the essential differences in the Bode plots. In what way
does the open-loop transfer function differ from the rest?

E6.25 Consider the controller transfer function RC(s) = K
(
1 + TDs+ 1

TIs

)
.

(a) Can you find a SISO linear system Σ = (A, b, ct,D) so that TΣ = RC? (Assume
that K, TD, and TI are finite and nonzero.)

(b) What does this tell you about the nature of the relationship between the Prob-
lems 6.41 and 6.57?

PID control is widely used in many industrial settings, due to its easily predictable behaviour,
at least when used with “simple” plants. In the next exercise you will see what one might
mean by simple.

E6.26 Consider the interconnection in Figure E6.4 with RP a proper plant. Suppose that if

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure E6.4 Feedback loop for studying properties of PID control

RC = 1 then the interconnection is IBIBO stable. Show that there exists K0 > 1 and
TD,0, TI,0 > 0 so that the controller

RC(s) = K
(

1 + TDs+
1

TIs

)

IBIBO stabilises the interconnection for all K ∈ [1, K0], TD ∈ [0, TD,0], and TI ∈
[TI,0,∞).
Hint: Use the Nyquist criterion of Section 7.1 to show that the number of encir-
clements of −1+i0 does not change for a PID controller with the parameters satisfying
K ∈ [1, K0], TD ∈ [0, TD,0], and TI ∈ [TI,0,∞).

In the next exercise we will consider a “difficult” plant; one that is unstable and nonminimum
phase. For this plant you will see that any “conventional” strategies for designing a PID
controller, based on the intuitive ideas about PID control as discussed in Section 6.5, are
unlikely to meet with success.

E6.27 Consider, still using the interconnection of Figure E6.4, the plant

RP (s) =
1− s
s(s− 2)

.

Answer the following questions.

(a) Show that it is not possible to IBIBO stabilise the system using a PID controller
with positive parameters K, TD, and TI .
Hint: One can use one of the several polynomial stability tests of Section 5.5.
However, it turns out that the Routh test provides the simplest way of getting at
what we want here.
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Thus we must take at least one of the PID parameters to be negative. Let us consider
the simplest situation where we take K < 0, so that perhaps some of our intuition
about PID controllers persists.

(b) Show that if K < 0 then it is necessary for IBIBO stability that TI > 1.

(c) Show that if K < 0 and TI > 1 then it is necessary for IBIBO stability that
TD < 0.
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Chapter 7

Frequency domain methods for stability

In Chapter 5 we looked at various ways to test various notions of stability of SISO control
systems. Our stability discussion in that section ended with a discussion in Section 6.2.3 of
how interconnecting systems in block diagrams affects stability of the resulting system. The
criterion developed by Nyquist [1932] deals further with testing stability in such cases, and
we look at this in detail in this chapter. The methods in this chapter rely heavily on some
basic ideas in complex variable theory, and these are reviewed in Appendix D.
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7.1 The Nyquist criterion

The Nyquist criterion is a method for testing the closed-loop stability of a system based
on the frequency response of the open-loop transfer function.

7.1.1 The Principle of the Argument

In this section we review one of the essential tools in dealing with closed-loop stability
as we shall in this chapter: the so-called Principle of the Argument. This is a result from
the theory of complex analytic functions. That such technology should be useful to us
has been made clear in the developments of Section 4.4.2 concerning Bode’s Gain/Phase
Theorem. The Principle of the Argument has to do, as we shall use it, with the image of
closed contours under analytic functions. However, let us first provide its form in complex
analysis. Let U ⊂ C be an open set, and let f : U → C be an analytic function. A pole for
f is a point s0 ∈ U with the property that the limit lims→s0 f(s) does not exist, but there
exists a k ∈ N so that the limit lims→s0(s−s0)kf(s) does exist. Recall that a meromorphic
function on an open subset U ⊂ C is a function f : U → C having the property that it is
defined and analytic except at isolated points (i.e., except at poles). Now we can state the
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Principle of the Argument, which relies on the Residue Theorem stated in Appendix D.

7.1 Theorem (Principle of the Argument) Let U be a simply connected open subset of C and
let C be a contour in U . Suppose that f is a function which

(i) is meromorphic in U ,

(ii) has no poles or zeros on the contour C, and

(iii) has np poles and nz zeros in the interior of C, counting multiplicities of zeros and
poles.

Then ∫

C

f ′(s)

f(s)
ds = 2πi(nz − np),

provided integration is performed in a counterclockwise direction.

Proof Since f is meromorphic, f ′

f
is also meromorphic, and is analytic except at the poles

and zeroes of f . Let s0 be such a pole or zero, and suppose that it has multiplicity k.
Then there exists a meromorphic function f̃ , analytic an s0, with the property that f(s) =
(s− s0)kf̃(s). One then readily determines that

f ′(s)

f(s)
=

k

s− s0

+
f̃ ′(s)

f̃(s)

for s in a neighbourhood of s0. Now by the Residue Theorem the result follows since k is
positive if s0 is a zero and negative if s0 is a pole. �

The use we will make of this theorem is in ascertaining the nature of the image of a closed
contour under an analytic function. Thus we let U ⊂ C be an open set and c : [0, T ] → U
a closed curve. The image of c we denote by C, and we let f be a function satisfying the
hypotheses of Theorem 7.1. Let us denote by c̃ the curve defined by c̃(t) = f ◦c(t). Since
f has no zeros on C, the curve c̃ does not pass through the origin and so the function
F : [0, T ]→ C defined by F (t) = ln(c̃(t)) is continuous. By the chain rule we have

F ′(t) =
f ′(c(t))

f(c(t))
c′(t), t ∈ [0, T ].

Therefore ∫

C

f ′(s)

f(s)
ds =

∫

C

f ′(c(t))

f(c(t))
c′(t) dt = ln(f(c(t)))

∣∣∣
T

0
.

Using the definition of the logarithm we have

ln(f(c(t)))
∣∣∣
T

0
= ln|f(c(t))|

∣∣∣
T

0
+ i]f(c(t))

∣∣∣
T

0
.

Since c is closed, the first term on the right-hand side is zero. Using Theorem 7.1 we then
have

2π(nz − np) = ]f(c(t))
∣∣∣
T

0
. (7.1)

In other words, we have the following.

7.2 Proposition If C and f are as in Theorem 7.1, then the image of C under f encircles the
origin nz − np times, with the convention that counterclockwise is positive.

Let us illustrate the principle with an example.
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7.3 Example We take C to be the circle of radius 2 in C. This can be parameterised, for example,
by c : t 7→ 2eit, t ∈ [0, 2π]. For f we take

f(s) =
1

(s+ 1)2 + a2
, a ∈ R.

Let’s see what happens as we allow a to vary between 0 and 1.5. The curve c̃ = f ◦c is
defined by

t 7→ 1

(e2it + 1)2 + a2
, t ∈ [0, 2π].

Proposition 7.2 says that for a < 1 the image of C should encircle the origin in C two times
in the counterclockwise direction, and for a > 1 there should be no encirclements of the
origin. Of course, it is problematic to determine the image of a closed contour under a given
analytic function. Here we let the computer do the work for us, and the results are shown
in Figure 7.1. We see that the encirclements are as we expect. •

7.1.2 The Nyquist criterion for single-loop interconnections

Now we apply the Principle of the Argument to determine the stability of a closed-loop
transfer function. The block diagram configuration we consider here is shown in Figure 7.2.
The key observation is that if the system is to be IBIBO stable then the poles of the closed-
loop transfer function

T (s) =
RC(s)RP (s)

1 +RC(s)RP (s)

must all lie in C−. The idea is that we examine the determinant 1 + RCRP to ascertain
when the poles of T are stable.

We denote the loop gain by RL = RCRP . Suppose that RL has poles on the imaginary
axis at ±iω1, . . . ,±iωk where ωk > · · · > ω1 ≥ 0. Let r > 0 have the property that

r <
1

2
min

i,j∈{1,...,k}
i 6=j

{|ωi − ωj|}. (7.2)

That is, r is smaller than half the distance separating the two closest poles on the imaginary
axis. Now we choose R so that

R > ωk +
r

2
. (7.3)

With r and R so chosen we may define a contour ΓR,r which will be comprised of a collection
of components. For i = 1, . . . , k we define

Γr,k,+ =
{
iωi + reiθ

∣∣ − π
2
≤ θ ≤ π

2

}
, Γr,k,− =

{
− iωi + reiθ

∣∣ − π
2
≤ θ ≤ π

2

}
.

Now for i = 1, . . . , k − 1 define

Γ̄r,i,+ = {iω | ωi + r < ω < ωi+1 − r}, Γ̄r,i,− = {iω | − ωi − r > ω > −ωi+1 + r},

and also define

Γ̄r,i,+ = {iω | ωk + r < ω < R}, Γ̄r,i,− = {iω | − ωk − r > ω > −R}.

Finally we define
ΓR =

{
Reiθ

∣∣ − π
2
≤ θ ≤ π

2

}
.



278 7 Frequency domain methods for stability 2016/09/21

Figure 7.1 Images of closed contours for a = 0 (top left), a = 0.5
(top right), and a = 1.5 (bottom)

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 7.2 A unity feedback loop

The union of all these various contours we denote by ΓR,r:

ΓR,r =
k⋃

i=1

(
Γr,i,+ ∪ Γr,i,−

) k⋃

i=1

(
Γ̄r,i,+ ∪ Γ̄r,i,−

)⋃
ΓR.
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When RL has no poles on the imaginary axis, for R > 0 we write

ΓR,0 = {iω | −R < ω < R}
⋃

ΓR.

Note that the orientation of the contour ΓR,r is taken by convention to be positive in the
clockwise direction. This is counter to the complex variable convention, and we choose this
convention because, for reasons will soon see, we wish to move along the positive imaginary
axis from bottom to top. In any case, the idea is that we have a semicircular contour
extending into C+, and we need to make provisions for any poles of RL which lie on the
imaginary axis. The situation is sketched in Figure 7.3. With this notion of a contour behind

Re

Im

R

Figure 7.3 The contour ΓR,r

us, we can define what we will call the Nyquist contour.

7.4 Definition For the unity feedback loop of Figure 7.2, let RL be the rational function RCRP ,
and let R and r satisfy the conditions (7.3) and (7.2). The (R, r)-Nyquist contour is the
contour RL(ΓR,r) ⊂ C. We denote the (R, r)-Nyquist contour by NR,r. •
When we are willing to live with the associated imprecision, we shall often simply say
“Nyquist contour” in place of “(R, r)-Nyquist” contour.

Let us first state some general properties of the (R, r)-Nyquist contour. At the same time
we introduce some useful notation. Since we are interested in using the Nyquist criterion
for determining IBIBO stability, we shall suppose RL to be proper, as in most cases we
encounter.

7.5 Proposition Let RL be a proper rational function, and for δ > 0 let D̄(0, δ) = {s ∈ C | |s| ≤
δ} be the disk of radius δ centred at the origin in C. The following statements hold.

(i) If RL has no poles on the imaginary axis then there exists M > 0 so that for any
R > 0 the (R, 0)-Nyquist contour is contained in the disk D̄(0,M). Furthermore
limR→∞NR,0 is well-defined and we denote the limit by N∞,0.

(ii) If RL is strictly proper, then for any r > 0 satisfying (7.2) and for any ε > 0 there
exists R0 > 0 so that NR,r \ NR0,r ⊂ D̄(0, ε) for any R > R0. Thus limR→∞NR,r is
well-defined and we denote the limit by N∞,r.
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(iii) If RL is both strictly proper and has no poles on the imaginary axis, then the conse-
quences of (ii) hold with r = 0, and we denote by N∞,0 the limit limR→∞NR,0.

Proof (i) Define R(s) = RL(1
s
) for s 6= 0. Since RL is proper, the limit lims→0R(s) exists.

But, since RL is continuous, this is nothing more than the assertion we are trying to prove.
(ii) If RL is strictly proper then lims→∞RL(s) = 0. Therefore, by continuity of RL we can

choose R0 sufficiently large that, for R > R0, those points which lie in the (R, r)-Nyquist
contour but do not lie in the (R0, r)-Nyquist contour reside in the disk D̄(0, ε). This is
precisely what we have stated.

(iii) This is a simple consequence of (i) and (ii). �

The punchline here is that the Nyquist contour is always bounded for proper loop gains,
provided that there are no poles on the imaginary axis. When there are poles on the imag-
inary axis, then the Nyquist contour will be unbounded, but for any fixed r > 0 sufficiently
small, we may still consider letting R→∞.

Let us see how the character of the Nyquist contour relates to stability of the closed-loop
system depicted in Figure 7.2.

7.6 Theorem (Nyquist Criterion) Let RC and RP be rational functions with RL = RCRP

proper. Let np be the number of poles of RL in C+. First suppose that 1+RL has no zeros on
iR. Then the interconnected SISO linear system represented by the block diagram Figure 7.2
is IBIBO stable if and only if

(i) there are no cancellations of poles and zeros in C+ between RC and RP ;

(ii) lims→∞RL(s) 6= −1;

(iii) there exists R0, r0 > 0 satisfying (7.3) and (7.2) with the property that for every
R > R0 and r < r0, the (R, r)-Nyquist contour encircles the point −1 + i0 in the
complex plane np times in the counterclockwise direction as the contour ΓR,r is traversed
once in the clockwise direction.

Furthermore, if for any R and r satisfying (7.3) and (7.2) the (R, r)-Nyquist contour
passes through the point −1 + i0, and in particular if 1 + RL has zeros on iR, then the
closed-loop system is IBIBO unstable.

Proof We first note that the condition (ii) is simply the condition that the closed-loop
transfer function be proper. If the closed-loop transfer function is not proper, then the
resulting interconnection cannot be IBIBO stable.

By Theorem 6.38, the closed-loop system is IBIBO stable if and only if (1) all the closed-
loop transfer function is proper, (2) the zeros of the determinant 1 + RL are in C−, and
(3) there are no cancellations of poles and zeros in C+ between RC and RP . Thus the first
statement in the theorem will follow if we can show that, when 1 + RL has no zeros on iR,
the condition (iii) is equivalent to the condition

(iv) all zeros of the determinant 1 +RL are in C−.

Since there are no poles or zeros of 1+RL on ΓR,r, provided that R > R0 and r < r0, we can
apply Proposition 7.2 to the contour ΓR,r and the function 1 + RL. The conclusion is that
the image of ΓR,r under 1 +RL encircles the origin nz −np times, with nz being the number
of zeros of 1 + RL in C+ and np being the number of poles of 1 + RL in C+. Note that the
poles of 1 +RL are the same as the poles of RL, so np is the same as in the statement of the
theorem. The conclusion in this case is that nz = 0 if and only if the image of ΓR,r under
1 +RL encircles the origin np times, with the opposite orientation of ΓR,r. This, however, is
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equivalent to the image of ΓR,r encircling −1 + i0 np times, with the opposite orientation of
ΓR,r.

Finally, if the (R, r)-Nyquist contour passes through the point −1 + i0, this means that
the contour 1 + RL(ΓR,r) passes through the origin. Thus this means that there is a point
s0 ∈ ΓR,r which is a zero of 1 + RL. However, since all points on ΓR,r are in C+, the result
follows by Theorem 6.38. �

Let us make a few observations before working out a few simple examples.

7.7 Remarks

1. Strictly proper rational functions always satisfy the condition (ii).

2. Of course, the matter of producing the Nyquist contour may not be entirely a straight-
forward one. What one can certainly do is produce it with a computer. As we will see,
the Nyquist contour provides a graphical representation of some important properties of
the closed-loop system.

3. By parts (i) and (ii) of Proposition 4.13 it suffices to plot the Nyquist contour only as we
traverse that half of ΓR,r which sits in the positive imaginary plane, i.e., only for those
values of s along ΓR,r which have positive imaginary part. This will be borne out in the
examples below.

4. When RL is proper and when there are no poles for RL on the imaginary axis (so we
can take r = 0), the (R, 0)-Nyquist contour is bounded as we take the limit R →∞. If
we further ask that RL be strictly proper, that portion of the Nyquist contour which is
the image of ΓR under RL will be mapped to the origin as R → ∞. Thus in this case
it suffices to determine the image of the imaginary axis under RL, along with the origin
in C. Given our remark 3, this essentially means that in this case we only determine
the polar plot for the loop gain RL. Thus we see the important relationship between the
Nyquist criterion and the Bode plot of the loop gain.

5. Here’s one way to determine the number of times the (R, r)-Nyquist contour encircles
the point −1 + i0. From the point −1 + i0 draw a ray in any direction. Choose this
ray so that it is nowhere tangent to the (R, r)-Nyquist contour, and so that it does not
pass through points where the (R, r)-Nyquist contour intersects itself. The number of
times the (R, r)-Nyquist contour intersects this ray while moving in the counterclockwise
direction is the number of counterclockwise encirclements of −1 + i0. A crossing in the
clockwise direction is a negative counterclockwise crossing. •
The Nyquist criterion can be readily demonstrated with a couple of examples. In each

of these examples we use Remark 7.7–(5).

In the Nyquist plots below, the solid contour is the image of points in the positive
imaginary plane under RL, and the dashed contour is the image of the points in
the negative imaginary plane.

7.8 Examples

1. We first take RC(s) = 1 and RP (s) = 1
s+a

for a ∈ R. Note that conditions (i) and (ii) of
Theorem 7.6 are satisfied for all a, so stability can be check by verifying the condition (iii).
We note that for a < 0 there is one pole of RL in C+, and otherwise there are no poles
in C+.

The loop gain RL(s) = 1
s+a

is strictly proper with no poles on the imaginary axis unless
a = 0. So let us first consider the situation when a 6= 0. We need only consider
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the image under RL of points on the imaginary axis. The corresponding points on the
Nyquist contour are given by

1

iω + a
=

a

ω2 + a2
− i ω

ω2 + a2
, ω ∈ (−∞,∞).

This is a parametric representation of a circle of radius 1
2|a| centred at 1

2a
. This can be

checked by verifying that

( a

ω2 + a2
− 1

2a

)2

+
( ω

ω2 + a2

)2

=
1

4a2
.

The Nyquist contour is shown in Figure 7.4 for various nonzero a. From Figure 7.4 we
make the following observations:

(a) for a < −1 there are no encirclements of the point −1 + i0;

(b) for a = −1 the Nyquist contour passes through the point −1 + i0;

(c) for −1 < a < 0 the Nyquist contour encircles the point −1 + i0 one time in the
counterclockwise direction (to see this, one must observe the sign of the imaginary
part as ω runs from −∞ to +∞);

(d) for a > 0 there are no encirclements of the point −1 + i0.

Now let us look at the case where a = 0. In this case we have a pole for RL at s = 0, so
this must be taken into account. Choose r > 0. The image of {iω | ω > r} is

{
− iω

∣∣ 0 < ω < 1
r

}
.

Now we need to look at the image of the contour Γr given by s = reiθ, θ ∈ [−π
2
, π

2
]. One

readily sees that the image of Γr is

e−iθ

r
, θ ∈ [−π

2
,
π

2
]

which is a large semi-circle centred at the origin going from +i∞ to −∞ in the clockwise
direction. This is shown in Figure 7.5.

This allows us to conclude the following:

(a) for a < −1 the system is IBIBO unstable since np = 1 and the number of counter-
clockwise encirclements is −1;

(b) for a = −1 the system is IBIBO unstable since the Nyquist contour passes through
the point −1 + i0;

(c) for −1 < a < 0 the system is IBIBO stable since np = 1 and there is one counter-
clockwise encirclement of the point −1 + i0;

(d) for a ≥ 0 the system is IBIBO stable since np = 0 and there are no encirclements
of the point −1 + i0.

We can also check this directly by using Theorem 6.38. Since there are no unstable
pole/zero cancellations in the interconnected system, IBIBO stability is determined by
the zeros of the determinant, and the determinant is

1 +RL(s) =
s+ a+ 1

s+ a
.

The zero of the determinant is −a− 1 which is in C− exactly when a > −1, and this is
exactly the condition we derive above using the Nyquist criterion.
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Figure 7.4 The (∞, 0)-Nyquist contour for RL(s) = 1
s+a , a = −2

(top left), a = −1 (top right), a = −1
2 (middle left), a = 1

2
(middle right), a = 1 (bottom left), and a = 2 (bottom right)
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Figure 7.5 The (∞, 0.1)-Nyquist contour for RL(s) = 1
s

2. The previous example can be regarded as an implementation of a proportional controller.
Let’s give an integral controller a try. Thus we take RC(s) = 1

s
and RP (s) = 1

s+a
. Once

again, the conditions (i) and (ii) of Theorem 7.6 are satisfied, so we need only check
condition (iii).

In this example the loop gain RL is strictly proper, and there is a pole of RL at s = 0.
Thus we need to form a modified contour to take this into account. Let us expand the
loop gain into its real and imaginary parts when evaluated on the imaginary axis away
from the origin. We have

RL(iω) = − 1

ω2 + a2
− i a

ω(ω2 + a2)
.

Let us examine the image of {iω | ω > r} as r becomes increasingly small. For ω near
zero, the real part of the Nyquist contour is near − 1

ω2+a2 , and as ω increases, it shrinks to
zero. Near ω = 0 the imaginary part is at −sgn(a)∞, and as ω increases, it goes to zero.
Also note that the imaginary part does not change sign. The image of {iω | ω < −r}
reflects this about the real axis. It only remains to examine the image of the contour Γr
around s = 0 given by s = reiθ where θ ∈ [−π

2
, π

2
]. The image of this contour under RL

is
1

reiθ(reiθ + a)
, θ ∈ [−π

2
, π

2
].

For sufficiently small r we have

1

reiθ(reiθ + a)
=

1

reiθ

1
a

1 + r
a
eiθ

=
1

reiθ
1

a

(
1− r

a
eiθ + · · ·

)

=
e−iθ

ar
− 1

a2
+ · · · .

Thus, as r → 0, the contour Γr gets mapped into a semi-circle of infinite radius, centred
at 1

a2 + i0, which goes clockwise from 1
a2 + isgn(a)∞ to 1

a2 − isgn(a)∞. In Figure 7.6 we
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Figure 7.6 The (∞, 0.1)-Nyquist contours for RL(s) = 1
s(s+a) , a =

−2 (top left), a = −1 (top right), a = 1 (bottom left), and
a = 2 (bottom right)

plot the Nyquist contours.

Now we look at the particular case when a = 0. In this case RL(s) = 1
s2

, and so the
Nyquist contour is the image of the imaginary axis, except the origin, under RL, along
with the image of the contour Γr as r → 0. On the imaginary axis we have RL(iω) = − 1

ω2 .
As ω goes from −∞ to 0− the Nyquist contour goes from 0− + i0 to −∞+ i0, and as ω
goes from 0+ to +∞ the Nyquist contour goes from −∞+ i0 to 0−+ i0. On the contour
Γr we have

RL(reiθ) =
e−2iθ

r2
, θ ∈ [−π

2
, π

2
].

As r → 0 this describes an infinite radius circle centred at the origin which starts at
−∞+ i0 and goes around once in the clockwise direction. In particular, when a = 0 the
Nyquist contour passes through the point −1 + i0. The contour is shown in Figure 7.7.

We can now make the following conclusions regarding stability:
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Figure 7.7 The (∞, 0.1)-Nyquist contour for RL(s) = 1
s2

(a) when a < 0 the system is IBIBO unstable since np = 1 and there is one clockwise
encirclement of the point −1 + i0;

(b) when a = 0 the system is IBIBO unstable since the Nyquist contour passes through
the point −1 + i0;

(c) when a > 0 the system is IBIBO stable since np = 0 and there are no encirclements
of the point −1 + i0.

We can also check IBIBO stability of the system via Theorem 6.38. Since there are no
unstable pole/zero cancellations, we can look at the zeros of the determinant which is

1 +RL(s) =
s2 + as+ 1

s2 + as
.

By the Routh/Hurwitz criterion, the system is IBIBO stable exactly when a > 0, and
this is what we ascertained using the Nyquist criterion.

3. Our final example combines the above two examples, and implements a PI controller
where we take RC(s) = 1 + 1

s
and RP (s) = 1

s+a
. Here the condition (ii) of Theorem 7.6

holds, but we should examine (i) just a bit carefully before moving on. We have RL(s) =
s+1
s

1
s+a

, and so there is a pole/zero cancellation here when a = 1. However, it is a stable
pole/zero cancellation, so condition (i) still holds. We also ascertain that RL has one
pole in C+ when a < 0.

In this example, RL is again strictly proper, and has a pole on the imaginary axis at the
origin. Thus to compute the Nyquist contour we determine the image of the imaginary
axis minus the origin, and tack on the image of the contour Γr = reiθ, θ ∈ [−π

2
, π

2
]. We

first compute

RL(iω) =
a− 1

ω2 + a2
− i ω2 + a

ω(ω2 + a2)
.

Let’s first consider the situation when a 6= 0. In this case, as ω goes from −i∞ to 0−, the
real part goes from 0 to a−1

a2 and the imaginary part goes from 0 to −sgn(a)∞. While the
real part never changes sign, the imaginary part can change sign, so we must take care
about how it is behaving. As ω goes from 0+ to +∞, the resulting part of the Nyquist
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contour is the mirror image about the real axis of what we have already computed. Now
let us look at the image of the contour Γr. When a 6= 0 we have

RL(reiθ) =
reiθ + 1

reiθ

1
a

1 + r
a
eiθ

=
reiθ + 1

areiθ

(
1− r

a
eiθ + · · ·

)

=
1

a
+
e−iθ

ar
− reiθ

a2
− 1

a2
+ · · ·

=
e−iθ

ar
+
a− 1

a2
+ · · ·

From this we conclude that for a 6= 0 the image as r → 0 of Γr under RL is an infinite
radius semi-circle centered at a−1

a2 and going clockwise from a−1
a2 + isgn(a)∞ to a−1

a2 −
isgn(a)∞. In Figure 7.8 we show the Nyquist contours for various values of a 6= 0.

Now let us consider the image of the imaginary axis when a = 0. In this case we have

RL(iω) = − 1

ω2
− i 1

ω
.

Thus the image of those points on the imaginary axis away from the origin describe a
parabola, sitting in C−, passing through the origin, and symmetric about the real axis.
As concerns Γr when a = 0 we have

RL(reiθ) =
(

1 +
e−iθ

r

)e−iθ
r

which, as r → 0, describes an infinite radius circle centred at the origin and going
clockwise from −∞+ i0 to −∞+ i0. This Nyquist contour is shown in Figure 7.9.

With the above computations and the corresponding Nyquist plots, we can make the
following conclusions concerning IBIBO stability of the closed-loop system.

(a) For a < −1 the system is IBIBO unstable since np = 1 and there is one clockwise
encirclement of −1 + i0.

(b) For a = −1 the system is IBIBO unstable since the Nyquist contour passes through
the point −1 + i0.

(c) For −1 < a < 0 the system is IBIBO stable since np = 1 and there is one counter-
clockwise encirclement of the point −1 + i0.

(d) For a ≥ 0 the system is IBIBO stable since np = 0 and there are no encirclements
of −1 + i0.

As always, we can evaluate IBIBO stability with Theorem 6.38. To do this we can
still simply look at the zeros of the determinant, because although there is a pole zero
cancellation when a = 1, it is a cancellation of stable factors so it does not hurt us. We
compute the determinant to be

1 +RL(s) =
s2 + (a+ 1)s+ 1

s2 + as
.

An application of the Routh/Hurwitz criterion suggests that we have IBIBO stability for
a > −1, just as we have demonstrated with the Nyquist criterion. •
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Figure 7.8 The (∞, 0.2)-Nyquist contours for RL(s) = s+1
s(s+a) , a =

−2 (top left), a = −1 (top right), a = −1
2 (middle left), a = 1

2
(middle right), a = 1 (bottom left), and a = 2 (bottom right)
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Figure 7.9 The (∞, 0.2)-Nyquist contour for RL(s) = s+1
s2

Note that the Nyquist criterion as we have shown is applicable only to interconnections
with a simple structure, namely a single loop. Bode [1945] discusses a version of the Nyquist
criterion for systems with multiple loops, and this is explored further by Zadeh and Desoer
[1979]. However, the development is too significant, and the outcome too modest (what are
obtained are sufficient conditions for IBIBO stability under restrictive hypotheses) to make
a presentation of these results worthwhile.

7.2 The relationship between the Nyquist contour and the Bode plot

The above examples, although simple, demonstrate that obtaining the Nyquist contour
can be problematic, at least by hand. This is especially well illustrated by the third of the
three examples where the capacity to change sign of the imaginary part of the restriction
of RL to the imaginary axis causes some difficulties which must be accounted for. A useful
observation here is that the Nyquist contour is in essence the polar plot for the loop gain,
taking care of the possibility of poles on the imaginary axis. The matter of constructing
a Bode plot is often an easier one than that of building the corresponding polar plot, so a
plausible approach for making a Nyquist contour is to first make a Bode plot, and convert
this to a polar plot as discussed in Section 4.3.3.

7.2.1 Capturing the essential features of the Nyquist contour from the Bode plot

Let us illustrate this with the third of our examples from the previous section.

7.9 Example (Example 7.8–3 cont’d) The loop gain, recall, is RL(s) = s+1
s(s+a)

. Let us write
this transfer function in the recommended form for making Bode plots. For a 6= 0 we have

RL(s) =
1

a

1

s

1
s
a

+ 1
(s+ 1).

Thus the frequency response for RL is a product of four terms:

H1(ω) =
1

a
, H2(ω) = − i

ω
, H3(ω) =

1

1 + iω
a

, H4(ω) = 1 + iω.
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Each of these is a simple enough function for the purpose of plotting frequency response,
and the effect of a is essentially captured in H3.

Let us see if from Bode plot considerations we can infer when the imaginary part of the
transfer function changes sign as ω goes from 0+ to +∞. In Example 7.8–3 we determined
that as we vary ω in this way, the real part of the frequency response goes from a−1

a2 to 0
and the imaginary part goes from sgn(a)∞ to 0. The question is, “For which values of a
does the imaginary part of the frequency response change sign as ω goes from 0+ to +∞?”
Provided a−1

a2 < 0 this will happen if and only if the phase is ±π at some finite frequency ω̄.
Let’s take a look at the phase of the frequency response function.

1. First we take a < 0. Since ]H1(ω) = π and ]H2(ω) = −π
2
, in order to have the total

phase equal ±π, it must be the case that

]H3(ω̄) + ]H4(ω̄) ∈ {π
2
,−3π

2
}.

The phase of H4 varies from 0 to π
2
, and the phase of H3 varies from 0 to π

2
(because

a < 0!) Therefore we should aim for conditions on when ]H3(ω̄) + ]H4(ω̄) = π
2

for
some finite frequency ω̄. But one easily sees that for any a < 0 there will always be a
finite frequency ω̄ so that this condition is satisfied since

lim
ω→∞

(
]H3(ω) + ]H4(ω)

)
= π.

Thus as long as a < 0 there will always be a sign change in the imaginary part of the
frequency response as we vary ω from 0+ to +∞. The Bode plots for RL are shown in
Figure 7.10 for various a < 0.

2. Now we consider when a > 0. In this case we have ]H1(ω) = 0 and so we must seek
ω̄ so that

]H3(ω̄) + ]H4(ω̄) ∈ {−π
2
, 3π

2
}.

However, since a > 0 the phase of H3 will go from 0 to −π
2
. Therefore it will not be

possible for ]H3(ω) + ]H4(ω) to equal either −π
2

or 3π
2

, and so we conclude that for
a > 0 the imaginary part of RL(iω) will not change sign as we vary ω from 0+ to +∞.
The Bode plots for RL are shown in Figure 7.11 for various a > 0. •

7.2.2 Stability margins

The above example illustrates how the Bode plot can be useful in determining certain
aspects of the behaviour of the Nyquist contour. Indeed, if one gives this a short moments’
thought, one reaches the realisation that one can benefit a great deal by looking at the
Bode plot for the loop gain. Let us provide the proper nomenclature for organising such
observations.

7.10 Definition Let RL ∈ R(s) be a proper rational function forming the loop gain for the intercon-
nection of Figure 7.12. Assume that there is no frequency ω > 0 for which RL(iω) = −1+i0.

(i) A phase crossover frequency , ωpc ∈ [0,∞), for RL is a frequency for which
]RL(iωpc) = 180◦.

Let ωpc,1, . . . , ωpc,` be the phase crossover frequencies for RL, and assume these are ordered
so that

RL(iωpc,1) < · · · < RL(iωpc,`).

Also suppose that for some k ∈ {1, . . . , `} we have

RL(iωpc,k) < −1 < RL(iωpc,k + 1).
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Figure 7.10 Bode plots for RL(s) = s+1
s(s+a) for a = −2 (top left),

a = −1 (top right), and a = −1
2 (bottom)

(ii) The lower gain margin for RL defined by

Kmin = −RL(iωpc,k)
−1 ∈ (0, 1).

If
−1 < RL(iωpc,1) < · · · < RL(iωpc,`),

then Kmin is undefined.

(iii) The upper gain margin for RL is defined by

Kmax = −RL(iωpc,k + 1)−1 ∈ (1,∞).

If
RL(iωpc,1) < · · · < RL(iωpc,`) < −1,

then Kmax is undefined.
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Figure 7.11 Bode plots for RL(s) = s+1
s(s+a) for a = 1

2 (top left),

a = 1 (top right), and a = 2 (bottom)

(iv) A gain crossover frequency , ωgc ∈ [0,∞), for RL is a frequency for which
|RL(iωgc)| = 1.

Let ωgc,1, . . . , ωgc,` be the gain crossover frequencies for RL, and assume these are ordered so
that

](RL(iωgc,1)) < · · · < ](RL(iωgc,`)).

(v) The lower phase margin for RL is defined by

Φmin =

{
180◦ − ](RL(iωgc,`)), ](RL(iωgc,`)) ≥ 0

undefined, ](RL(iωgc,`)) < 0.

(vi) The upper phase margin for RL is defined by

Φmax =

{
](RL(iωgc,1)) + 180◦, ](RL(iωgc,1)) ≤ 0

undefined, ](RL(iωgc,1)) > 0.
•
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r̂(s) RL(s) ŷ(s)
−

Figure 7.12 Unity gain feedback loop for stability margin discus-
sion

Let us parse these definitions, as they are in actuality quite simple. First of all, we note
that it is possible to read the gain and phase margins off the Nyquist plot; this saves one
having to compute them directly using the definitions. Rather than try to state in a precise
way how to procure the margins from the Nyquist plot, let us simply illustrate the process in
Figure 7.13. The basic idea is that for the gain margins, one looks for the positive frequency

Im

K−1
max

−1 + i0

K−1
min

Im

Φmin

Φmax

1

Figure 7.13 Getting gain (left) and phase (right) margins from the
Nyquist plot

crossings of the negative real axis closest to −1 + i0 in each direction. The reciprocal of the
distances to the imaginary axis are the gain margins, as indicated in Figure 7.13. For the
phase margins, one looks for the positive frequency crossings of the unit circle closest to the
point −1 + i0. The angles to the negative real axis are then the phase margins, again as
indicated in Figure 7.13. We shall adopt the convention that when we simply say phase
margin , we refer to the smaller of the upper and lower phase margins.

The interpretations of gain crossover and phase crossover frequencies are clear. At a
gain crossover frequency, the magnitude on the Bode plot for RL will be 0dB. At a phase
crossover frequency, the graph will cross the upper or lower edge of the phase Bode plot.
Note that it is possible that for a given loop gain, some of the margins may not be defined.
Let us illustrate this with some examples.

7.11 Examples

1. We consider the loop gain

RL(s) =
10

s2 + 4s+ 3
.
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In Figure 7.14 we note that there is one gain crossover frequency, and it is roughly at

Figure 7.14 Nyquist and Bode plots for RL(s) = 10
s2+4s+3

ωgc = 2.1. The phase at the gain crossover frequency is about −110◦, which gives the
upper phase margin as Φmax ≈ 70◦. The lower phase margin is not defined. Also, neither
of the gain margins are defined.

2. We take as loop gain

RL(s) = − 10

s2 + 4s+ 3
.

The Bode and Nyquist plots are shown in Figure 7.15. From the Bode plot we see

Figure 7.15 Nyquist and Bode plots for RL(s) = − 10
s2+4s+3

that there is one gain crossover frequency and it is approximately at ωgc = 2.1. The
phase at the gain crossover frequency it is about 70◦. Thus the lower phase margin is
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Φmin ≈ 110◦. We note that there the upper phase margin is undefined, as are the phase
crossover frequencies.

gain margin

3.

For cases when RL is BIBO stable, we can offer an interpretation of the gain and phase
margins in terms of closed-loop stability.

7.12 Proposition Let RL ∈ RH+
∞ be a BIBO stable loop gain, and consider a unity gain feedback

block diagram configuration like that of Figure 7.12. Either of the following statements
implies IBIBO stability of the closed-loop system:

(i) Kmin is undefined and either

(a) Kmax > 1 or

(b) Kmax is undefined.

(ii) Φmin is undefined and either

(a) Φmax > 0.

(b) Φmax is undefined.

Proof We use the Nyquist criterion for evaluating IBIBO stability. For a stable loop gain
RL, the closed-loop system is IBIBO stable if and only if there are no encirclements of
−1 + i0. Note that the assumption that RL ∈ RH+

∞ be BIBO stable implies that there are
no poles for RL on the imaginary axis, so the (∞, 0)-Nyquist contour is well-defined and
bounded.

(i) In this case, all crossings of the imaginary axis will occur in the interval (−1, 0). This
precludes any encirclements of −1 + i0.

(ii) If (ii) holds, then all intersections at positive frequency of the (∞, 0)-Nyquist contour
with the unit circle in C will occur in the lower complex plane. Similarly, those crossings of
the unit disk at negative frequencies will take place in the upper complex plane. This clearly
precludes any encirclements of −1 + i0 which thus implies IBIBO stability. �

Often when one reads texts on classical control design, one simply sees mentioned “gain
margin” and “phase margin” without reference to upper and lower. Typically, a result like
Proposition 7.12 is in the back of the minds of the authors, and it is being assumed that
the lower margins are undefined. In these cases, there is a more direct link between the
stability margins and actual stability—at least when the loop gain is itself BIBO stable—as
evidenced by Proposition 7.12. The following examples demonstrate this, and also show that
one cannot generally expect the converse of the statements in Proposition 7.12 to hold.

7.13 Examples

1. We consider

RL(s) =
10

s2 + 4s+ 3
,

which we looked at in Example 7.11. In this case, the hypotheses of part (ii) of Proposi-
tion 7.12 are satisfied, and indeed one can see from the Nyquist criterion that the system
is IBIBO stable.

2. Next we consider

RL(s) = − 10

s2 + 4s+ 3
,

which we also looked at in Example 7.11. Here, the lower phase margin is defined, so
the hypotheses of part (ii) of Proposition 7.12 are not satisfied. In this case, the Nyquist
criterion tells us that the system is indeed not BIBO stable.
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3. The first of the preceding examples illustrates how one can use the conditions on gain
and phase margin of Proposition 7.12 to determine closed-loop stability when RL is
BIBO stable. The second example gives a system which violates the sufficient conditions
of Proposition 7.12, and is indeed not IBIBO stable. The question then arises, “Is the
condition (ii) of Proposition 7.12 necessary for IBIBO stability?” The answer is, “No,”
and we provide an example which illustrates this.

We take

RL(s) =
(1− s)2(1 + 3s

25
)3

2(1 + s)2(1 + s
100

)(1 + s
50

)3
.

This is a BIBO stable loop gain, and its Bode plot is shown in Figure 7.16. From the

Figure 7.16 Bode plot for BIBO stable transfer function with pos-
itive phase margins

Bode plot we can see that there is a gain crossover frequency ωgc satisfying something
like logωgc = 0.8. The lower phase margin is defined at this frequency, and it is roughly
60◦. Thus the lower phase margin is defined, and this loop gain is thus contrary to the
hypotheses of part (ii) of Proposition 7.12. Now let us examine the Nyquist contour for the
system. In Figure 7.17 we show the Nyquist contour, with the right plot showing a blowup
around the origin. This is a pretty messy Nyquist contour, but a careful accounting of
what is going on will reveal that there is actually a total of zero encirclements of −1+ i0.
Thus the closed-loop system with loop gain RL is IBIBO stable. This shows that the
converse of Proposition 7.12 is not generally true.

gain margin

4. •
The above examples illustrate that one might wish to make the phase margins large and

positive, and make the gain margins large. However, this is only a rough rule of thumb. In
Exercise E7.10 the reader can work out an example where look at one stability margin while
ignoring the other can be dangerous. The following example from the book of Zhou, Doyle,
and Glover [1996] indicates that even when looking at both, they do not necessarily form a
useful measure of stability margin.
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Figure 7.17 Nyquist contour for BIBO stable transfer function
with positive phase margins

7.14 Example We take as our plant

RP (s) =
2− s
2s− 1

,

and we consider two controllers, both of which may be verified to be stabilising:

RC,1(s) = 1, RC,2(s) =
s+ 33

10
33
10
s+ 1

s+ 11
20

11
20
s+ 1

17
10
s2 + 3

2
s+ 1

s2 + 3
2
s+ 17

10

.

This second controller is obviously carefully contrived, but let us see what it tells us. In
Figure 7.18 are shown the Nyquist plots for the loop gain RC,1RP and RC,2RP . One can see
that the gain and phase margins for the loop gain RC,2RP are at least as good as those for
the loop gain RC,1RP , but that the Nyquist contour for RC,2RP passes closer to the critical
point −1 + i0. This suggests that gain and phase margin may not be perfect indicators of
stability margin. •

With all of the above machinations about gain and phase margins out of the way, let us
give perhaps a simpler characterisation of what these notions are trying to capture. If the
objective is to stay far way from the point −1 + i0, then the following result tells us that
the sensitivity function is crucial in doing this.

7.15 Proposition inf
ω>0
|−1−RL(iω)| = ‖SL‖−1

∞ .

Proof We compute

inf
ω>0
|−1−RL(iω)| = inf

ω>0
|1 +RL(iω)|

=
(

sup
ω>0

∣∣∣ 1

1 +RL(iω)

∣∣∣
)−1

= ‖SL‖−1
∞ ,
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Figure 7.18 Nyquist plots for plant RP (s) = 2−s
2s−1 with controller

RC,1 (top left), with controller RC,2 (top right), and both (bot-
tom)

as desired. �

The results says, simply, that the point on the Nyquist contour which is closest to the point
−1 + i0 is a distance ‖SL‖−1

∞ away. Thus, to increase the stability margin, one may wish to
make the sensitivity function small. This is a reason for minimising the sensitivity function.
We shall encounter others in Sections 8.5 and 9.3.

Let us illustrate Proposition 7.15 on the two loop gains of Example 7.14.

7.16 Example (Example 7.14 cont’d) We consider the plant transfer function RP and the two
controller transfer functions RC,1 and RC,2 of Example 7.14. The magnitude Bode plots of
the sensitivity function for the two loop gains are shown in Figure 7.19. As expected, the
peak magnitude for the sensitivity with the loop gain RC,1RP is lower than that for RC,2RP ,
reflecting the fact that the Nyquist contour for the former is further from −1 + i0 than for
the latter. •
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Figure 7.19 Magnitude bode plot for the sensitivity function with
loop gain RC,1RP (left) and RC,2RP (right)

7.3 Robust stability

We now return to the uncertainty representations of Section 4.5. Let us recall here the
basic setup. Given a nominal plant R̄P and a rational function Wu satisfying ‖Wu‖∞ <∞,
we denote by P×(R̄P ,Wu) the set of plants satisfying

RP = (1 + ∆Wu)R̄P ,

where ‖∆‖∞ ≤ 1. We also denote by P+(R̄P ,Wu) the set of plants satisfying

RP = R̄P + ∆Wu,

where ‖∆‖∞ ≤ 1. This is not quite a complete definition, since in Section 4.5 we additionally
imposed the requirement that the plants in P×(R̄P ,Wu) and P+(R̄P ,Wu) have the same
number of unstable poles as does R̄P .

Now we, as usual, consider the unity gain feedback loop of Figure 7.20. We wish to

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 7.20 Unity gain feedback loop for robust stability

design a controller RC which stabilises a whole set of plants. We devote this section to a
precise formulation of this problem for both uncertainty descriptions, and to providing useful
necessary and sufficient conditions for our problem to have a solution.

Let us be precise about this, as it is important that we know what we are saying.

7.17 Definition Let R̄P ,Wu ∈ R(s) be a proper rational functions with ‖Wu‖∞ <∞. A controller
RC ∈ R(s) provides robust stability for P×(R̄P ,Wu) (resp. P+(R̄P ,Wu)) if the feedback
interconnection of Figure 7.20 is IBIBO stable for every RP ∈P×(R̄P ,W )u) (resp. for every
RP ∈P+(R̄P ,Wu)). •

Now we provide conditions for determining when a controller is robustly stabilising,
breaking our discussion into that for multiplicative, and that for additive uncertainty.
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7.3.1 Multiplicative uncertainty

The following important theorem gives simple conditions on when a controller is robustly
stabilising. It was first stated by Doyle and Stein [1981] with the first complete proof due
to Chen and Desoer [1982].

7.18 Theorem Let R̄P ,Wu ∈ R(s) be a proper rational functions with ‖Wu‖∞ < ∞, and suppose
that RC ∈ R(s) renders the nominal plant R̄P IBIBO stable in the interconnection of Fig-
ure 7.20. Then RC provides robust stability for P×(R̄P ,Wu) if and only if ‖WuT̄L‖∞ < 1,
where T̄L is the complementary sensitivity function, or closed-loop transfer function, for the
loop gain RCR̄P .

Proof Let RC ∈ R(s). For RP ∈ P×(R̄P ,Wu) denote RL(RP ) = RCRP . By definition
of P×(R̄P ,Wu) it follows that R̄P and RP share the same imaginary axis poles for every
RP ∈ P×(R̄P ,Wu). For r, R > 0 and for RP ∈ P×(R̄P ,Wu) let NR,r(RP ) be the (R, r)-
Nyquist contour for RL(RP ).

Now we make a simple computation:

‖WuT̄L‖∞ < 1

⇐⇒ |Wu(iω)T̄L(iω)| < 1, ω ∈ R

⇐⇒
∣∣∣Wu(iω)R̄L(iω)

1 + R̄L(iω)

∣∣∣ < 1, ω ∈ R

⇐⇒ |Wu(iω)R̄L(iω)| < |1 + R̄L(iω)|, ω ∈ R
⇐⇒ |Wu(iω)R̄L(iω)| < |−1− R̄L(iω)|, ω ∈ R.

This gives a simple interpretation of the condition ‖W2T̄L‖∞ < 1. We note that |−1−R̄L(iω)|
is the distance from the point −1+i0 to the point R̄L(iω). Thus the condition ‖W2T̄L‖∞ < 1
is equivalent to the condition that the open disk of radius |Wu(iω)R̄L(iω)| centred at R̄L(iω)
not contain the point −1 + i0. This is depicted in Figure 7.21. It is this interpretation of
the condition ‖W2T̄L‖∞ < 1 we shall employ in the proof.

First suppose that ‖WuT̄L‖∞ < 1. Note that for ω ∈ R and for RP ∈ P×(R̄P ,Wu) we
have

RL(RP )(iω) = RC(iω)RP (iω) = (1 + ∆(iω)Wu(iω))RC(iω)R̄P (iω).

Thus the point RL(RP )(iω) lies in the closed disk of radius |Wu(iω)R̄L(iω)| with centre
R̄L(iω). From Figure 7.21 we infer that the point of the the Nyquist contour NR,r(RP ) that
are the image of points on the imaginary axis will follow the points on the Nyquist contour
NR,r(R̄P ) while remaining on the same “side” of the point −1 + i0. Since Wu ∈ RH+

∞ and
since ∆ is allowable, RL(RP ) and R̄L have the same poles on iR and the same number of
poles in C+. Thus by choosing r0 < 0 sufficiently small and for R0 > 0 sufficiently large, the
number of clockwise encirclements of −1 + i0 by NR,r(RP ) will equal the same by NR,r(R̄P )
for all R > R0 and r < r0. From Theorem 7.6 we conclude IBIBO stability of the closed-loop
system with loop gain RL(RP ).

Now suppose that ‖WuT̄L‖∞ ≥ 1. As depicted in Figure 7.21, this implies the existence
of ω̄ ≥ 0 so that the open disk of radius |Wu(iω̄)R̄L(iω̄)| centred at R̄L(iω̄) contains the
point −1 + i0. Denote by D̄(s0, r) be the closed disk of radius r centred at s0. We claim
that for each ω > 0, the map from P×(R̄P ,Wu) to D

(
R̄L(iω), |Wu(iω)R̄L(iω)|

)
defined by

RP = (1 + ∆Wu)R̄P 7→ RC(iω)RP (iω) (7.4)

is surjective. The following lemma helps us to establish this fact.
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−1 + i0

|Wu(iω)R̄L(iω)|

R̄L(iω)

Figure 7.21 Interpretation of robust stability condition for multi-
plicative uncertainty

1 Lemma For any ω̄ ≥ 0 and for any θ ∈ (−π, π] there exists a function Gθ ∈ RH+
∞ with the

properties

(i) ]Gθ(iω̄) = θ and

(ii) the map ω 7→ |Gθ(iω)| has a maximum at ω = ω̄.

Proof Clearly if θ = 0 we may simply define Gθ(s) = 1. Thus suppose that θ 6= 0. Consider
the rational function

Tζ,ω0(s) =
ω2

0

s2 + 2ζω0s+ ω2
0

,

ζ, ω0 > 0. In Exercise E4.6 it was shown that for 1√
2
< ζ < 1 the function ω 7→ |T (iω)|

achieves a unique maximum at ωmax = ω0

√
1− 2ζ2. Furthermore, the phase at this maxi-

mum is given by atan2(ζ,
√

1− 2ζ2). Thus, as ζ varies in the interval ( 1√
2
, 1), the phase at

the frequency ωmax varies between −π
4

and 0.
Now, given θ ∈ (−π, π], define

θ̃ =

{
θ
5
, θ < 0

−2π−θ
10

, θ > 0.

Thus θ̃ is guaranteed to live in the interval (−π
4
, 0). Therefore, there exists ζ ∈ ( 1√

2
, 1) so

that θ̃ = atan2(ζ,
√

1− 2ζ2). Now define ω0 so that ωmax = ω̄. Now define

Gθ =

{
T 5
ζ,ω0

, θ < 0

T 10
ζ,ω0

, θ > 0.

This function Gθ, it is readily verified, does the job. H
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We now resume showing that the map defined by (7.4) is surjective. It clearly suffices
to show that the image of every point on the boundary of D

(
R̄L(iω), |Wu(iω)R̄L(iω)|

)
lies

in the image of the map, since all other points can then be obtained by scaling ∆. For
φ ∈ (−π, π] let

sφ = R̄L(iω) + |Wu(iω)R̄L(iω)|eiφ

be a point on the boundary of D
(
R̄L(iω), |Wu(iω)R̄L(iω)|

)
. We wish to write

sφ = RC(iω)RP (iω) = R̄L(iω) + ∆(iω)Wu(iω)R̄L(iω)

for an appropriate choice of allowable ∆. Thus ∆ ∈ RH+
∞ should necessarily satisfy

∆(iω)Wu(iω)R̄L(iω) = |Wu(iω)R̄L(iω)|eiφ.

It follows that |∆(iω)| = 1 and that ]∆(iω) + ](Wu(iω)R̄L(iω)) = φ. Therefore, define

θ = φ− ](Wu(iω)R̄L(iω)).

If Gθ is as defined above, then defining

∆(s) =
Gθ(s)

|Gθ(iω)|

does the job.
The remainder of the proof is now straightforward. Since the map defined by (7.4) is

surjective, we conclude that there exists an allowable ∆ so that if RP = (1 + ∆Wu)R̄P we
have

RL(RP )(iω̄) = RC(iω̄)RP (iω̄) = −1 + i0.

This implies that the Nyquist contour NR,r(RP ) for R sufficiently large passes through the
point −1 + i0. By Theorem 7.6 the closed-loop system is not IBIBO stable. �

The proof of the above theorem is long-winded, but the idea is, in fact, very simple.
Indeed, the essential observation, repeated here outside the confines of the proof, is that
the condition ‖WuTL‖∞ < 1 is equivalent to the condition, depicted in Figure 7.21, that,
for each frequency ω, the open disk of radius |Wu(iω)R̄L(iω)| and centred at R̄L(iω), not
contain the point −1 + j0.

One may also “reverse engineer” this problem as well. The idea here is as follows.
Suppose that we have our nominal plant R̄P and a controller RC which IBIBO stabilises
the closed-loop system of Figure 7.20. At this point, we have not specified a set of plants
over which we want to stabilise. Now we ask, “What is the maximum size of the allowable
perturbation to R̄P if the perturbed plant is to be stabilised by RC?” The following result
makes precise this vague question, and provides its answer.

7.19 Proposition Let R̄P , RC ∈ R(s) with R̄P proper. Also, suppose that the interconnection of
Figure 7.20 is IBIBO stable with RP = R̄P . Let T̄L be the closed-loop transfer function for
the loop gain R̄L = RCR̄P . The following statements hold:

(i) if Wu ∈ RH+
∞ has the property that ‖Wu‖∞ < ‖T̄L‖−1

∞ then RC provides robust stability
for P×(R̄P ,Wu);

(ii) for any β ≥ ‖T̄L‖−1
∞ there exists Wu ∈ RH+

∞ satisfying ‖Wu‖ = β so that RC does not
robustly stabilise P×(R̄P ,Wu).
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Proof (i) This follows directly from Theorem 7.18.
(ii) This part of the result too follows from Theorem 7.18. Indeed, let ω̄ > 0 be a

frequency for which |T̄L(iω̄)| = ‖T̄L‖∞. One can readily define Wu ∈ RH+
∞ so that |Wu(iω̄)| =

‖Wu‖∞ = β. It then follows that ‖WuT̄L‖∞ ≥ 1, so we may apply Theorem 7.18. �

Roughly, the proposition tells us that as long as we choose the uncertainty weight Wu so
that its H∞-norm is bounded by ‖T̄L‖−1

∞ , then we are guaranteed that RC will provide robust
stability. If the H∞-norm of Wu exceeds ‖T̄L‖−1

∞ , then it is possible, but not certain, that RC

will not robustly stabilise. In this latter case, we must check the condition of Theorem 7.18.
Let us illustrate the concept of robust stability for multiplicative uncertainty with a fairly

simple example.

7.20 Example We take as our nominal plant the model for a unit mass. Thus

R̄P (s) =
1

s2
.

The PID control law given by

RC(s) = 1 + 2s+
1

s

may be verified to stabilise the nominal plant; the Nyquist plot is shown in Figure 7.22. To

Figure 7.22 Nyquist plot for PID controller and nominal plant

model the plant uncertainty, we choose

Wu(s) =
as

s+ 1
, a > 0,

which has the desirable property of not tailing off to zero as s→∞; plant uncertainty will
generally increase with frequency. We shall determine for what values of a the controller RC

provides robust stability for P×(R̄P ,Wu).
According to Theorem 7.18 we should determine for which values of a the inequality

‖WuT̄L‖∞ < 1 is satisfied. To determine ‖WuT̄L‖∞ we merely need to produce magnitude
Bode plots forWuT̄L for various values of a, and determine for which values of a the maximum
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Figure 7.23 The magnitude Bode plot for WuT̄L when a = 1 (left)
and when a = 3

4 (right)

magnitude does not exceed 0dB. In Figure 7.23 is shown the magnitude Bode plot for WuT̄L
with a = 1. We see that we exceed 0dB by about 2.5dB. Thus we should reduce a by a
factor K having the property that 20 logK = 2.5 or K ≈ 1.33. Thus a ≈ 0.75. Thus let us
take a = 3

4
for which the magnitude Bode plot is produced in Figure 7.23. The magnitude

is bounded by 0dB, so we are safe, and all plants of the form

RP (s) =
(

1 +
3
4
s∆(s)

s+ 1

) 1

s2

will be stabilised by RC if ∆ is allowable. For example, the Nyquist plot for RP when
∆ = s−1

s+2
(which, it can be checked, is allowable), is shown in Figure 7.24. •

Figure 7.24 Nyquist plot for perturbed plant under multiplicative
uncertainty

7.3.2 Additive uncertainty

Now let us state the analogue of Theorem 7.18 for additive uncertainty.
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7.21 Theorem Let R̄P ,Wu ∈ R(s) be a proper rational functions with ‖Wu‖∞ < ∞, and suppose
that RC ∈ R(s) renders the nominal plant R̄P IBIBO stable in the interconnection of Fig-
ure 7.20. Then RC provides robust stability for P+(R̄P ,Wu) if and only if ‖WuRCS̄L‖∞ < 1,
where S̄L is the sensitivity function for the loop gain RCR̄P .

Proof We adopt the notation of the first paragraph of the proof of Theorem 7.18. The
following computation, mirroring the similar one in Theorem 7.18, is the key to the proof:

‖WuRCS̄L‖∞ < 1

⇐⇒ |Wu(iω)RC(iω)S̄L(iω)| < 1, ω ∈ R

⇐⇒
∣∣∣Wu(iω)RC(iω)

1 + R̄L(iω)

∣∣∣ < 1, ω ∈ R

⇐⇒ |Wu(iω)RC(iω)| < |1 + R̄L(iω)|, ω ∈ R
⇐⇒ |Wu(iω)RC(iω)| < |−1− R̄L(iω)|, ω ∈ R.

The punchline here is thus that the condition ‖WuRCS̄L‖∞ < 1 is equivalent to the con-
dition that the point −1 + i0 not be contained, for any ω ∈ R, in the open disk of radius
|Wu(iω)RC(iω)| with centre R̄L(iω). This is depicted in Figure 7.25.

−1 + i0

|Wu(iω)RC(iω)|

R̄L(iω)

Figure 7.25 Interpretation of robust stability condition for addi-
tive uncertainty

The remainder of the proof now very much follows that of Theorem 7.18, so we can
safely omit some details. First assume that ‖WuRCS̄L‖∞ < 1. For ω ∈ R and for RP ∈
P+(R̄P ,Wu) we have

RL(RP )(iω) = RC(iω)RP (iω) = R̄L(iω) + ∆(iω)RC(iω)Wu(iω).

Thus the point RL(RP )(iω) lies in the closed disk of radius |Wu(iω)RC(iω)| with centre
R̄L(iω). We may now simply repeat the argument of Theorem 7.18, now using Figure 7.25
rather than Figure 7.21, to conclude that the closed-loop system with loop gain RL(RP ) is
IBIBO stable.



306 7 Frequency domain methods for stability 2016/09/21

Now suppose that ‖WuRC‖∞ ≥ 1. Thus there exists ω̄ ≥ 0 so that |Wu(iω̄)RC(iω̄)| ≥
1. Thus by Figure 7.25, it follows that −1 + i0 is contained in the open disk of
radius |Wu(iω̄), RC(iω̄)| with centre R̄L(iω̄). As in the proof of Theorem 7.18, we
may employ Lemma 1 of that proof to show that the map from P+(R̄P ,Wu) to
D
(
R̄L(iω), |Wu(iω)RC(iω)|

)
defined by

RP = R̄P + ∆Wu 7→ RC(iω)RP (iω)

is surjective for each ω > 0. In particular, it follows that there exists an allowable ∆ giving
RP ∈ P+(R̄P ,Wu) so that RL(RP )(iω̄) = −1 + i0. IBIBO instability now follows from
Theorem 7.6. �

Again, the details in the proof are far more complicated than is the essential idea. This
essential idea is that for each ω ∈ R the open disk of radius |Wu(iω)RC(iω)| and centre
R̄L(iω) should not contain the point −1 + i0. This is what is depicted in Figure 7.25.

We also have the following, now hopefully obvious, analogue of Proposition 7.19.

7.22 Proposition Let R̄P , RC ∈ R(s) with R̄P proper. Also, suppose that the interconnection of
Figure 7.20 is IBIBO stable with RP = R̄P . Let S̄L be the sensitivity function for the loop
gain R̄L = RCR̄P . The following statements hold:

(i) if Wu ∈ RH+
∞ has the property that ‖Wu‖∞ < ‖RCS̄L‖−1

∞ then RC provides robust
stability for P+(R̄P ,Wu);

(ii) for any β ≥ ‖RCS̄L‖−1
∞ there exists Wu ∈ RH+

∞ satisfying ‖Wu‖ = β so that RC does
not robustly stabilise P+(R̄P ,Wu).

An example serves to illustrate the ideas for this section.

7.23 Example (Example 7.20 cont’d) We carry on look at the nominal plant transfer function

R̄P (s) =
1

s2

which is stabilised by the PID controller

RC(s) = 1 + 2s+
1

s
.

Note that we may no longer use our Wu from Example 7.20 as our plant uncertainty model.
Indeed, since RC is improper, Wu is proper but not strictly proper, and S̄L is proper but not
strictly proper (one can readily compute that this is so), it follows that WuRCS̄L is improper.
Thus we modify Wu to

Wu =
as

(s+ 1)2

to model the plant uncertainty. Again, our objective will be to determine the maximum
value of a so that RC provides robust stability for P+(R̄P ,Wu). Thus we should find the
maximum value for a so that ‖WuRCS̄L‖∞ < 1. In Figure 7.26 is shown the magnitude
Bode plot for WuRCS̄L when a = 1. From this plot we see that we ought to reduce a by
a factor K having the property that 20 logK = 6 or K ≈ 2.00. Thus we take a = 1

2
, and

in Figure 7.26 we see that with this value of a we remain below the 0dB line. Thus we are
guaranteed that all plants of the form

RP (s) = R̄P (s) +
1
2
s∆(s)

(s+ 1)2



2016/09/21 7.4 Summary 307

Figure 7.26 The magnitude Bode plot for WuRC S̄L when a = 1
(left) and when a = 1

2 (right)

Figure 7.27 Nyquist plot for perturbed plant under additive un-
certainty

are stabilised by RC provided that ∆ is allowable. The Nyquist plot for RP obtained by
taking ∆ = s−1

s+2
is shown in Figure 7.27. This is a pretty sophisticated Nyquist plot, but

nonetheless, it is one for an IBIBO stable system. •

7.4 Summary

In this chapter we have provided a graphical method for analysing the closed-loop stability
of a single loop feedback interconnection. You should understand the following things.

1. You need to understand what the Nyquist criterion, in the form of Theorem 7.6, is saying.

2. Drawing Nyquist plots can be a bit tricky. The essential idea is that one should focus
on the image of the various parts of the Nyquist contour ΓR,r. In particular, one should
focus on the image of the imaginary axis for very large and very small frequencies. From
there one can try to understand of something more subtle is happening.

3. The gain and phase margins are sometimes useful measures of how close a system is to
being unstable.
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Exercises

E7.1 For the following rational functions R and contours C, explicitly verify the Principle
of the Argument by determining the number of encirclements of the origin by the
image of C under R.

(a) R(s) = 1
s2

and C = {eiθ | − π < θ ≤ π}.
(b) R(s) = s and C = {eiθ | − π < θ ≤ π}.
(c) R(s) = s

s2+1
and C = {2eiθ | − π < θ ≤ π}.

E7.2 Let F (s) = ln s, and consider the contour C = {eiθ | − π < θ ≤ π}. Does the
Principle of the Argument hold for the image of C under F? Why or why not?

E7.3 For the following loop gains,

(a) RL(s) = α
s2(s+1)

, α > 0,

(b) RL(s) = α
s(s−1)

, α > 0, and

(c) RL(s) = α(s+1)
s(s−1)

, α > 0,

do the following.

1. Determine the Nyquist contour for the following loop gains which depend on a
parameter α satisfying the given conditions. Although the plots you produce may
be computer generated, you should make sure you provide analytical explanations
for the essential features of the plots as they vary with α.

2. Draw the unity gain feedback block diagram which has RL as the loop gain.

3. For the three loop gains, use the Nyquist criterion to determine conditions on α
for which the closed-loop system is IBIBO stable.

4. Determine IBIBO stability of the three closed-loop systems using the
Routh/Hurwitz criterion, and demonstrate that it agrees with your conclusions
using the Nyquist criterion.

In this next exercise you will investigate some simple ways of determining how to “close” a
Nyquist contour for loop gains with poles on the imaginary axis.

E7.4 Let RL ∈ R(s) be a proper loop gain with a pole at iω0 of multiplicity k. For
concreteness, suppose that ω0 ≥ 0. If ω0 6= 0, this implies that −iω0 is also a pole of
multiplicity k. Thus we write

RL(s) =

{
1
sk
R(s), ω0 = 0

1
(s2+ω2

0)k
R(s), ω0 6= 0,

where iω0 is neither a pole nor a zero for R.

(a) Show that

lim
r→0

RL(iω0 + reiθ) =
a

rk
e−ikθ +O(r1−k).

where a is either purely real or purely imaginary. Give the expression for a.

(b) For ω0 = 0 show that

lim
ω→ω0,−

]RL(iω) ∈
{
−π

2
, 0, π

2
, π
}
.

Denote θ0 = limω→ω0,− ]RL(iω).
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(c) Determine a relationship between θ0, and k and a.

(d) Determine the relationship between

lim
ω→ω0,+

]RL(iω)

and θ0. This relationship will depend on k.

(e) Conclude that for a real rational loop gain, the “closing” of the Nyquist contour
is always in the clockwise direction and the closing arc subtends an angle of kπ.

E7.5 Let (N,D) be a proper SISO linear system in input/output form, and let n = deg(D)
and m = deg(N).

(a) Determine limω→∞]TN,D(iω) and limω→∞]TN,D(iω).

(b) Comment on part (a) as it bears on the Nyquist plot for the system.

E7.6 Consider the SISO linear system (N(s), D(s)) = (1, s2 + 1) in input/output form.

(a) Sketch the Nyquist contour for the system, noting that the presence of imaginary
axis poles means that the (∞, r)-Nyquist contour is not bounded as r → 0.

Consider the SISO linear system (Nε(s), Dε(s)) = (1, s2 + εs + 1) which now has a
bounded Nyquist contour for ε > 0.

(b) Show, using the computer, that the Nyquist contour for (Nε, Dε) approaches that
for the system of part (a) as ε→ 0.

E7.7 Let (N,D) be a SISO linear system in input/output form with deg(N) = 0 and let

ω̄ = max{Im(p) | p is a root of D}.

Answer the following questions.

(a) Show that |TD,N(iω)| is a strictly decreasing function of ω for |ω| > ω̄.

(b) Comment on part (a) as it bears on the Nyquist plot for the system.

E7.8 Formulate and prove a condition for IBIBO stability for each of the two interconnected
systems in Figure E7.1, using the Principle of the Argument along the lines of the

r̂(s) RC(s) RP (s) ŷ(s)

RS(s)

−

r̂(s) RI(s) RC(s) RP (s) ŷ(s)
−

Figure E7.1 Alternate configurations for Nyquist criterion

Nyquist criterion of Theorem 7.6.
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E7.9 Let

RP (s) =
ω2

0

s2 + 2ζω0s
, RC(s) = 1.

Plot the upper phase margin of the closed-loop system as a function of ζ.

In the next exercise you will investigate gain and phase margins for a simple plant and
controller. You will see that it is possible to have one stability margin be large while the
other is small. This exercise is taken from the text of [Zhou, Doyle, and Glover 1996].

E7.10 Take

RP (s) =
a− s
as− 1

, RC(s) =
s+ b

bs+ 1
,

where a > 1 and b > 0. Consider these in the standard unity gain feedback loop.

(a) Use the Routh/Hurwitz criterion to show that the closed-loop system is IBIBO
stable if b ∈ ( 1

a
, a).

Take b = 1.

(b) Show that Kmin = 1
a
, Kmax = a, Φmin is undefined, and Φmax = arcsin

(
a2−1
a2+1

)
.

(c) Comment on the nature of the stability margins in this case.

Fix a and take b ∈ ( 1
a
, a).

(d) Show that

lim
b→a

Kmin =
1

a2
, lim

b→a
Kmax = a2, lim

b→a
Φmax = 0.

(e) Comment on the stability margins in the previous case.

(f) Show that

lim
b→ 1

a

Kmin = 1, lim
b→ 1

a

Kmax = 1, lim
b→ 1

a

Φmax = 2 arcsin
(a2 − 1

a2 + 1

)
.

(g) Comment on the stability margins in the previous case.

In this chapter we have used the Nyquist criterion to assess IBIBO stability of input/output
feedback systems. It is also possible to use the Nyquist criterion to assess stability of static
state feedback, and the following exercise indicates how this is done.

E7.11 Let Σ = (A, b, ct,D) be a SISO linear system.

(a) Let f ∈ Rn. Show that if Σ is controllable then the closed-loop system Σf is
internally asymptotically stable if and only if

f t(sIn −A)−1b

1 + f t(sIn −A)−1b
∈ RH+

∞.

Thus, we may consider closed-loop stability under static state feedback to be equiva-
lent to IBIBO stability of the interconnection in Figure E7.2. The Nyquist criterion
can then be applied, as indicated in the following problem.

(b) Using part (a), prove the following result.
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r̂(s) f t(sIn −A)−1b ŷ(s)
−

Figure E7.2 A feedback interconnection for static state feedback

Proposition Let Σ = (A, b, ct,01) be a controllable SISO linear system and let np
be the number of eigenvalues of A in C+. For a state feedback vector f ∈ Rn

define the loop gain Rf (s) = f t(sIn−A)−1b. Assuming that (A,f) is observable,
the following statements are equivalent:

(i) the matrix A− bf t is Hurwitz;

(ii) there exists r0, R0 > 0 so that the image of ΓR,r under Rf encircles the point
−1 + i0 np times in the clockwise direction for every r < r0 and R > R0.

To be concrete, consider the situation where

A =

[
0 1
−1 1

]
, b =

[
0
1

]
.

For this system, answer the following questions.

(c) Show that if we take f = (0, 2) then A − bf t is Hurwitz. Verify that the result
of part (a) of the problem holds.

(d) How many eigenvalues are there for A in C+?

(e) Plot the Nyquist contour for Figure E7.2 and verify that the Nyquist criterion of
part (b) holds.

E7.12 For the plant uncertainty set

RP =
R̄P

1 + ∆WuR̄P

, ‖∆‖∞ ≤ 1,

use the idea demonstrated in the proofs of Theorems 7.18 and 7.21 to state and prove
a theorem providing conditions for robust stability.

E7.13 For the plant uncertainty set

RP =
R̄P

1 + ∆Wu

, ‖∆‖∞ ≤ 1,

use the idea demonstrated in the proofs of Theorems 7.18 and 7.21 to state and prove
a theorem providing conditions for robust stability.



312 7 Frequency domain methods for stability 2016/09/21



This version: 2016/09/21

Chapter 8

Performance of control systems

Before we move on to controller design for closed-loop systems, we should carefully in-
vestigate to what sort of specifications we should make our design. These appear in various
ways, depending on whether we are working with the time-domain, the s-domain, or the
frequency-domain. Also, the interplay of performance and stability can be somewhat subtle,
and there is often a tradeoff to be made in this regard. Our objective in this chapter is to
get the reader familiar with some of the issues that come up when discussing matters of
performance. Also, we wish to begin the process of familiarising the reader with the ways
in which various system properties can affect the performance measures. In many cases,
intuition is one’s best friend when such matters come up. Therefore, we take a somewhat
intuitive approach in Section 8.2. The objective is to look at tweaking parameters in a couple
of simple transfer function to see how they affect the various performance measures. It is
hoped that this will give a little insight into how one might, say, glean some things about
the step response by looking at the Bode plot. The matter of tracking and steady-state error
can be dealt with in a more structured way. Disturbance rejection follows along similar lines.
The final matter touched upon in this chapter is the rôle of the sensitivity function in the
performance of a unity gain feedback loop. The minimisation of the sensitivity function is
often an objective of a successful control design, and in the last section of this chapter we
try to indicate why this might be the case.
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8.1 Time-domain performance specifications

We begin with describing what is a common manner for specifying the desired behaviour
of a control system. The idea is essentially that the system is to be given a step input, and
the response is to have various specified properties. You will recall in Proposition 3.40, it
was shown how to determine the step response by solving an initial value problem. In this
chapter we will be producing many step responses, and in doing so we have used this initial
value problem method. In any case, when one gives a BIBO stable input/output system a
step input, it will, after some period of transient response, settle down to some steady-state
value. With this in mind, we make some definitions.

8.1 Definition Let (N,D) be a BIBO stable SISO linear system in input/output form, let 1N,D(t)
be the step response, and suppose that limt→∞ 1N,D(t) = 1ss ∈ R. (N,D) is steppable
provided that 1ss 6= 0. For a steppable system (N,D), let y(t) be the response to the
reference r(t) = 1(t)(1ss)

−1 so that limt→∞ y(t) = 1. We call y(t) the normalised step
response .

(i) The rise time is defined by

tr = sup
δ

{
δ
∣∣ y(t) ≤ t

δ
for all t ∈ [0, δ]

}
.

(ii) For ε ∈ (0, 1) the ε-settling time is defined by

ts,ε = inf
δ

{
δ
∣∣ |y(t)− 1| < ε for all t ∈ [δ,∞)

}
.

(iii) The maximum overshoot is defined by yos = supt{y(t) − 1} and the maximum
percentage overshoot is defined by Pos = yos × 100%.

(iv) The maximum undershoot is defined by yus = supt{−y(t)} and the maximum
percentage undershoot is defined by Pus = yus × 100%. •

For the most part, these definitions are self-explanatory once you parse the symbolism. A
possible exception is the definition of the rise time. The definition we provide is not the usual
one. The idea is that rise time measures how quickly the system reaches its steady-state
value. A more intuitive way to measure rise time would be to record the smallest time at
which the output reaches a certain percentage (say 90%) of its steady-state value. However,
the definition we provide still gives a measure of the time to reach the steady-state value,
and has the advantage of allowing us to state some useful results. In any event, a typical
step response is shown in Figure 8.1 with the relevant quantities labelled.

Notice that in Definition 8.1 we introduce the notion of a steppable input/output system.
The following result gives an easy test for when a system is steppable.

8.2 Proposition A BIBO stable SISO linear system (N,D) in input/output form is steppable if
and only if lims→0 TN,D(s) 6= 0. Furthermore, in this case limt→∞ 1N,D(t) = TN,D(0).

Proof By the Final Value Theorem, Proposition E.9(ii), the limiting value for the step re-
sponse is

lim
t→∞

1N,D(t) = lim
s→0

s1̂N,D(s) = lim
s→0

TN,D(s).

Therefore limt→∞ 1N,D(t) 6= 0 if and only if lims→0 1̂N,D(s) 6= 0, as specified. �
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Figure 8.1 Performance parameters in the time-domain

So it is quite simple to identify systems which are not steppable. The idea here is quite
simple. When lims→0 TN,D(s) = 0 this means that the input only appears in the differential
equation after being differentiated at least once. For a step input, this means that the right-
hand side of the differential equation forming the initial value problem is zero, and since
(N,D) is BIBO stable, the response must decay to zero. The following examples illustrate
both sides of the story.

8.3 Examples

1. We first take (N(s), D(s)) = (1, s2+2s+2). By Proposition 3.40 the initial value problem
to solve for the step response is

1̈N,D(t) + 2 1̇N,D(t) + 2 1N,D(t) = 1, y(0) = 0, ẏ(0) = 0.

The step response here is computed to be

1N,D(t) = 1
2
− 1

2
e−t(cos t+ sin t).

Note that limt→∞ 1N,D(t) = 1
2
, and so the system is steppable. Therefore, we can compute

the normalised step response, and it is

y(t) = 1− e−t(cos t+ sin t).

2. Next we take (N(s), D(s)) = (s, s2 + s2 + 2). Again by Proposition 3.40, the initial value
problem to be solved is

1̈N,D(t) + 2 1̇N,D(t) + 2 1N,D(t) = 0, y(0) = 0, ẏ(0) = 1.

The solution is 1N,D(t) = e−t sin t which decays to zero, so the system is not steppable.
This is consistent with Proposition 8.2 since lims→0 TN,D(s) = 0. •
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8.2 Performance for some classes of transfer functions

It is quite natural to specify performance criteria in the time-domain. However, in order to
perform design, one needs to see how system parameters affect the time-domain performance,
and how various performance measures get reflected in the other representations of control
systems—the Laplace transform domain and the frequency-domain. To get a feel for this,
in this section we look at some concrete classes of transfer functions.

8.2.1 Simple first-order systems

The issues surrounding performance of control systems can be difficult to grasp, so our
approach will be to begin at the beginning, describing what happens with simple systems,
then moving on to talk about things more general. In this, the first of the three sections
devoted to rather specific transfer functions, we will be considering the situation when the
transfer function

TL(s) =
RL(s)

1 +RL(s)

has a certain form, without giving consideration to the precise form of the loop gain RL.
The simplest case one can deal with is one where the system transfer function is first order.
If we normalise the transfer function so that it will have a steady-state response of 1 to a
unit step input, the transfer functions under consideration look like

Tτ (s) =
1

τs+ 1
,

and so essentially depend upon a single parameter τ . The step response of such a system is
depicted in Figure 8.2. The parameter τ is exactly the rise time for a first-order system, at

Figure 8.2 Step-response for typical first-order system

least by our definition of rise time. Thus, by making τ smaller, we ensure the system will
more quickly reach its steady-state value.

Let’s see how this is reflected in the behaviour of the poles of the transfer function, and in
the Bode plot for the transfer function. The behaviour of the poles in this simple first-order
case is straightforward. There is one pole at s = − 1

τ
. Thus making τ smaller moves this
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pole further from the origin, and further into the negative complex plane. Thus the issues in
designing a first-order transfer function are one: move the pole as far to the left as possible.
Of course, not many transfer functions that one will obtain are first-order.

The Bode plot for the transfer function Tτ is very simple, of course: it has a single break
frequency at ω = 1

τ
. A typical such plot is shown in Figure 8.3. Obviously, the greater

Figure 8.3 Bode plot for typical first-order system

values of break frequency correspond to quicker response times. Thus, for simple first-order
systems, the name of the game can be seen as pushing the break frequency as far as possible
to the right. This is, in fact, a general strategy, and we begin an exploration of this by
stating an obvious result.

8.4 Proposition The magnitude of Tτ (s) at s = i
τ

is 1√
2
.

Proof This is a simple calculation since

Tτ
(
i
τ

)
=

1

i+ 1
,

whose magnitude we readily compute to be 1√
2
. �

We also compute 20 log 1√
2
≈ −3.01dB. Thus the magnitude of Tτ (

i
τ
) is approximately −3dB

which one can easily pick off from a Bode plot. We call 1
τ

the bandwidth for the first-order
transfer function. Note that for first-order systems, larger bandwidth translates to better
performance, at least in terms of rise time.

8.2.2 Simple second-order systems

First-order systems are not capable of sustaining much rich behaviour, so let’s see how
second-order systems look. After again requiring a transfer function which produces a steady-
state of 1 to a unit step input, the typical second-order transfer function we look at is

Tζ,ω0(s) =
ω2

0

s2 + 2ζω0s+ ω2
0

,



318 8 Performance of control systems 2016/09/21

which depends on the parameters ζ and ω0. If we are interested in BIBO stable transfer
functions, the Routh/Hurwitz criterion, and Example 5.35 in particular, then we can without
loss of generality suppose that both ζ and ω0 are positive.

The nature of the closed form expression for the step response depends on the value of
ζ. In any case, using Proposition 3.40(ii), we ascertain that the step response is given by

y(t) =





1 +
(

ζ√
ζ2−1
− 1
)
e(−ζ−

√
ζ2−1)ω0t −

(
ζ√
ζ2−1

)
e(−ζ+

√
ζ2−1)ω0t, ζ > 1

1− eω0t(1 + ω0t), ζ = 1

1− e−ζω0t
(

cos(
√

1− ζ2ω0t) + ζ√
1−ζ2

sin(
√

1− ζ2ω0t)
)
, ζ < 1.

This is plotted in Figure 8.4 for various values of ζ. Note that for large ζ there is no

Figure 8.4 Step response for typical second-order system for vari-
ous values of ζ

overshoot, but that as ζ decreases, the response develops an overshoot. Let us make some
precise statements about the character of the step response of a second-order system.

8.5 Proposition Let y(t) be the step response for the SISO linear system (N,D) with transfer
function Tζ,ω0. The following statements hold:

(i) when ζ ≥ 1 there is no overshoot;

(ii) when ζ < 1 there is overshoot, and it has magnitude yos = e−πζ/
√

1−ζ2
and occurs at

time tos = π√
1−ζ2ω0

;

(iii) if ζ < 1 the rise time satisfies

− (eω0ζtr
√

1− ζ2) +
√

1− ζ2 cos(ω0

√
1− ζ2tr) + (ω0tr + ζ) sin(ω0

√
1− ζ2tr) =

e−ω0ζtrtr
√

1− ζ2.

Proof (i) and (ii) The proof here consists of differentiating the step response and setting it
to zero to obtain those times at which it is zero. When ζ ≥ 1 the derivative is zero only when
t = 0. When ζ < 1 the derivative is zero when ω0

√
1− ζ2t = nπ, n ∈ Z+. The smallest
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positive time will be the time of maximum overshoot, so we take n = 1, and from this the
stated formulae follow.

(iii) The rise time tr is the smallest positive time which satisfies

ẏ(t0) =
y(t0)

t0
,

since the slope at the rise time should equal the slope of the line through the points (0, 0) and
(t0, y(t0)). After some manipulation this relation has the form stated in the proposition. �

In Figure 8.5 we plot the maximum overshoot and the time at which it occurs as a function of

Figure 8.5 Maximum overshoot (left) and time of maximum over-
shoot (right) as functions of ζ

ζ. Note that the overshoot decreases as ζ increases, and that the time of overshoot increases
as ζ increases.

The rise time tr is not easily understood via an analytical formula. Nevertheless, we may
numerically determine the rise time for various ζ and ω0 by solving the equation in part (iii) of
Proposition 8.5 and the results are shown in Figure 8.6. In that same figure we also plot the
curve tr = 9

5ω0
, and we see that it is a very good approximation—indeed it is indistinguishable

in our plot from the curve for ζ = 0.9. Thus, for second-order transfer functions Tζ,ω0(s) with
ζ < 1, it is fair to use tr ≈ 9ω0

5
. Of course, for more general transfer functions, even more

general second-order transfer functions (say, with nontrivial numerators), this relationship
can no longer be expected to hold.

From the above discussion we see that overshoot is controlled by the damping factor ζ
and rise time is essentially controlled by the natural frequency ω0. However, we note that the
time for maximum overshoot, tos, depends only upon ζ, and indeed increases as ζ increases.
Thus, there is a possible tradeoff to make when selecting ζ if one chooses a small ε in the
ε-settling time specification. A commonly used rule of thumb is that one should choose
ζ = 1√

2
which leads to yos = e−π ≈ 0.043 and tosω0 = π

√
2 ≈ 4.44.

Let’s look now to see how the poles of Tζ,ω0 depend upon the parameters ζ and ω0. One

readily determines that the poles are ω0(−ζ±
√

1− ζ2). As we have just seen, good response
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Figure 8.6 Behaviour of rise time versus ω0 for various ζ < 1

dictates that we should have poles with nonzero imaginary part, so we consider the situation
when ζ < 1. In this case, the poles are located as in Figure 8.7. Thus the poles lie on a circle

ω0

ω0

θ

θ

−ζω0

√
1− ζ2ω0

Re

Im

Figure 8.7 Pole locations for Tζ,ω0 when 0 < ζ < 1

of radius ω0, and the angle they make with the imaginary axis is sin−1 ζ. Our rule of thumb
of taking ζ = 1√

2
then specifies that the poles lie on the rays emanating from the origin into

C− at an angle of 45◦ from the imaginary axis.
Finally, for second-order systems, let’s see how the parameters ζ and ω0 affect the Bode

plot for the system. In Exercise E4.6 the essential character of the frequency response for
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Tζ,ω0 is investigated, and let us just record the outcome of this.

8.6 Proposition If Hζ,ω0(ω) = Tζ,ω0(iω), then the following statements hold:

(i) |Hζ,ω0(ω)| = ω2
0√

(ω2
0 − ω2)2 + 4ζ2ω2

0ω
2
;

(ii) ]Hζ,ω0(ω) = arctan
−2ζω0ω

ω2
0 − ω2

;

(iii) for ζ < 1√
2
, the function ω 7→ |Hζ,ω0(ω)| has a maximum of 1

2ζ
√

1−ζ2
at the frequency

ωm = ω0

√
1− 2ζ2;

(iv) ]Hζ,ω0(ωm) = arctan
−
√

1− 2ζ2

ζ
.

In Figure 8.8 we label the typical points on the Bode plot for the transfer function Tζ,ω0

Figure 8.8 Typical Bode plot for second-order system with ζ < 1√
2

when ζ < 1√
2
. As we decrease ζ the peak becomes larger, and shifted to the left. The phase,

as we decrease ζ, tends to −90◦ at the peak frequency ωm.
Based on the discussion with first-order systems, for a second-order system with transfer

function Tζ,ω0 , the bandwidth is that frequency ωζ,ω0 > 0 for which |Tζ,ω0(iωζ,ω0)| = 1√
2
. The

following result gives an explicit expression for bandwidth of second-order transfer functions.
Its proof is via direct calculation.

8.7 Proposition When ζ < 1√
2

the bandwidth for Tζ,ω0 satisfies

ωζ,ω0

ω0

=

√
1− 2ζ2 +

√
2(1− 2ζ2) + 4ζ4.

Thus we see that the bandwidth is directly proportional to the natural frequency ω0. The
dependence on ζ is shown in Figure 8.9. Thus we duplicate our observation for first-order
systems that one should maximise the bandwidth to minimise the rise time. This is one of
the general themes in control synthesis, namely that, all other things being constant, one
should maximise bandwidth.
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Figure 8.9 Dependence of bandwidth on ζ for second-order sys-
tems

8.2.3 The addition of zeros and more poles to second-order systems

In our general buildup, the next thing we look at is the effect of adding to a second-order
transfer function either a zero, i.e., making a numerator which has a root, or an additional
pole. The idea is that we will investigate the effect that these have on the nature of the
second-order response. This is carried out by Mulligan Jr. [1949].detail

Adding a zero

To investigate what happens to the time signal when we add a zero to a second-order system
with a zero placed at −αζω0. If we normalise the transfer function to that it has unit value
at s = 0, we get

T (s) =
ω2

0

αζω0

s+ αζω0

s2 + 2ζω0s+ ω2
0

.

For concreteness we take ζ = 1
2

and ω0 = 1. The step responses and magnitude Bode plots
are shown in Figure 8.10 for various values of α. We note a couple of things.

8.8 Remarks

1. The addition of a zero increases the overshoot for α < 3, and dramatically so for α < 1.

2. If the added zero is nonminimum phase, i.e., when α < 0, the step response exhibits
undershoot. Thus nonminimum phase systems have this property of reacting in a manner
contrary to what we want, at least initially. This phenomenon will be explored further
in Section 9.1.

3. The magnitude Bode plot is the same for α = −1
2

as it is for α = 1
2
. Where the Bode

plots will differ is in the phase, as in the former case, the system is nonminimum phase.

4. When comparing the step response and the magnitude Bode plots for positive α’s, one
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Figure 8.10 The effect of an added zero for α = −1
2 , 0,

1
2 , 1, 2

sees that the general tendency of larger bandwidths1 to produce shorter rise times is
preserved. •

Adding a pole

Now we look at the effect of an additional pole at −αζω0. The normalised transfer function
is

T (s) =
αζω3

0

(s+ αζω0)(s2 + 2ζω0s+ ω2
0)
.

We once again fix ζ = 1
2

and ω0 = 1, and plot the step response for varying α in Figure 8.11.
We make the following observations.

8.9 Remarks

1. If a pole is added with α < 3, the rise time will be dramatically increased. This is also
reflected in the bandwidth of the system increasing with α.

1We have not yet defined bandwidth for general transfer functions, although it is clear how to do so. The
bandwidth, roughly, is the smallest frequency above which the magnitude of the frequency response remains
below 1√

2
times its zero frequency value. This is made precise in Definition 8.25.
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Figure 8.11 The effect of an added pole for α = 1
2 , 1, 2, 10

2. The larger bandwidths in this case are accompanied by a more pronounced peak in
the Bode plot. As with second-order systems where this is a consequence of a smaller
damping factor, we see that there is more overshoot. •

8.2.4 Summary

This section has been something of a mixed bag of examples and informal observations.
We do not try to make it more than that at this point. Some of the things covered here have
a more general and rigorous treatment in Chapter 9. However, it is worth summarising the
gist of what we have said in an informal way. These are not theorems. . .

1. Increased bandwidth can mean shorter rise times.

2. In terms of poles, larger bandwidth sometimes means closed-loop poles that are far
from the imaginary axis.

3. Large overshoot can arise when the Bode plot exhibits a large “peak” at some frequency.
This is readily seen for second-order systems, but can happen for other systems.

4. In terms of poles of the closed-loop transfer function, large overshoot can arise when
poles are close to the imaginary axis, as compared to their distance from the real axis.

5. Zeros of the closed-loop transfer function lying in C+ can lead to undershoot in the
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step response, this having a deleterious effect on the system’s performance.

These rough guidelines can be useful in predicting the behaviour of a system based upon
the location of its poles, or on the shape of its frequency response. The former connection
forms the basis for root-locus design which is covered in Chapter 11. The frequency response
ideas we shall make much use of, as they form the basis for the design methodology of
Chapters 12 and 15. It is existence of the rigorous mathematical ideas for control design in
Chapter 15 that motivate the use of frequency response methods in design.

8.3 Steady-state error

An important consideration is that the difference between the reference signal and the
output should be as small a possible. When we studied the PID controller in Section 6.5
we noticed that with an integrator it was possible to make at least certain types of transfer
function have no steady-state error. Here we look at this in a slightly more systematic
manner. The first few subsections deal with descriptive matters.

8.3.1 System type for SISO linear system in input/output form

For a SISO system (N,D) in input/output form, a controlled output is a pair
(r(t), y(t)) defined for t ∈ [0,∞) with the property that

D
(

d
dt

)
y(t) = N

(
d
dt

)
r(t)

The error for a controlled output (r(t), y(t)) is e(t) = r(t) − y(t), and the steady-state
error is

lim
t→∞

(r(t)− y(t)),

and we allow the possibility that this limit may not exist. With this language, we have the
following definition of system “type.”

8.10 Definition Let k ≥ 0. A signal r ∈ U defined on [0,∞) is of type k if r(t) = Ctk for some
C > 0. A BIBO stable SISO linear system (N,D) is of type k if limt→∞(r(t)− y(t)) exists
and is nonzero for every controlled output (r(t), y(t)) with r(t) of type k. •
In the definition of the type of a SISO linear system in input/output form, it is essential
that the system be BIBO stable, i.e., that the roots of D all lie in C−. If this is not the case,
then one might expect the output to grow exponentially, and so error bounds like those in
the definition are not possible.

The following result attempts to flush out all the implications of system type.

8.11 Proposition Let (N,D) be a BIBO stable SISO linear system in input/output form. The
following statements are equivalent:

(i) (N,D) is of type k;

(ii) limt→∞(r(t) − y(t)) exists and is nonzero for some controlled output (r(t), y(t)) with
r(t) of type k.

(iii) lim
s→0

1

sk
(
1− TN,D(s)

)
exists and is nonzero.

The preceding three equivalent statements imply the following:

(iv) limt→∞(r(t)− y(t)) = 0 for every controlled output (r(t), y(t)) with r(t) of type ` with
` < k.
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Proof (i) ⇐⇒ (ii) That (i) implies (ii) is clear. To show the converse, suppose that
limt→∞(r̄(t) − ȳ(t)) = K for some nonzero K and for some controlled output (r̄(t), ȳ(t))
with r̄(t) of type k. Suppose that deg(D) = n and let y1(t), . . . , yn(t) be the n linearly
independent solutions to D

(
d
dt

)
y(t) = 0. If ȳp(t) is a particular solution to D

(
d
dt

)
y(t) = r̄(t)

we must have
ȳ(t) = c̄1y1(t) + · · ·+ c̄nyn(t) + ȳp(t)

for some c̄1, . . . , c̄n ∈ R. By hypothesis we then have

lim
t→∞

(
r̄(t)− c̄1y1(t)− · · · − c̄nyn(t)− ȳp(t)

)
= lim

t→∞

(
r̄(t)− ȳp(t)

)
= K.

Here we have used the fact that the roots of D are in C− so the solutions y1(t), . . . , yn(t) all
decay to zero.

Now let (r(t), y(t)) be a controlled output with r(t) be an arbitrary signal of type k.
Note that we must have r(t) = Ar̄(t) for some A > 0. We may take yp(t) = Aȳp(t) as a
particular solution to D

(
d
dt

)
y(t) = N

(
d
dt

)
r(t) by linearity of the differential equation. This

means that we must have

y(t) = c1y1(t) + · · ·+ cnyn(t) + Aȳp(t)

for some c1, . . . , cn ∈ R. Thus we have

lim
t→∞

(
r(t)− y(t)

)
= lim

t→∞

(
Ar̄(t)− c1y1(t)− · · · − cnyn(t)− Aȳp(t)

)

= lim
t→∞

A
(
r̄(t)− ȳp(t)

)
= AK.

This completes this part of the proof.
(ii) ⇐⇒ (iii) Let (r(t), y(t)) be a controlled output with r(t) = tk

k!
, and suppose that

y(0) = 0, y(1)(0) = 0 . . . , y(n−1)(0) = 0. Note that r̂(s) = 1
sk+1 . Taking the Laplace trans-

form of the differential equation D
(

d
dt

)
y(t) = N

(
d
dt

)
r(t) gives D(s)ŷ(s) = N(s)r̂(s). By

Proposition E.9(ii) we have

lim
t→∞

(
r(t)− y(t)

)
= lim

s→0
s
(
r̂(s)− ŷ(s)

)

= lim
s→0

s
(
r̂(s)− TN,D(s)r̂(s)

)

= lim
s→0

s
1− TN,D(s)

sk+1

from which we ascertain that

lim
t→∞

(
r(t)− y(t)

)
= lim

s→0

1− TN,D(s)

sk
. (8.1)

From this the result clearly follows.
(iii) =⇒ (iv) Suppose that

1− TN,D(s)

sk
= K

for some nonzero constant K and let ` ∈ {0, 1, . . . , k − 1}. Let (r(t), y(t)) be a controlled
output with r(t) a signal of type `. Since the roots of D are in C−, we can without loss of
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generality suppose that y(0) = 0, y(1)(0) = 0, . . . , y(n−1)(0) = 0. We then have

lim
t→∞

(
r(t)− y(t)

)
= lim

s→0

1− TN,D(s)

s`

= lim
s→0

sk−`
1− TN,D(s)

sk

= K lim
s→0

sk−` = 0.

This completes the proof. �

Let us examine the consequences of this result by making a few observations.

8.12 Remarks

1. Although we state the definition for systems in input/output form, it obviously applies
to SISO linear systems and to interconnected SISO linear systems since these give rise
to systems in input/output form after simplification of their transfer functions.

2. The idea is that a system of type k can track up to a constant error a reference signal
which is a polynomial of degree k. Thus, for example, a system of type 0 can track a
step input up to a constant error. A system of type 1 can track a ramp input up to a
constant error, and can exactly track a step input for large time. •
Let’s see how this plays out for some examples.

8.13 Examples In each of these examples we look at a transfer function, decide what is its type,
and plot its response to inputs of various types.

1. We take

TN,D(s) =
1

s2 + 3s+ 2
.

This transfer function is type 0, as may be determine by checking the limit of part (iii)
of Proposition 8.11. For a step reference, ramp reference, and parabolic reference,

r1(t) =

{
1, t ≥ 0

0, otherwise

r2(t) =

{
t, t ≥ 0

0, otherwise

r3(t) =

{
t2, t ≥ 0

0, otherwise,

respectively, we may ascertain using Proposition 3.40, that the step, ramp, and parabolic
responses are

y1(t) = 1
2

+ 1
2
e−2t − e−t, y2(t) = 1

4
(2t− 3)− 1

4
e−2t + e−t,

y3(t) = 1
4
(2t2 − 6t+ 7) + 1

4
e−2t − 2e−t,

and the errors, ei(t) = ri(t) − yi(t), i = 1, 2, 3, are plotted in Figure 8.12. Notice that
the step error response has a nonzero limit as t →∞, but that the ramp and parabolic
responses grow without limit. This is what we expect from a type 0 system.



328 8 Performance of control systems 2016/09/21

Figure 8.12 Step (top left), ramp (top right), and parabolic (bot-
tom) error responses for a system of type 0

2. We take

TN,D(s) =
2

s2 + 3s+ 2

which has type 1, using Proposition 8.11(iii). The step, ramp, and parabolic responses
are

y1(t) = 1 + e−2t − 2e−t, y2(t) = 1
2
(2t− 3)− 1

2
e−2t + 2e−t,

y3(t) = 1
2
(2t2 − 6t+ 7) + 1

2
e−2t − 4e−t,

and the errors are shown in Figure 8.13. Since the system is type 1, the step response
gives zero steady-state error and the ramp response has constant steady-state error. The
parabolic input gives a linearly growing steady-state error.

3. The last example we look at is that with transfer function

TN,D(s) =
3s+ 2

s2 + 3s+ 2
.

This transfer function is type 2. The step, ramp, and parabolic responses are

y1(t) = 1− 2e−2t + e−t, y2(t) = t+ e−2t − e−t, y3(t) = t2 − 1− e−2t + 2e−2t.

The errors are plotted in Figure 8.14. Note that the step and ramp steady-state errors
shrink to zero, but the parabolic response has a constant error. •
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Figure 8.13 Step (top left), ramp (top right), and parabolic (bot-
tom) responses for a system of type 1

Figure 8.14 Step (top left), ramp (top right), and parabolic (bot-
tom) responses for a system of type 2
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r̂(s) RL(s) ŷ(s)
−

Figure 8.15 Unity gain feedback loop for investigating steady-state
error

8.3.2 System type for unity feedback closed-loop systems

To see how the steady-state error is reflected in a simple closed-loop setting, let us look
at the situation depicted originally in Figure 6.25, and reproduced in Figure 8.15. Thus we
are not thinking here so much about having a controller and a plant, but as combining these
to get the transfer function RL which is the loop gain in this case. In any event, we may
directly give conditions on the transfer function RL to determine the type of the closed-loop
transfer function

TL(s) =
RL(s)

1 +RL(s)
.

These conditions are as follows.

8.14 Proposition Let RL ∈ R(s) be proper and define

TL(s) =
RL(s)

1 +RL(s)
.

If (N,D) denotes the c.f.r. of TL, then (N,D) is of type k > 0 if and only if lims→0 s
kRL(s)

exists and is nonzero. (N,D) is of type 0 if and only if lims→0RL(s) exists and is not equal
to −1.

Proof We compute

1− TL(s) =
1

1 +RL(s)
.

Thus, by Proposition 8.11(iii), (N,D) is of type k if and only if

lim
s→0

1

sk(1 +RL(s))

exists and is nonzero. For k > 0 we have

lim
s→0

1

sk(1 +RL(s))
=

1

lims→0 skRL(s)
,

and the result follows directly in this case. For k = 0 we have

lim
s→0

1

sk(1 +RL(s))
=

1

1 + lims→0RL(s)
.

Thus, provided that RL(0) 6= −1 as hypothesised, the system is of type 0 if and only if
lims→0RL(s) exists. �
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The situation here, then, is quite simple. If RL(s) is proper, for some k ≥ 0 we can write

RL(s) =
NL(s)

skDL(s)

with DL monic, DL and NL coprime, and DL(0) 6= 0. Thus we factor from the denominator
as many factors of s as we can. Each such factor is an integrator. The situation is depicted
in Figure 8.16. One can see, for example, why often the implementation of a PID control

r̂(s)
1

s
. . . 1

s
R(s) ŷ(s)

−

Figure 8.16 A unity feedback loop with k integrators and R(0) 6= 0

law (with integration as part of the implementation) will give a type 1 closed-loop system.
To be precise, we can state the following.

8.15 Corollary For the unity gain feedback loop of Figure 8.15, the closed-loop system is of type
k > 0 if and only if there exists R ∈ R(s) with the properties

(i) R(0) 6= 0 and

(ii) RL(s) = 1
sk
R(s).

Furthermore, if RL is the product of a plant transfer function RP with a controller
transfer function RC(s) = K(1 + TDs + 1

TIs
), then the closed-loop system will be of type 1

provided that lims→0RP (s) exists and is nonzero.

Proof We need only prove the second part of the corollary as the first is a direct consequence
of Proposition 8.14. The closed-loop transfer function TL satisfies

1− TL(s) =
1

1 +K(1 + TDs+ 1
TIs

)RP (s)
,

from which we determine that

lim
s→0

1− TL(s)

s
=

1

lims→0K(s+ TDs2 + 1
TI

)RP (s)
,

and from this the result follows, since if lims→0RP (s) exists and is nonzero, then
lims→0 s

`RP (s) = 0 for ` > 0. �

Interestingly, there is more we can say about type k systems when k ≥ 1. The following
result gives more a detailed description of the steady-state error in these cases.

8.16 Proposition Let y(t) be the normalised step response for the closed-loop system depicted in
Figure 8.15. The following statements hold:

(i) if the closed-loop system is type 1 with lims→0 sRL(s) = C with C a nonzero constant,
then ∫ ∞

0

e(t) dt = 1
C

;
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(ii) if the closed-loop system is type k with k ≥ 2 then

∫ ∞

0

e(t) dt = 0.

Proof (i) Since limt→∞ e(t) = 0, ê(t) must be strictly proper. Therefore, by Proposition E.10,
taking s0 = 0, we have ∫ ∞

0

e(t) dt = lim
s→0

ê(s).

Since

ê(s) = (1− TL(s))r̂(s) =
s

s+ sRL(s)

1

s
,

we have lims→0 ê(s) = 1
C

.
(ii) The idea here is the same as that in the previous part of the result except that we

have

ê(s) = (1− TL(s))r̂(s) =
sk

sk + skRL(s)

1

s
,

with k ≥ 2, and so lims→0 ê(s) = 0. �

The essential point is that the proposition will hold for any loop gain RL of type 1 (for
part (i)) or type 2 (for (ii)). An interesting consequence of the second part of the proposition
is the following.

8.17 Corollary Let y(t) be the normalised step response for the closed-loop system depicted in
Figure 8.15. If the closed-loop transfer system is type k for k ≥ 2, then y(t) exhibits
overshoot.

Proof Since the error starts at e(0) = 1, in order that

∫ ∞

0

e(t) dt = 0,

the error must at some time be negative. However, negative error means overshoot. �

This issue of determining the behaviour of a closed-loop system which depends only
on properties of the loop gain is given further attention in Section 9.1. Here the effect of
unstable poles and nonminimum phase zeros for the plant is flushed out in a general setting.

8.3.3 Error indices

From standard texts (see Truxal, page 83).finish

8.3.4 The internal model principle

To this point, the discussion has centred around tracking type k signals, i.e., those that
are powers of t. However, one often wishes to track more “exotic” signals. The manner for
doing so is suggested, upon reflection, by the discussion to this point, and is loosely called
the “internal model principle.”finish
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8.4 Disturbance rejection

Our goal in this section is to do something rather similar to what we did in the last section,
except that we wish to look at the relationships between disturbances and the output. Since
a disturbance may enter a system in any of the signals, the appropriate setting here is that
of an interconnected SISO linear system (S,G). We will suppose that we are dealing with
such a system and that there are m nodes with the input being node 1 and the output being
node m.

We need a notion of output like that introduced in the previous section when talking
about transfer function types. We let i ∈ {2, . . . ,m} and let (Si,Gi) be the ith-appended
system. A j-disturbed output with input at node i is a pair (d(t), y(t)) defined on
[0,∞) where y(t) is the response at node j for the input d(t) at node i for the interconnected
SISO linear system (Si,Gi), where the input at node 1 is taken to be zero.

8.18 Definition Let (S,G) be an IBIBO stable interconnected SISO system as above and let j ∈
{2, . . . ,m}. The system is of disturbance type k at node j with input at node i if
limt→∞ y(t) exists and is nonzero for every j-disturbed output (d(t), y(t)) with input at node
i, where d(t) is of type k. •

The idea here is very simple. We wish to allow a disturbance at any node which may
enter the system at any other node. Just where the disturbance enters a system and where
it is measured can drastically change the behaviour of the system. Typically, however, one
measures the disturbance at the output of the interconnected system. That is, typically
in the above discussion j is taken to be m. Before getting to an illustration by example,
let us provide a result which gives some obvious consequences of the notion of disturbance
type. The following result can be proved along the same lines as Proposition 8.11 and by
application of the Final Value Theorem.

8.19 Proposition Let (S,G) be an IBIBO stable interconnected SISO linear system with input in
node 1 and output in node m. For j ∈ {2, . . . ,m} the following statements are equivalent:

(i) (S,G) is of j-disturbance type k with input at node i;

(ii) limt→∞ y(t) exists and is nonzero for some j-disturbed output (d(t), y(t)) with input at
node i, where d(t) is of type k;

(iii) lims→0
1
sk
Tji(s) exists and is nonzero.

The preceding three equivalent statements imply the following:

(iv) limt→∞ y(t) = 0 for every j-disturbed output (d(t), y(t)) with d(t) of type ` with ` < k.

Now let us consider a simple example.

8.20 Example Let us consider the interconnected SISO linear system whose signal flow graph is
shown in Figure 8.17. The system has three places where disturbances ought to naturally

r̂(s)
1 // • RC(s) // • RP (s) // • 1 //

−1

ff ŷ(s)

Figure 8.17 A system ready to be disturbed

be considered, as shown in Figure 8.18. Note that one should strictly add another node to
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d̂1(s)

1

��

d̂3(s)

1

��

d̂3(s)

1

��• RC(s) // • RP (s) // • 1 //

−1

hh ŷ(s)

Figure 8.18 Disturbances

the output node ŷ, but this does not change anything, so it can be safely omitted. This will
generally be the case for an interconnected SISO linear system. In any case, the transfer
function for the signal flow graph is

TS,G(s) =
ŷ(s)

r̂(s)
=

RC(s)RP (s)

1 +RC(s)(s)RP (s)
,

the transfer function from d̂1 to ŷ is

T1(s) =
ŷ(s)

d̂1(s)
=

RC(s)RP (s)

1 +RC(s)RP (s)
,

the transfer function from d̂2 to ŷ is

T2(s) =
ŷ(s)

d̂2(s)
=

RP (s)

1 +RC1(s)RC2(s)RP (s)
,

and the transfer function from d̂3 to ŷ is

T3(s) =
ŷ(s)

d̂3(s)
=

1

1 +RC(s)RP (s)
.

Let’s attach some concrete transfer functions at this point. Our transfer functions are
pretty artificial, but serve to illustrate the point. We take

RC(s) =
1

s
, RP (s) =

s

s+ 2
.

We compute the corresponding transfer functions to beCheck

TS,G(s) =
s2

s2 + s+ 2
, T1(s) =

s2

s2 + s+ 2
, T2(s) =

s

s2 + s+ 2
, T3(s) =

s+ 2

s2 + s+ 2
.

A straightforward application of Proposition 8.11(iii) indicates that TS,G is of type 0. It is
also easy to see from Proposition 8.19(iii) that the system is of disturbance type 2 with
respect to the disturbance d1, of disturbance type 1 with respect to the disturbance d2, and
of disturbance type 0 with respect to d3. •

As we see in this example, the ability of a system to reject disturbances may differ
from the ability of a system to represent a reference signal. Furthermore, for disturbance
rejection, one typically wants the transfer function from the disturbance to the output to
have the property that the expected disturbance type gives zero steady-state error. Thus,
if step disturbances are what is expected, it is sufficient that the system be of disturbance
type 0.

Let us look at our falling mass example thinking of the gravitational force as a distur-
bance.
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8.21 Example (Example 6.60 cont’d) The block diagram for the falling mass with the gravita-
tional force is shown in Figure 8.19. We think of the input −mg as a disturbance input and

r̂(s) RC(s)
1

ms2
ŷ(s)

−mg

−

Figure 8.19 Block diagram for falling mass with gravitational force

so write d(t) = −mg1(t). This input is then a step input if we think of holding the mass
then letting it go. In fact, in our analysis, let’s agree to take y(0) = 0 and ẏ(0) = 0 and see
if the controller can return the mass to y = 0 after we let it fall under gravity. The transfer
function from the disturbance to the output is

Td(s) =
ŷ(s)

d̂(s)
=

ms2

ms2 +RC(s)
.

Let us look at the form of this transfer function for the various controllers we employed in
Example 6.60.

1. With proportional control we have RC(s) = K and so

Td(s) =
ms2

ms2 +K
.

This transfer function has poles on the imaginary axis, and so is not a candidate for having
its type defined. Nonetheless, we can compute the time response using Proposition 3.40
given d̂(s) = −mg

s
. We ascertain that the output to this disturbance is

yd(t) = −mg cos

√
K

m
t.

One can see that the system does not respond very nicely in this case to the step distur-
bance, and to further illustrate the point, we plot this step response in Figure 8.20 for
m = 1, g = 9.81, and K = 28.

2. For derivative control we take RC(s) = KTDs which gives

Td(s) =
ms

ms+KTD
.

This disturbance transfer function is type 1 and so the steady-state disturbance to the
step input d(t) = −mg is zero. Using Proposition 3.40 we determine that the response is

yd(t) = −mge−KTDt/m

and we plot this response in Figure 8.21 for m = 1, g = 9.81, K = 28, and TD = 9
28

.
Note that this response decays to zero which is consistent with our observation that the
error to a step disturbance should decay to zero in the steady-state.
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Figure 8.20 Response of falling mass to step disturbance with pro-
portional control

Figure 8.21 Response of falling mass to step disturbance with
derivative control

3. If we use an integral controller we take RC(s) = 1
TIs

from which we compute

Td(s) =
mTIs

3

mTIs3 +K
.

To examine this transfer function for type, let us be concrete and choose m = 1, g = 9.81,
K = 28, TD = 9

28
, and TI = 7

10
. One determines (Mathematica®!) that the roots of

mTIs
3 +K are then

3
√

5±
√

3
3
√

5i, −2
3
√

5.

Since the transfer function has poles in C+, the notion of type is not applicable. We plot
the response to the step gravitational disturbance in Figure 8.22, and we see that it is
badly behaved. Thus the given integral controller will magnify the disturbance.

4. Finally we combine the three controllers into a nice PID control law: RC(s) = K +
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Figure 8.22 Response of falling mass to step disturbance with in-
tegral control

KTDs+ K
TIs

. The disturbance to output transfer function is then

Td(s) =
mTIs

3

mTIs3 +KTDTIs2 +KTIs+K
.

For our parameters m = 1, g = 9.81, K = 28, TD = 9
28

, and TI = 7
10

, we determine
that the roots of the denominator polynomial are −5,−2± 2i (recall that we had chosen
the PID parameters in just this way). Since these roots are all in C−, we may make the
observation that the disturbance type is 3. Therefore the steady-state error to a step
disturbance should be zero. The response of this transfer function to the gravitational
step disturbance is shown in Figure 8.23 for m = 1, g = 9.81, K = 28, TD = 9

28
, and

Figure 8.23 Response of falling mass to step disturbance with PID
control

TI = 7
10

. This response decays to zero as it ought to.

Let us address the question of how to interpret our computations for the gravitational
disturbance to the falling mass. One needs to be careful not to misinterpret the disturbance
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response for the system response. The input/output response of the system for the various
controllers was already investigated in Example 6.60. When examining the system including
the effects of the disturbance, one must take into account both the input/output response
and the response to the disturbance.

For example, with the PID controller we had chosen, our analysis of both these responses
suggests that the system with the chosen parameters should behave nicely with the gravita-
tional force. To verify this, let us look at the situation where we hold the mass still at y = 0
and at time t = 0 let it go. Our PID controller is then charged with bringing the mass back
to y = 0. The initial value problem governing this situation is

mÿ +KTDẏ(t) +Ky(t) +
K

TI

∫ t

0

y(τ) dτ = −mg, y(0) = 0, ẏ(0) = 0.

To solve this equation we differentiate once to get the initial value problem

m
...
y +KTDÿ(t) +Kẏ(t) +

K

TI
y(t) = 0, y(0) = 0, ẏ(0) = 0, ÿ(0) = −g.

The solution is plotted in Figure 8.24 for the chosen PID parameters. As should be the case,

Figure 8.24 Response of falling mass with PID controller

the response is nice with the PID controller bringing the mass back to its initial height in
relatively short order.

This example is one which contains a lot of information, so you would be well served to
spend some time thinking about it. •

8.5 The sensitivity function

In this section we introduce and study a transfer function which is, at least for certain
block diagram configurations, “complementary” to the transfer function. The block diagram
configuration we look at is the one we first looked at in Section 6.3.2, and the configuration
is reproduced in Figure 8.25. One may extend the discussion here to more general block
diagram configurations, but this unity gain feedback setup is one which can be handled nicely.
In this scenario, we are typically supposing that the loop gain RL is the product of a plant
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r̂(s) RL(s) ŷ(s)
−

ê(s)

n̂(s)

d̂(s)

Figure 8.25 Block diagram for investigating the sensitivity func-
tion

transfer function RP and a controller transfer function RC . But unless we say otherwise, we
just take RL as a transfer function in its own right, and do not concern ourselves with from
where it comes.

8.5.1 Basic properties of the sensitivity function
smooth this

Let us first make some elementary observations concerning the closed-loop transfer func-
tion and the sensitivity function. The following result follows immediately from the definition
of TL and SL.

8.22 Proposition For the feedback interconnection of Figure 9.3, the following statements hold:

(i) p ∈ C is a pole for RL if and only if SL(p) = 0 and TL(p) = 1;

(ii) z ∈ C is a zero for RL if and only if SL(z) = 1 and TL(z) = 0.

The import of this simple result is that it holds for any loop gain RL. Thus the zeros and
poles for RL are immediately reflected in the closed-loop transfer function and the sensitivity
function. Let us introduce the following notation:

Z(SL) = {s ∈ C | SL(s) = 0}
Z(TL) = {s ∈ C | TL(s) = 0}. (8.2)

This notation will be picked up again in Section 9.2.1.
Let us illustrate this with an example some of the simpler features of the sensitivity

function.

8.23 Example (Example 6.60 cont’d) Let us carry on with our falling mass example. What we
shall do is plot the frequency response of the closed-loop transfer function and the sensitivity
function on the same Bode plot. We have RL(s) = RC(s) 1

ms2
, and we shall use the four

controller transfer functions of Example 6.60. In all cases, we take m = 1.

1. We take RC(s) = K with K = 28. In Figure 8.26 we give the Bode plots for the closed-
loop transfer function (the solid line) and the sensitivity function (the dashed line).

2. Next we take RC(s) = KTDs with K = 28 and TD = 9
28

. In Figure 8.26 we give the Bode
plots for the closed-loop transfer function and the sensitivity function.

3. Now we consider pure integral control with RC(s) = 1
TIs

with TI = 7
10

. In Figure 8.26 we
give the Bode plots for the transfer function (the solid line) and the sensitivity function
(the dashed line).



340 8 Performance of control systems 2016/09/21

Figure 8.26 Bode plots for the closed-loop transfer function and
sensitivity function for the falling mass with proportional con-
troller (left) and derivative controller (right). In each case, the
solid line represents the closed-loop transfer function and the
dashed line the sensitivity function.

Figure 8.27 Bode plots for the closed-loop transfer function and
sensitivity function for the falling mass with integral controller
(left) and PID controller (right). In each case, the solid line
represents the closed-loop transfer function and the dashed line
the sensitivity function.

4. Finally, we look at a PID controller so that RC(s) = K + KTDs + 1
TIs

, and we use the
same numerical values as above. As expected, in Figure 8.27 you will find the Bode plots
for the closed-loop transfer function and the sensitivity function.

In all cases, note that the gain attenuation at high frequencies leads to high sensitivities at
these frequencies, and all the associated disadvantages. •
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8.5.2 Quantitative performance measures

Our emphasis to this point has been essentially on descriptive measures of performance.
However, it is very helpful to have on hand quantitative measures of performance. Indeed,
such performance measures form the backbone of modern control theory, as from these
precise performance characteristics spring useful design methodologies. The reader will wish
to recall from Section 5.3.1 the definitions of the L2 and L∞-norms.

The quantitative measures we will provide are those on the error of a system to a step
input. Thus we work with the block diagram of Figure 6.25 which we reproduce in Fig-
ure 8.28. We shall assume that the closed-loop system is type 1 so that the steady-state

r̂(s) RL(s) ŷ(s)
−

Figure 8.28 Block diagram for quantitative performance measures

error to a step input is zero. In order to make meaningful comparisons, we deal with the
unit step response to the reference 1(t).

For design methodologies with a mathematical basis, the following two measures of per-
formance are often the most useful:

‖e‖2 =
(∫ ∞

0

e2(t) dt
)1/2

‖e‖∞ = sup
α≥0
{|e(t)| ≤ α for almost every t}.

The first is of course the L2-norm of the error, and the second the L∞-norm of the error.
The error measure

‖e‖1 =

∫ ∞

0

|e(t)| dt

is also used. For example, you will recall from Section 13.1 that the criterion used by Ziegler
and Nicols in their PID tuning was the minimisation of the L1-norm. In practice, one will
sometimes wish to consider alternative performance measures. For example, the following
two, related to the L2 and L1-norms, will serve to penalise errors which occur for large times,
but deemphasise large initial errors:

‖e‖t,2 =
(∫ ∞

0

te2(t) dt
)1/2

‖e‖t,1 =

∫ ∞

0

t|e(t)| dt.

One can imagine choosing other weighting functions of time by which to multiply the error
to suit the particular nature of the problem with which one is dealing.

One of the reasons for the usefulness of the L2 and L∞ norms is that they make it possible
to formulate statements in terms of transfer functions. For example, we have the following
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result which was derived in the course of the proof of Theorem 5.22, if we recall that the
transfer function from the input to the error in Figure 8.28 is the sensitivity function.

8.24 Proposition Consider the block diagram of Figure 8.28 and suppose that the closed-loop system
is type k for k ≥ 1. If e(t) is the error to an input u ∈ L2[0,∞), then

‖e‖2 ≤ ‖SL‖∞‖u‖2.

where SL is the sensitivity function of the closed-loop system.

This proposition tells us that if a design objective is to minimise the transfer of energy
from the input signal to the error signal, then one should aim to minimise the H∞-norm of
SL.

8.6 Frequency-domain performance specifications

The time-domain performance specifications of Section 8.1 are traditionally what one
encounters as these are the easiest to achieve a feeling for. However, there are powerful
controller design methods which rely on specifying the performance requirements in the
frequency-domain, not the time-domain. In this section we address this in two ways. First
we look at some specifications that are actually most naturally given in the frequency-
domain. These are followed by an explanation of how time-domain specifications can be
approximately turned into frequency-domain specifications.

8.6.1 Natural frequency-domain specifications

There are a significant number of performance specifications that are very easily presented
in the frequency-domain. In this section we list some of these. In a given design problem,
one may wish to invoke only some of these constraints and not others. Also, the exact way
in which the specifications are best presented can vary in detail, depending on the particular
application. However, it can be hoped that what we say here is a helpful guide in getting
started in a given problem.

Before we begin, we remark that all of the specifications we give will be are what Helton
and Merrino [1998] call “disk constraints.” This means that the closed-loop transfer function
TL will be specified to satisfy a constraint of the form

|M(iω)− TL(iω)| ≤ R(iω), ω ∈ [ω1, ω2]

for functions M : i[ω1, ω2] → C M : i[ω1, ω2] → R+, and for ω1 < ω2 > 0. Thus at eachR+ defined?

frequency ω in the interval [ω1, ω2], the value of TL at iω must lie in the disk of radius R(iω)
with centre M(iω).

Stability margin lower bound

Recall from Proposition 7.15 that the point on the Nyquist contour closest to −1 + i0 is a
distance ‖SL‖∞ away. Thus, to improve stability margins, one should provide a lower bound
for this distance. This means specifying an upper bound on the H∞-norm of the sensitivity
function. In terms of the transfer function this gives

|1− TL(iω)| ≤ ρsm, ω > 0. (8.3)
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It is possible that one may wish to enforce this constraint more or less at various frequencies.
For example, if one knows that a system will be operating in a certain frequency range, then
stability margins in this frequency range will be more important that in others. Thus one
may relax (8.3) by introducing a weighting function W and asking that

|W (iω)(1− TL(iω))| ≤ ρsm, ω > 0, ω > 0.

As a disk constraint this reads.

|1− TL(iω)| ≤ ρsm

|W (iω)| , ω > 0. (8.4)

Tracking specifications

Recall that the tracking error is minimised as in Proposition 8.24 by minimising ‖SL‖∞.
However, the kind of tracking error minimisation demanded by Proposition 8.24 is extremely
stringent. Indeed, it asks that for any sort of input, we minimise the L2-norm of the error.
However, in practice one will wish to minimise the tracking error for inputs having a certain
frequency response. To this end, we may specify various sorts of specifications that are less
restrictive than minimising ‖SL‖∞.

A first case we consider is a constraint

|1− TL(iω)| < Rtr, ω ∈ [ω1, ω2]. (8.5)

This corresponds to tracking well signals whose frequency response is predominantly sup-
ported in the given range.

Another approach that may be taken occurs when one knows, or approximately knows,
the transfer function for the reference one wishes to track. That is, suppose that we wish
to track the reference r(t) whose Laplace transform is r̂(s). Generalising the analysis of
Section 8.3 in a straightforward way from type k reference signals to reference signals with
a general Laplace transform, we see that to track r well we should require

|(1− TL(iω))r̂(iω)| ≤ ρtr, ω ∈ [ω1, ω2].

This is then made into the disk constraint

|1− TL(iω)| ≤ ρtr

|r̂(iω)| , ω ∈ [ω1, ω2]. (8.6)

Bandwidth constraints

One of the more important features of a closed-loop transfer function is its bandwidth. As
we saw in Section 8.2, larger bandwidth generally means quicker response. However, one
wishes to limit the bandwidth since it is often destructive to a system’s physical components
to have the response to high-frequency signals not be adequately attenuated.

Let us take this opportunity to define bandwidth for fairly general systems. Motivated
by our observations for first and second-order transfer functions, we make the following
definition.

8.25 Definition Let (N,D) be a proper SISO linear system in input/output form and let

‖TN,D‖∞ = sup
ω
{|HN,D(ω)|},

as usual. When limω→0|HN,D(ω)| <∞, we consider the following five cases:
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(i) (N,D) is strictly proper and steppable: the bandwidth of (N,D) is defined by

ωN,D = inf
ω̄

{
ω̄
∣∣ |HN,D(ω)|
|HN,D(0)| ≤ 1√

2
for all ω > ω̄

}
;

(ii) (N,D) is not strictly proper and not steppable: the bandwidth of (N,D) is defined
by

ωN,D = sup
ω̄

{
ω̄
∣∣ |HN,D(ω)|
|HN,D(∞)| ≤ 1√

2
for all ω < ω̄

}
;

(iii) (N,D) is strictly proper, not steppable, and ‖TN,D‖∞ < ∞: the lower cutoff fre-
quency of (N,D) is defined by

ωlower
N,D = sup

ω̄

{
ω̄
∣∣ |HN,D(ω)|
‖TN,D‖∞

≤ 1√
2

for all ω < ω̄
}

and the upper cutoff frequency of (N,D) is defined by

ωupper
N,D = inf

ω̄

{
ω̄
∣∣ |HN,D(ω)|
‖TN,D‖∞

≤ 1√
2

for all ω > ω̄
}
,

and the bandwidth is given by ωN,D = ωupper
N,D − ωlower

N,D ;

(iv) (N,D) is strictly proper, not steppable, and ‖TN,D‖∞ = ∞: the bandwidth of (N,D)
is not defined;

(v) (N,D) is not strictly proper and steppable: the bandwidth of (N,D) is not defined.

When limω→0|HN,D(ω)| =∞, bandwidth is undefined. •
Thus ωN,D is, for “typical” systems, simply the frequency at which the magnitude part

of the Bode plot drops below, and stays below, the DC value minus −3dB. For most other
transfer functions, definition of bandwidth is still possible, but must be modified to suit
the characteristics of the system. Note that the bandwidth is not defined for systems with
imaginary axis poles. However, this is not an issue since such systems are not BIBO stable,
and we are typically interested in bandwidth for the closed-loop transfer function, where
BIBO stability is essential.bandwidth and

gain crossover

frequency With is general notion of bandwidth, the typical bandwidth constraint one may pose
might take the form

|TL(iω)| < ρbw, ω > ωbw. (8.7)

High-frequency roll-off

In practise one does not want the closed-loop transfer function to be proper, but strictly
proper. This will ensure that the system will not be overly susceptible to high-frequency
disturbances in the reference. Furthermore, one will often want the closed-loop transfer
function to not only be proper, but to have a certain relative degree, so that it falls off at a
prescribed rate as ω →∞. Note that

TL(iω) =
RC(iω)RP (iω)

1 +RC(iω)RP (iω)
.

Therefore, assuming that RCRP is proper, for large frequencies TL(iω) behaves like
RC(iω)RP (iω). To render the desired behaviour as a disk inequality, we first assume that
we insist on controllers that satisfy an inequality of the form

|RC(iω)| ≤ ρC
|ω|nC
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for some ρC > 0 and nC ∈ N. This is tantamount to making a relative degree constraint on
the controller. Since we are primarily concerned with high-frequency behaviour, the choice
of ρC is not critical. Assuming that such a constraint has been enforced, the high-frequency
approximation

TL(iω) ≈ RC(iω)RP (iω)

gives rise to the inequality

|TL(iω)| ≤ ρC |RP (iω)|
|ω|nC , [ω1, ω2]. (8.8)

Controller output constraints

The transfer function

RCSL =
RC

1 +RCRP

is sometimes called the closed-loop controller . It is the transfer function from the error
to the output from the plant. One would wish to minimise this transfer function in order to
ensure that the controller is not excessively aggressive. In practise, an excessively aggressive
controller might cause saturation, i.e., the controller may not physically be able to supply
the output needed. Saturation is a nonlinear effect, and should be avoided, unless its effects
are explicitly accounted for in the modelling.

In any event, the constraint we consider to limit the output of the closed-loop controller
is

|RC(iω)(1− TL(iω))| ≤ ρclc,

where we leave the frequency unspecified for the moment. Using the relation

TL =
RCRP

1 +RCRP

=⇒ RCRP =
TL

1− TL
,

this gives the disk constraint
|TL(iω)| ≤ ρclc|RP (iω)|.

Now let us turn our attention to the reasonable ranges of frequency for the invocation of
such a constraint. Clearly the constraint will have the greatest effect for frequencies that are
zeros for RP that are on the imaginary axis. This we let iz1, . . . , izk be the imaginary axis
zeros for RP , and take as our disk constraint

|TL(iω)| ≤ ρclc|RP (iω)|, ω ∈ [z1 − r1, z1 + r1] ∪ · · · ∪ [zk − rk, zk + rk], (8.9)

for some r1, . . . , rk > 0.

Plant output constraints

The idea here is quite similar to that for the closed-loop controller. To wit, the name
closed-loop plant is often given to the transfer function

RPSL =
RP

1 +RCRP

.

This is the transfer function from the output of the controller to the output of the plant.
That this should be kept from being too large is a reflection of the desire to not have the
plant “overreact” to the controller.
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The details of the computation of the ensuing disk constraint go very much like that for
the closed-loop controller. We begin by considering the constraint

|RP (iω)(1− TL(iω))| ≤ ρclp,

immediately giving rise to the disk constraint

|1− TL(iω)| ≤ ρclp

|RP (iω)| .

To determine when one should invoke this constraint, note that it most restrictive for fre-
quencies near imaginary axis poles for RP . Thus we let p1, . . . , pk be the imaginary axis
poles for RP and take the constraint

|1− TL(iω)| ≤ ρclp

|RP (iω)| , ω ∈ [p1 − r1, p1 + r1] ∪ · · · ∪ [pk − rk, pk + rk], (8.10)

for given r1, . . . , rk > 0.

Overshoot attenuation

In Section 8.2.2 we saw that there is a relationship, at least for second-order transfer func-
tions, between a peak in the frequency response for the closed-loop transfer function and a
large overshoot. While no theorem to this effect is known to the author, it may be desirable
to enforce a constraint on ‖TL‖∞ of the type

|TL(iω)| ≤ ρos, ω ≥ 0. (8.11)

Summary

We have given a list of “typical” frequency-domain constraints. In practise one rarely enforce
all of these simultaneously. Nevertheless, in a given application, any of the constraints (8.3),
(8.4), (8.5), (8.6), (8.8), (8.7), (8.9), (8.10), or (8.11) may prove useful. Note that specifying
the constants and various weighting functions will be a process of trial and error in order to
ensure that one specifies a problem that is solvable, and still has satisfactory performance.
In Chapter 9 we discuss in detail the idea that not all types of frequency-domain perfor-
mance specification should be expected to be achievable, particularly for unstable and/or
nonminimum phase plants. The methods for obtaining controllers satisfying the type of
frequency-domain constraints we have discussed in this section may be found in the book
[Helton and Merrino 1998], where a software is demonstrated for doing such design. This is
given further discussion in Chapter 15 in terms of “H∞ methods.”

8.6.2 Turning time-domain specifications into frequency-domain specifications

It is generally not possible to make a given time-domain performance specification and
produce an exact, tractable frequency-domain specification. Nonetheless, one can make some
progress in producing reasonably effective and manageable frequency-domain specifications
from many types of time-domain specifications. The idea is to produce a transfer function
having the desired time-domain behaviour, then using this as the basis for forming the
frequency-domain specifications.finish
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8.7 Summary

When designing a controller the first step is typically to determine acceptable perfor-
mance criterion. In this chapter, we have come up with a variety of performance measures.
Let us review what we have said.

1. Based upon a system’s step response, we defined various performance features (rise time,
overshoot, etc.). These features should be understood at least in that one should be able
to compare two signals and determine which is the better with respect to certain of these
performance features.

2. Some of the character of system response are exhibited by a simple second-order transfer
function. In particular, the tradeoffs one has to make in controller design begin to show
up for such systems in that one cannot perfectly satisfy all performance measures.

3. For simple systems, often one can obtain an adequate understanding of the problems to
be encountered in system performance by using the observations seen when additional
poles and zeros are added to a second-order transfer function.

4. The effects of the existence of unstable poles and nonminimum phase zeros on the step
response should be understood.

5. System type is an easily understood concept. Particularly, one should be able to readily
determine the system type of a unity gain feedback loop with ease.

6. For disturbance rejection, one should understand that a disturbance may affect a system’s
dynamics in a variety of ways, and that the way these are quantified are via appended
systems, and systems types for these appended systems.

7. For design, the sensitivity function is an important consideration as concerns designing
controllers which are in some sense robust. The reader should be aware of some of the
tradeoffs which are necessitated by the need to have a good closed-loop response along
with desirable robustness and disturbance rejection characteristics.
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Exercises

E8.1 Consider the SISO linear system Σ = (A, b, ct,D) with

A =

[
σ ω
−ω σ

]
, b =

[
0
1

]
, c =

[
1
0

]
, D = 01,

where σ ≤ 0 and ω > 0. For ω = 1 and σ ∈ {0,−0.1,−0.7,−1}, do the following.

(a) Determine the steady-state value of the output for a unit step input.

(b) For a unit step input and zero initial conditions, plot the output response (you
do not have to provide an analytical expression for it).

(c) From your plot, determine the rise time, tr.

(d) From your plot, determine the ε-settling time, ts,ε, for ε = 0.1.

(e) Determine the percentage overshoot Pos.

(f) Plot the location of the poles of the transfer function TΣ in the complex plane.

(g) Produce the magnitude Bode plot for HΣ(ω), and from it determine the band-
width of the system.

E8.2 Denote by Σ1 the SISO linear system of Exercise E8.1. Add in series with the system
Σ1 the first-order SISO system Σ2 = (A2, b2, c

t
2,D2) with

A2 =
[
−α
]
, b2 =

[
1
]
, c2 =

[
1
]
, D2 = 01.

That is, consider a SISO linear system having as its input the input to Σ2 and as its
output the output from Σ1 (see Exercise E2.1).

(a) Determine the transfer function for the interconnected system, and from this
ascertain the steady-state output arising from a unit step input.

Fix σ = −1 and ω = 1, and for α ∈ {0, 0.1, 1, 5}, do the following.

(b) For a unit step input and zero initial conditions, plot the output response (you
do not have to provide an analytical expression for it).

(c) From your plot, determine the rise time, tr.

(d) From your plot, determine the ε-settling time, ts,ε, for ε = 0.1.

(e) From your plot, determine the percentage overshoot Pos.

(f) Plot the location of the poles of the transfer function in the complex plane.

(g) Produce the magnitude Bode plot for the interconnected system, and from it
determine the bandwidth of the system.

E8.3 Denote by Σ1 the SISO linear system of Exercise E8.1. Interconnect Σ1 with blocks
containing s and α ∈ R as shown in the block diagram Figure E8.1. Thus the input
gets fed into the parallel block, whose output becomes the input into Σ1.

(a) Determine the transfer function for the interconnected system, and from this
ascertain the steady-state output arising from a unit step input.

Fix σ = −1 and ω = 1, and for α ∈ {−1, 0, 1, 5}, do the following.

(b) For a unit step input and zero initial conditions, plot the output response (you
do not have to provide an analytical expression for it).

(c) From your plot, determine the rise time, tr.

(d) From your plot, determine the ε-settling time, ts,ε, for ε = 0.1.

(e) From your plot, determine the percentage overshoot Pos.
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û(s)

α

Σ1 ŷ(s)

s

Figure E8.1 Block diagram for system interconnection

(f) Plot the location of the poles and zeros of the transfer function in the complex
plane.

(g) Produce the magnitude Bode plot for the interconnected system, and from it
determine the bandwidth of the system.

(h) Produce the phase Bode plot for the interconnected system and make some com-
ments on what you observe.

E8.4 Consider the closed-loop interconnection in Figure E8.2, and assume that it is IBIBO

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure E8.2 A closed-loop system

stable. Suppose that the loop gain RCRP satisfies lims→0RP (s)RC(s) = K where
K 6= −1.

(a) Show that the closed-loop transfer function is type 0. If one desires zero steady-
state error to a step input, will the closed-loop system be satisfactory?

(b) Design a rational function R̃C which has the property that, when put into the
block diagram of Figure E8.3, the resulting closed-loop transfer function will be

r̂(s)

RC(s)

RP (s) ŷ(s)

R̃C(s)

−

Figure E8.3 A modified closed-loop system

of type 1. For the closed-loop system you have just designed, what will be the
error of the system to a step input?
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Now suppose that you wish to consider the effect of a disturbance which enters the
system as in Figure E8.4.

r̂(s) RC(s) RP (s) ŷ(s)
−

d̂(s)

Figure E8.4 Adding a disturbance

(c) What is the system type with respect to this disturbance for the controller de-
picted in the block diagram Figure E8.2?

(d) What is the system type with respect to this disturbance for the modified con-
troller depicted in the block diagram Figure E8.3 (i.e., that obtained by replacing
the RC block with the parallel blocks containing your R̃C and RC)?

(e) Comment on the effectiveness of the modified controller as concerns rejection of
step disturbances in this case.

E8.5 Let RP ∈ R(s) be a strictly proper plant with RC ∈ S (RP ) a proper controller.

(a) Show that if the Nyquist plot for RL = RCRP lies in C+ then ‖SL‖∞ < 1. What
can you say about the performance of the resulting closed-loop system?

Now consider the two plants

RP,1 =
1

s+ 1
, RP,2 =

s− 1

s2 + 2s+ 1
.

(b) Produce the Bode plots for both plants with the controllerRC(s) = 1
2
∈ S (RP,1)∩

S (RP,2). How do they differ?

(c) Produce the Nyquist plots for both loop gains RL,1 = RCRP,1 and RL,2 = RCRP,2.

(d) Comment on the comparative performance of the closed-loop systems in light of
your work done in part (a).

(e) Produce the step response for both closed-loop systems and comment on their
comparative behaviour.

E8.6 In problems (a)–(d) there are two SISO linear systems (N1, D1) and (N2, D2) in in-
put/output form, but you are not told what they are. Instead, you are given a pair
of Bode plots, and a pair of step responses, one each for the pair of transfer functions
TN1,D1 and TN2,D2 . You are not told which Bode plot and which step response come
from the same transfer function.

In each case, do the following:

1. Indicate which Bode plot goes with which step response. correctly.

2. Indicate clearly (but not necessarily at great length) the features of the plots
that justify your choice in step 1.

(a)
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Bode plot 1 Bode plot 2

Step response 1 Step response 2

(b)

Bode plot 1 Bode plot 2
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Step response 1 Step response 2

(c)

Bode plot 1 Bode plot 2

Step response 1 Step response 2

(d)
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Bode plot 1 Bode plot 2

Step response 1 Step response 2

The material in this chapter has focused upon the unity gain feedback loop and its relation
to the solution of Problem 6.41 concerning design for input/output systems. In the next
two problems, you will investigate a few aspects of performance for Problem 6.48 where
static state feedback is considered, and for Problem 6.53 where static output feedback is
considered. Recall that the block diagram representation for static state feedback is as in
Figure 8.5, and that the block diagram representation for static output feedback is as in

r̂(s) b (sIn −A)−1 ct ŷ(s)

D

f t

x0

−

Figure 8.5 Block diagram for static state feedback
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Figure 8.6. You may also wish to refer to Theorems 6.49 and 6.54 concerning the form of

r̂(s) b (sIn −A)−1 ct ŷ(s)

D

x0

−

F

Figure 8.6 Block diagram for static output feedback

the transfer function under static state feedback and static output feedback.

E8.7 In this exercise we consider a controllable SISO linear system Σ = (A, b, ct,01) and a
state feedback vector f . You may suppose that (A, b) is in controller canonical form,
and that f ∈ Ss(Σ).

(a) Compute the transfer function from the reference r̂(s) to the error r̂(s)− ŷ(s) for
the closed-loop system of Figure 8.5.

(b) Determine the system type for the closed-loop system of Figure 8.5. Note that
the system type will depend on the relationship between the state feedback vector
f and the system Σ.

Now we will consider a concrete example of the above situation by taking

A =

[
0 1
0 0

]
, b =

[
0
1

]
, c =

[
1
2

]
, f =

[
f0

f1

]
.

(c) What are the possible values for the system type for the closed-loop system in
this case?

(d) For what values of f0 and f1 does the system type achieve its maximum possible
value?

(e) Let f be a state feedback vector from part (d), i.e., so that the system type of the
closed-loop system is maximal. Plot the step response of the closed-loop system.
What is the steady-state error?

(f) Let f be a state feedback vector that is not of the type which answers
part (d), i.e., so that the system type of the closed-loop system is not maxi-
mal. Plot the step response of the closed-loop system. What is the steady-state
error?

E8.8 In this exercise we consider a controllable SISO linear system Σ = (A, b, ct,01) and an
output feedback constant F . You may suppose that (A, b) is in controller canonical
form.

(a) Compute the transfer function from the reference r̂(s) to the error r̂(s)− ŷ(s) for
the closed-loop system of Figure 8.6.
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(b) Determine the system type for the closed-loop system of Figure 8.6. Note that
the system type will depend on the relationship between the output feedback
constant F and the system Σ.

Now we will consider a concrete example of the above situation by taking

A =

[
0 1
0 0

]
, b =

[
0
1

]
, c =

[
1
1

]
.

(c) What are the possible values for the system type for the closed-loop system in
this case?

(d) For what values of F does the system type achieve its maximum possible value?

(e) Let F be an output feedback constant from part (d), i.e., so that the system type
of the closed-loop system is maximal. Plot the step response of the closed-loop
system. What is the steady-state error?

(f) Let F be a output feedback constant that is not of the type which answers
part (d), i.e., so that the system type of the closed-loop system is not maximal.
Plot the step response of the closed-loop system. What is the steady-state error?
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Chapter 9

Design limitations for feedback control

In this chapter we shall follow up on some of the discussion of Chapter 8 with details
concerning performance limitations in both the frequency and time-domains. The objective
of this chapter is to clarify the way in which certain plant features can impinge upon the
attainability of certain performance specifications. That such matters can arise should be
clear from parts of our discussion in the preceding chapter. There we saw that even for
simple second-order systems there is a tradeoff to be made when simultaneously optimising,
for example, rise time and overshoot. In this chapter such matters will be brought into
clearer focus, and presented in a general context.

Many of the ideas we discuss here have been known for some time, but a very nice current
summary of results of the type we present may be found in the book of Seron, Braslavsky,
and Goodwin [1997]. The starting point for the discussion in this chapter might be thought
of as Bode’s Gain/Phase Theorem stated in Section 4.4.2.
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9.1 Performance restrictions in the time-domain for general systems

The objective when studying feedback control systems is to see how behaviour of certain
transfer functions affects the response. To this end, we concentrate on a certain simple
feedback configuration, namely the unity gain feedback loop of Figure 6.25 that we again
reproduce, this time in Figure 9.1. While in Section 8.3 we investigated the transfer function
TL of the closed-loop system of Figure 9.1, in this section we focus on how the character of
the loop gain RL itself affects the system performance. Note that it is possible to have RL not
be BIBO stable, but for the closed-loop system to be IBIBO stable. Thus, if RL = RCRP

for a controller transfer function RC and a plant transfer function RP , it is possible to
stabilise an unstable plant using feedback. However, we shall see in this section that unstable
plants, along with nonminimum phase plants, can impose on the system certain performance
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r̂(s) RL(s) ŷ(s)
−

Figure 9.1 Unity gain feedback loop for studying time-domain be-
haviour

limitations. Our treatment follows that of Seron, Braslavsky, and Goodwin [1997].
The integral constraints of the following result form the backbone for a part of what will

follow. The crucial thing to note here is that for any plant that has poles or zeros in C+,
there will be performance restrictions, regardless of what kind of controller one employs.

9.1 Theorem Suppose the unity gain feedback loop of Figure 9.1 is IBIBO stable and that the
closed-loop transfer function is steppable. Let y(t) be the normalised step response and let
e(t) = r(t)− y(t) be the error. Let

α = inf
s∈C

{
Re(s) > Re(p) when p is a pole of TL

}

be the largest value of the real parts of the pole of TL. The following statements hold.

(i) If p ∈ C+ is a pole for RL then

∫ ∞

0

e−pte(t) dt = 0 and

∫ ∞

0

e−pty(t) dt =
1

TL(0)p
.

(ii) If z ∈ C+ is a zero for RL then

∫ ∞

0

e−zte(t) dt =
1

TL(0)z
and

∫ ∞

0

e−zty(t) dt = 0.

(iii) If RL has a pole at 0 then the following statements hold:

(a) if p ∈ C− is a pole for RL with Re(p) > α then

∫ ∞

0

e−pte(t) dt = 0;

(b) if z ∈ C− is a zero for RL with Re(z) > α then

∫ ∞

0

e−zte(t) dt =
1

TL(0)z
.

Proof Let us first determine that all stated integrals exist. Since the closed-loop system
is IBIBO stable, the normalised step response y(t) will be bounded, as will be the error.
Therefore, if Re(s) > 0, the integrals

∫ ∞

0

e−ste(t) dt and

∫ ∞

0

e−sty(t) dt
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will exist. Now we claim that if lims→0RL(s) = ∞ then limt→0 e(t) = 0. Indeed, by the
Final Value Theorem, Proposition E.9(ii), we have

lim
t→∞

e(t) = lim
s→0

sSL(s)r̂(s)

= lim
s→0

1

1 +RL(s)

1

TL(0)

= 0,

where we have noted that for the normalised step response the reference is 1(t) 1
TL(0)

. Now,

since limt→∞ e(t) = 0 when lims→0RL(s) =∞, in this case the integral
∫ ∞

0

e−ste(t) dt

will exist provided s is greater than the abscissa of absolute convergence for e(t). Since the
abscissa of absolute convergence is α, it follows that the integrals of part (iii) exist.

(i) We have
∫ ∞

0

e−pte(t) dt = ê(p) and

∫ ∞

0

e−pty(t) dt = ŷ(p).

Therefore ∫ ∞

0

e−pte(t) dt = SL(p)r̂(p)

= lim
s→p

1

1 +RL(s)

1

TL(0)s

= 0,

if Re(p) > 0. For the integral involving y(t), when Re(p) > 0 we have
∫ ∞

0

e−pty(t) dt = TL(p)r̂(p)

= lim
s→p

RL(s)

1 +RL(s)

1

TL(0)s

=
1

TL(0)p
.

(ii) We compute
∫ ∞

0

e−zte(t) dt = SL(z)r̂(z)

= lim
s→z

1

1 +RL(s)

1

TL(0)s

=
1

TL(0)z
,

if Re(z) > 0. In like manner we have
∫ ∞

0

e−zty(t) = TL(z)r̂(z)

= lim
s→z

RL(s)

1 +RL(s)

1

TL(0)s

= 0,
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again provided Re(z) > 0.
(iii) In this case, we can conclude, since the integrals have been shown to converge, that

the analysis of parts (i) and (ii) still holds. �

It is not immediately obvious why these conclusions are useful or interesting. We shall
see shortly that they do lead to some results that are more obviously useful and interesting,
but let’s make a few comments before we move on to further discussion.

9.2 Remarks

1. The primary importance of the result is that it will apply to any case where a plant has
unstable poles or nonminimum phase zeros. This immediately asserts that in such cases
there will be some restrictions on how the step response can behave.

2. Parts (i) and (ii) can be thought of as placing limits on how good the closed-loop response
can be in the presence of unstable poles or nonminimum phase zeros for the loop gain.

3. Part (iii a) ensures that even if the plant has no poles in C+, provided that it has a pole
at s = 0 along with any other pole to the right of the largest closed-loop pole, there will
be overshoot.

4. Along similar lines, from part (iii b), if RL has a pole at the origin along with a zero,
even a minimum phase zero, that lies to the right of the largest pole of the closed-loop
system, then there will be undershoot.

5. We saw in Section 8.3 the ramifications of the assumption that lims→0RL(s) =∞. What
this means is that there is an integrator in the loop gain, and integrators give certain
properties with respect to rejection of disturbances, and the ability to track certain
reference signals. •
Let us give a few examples that illustrate the remarks 3 and 4 above.

9.3 Examples

1. Let us illustrate part (iii a) of Theorem 9.1 with the loop gain RL(s) = 2(s+1)
s(s−1)

. The
closed-loop transfer function is

TL(s) =
2(s+ 1)

s2 + s+ 2
,

which is BIBO stable. The normalised step response is shown in Figure 9.2. The thing
to note, of course, is that the step response exhibits overshoot.

2. Let us illustrate part (iii b) of Theorem 9.1 with the loop gain RL(s) = 1−s
s(s+2)

. The
closed-loop transfer function is

TL(s) =
1− s

s2 + s+ 1
,

which is BIBO stable. The normalised step response is shown in Figure 9.2, and as
expected there is undershoot in the response. •
As we saw in the previous remarks 3 and 4, an unstable pole in the loop gain immediately

implies overshoot in the step response and a nonminimum phase zero implies undershoot.
It turns out that we can be even more explicit about what is happening, and the following
result spells this out.
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Figure 9.2 Normalised step responses for two loop gains with a
pole at zero: (1) on the right an unstable pole gives overshoot
and (2) on the left a nonminimum phase zero gives undershoot

9.4 Proposition Consider the closed-loop system in Figure 9.1. Assuming the closed-loop system
is steppable and IBIBO stable, the following statements hold.

(i) If RL has a real pole at p ∈ C+ then there is an overshoot in the normalised step
response, and if tr is the rise time, then the maximum overshoot satisfies

yos ≥
(ptr − TL(0))eptr + TL(0)

ptr
.

If TL(0) = 1 then we can simplify this to

yos ≥
ptr
2
.

(ii) If RL has a real zero at z ∈ C+ then there is an undershoot in the normalised step
response, and if ts,ε is the ε-settling time, then the undershoot satisfies

yus ≥
1− ε

ezts,ε − 1
.

Proof (i) That there must be overshoot follows as stated in Remark 9.2–3. Our definition
of rise time implies that for t < tr we have y(t) < t

tr
. This means that

e(t) ≥ 1

TL(0)
− t

tr

when t ≤ tr. Therefore, using Theorem 9.1(i),

∫ ∞

0

e−pte(t) dt = 0

=⇒ −
∫ ∞

tr

e−pte(t) dt =

∫ tr

0

e−pte(t) dt

=⇒ −
∫ ∞

tr

e−pte(t) dt ≥
∫ tr

0

e−pt
(

1
TL(0)

− t
tr

)
dt.
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Now we use this final inequality, along with the fact that yos ≥ y(t)− 1 = ( 1
TL(0)

− 1)− e(t)
to derive

yose
−pt

p
= yos

∫ ∞

tr

e−pt dt

≥ −
∫ ∞

tr

e−pte(t) dt+

∫ ∞

tr

e−pt
(

1
TL(0)

− 1
)

dt

≥
∫ tr

0

e−pt
(

1
TL(0)

− t
tr

)
dt+

∫ ∞

tr

e−pt
(

1
TL(0)

− 1
)

dt

=
(eptr − 1)ptr + TL(0)(1− eptr + ptr)

p2trTL(0)eptr
+
( 1

TL(0)
− 1
)e−ptr

p

=
ptr + (e−ptr − 1)TL(0)

p2trTL(0)
.

Thus we have the inequality

yose
−pt

p
≥ ptr + (e−ptr − 1)TL(0)

p2trTL(0)

which, with simple manipulation, gives the first inequality of this part of the proposition.
For the second inequality one performs the Taylor expansion

eptt = 1 + ptr + 1
2
p2t2r + · · ·

and a simple manipulation using TL(0) = 1 gives the second inequality.
(ii) For t ≥ ts,ε we have y(t) ≥ 1− ε. Therefore, using Theorem 9.1(ii), we have

∫ ∞

0

e−zty(t) dt = 0

=⇒ −
∫ ts,ε

0

e−zty(t) dt =

∫ ∞

ts,ε

e−zty(t) dt

=⇒ −
∫ ts,ε

0

e−zty(t) dt ≥
∫ ∞

ts,ε

e−zt(1− ε) dt

=⇒ −
∫ ts,ε

0

e−zty(t) dt ≥ (1− ε)e−zts,ε
z

.

Now we use the definition of the undershoot and the previous inequality to compute

yus(1− e−zts,ε)
z

= yus

∫ ts,ε

0

e−zt dt

≥ −
∫ ts,ε

0

e−zty(t) dt

≥ (1− ε)e−zts,ε
z

.

Thus we have demonstrated the inequality

yus(1− e−zts,ε)
z

≥ (1− ε)e−zts,ε
z

,

and from this the desired result follows easily. �
Let us check the predictions of the proposition on the previous examples where overshoot

and undershoot were exhibited.
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9.5 Examples (Example 9.3 cont’d)

1. We resume looking at the loop gain RL(s) = 2(s+1)
s(s−1)

where the normalised step response
for the closed-loop system is shown on the left in Figure 9.2. The closed-loop transfer
function evaluated at s = 0 is TL(0) = 1. Therefore, since we have a real pole at s = 1,
the rise time and overshoot should together satisfy yos ≥ tr

2
. Numerically we determine

that yos ≈ 0.68. For this example, it turns out that tr = 0 (the order of the transfer
function is not high enough to generate an interesting rise time with our definition. In
any event, the inequality of part (i) of Proposition 9.4 is certainly satisfied.

2. Here we use the loop gain RL(s) = 1−s
s(s+2)

for which the closed-loop normalised step
response is shown on the right in Figure 9.2. Taking ε = 0.05, the undershoot and the
ε-settling time are computed as yus ≈ 0.28 and ts,ε ≈ 6.03. One computes

1− ε
ezts,ε − 1

≈ 0.002,

using z = 1. In this case, the inequality of part (ii) of Proposition 9.4 is clearly satisfied. •
Note that for the examples, the estimates are very conservative. The reason that this is
not surprising is that the estimates hold for all systems, so one can expect that for a given
example they will not be that sharp.

When we have both an unstable pole and a nonminimum phase zero for the loop gain
RL, it is possible again to provide estimates for the overshoot and undershoot.

9.6 Proposition Consider the unity gain feedback loop of Figure 9.1, and suppose the closed-loop
system is IBIBO stable and steppable. Also suppose that the loop gain RL has a real pole at
p ∈ C+ and a real zero at z ∈ C+. The following statements hold:

(i) if p < q then the overshoot satisfies

yos ≥
p

TL(0)(q − p) ;

(ii) if q < p then the undershoot satisfies

yus ≥
q

TL(0)(p− q) .

Proof (i) From the formulas for concerning e(t) from parts (i) and (ii) of Theorem 9.1 we
have ∫ ∞

0

(e−pt − e−zt)(−e(t)) dt =
1

TL(0)z
.

Since yos ≥ −e(t) for all t > 0 this gives

1

TL(0)z
≤ yos

∫ ∞

0

(e−pt − e−zt)(−e(t)) dt =
z − p
pz

.

From this the result follows.
(ii) Here we again use parts (i) and (ii) of Theorem 9.1, but now we use the formulas

concerning y(t). This gives

∫ ∞

0

(e−zt − e−pt)(−y(t)) dt =
1

TL(0)p
.
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Since yus ≥ −y(t) for all t > 0 we have

1

TL(0)p
≤ yus

∫ ∞

0

(e−zt − e−pt)(−y(t)) dt =
p− z
pz

,

giving the result. �

An opportunity to employ this result is given in Exercise E9.1. The implications are
quite transparent, however. When one has an unstable real pole and a nonminimum phase
real zero, the undershoot or overshoot can be expected to be large if the zero and the pole
are widely separated.

9.2 Performance restrictions in the frequency domain for general
systems

In the previous section we gave some general results indicating the effects on the time re-
sponse of unstable poles and nonminimum phase zeros of the plant. In this section we carry
this investigation into the frequency domain, following the excellent treatment of Seron,
Braslavsky, and Goodwin [1997]. The setup is the unity gain loop depicted in Figure 9.3.
Associated with this, of course, we have the closed-loop transfer function TL and the sensi-

r̂(s) RL(s) ŷ(s)
−

Figure 9.3 The unity gain feedback loop for investigation of per-
formance in the frequency domain

tivity function SL defined, as usual, by

TL(s) =
RL(s)

1 +RL(s)
, SL(s) =

1

1 +RL(s)
.

These are obviously related, and in this section the aim is to explore fully the consequences
of this relationship, as well as explore the behaviour of these two rational functions as the
loop gain RL has poles and zeros in C+. If one of the goals of system design is to reduce
error in the closed-loop system, then since the transfer function from input to error is the
sensitivity function, a goal might be to reduce the sensitivity function. However, it is simply
not possible to do this in any possible manner, and the zeros and poles of the loop gain RL

have a great deal to say about what is and is not possible.

9.2.1 Bode integral formulae

Throughout this section, we are dealing with the unity gain feedback loop of Figure 9.3.
The following result gives what are called the Bode integral formulae . These results,
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for stable and minimum phase loop gains, are due to Horowitz [1963]. The extension to
unstable loop gains for the sensitivity function are due to Freudenberg and Looze [1985],
and for nonminimum phase loop gains for the transfer function results are due to Middleton
and Goodwin [1990].

9.7 Theorem Consider the feedback interconnection of Figure 9.3 and suppose that RL ∈ R(s) is
proper and has poles p1, . . . , pk in C+ and zeros z1, . . . , z` in C+. If the interconnection is
IBIBO stable and if RL has no poles on the imaginary axis then the following statements
hold:

(i) if the closed-loop system is well-posed then

∫ ∞

0

ln| SL(iω)

SL(i∞)
| dω =

π

2
lim
s→∞

s(SL(s)− SL(∞))

SL(∞)
+ π

k∑

j=1

pj;

(ii) if L(0) 6= 0 then

∫ ∞

0

ln|TL(iω)

TL(0)
| dω
ω2

=
π

2

1

TL(0)
lim
s→0

dTL(s)

ds
+ π

∑̀

j=1

1

zj
.

Proof (i) For R > 0 sufficiently large and ε > 0 sufficiently small, we construct a contour
ΓR,ε ⊂ C+ comprised of 3k + 2 arcs as follows. We define Γε ⊂ iR by

Γε = iR \ {[Im(p)− ε, Im(p) + ε] | p ∈ {p1, . . . , pk}}.

Now for j ∈ {1, . . . , k} define 3 contours Γ1
ε,j, Γ2

ε,j, and Γ3
ε,j by

Γ1
ε,j = {x+ i(Im(pj)− ε) ∈ C | x ∈ [0,Re(pj)]}

Γ2
ε,j = {pj + reiθ ∈ C | θ ∈ [−π

2
, π

2
]}

Γ3
ε,j = {x+ i(Im(pj) + ε) ∈ C | x ∈ [0,Re(pj)]}

Now define
ΓR = {Reiθ ∈ C | θ ∈ [−π

2
, π

2
]}

The contour ΓR,ε is the union of these contours, and a depiction of it is shown in Fig-

ure 9.4. Since ln SL(s)
SL(∞)

is analytic on and inside the contour ΓR,ε for R sufficiently large and
ε sufficiently small, we have

lim
ε→0
R→∞

∫

ΓR,ε

ln
SL(s)

SL(∞)
ds = 0.

Let us analyse this integral bit by bit. Using the expression

ln
SL(s)

SL(∞)
= ln| SL(s)

SL(∞)
|+ i]SL(s)/SL(∞),

we have

lim
ε→0
R→∞

∫

Γε

ln
SL(s)

SL(∞)
ds = 2i

∫ ∞

0

ln
SL(iω)

SL(i∞)
dω.
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Im
ΓR

Γǫ
Γ1
ǫ,j ∪ Γ2

ǫ,j ∪ Γ3
ǫ,j

pi

Figure 9.4 The contour for the Bode integral formulae

For j ∈ {1, . . . , k}, define fj(s) by requiring that

ln
SL(s)

SL(∞)
= ln(s− pj) + ln fj(s).

Let Γε,j = Γ1
ε,j ∪ Γ2

ε,j ∪ Γ3
ε,j, and let Γ̃ε,j be the contour obtained by closing Γε,j along the

imaginary axis. On and within Γ̃ε,j the function fj is analytic. Therefore, by Cauchy’s
Integral Theorem,

∫

˜Γε,j

ln fj(s) ds =

∫

Γε,j

ln fj(s) ds+

∫ Im(pj)−iε

Im(pj)+iε

ln fj(iω) dω = 0

Combining this with
∫

Γε,j

ln
SL(s)

SL(∞)
ds =

∫

Γε,j

ln(s− pj) ds+

∫

Γε,j

ln fj(s) ds

gives ∫

Γε,j

ln
SL(s)

SL(∞)
ds =

∫

Γε,j

ln(s− pj) ds+

∫ Im(pj)+iε

Im(pj)−iε
ln fj(iω) dω.

In the limit as ε goes to zero, the second integral on the right will vanish. Thus we shall
evaluate the first integral on the right. Since ln(s − pj) is analytic on Γε,j we use the fact
that the antiderivative of ln z is z ln z − z to compute

∫

Γε,j

ln(s− pj) ds =
(
(s− pj) ln(s− pj)− (s− pj)

)∣∣∣
Im(pj)+iε

Im(pj)−iε

= (−Re(pj) + iε) ln(−Re(pj) + iε)− (−Re(pj) + iε)−
(−Re(pj)− iε) ln(−Re(pj)− iε) + (−Re(pj)− iε)

= iRe(pj)
(
](−Re(p)− iε)− ](−Re(p) + iε)

)
.
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Taking the limit as ε→ 0 gives

lim
ε→0

∫

Γε,j

ln
SL(s)

SL(∞)
ds = −2πiRe(pj).

This then gives

lim
ε→0

k∑

j=1

∫

Γε,j

= −2πi
k∑

j=1

Re(pi) = −2πi
k∑

j=1

pj,

with the last equality holding since poles of RL occur in complex conjugate pairs.
Now we look at the contour ΓR. We have

lim
R→∞

ln
SL(s)

SL(∞)
ds = iπ Res

s=∞
ln

SL(s)

SL(∞)
.

Since RL is proper we may write its Laurent expansion at s =∞ as

RL(s) = RL(∞) +
c−1

s
+
c−2

s2
+ · · · . (9.1)

Since SL(s) = (1 +RL(s))−1 we have

lnSL(s) = − ln(1 +RL(s))

= − ln(1 +RL(∞))− ln
(

1 +
c−1

1 +RL(∞)

1

s
+

c−2

1 +RL(∞)

1

s2
+ · · ·

)
.

Therefore, writing lnSL(∞) = − ln(1 +RL(∞)), we have

ln
SL(s)

SL(∞)
= − ln

(
1 + R̃L(s)

)
,

where

R̃L(s) =
SL(∞)c−1

s
+
SL(∞)c−2

s2
+ · · · .

Using the power series expansion for ln(1 + z),

ln(1 + z) = z +
z2

2
+ · · · ,

for |z| < 1 we have

ln
SL(s)

SL(∞)
= − R̃L(s) +

R̃2
L(s)

s
+ · · ·

= − SL(∞)c−1

s
− SL(∞)c−2

s2
+ · · · ,

which is valid for s sufficiently large. This shows that

Res
s=∞

ln
SL(s)

SL(∞)
= SL(∞)c−1.
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Now note that (9.1) implies that

c−1 = lim
s→∞

s(RL(s)−RL(∞))

= lim
s→∞

s
( 1

SL(s)
− 1

SL(∞)

)

=
1

S2
L(∞)

lim
s→∞

s
(
SL(∞)− SL(s)

)
.

This gives

lim
R→∞

∫

ΓR

ln
SL(s)

SL(∞)
= iπ

1

SL(∞)
lim
s→∞

s
(
SL(∞)− SL(s)

)
.

The result now follows by summing the contours.
(ii) Here we define G(z) = RL(1/z) and

H(z) =
1

1 + 1/TL(1/z)
=

1

1 +G(z)
.

Thus G and H now play the part of RL and SL in part (i). Thus we have

∫ ∞

0

ln| H(iΩ)

H(i∞)
| dΩ =

π

2
lim
z→∞

z(H(z)−H(∞))

H(∞)
+ π

∑̀

j=1

1

zj
.

Let us first show that

lim
z→∞

z(H(z)−H(∞))

H(∞)
=

1

TL(0)
lim
s→0

dTL(s)

ds
.

First recall that

lim
z→∞

z(H(z)−H(∞))

H(∞)
= −Res

z=∞
lnH(z),

following our calculations in the previous part of the proof. If the Taylor expansion of
lnTL(s) about s = 0 is

lnTL(s) = a0 + a1s+ a2s
2 + · · · ,

then the Laurent expansion of lnH(z) about z =∞ is

lnH(z) = a0 +
a1

z
+
a2

z2
+ · · · .

Therefore Resz=∞ lnH(z) = −a1. However, we also have

a1 = lim
s→0

d lnTL(s)

ds
=

1

TL(0)
lim
s→0

dTL(s)

ds
.

Thus we have ∫ ∞

0

ln| H(iΩ)

H(i∞)
| dΩ = −π

2

1

TL(0)
lim
s→0

dTL(s)

ds
.

The result now follows by making the change of variable ω = 1
Ω

. �
Although the theorem is of some importance, its consequences do require some explica-

tion. This will be done further in the next section, but here let us make some remarks that
can be easily deduced.
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9.8 Remarks

1. Let us provide an interpretation for the first term on the right-hand side in part (i).
Using the definition of SL we have

lim
s→∞

s(SL(s)− SL(∞))

SL(∞)
= lim

s→∞

s(RL(∞)−RL(s))

1 +RL(s)

= − 1̇N,D(0+)

1 +RL(∞)
,

where the last step follows from Proposition E.9(i). Here (N,D) is the c.f.r. of RL. On
this formula, let us make some remarks.

(a) If the relative degree of RL is greater than 0 then RL(∞) = 0.

(b) If the relative degree of the plant is greater than 1 then 1̇N,D(0+) = 0.

(c) From the previous two remarks, if the relative degree of RL is greater than 1 and if
the plant has no poles in C+, then the formula

∫ ∞

0

ln|SL(iω)| dω = 0

holds, since SL(i∞) = 1 in these cases. This is the formula originally due to
Horowitz [1963], and is called the Horowitz area formula for the sensitivity
function. It tells us that the average of the area under the magnitude part of the
sensitivity Bode plot should be zero. Therefore, for any frequency intervals where
SL is less that 1, there are also frequency regions where SL will be greater than 1.

(d) If the relative degree of RL is greater than 1 but RL has poles in C+, then the
formula from part (i) reads

∫ ∞

0

ln|SL(iω)| dω =
k∑

j=1

pj.

Since the right-hand side is positive, this tells us that the poles in C+ have the effect
of shifting the area bias of the sensitivity function in the positive direction. That is
to say, with poles for RL in C+, there will be a greater frequency range for which
SL will be greater than 1.

(e) Now let us consider the cases where the relative degree of RL is 0 or 1, and where
RL has poles in C+. Here, if 1̇N,D(0+) > 0 we have an opportunity to reduce the
detrimental effect of the positive contribution to the area integral from the poles.

2. Let us try to understand part (ii) in the same manner by understanding the first term

on the right-hand side. Define the scaled closed-loop transfer function T̃L(s) = TL(s)
TL(0)

.

Let e(t) be the error signal for the unit ramp input of the transfer function T̃L. Thus

s2ê(t) =
(
1− TL(s)

TL(0)

)
. We compute

1

TL(0)
lim
s→0

dTL(s)

ds
= lim

s→0

TL(s)
TL(0)

− 1

s

= − lim
s→0

sê(s)

= − lim
t→∞

e(t),
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where in the final step we have used Proposition E.9(ii). Let us make some remarks,
given this formula.

(a) If the scaled closed-loop system is type k for k > 1 then the steady-state error to
the ramp input will be zero.

(b) Based upon the previous remark, if the scaled closed-loop system is type k for k > 1
and if the loop gain RL has no zeros in C+, then the formula

∫ ∞

0

ln|TL(iω)

TL(0)
| dω
ω2

= 0

holds. Again, this is to be seen as an area integral for the magnitude Bode plot for
TL, but now it is weighted by 1

ω2 . Thus the magnitude smaller frequencies counts
for more in this integral constraint. This formula, like its sensitivity function coun-
terpart, was first derived by Horowitz [1963], and is the Horowitz area formula
for the closed-loop transfer function.

(c) If the scaled closed-loop system is type k for k > 1 but the loop gain does have
zeros in C+, then the formula

∫ ∞

0

ln|TL(iω)

TL(0)
| dω
ω2

=
∑̀

j=1

1

zj

holds. Thus we see that as with poles for the sensitivity function integral, the zeros
for the loop gain shift the area up. Now we note that this effect gets worse as the
zeros approach the imaginary axis.

(d) Finally, suppose that the scaled closed-loop system is type 1 (so that the steady-state
error to the unit ramp is constant) and that RL has zeros in C+. Then, provided
that the steady-state error to the unit ramp input is positive, we can compensate
for the effect of the zeros on the right hand side only by making the steady-state
error to the ramp larger. •

9.2.2 Bandwidth constraints

The preceding discussion has alerted us to problems we may encounter in trying to
arbitrarily shape the Bode plots for the closed-loop transfer function and the sensitivity
function. Let us examine this matter further by seeing how bandwidth constraints come
into play.

For the unity gain closed-loop interconnection of Figure 9.3, if ωb is the bandwidth for
the closed-loop transfer function, then we must have

|RL(iω)|
|1 +RL(iω)| ≤

1√
2
, ω > ωb

=⇒ |RL(iω)| ≤ 1√
2 + 1

, ω > ωb

This implies that bandwidth constraints for the closed-loop system translate into bandwidth
constraints for the loop gain, and vice versa. Typically, the bandwidth of the loop gain
will be limited by the plant, and the components available for the controller. The upshot is
that when performing a controller design, the designer will typically be confronted with an
inequality of the form

|RL(iω)| ≤ δ
(ωb

ω

)1+k

, ω > ωb, (9.2)



2016/09/21 9.2 Performance restrictions in the frequency domain for general systems 371

where δ < 1
2

and where k ∈ N. The objective in this section is to see how these constraints
translate into constraints on the sensitivity function. This issue also came up in Section 8.6.1
in the discussion of high-frequency roll-off constraints.

The following result gives a bound on the area under the “tail” of the sensitivity function
magnitude Bode plot.

9.9 Proposition For the closed-loop interconnection of Figure 9.3, if RL has relative degree of
greater than 1 and if RL satisfies a bandwidth constraint of the form (9.2), then

|
∫ ∞

ωb

ln|SL(iω)| dω| ≤ δωb

2k
.

Proof We first note without proof that if |s| < 1
2

then |ln(1 + s)| < 3|s|
2

. We then compute

|
∫ ∞

ωb

ln|SL(iω)| dω| ≤
∫ ∞

ωb

|ln|SL(iω)|| dω

≤
∫ ∞

ωb

|lnSL(iω)| dω

=

∫ ∞

ωb

|ln(1 +RL(iω)| dω

≤ 3δω1+k
b

2

∫
1

ω1+k
dω

=
δωb

2k
,

as desired. �

Let us see if we can explain the point of this.

9.10 Remark The idea is this. From Theorem 9.7(i) we know that since the relative degree of
RL is at least 2, the total area under the sensitivity function magnitude Bode plot will
be nonnegative. This means that if we have a region where we have made the sensitivity
function smaller than 1, there must be a region where the sensitivity function is larger
than 1. What one can hope for, however, is that one can smear this necessary increase in
magnitude of the sensitivity function over a large frequency range and so keep the maximum
magnitude of the sensitivity function under control. Proposition 9.9 tells us that if the loop
gain has bandwidth constraints, then the area contributed by the sensitivity function above
the bandwidth for the loop gain is limited. Therefore, the implication is necessarily that
if one wishes to significantly decrease the sensitivity function magnitude over a frequency
range, there must be a significant increase in the sensitivity function magnitude at frequencies
below the loop gain bandwidth. An attempt to illustrate this is given in Figure 9.5. In the
figure, the sensitivity function is made small in the frequency range [ω1, ω2], and the cost for
this is that there is a large peak in the sensitivity function magnitude below the bandwidth
since the contribution above the bandwidth is limited by Proposition 9.9. •

9.2.3 The waterbed effect

Let us first look at a phenomenon that indicates problems that can be encountered in
trying to minimise the sensitivity function over a frequency range. This result is due to
Francis and Zames [1984].
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ω

ln
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L
(i
ω
)|

0

ω1 ω2 ωb

Figure 9.5 The effect of loop gain bandwidth constraints on the
sensitivity function area distribiution

9.11 Theorem Consider the feedback interconnection of Figure 9.7, and assume that the closed-loop
system is IBIBO stable and well-posed. If RL has zero in C+ then for 0 < ω1 < ω2 there
exists m > 0 so that

sup
ω∈[ω1,ω2]

|SL(iω)| ≥ ‖SL‖−m∞ .

Proof Suppose that ζ ∈ C+ is a zero of RL. Then SL(q) = 1 by Proposition 8.22. Let

D(0, 1) = {z ∈ C | |z| ≤ 1}

be the unit complex disk and define a mapping φ : C+ → D(0, 1) by

φ(s) =
ζ − s
ζ̄ + s

.

This map is invertible and has inverse

φ−1(z) =
ζ − ζ̄z
1 + z

.

The interval i[ω1, ω2] ⊂ iR is mapped under φ to that portion of the boundary of D(0, 1)
given by

φ(i[ω1, ω2]) = {eiθ | θ ∈ [θ1, θ2]},
where

eiθj =
ζ − iωj
ζ̄ + iωj

, j = 1, 2.

Define φ∗SL : D(0, 1)→ C by (φ∗SL)(z) = SL(φ−1(z)). Thus φ∗SL is analytic in D(0, 1) and
φ∗SL(0) = 1. Furthermore, the following equalities hold:

sup
θ∈[θ1,θ2]

|φ∗SL(eiθ)| = sup
ω∈[ω1,ω2]

|SL(iω)|, sup
θ
|φ∗SL(eiθ)| = ‖SL‖∞.
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Define φ = |θ2 − θ1| and let n > 2π
φ

be an integer. Define f : D(0, 1)→ C as

f(z) =
n−1∏

j=0

φ∗SL
(
ze2πji/n

)
.

Being the product of analytic functions in D(0, 1), f itself is analytic in D(0, 1). For each z
on the boundary of D(0, 1) there exists j ∈ {0, . . . , n− 1} so that

ze2πji/n ∈ φ(i[ω1, ω2]).

Thus we have, using the Maximum Modulus Principle (Theorem D.9),

1 = |f(0)|
≤ sup

θ
|f(eiθ)|

=
(
sup
θ
|φ∗SL(eiθ)|

)n−1
sup

θ∈[θ1,θ2]

|φ∗SL(eiθ)|

= ‖SL‖n−1
∞ sup

ω∈[ω1,ω2]

|SL(iω)|.

Taking m = n− 1, the result follows. �

9.12 Remark The idea here is simple. If, for a nonminimum phase plant, one wishes to reduce the
sensitivity function over a certain frequency range, then one can expect that the ‖SL‖∞ will
be increased in consequence. •

9.2.4 Poisson integral formulae

Now we look at other formulae that govern the behaviour of the closed-loop transfer
function and the sensitivity function. In order to state the results in this section, we need
to represent the closed-loop transfer function and the sensitivity function in a particular
manner. Recall from (8.2) the definitions Z(SL) and Z(TL) of the sets of zeros for SL and TL
in C+. Suppose that Z(SL) = {p1, . . . , pk} and Z(TL) = {z1, . . . , z`}, the notation reflecting
the fact that zeros for SL are poles for RL and zeros for TL are zeros for RL. Corresponding
to these zeros are the Blaschke products for SL and TL defined by

BSL(s) =
k∏

j=1

pj − s
p̄j + s

, BTL(s) =
∏̀

j=1

zj − s
z̄j + s

.

These functions all have unit magnitude. Now we define R̃L by the equality

RL(s) =
R̃L(s)BTL(s)

BSL(s)
. (9.3)

In Section 14.2.2 we shall refer to this as an inner/outer factorisation of RL. The key fact
here is that the zeros and poles for RL have been soaked up into the Blaschke products so
that R̃L(s) has no zeros or poles in C+. We similarly define S̃L and T̃L by

SL(s) = S̃L(s)BSL(s), TL(s) = T̃L(s)BTL(s),

and observe that S̃L and T̃L have no zeros in C+.
With this notation, we state the Poisson integral formulae for the sensitivity function

and the closed-loop transfer function.
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9.13 Theorem Consider the closed-loop interconnection of Figure 9.7. If the closed-loop system is
IBIBO stable, the following equalities hold:

(i) if z = σz + iωz ∈ C+ is a zero of RL then

∫ ∞

−∞
ln|SL(iω)| σz

σ2
z + (ω − ωz)2

dω = π ln|B−1
SL

(z)|;

(ii) if p = σp + iωp ∈ C+ is a pole of RL then

∫ ∞

−∞
ln|TL(iω)| σp

σ2
p + (ω − ωp)2

dω = π ln|B−1
TL

(p)|+ πσp.

Proof (i) This follows by applying Corollary D.8 to the function S̃L. To get the result, one
simply observes that ln S̃L is analytic and nonzero in C+, that |SL(iω)| = |S̃L(iω)| for all
ω ∈ R, and that SL(z) = 1 from Proposition 8.22.

(ii) The idea here, like part (i), follows from Corollary D.8. In this case one observes
that ln T̃L is analytic and nonzero in C+, that |TL(iω)| = |T̃L(iω)| for all ω ∈ R, and that
TL(p) = 1 from Proposition 8.22. �

Let us now make some observations concerning the implications of the Poisson integral
formulae as it bears on controller design. Before we say anything formal, let us make some
easy observations.

9.14 Remarks

1. Like the Bode integral formulae, the Poisson integral formulae provide limits on the be-
haviour of the magnitude portion of the Bode plots for the sensitivity and complementary
sensitivity functions.

2. Note that the weighting function

Ws(ω) =
σs

σ2
s + (ω − ωs)2

(9.4)

in each of the integrands is positive, and that the Blaschke products satisfy |B−1
SL

(s)| ≥ 1

and |B−1
TL

(s)| ≥ 1 for s ∈ C+. Thus we see that the Poisson integral formulae do indeed
indicate that, for example, if there are zeros for the plant in C+ then the weighted integral
of the sensitivity function will be positive.

3. If a plant is both unstable and nonminimum phase, then one concludes that the weighted
area of sensitivity increase is greater than that for sensitivity decrease. One sees that this
effect is exacerbated if there is a near cancellation of an unstable pole and a nonminimum
phase zero. •
Now let us make some more structured comments about the implications of the Poisson

integral formulae. Let us begin by examining carefully the weighting function (9.4) that
appears in the formulae.

9.15 Lemma For s0 ∈ C+ and ω1 > 0 define

Θs0(ω1) =

∫ ω1

−ω1

Ws0(ω1) dω.

Then the following statements hold:
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(i) if s0 is real then

Θs0(ω1) = −]
(s0 − iω1

s0 + iω1

)
;

(ii) if s0 is not real then

Θs0(ω1) = −1

2

(
]
(s0 − iω1

s̄0 + iω1

)
+ ]

( s̄0 − iω1

s0 + iω1

))
.

Proof Write s0 = σ0 + iω0. The lemma follows from the fact that
∫ ω1

−ω1

σ0

σ2
0 + (ω − ω0)2

dω = arctan
ω1 − ω0

σ0

+ arctan
ω1 + ω0

σ0

. �

One should interpret this result as telling us that the length of the interval [−ω1, ω1],
weighted by Ws0 , is related to the phase lag incurred by s0 ∈ C+. Of course, in the Poisson
integral formulae, this phase lag arises from nonminimum phase zeros and/or unstable poles.
This precise description of the weighting function allows us to provide some estimates per-
taining to reduction of the sensitivity function, along the same lines as given by the waterbed
affect, Theorem 9.11. Thus, for some ω1 > 0 and for some positive ε1 < 1 we wish for the
sensitivity function to satisfy

|SL(iω)| ≤ ε1, ω ∈ [−ω1, ω1]. (9.5)

The following result tells what are the implications of such a demand on the sensitivity
function at other frequencies.

9.16 Corollary Suppose that a proper loop gain RL has been factored as in (9.3) and that the
interconnection of Figure 9.3 is IBIBO stable. If the inequality (9.5) is satisfied and if
z ∈ C+ is a zero for RL then we have

‖SL‖∞ ≥
( 1

ε1

) Θz(ω1)
π−Θz(ω1) |B−1

SL
(z)|

π
π−Θz(ω1)

Proof Using Theorem 9.13 we compute

π ln|B−1
SL

(z)| =
∫ ∞

−∞
ln|SL(iω)|Wz(ω) dω

=

∫ −ω1

−∞
ln|SL(iω)|Wz(ω) dω +

∫ ω1

−ω1

ln|SL(iω)|Wz(ω) dω+

∫ ∞

ω1

ln|SL(iω)|Wz(ω) dω.

This implies that

Θz(ω1) ln ε1 + ln‖SL‖∞(π −Θz(ω1)) ≥ π ln|B−1
SL

(z)|.

Exponentiating this inequality gives the result. �

Since |B−1
SL

(z)| ≥ 1, ε1 < 1, and Θz(ω1) < π, it follows that ‖SL‖∞ > 1. Thus, as with the
waterbed effect, the demand that the magnitude of the sensitivity function be made smaller
than 1 over a certain frequency range guarantees that its H∞-norm will be greater than 1.
In some sense, the estimate of Corollary 9.16 contains more information since it contains
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explicitly in the estimate the location of the zero. This enables us to say, for example,
that if the phase lag contributed by the nonminimum phase zero is large over the specified
frequency range (that is, Θz(ω1) is near π), then the effect is to further increase the lower
bound on the H∞-norm of SL. To ameliorate this effect, one could design a controller so
that the loop gain magnitude is small for frequencies at or above the frequency where the
phase lag contributed by z is large.

A parallel process can be carried out for the complementary sensitivity function portion
of Theorem 9.13, i.e., for part (ii). In this case, a design objective is not to reduce TL over a
finite frequency range, but perhaps to ensure that for large frequencies the complementary
sensitivity function is not large. This is an appropriate objective where model uncertainties
are a consideration, and high frequency effects can be detrimental to closed-loop stability.
Thus here we ask that for some ω2 > 0 and some positive ε2 < 1 we have

|TL(iω)| ≤ ε2, |ω| ≥ ω2. (9.6)

In this case, calculations similar to those of Corollary 9.16 lead to the following result.

9.17 Corollary Suppose that a proper loop gain RL has been factored as in (9.3) and that the
interconnection of Figure 9.3 is IBIBO stable. If the inequality (9.6) is satisfied and if
p ∈ C+ is a pole for RL then we have

‖TL‖∞ ≥
( 1

ε2

)π−Θp(ω2)

Θp(ω2) |B−1
TL

(p)|
π

Θp(ω2) .

The best way to interpret this result differs somewhat from how we interpret Corol-
lary 9.16, since reduction of the H∞-norm of TL is not a design objective. However, the
closed-loop bandwidth is important, and Corollary 9.17 can be parlayed into an estimate as
follows.

9.18 Corollary Suppose that RL is proper and minimum phase, that the interconnection of Fig-
ure 9.3 is IBIBO stable, and that RL has a real pole p ∈ C+. If TL satisfies (9.6) for ε2 = 1√

2
then we have

‖TL‖∞ ≥
√

2
π−Θp(ωb)

Θp(ωb) ,

where ωb is the bandwidth for the closed-loop system. If we further ask that the lower bound
on the H∞-norm of TL be bounded from above by Tmax, then we have

ωb ≥ p tan
( π

2 + 2 lnTmax

ln
√

2

)
.

Proof The first inequality follows directly from Corollary 9.17 after adding the simplify-
ing hypotheses. The second inequality follows from straightforward manipulation of the
inequality

√
2
π−Θp(ωb)

Θp(ωb) ≤ Tmax. �

The upshot of the corollary is that if one wishes to make the lower bound on the H∞-form
of TL smaller than

√
2, then the closed-loop bandwidth will exceed the location of the real,

unstable pole p.
Often in applications one wishes to impose the conditions (9.5) and (9.6) together, with

ω2 > ω1, and noting that (9.6) implies that |SL(iω)| < 1
ε2

for |ω| > ω2. The picture is
shown in Figure 9.6: one wishes to design the sensitivity function so that it remains below
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ω

|SL(iω)|

1

ω1 ω2

Figure 9.6 Combined sensitivity and complementary sensitivity
function restrictions

the shaded area. Thus one will want to minimise the sensitivity function over a range of
frequencies, as well as attenuate the complementary sensitivity function for high frequencies.
Assuming that z ∈ C+ is a zero for RL, computations like those used to prove Corollary 9.16
then give

‖SL‖∞ ≥
( 1

ε1

) Θz(ω1)
Θz(ω2)−Θz(ω1)

( 1

1 + ε2

) π−Θz(ω2)
Θz(ω2)−Θz(ω1) |B−1

SL
|

π
Θz(ω2)−Θz(ω1) . (9.7)

The implications of this lower bound are examined in a simple case in Exercise E9.4.

9.3 The robust performance problem

So-called “H∞ design” has received increasing attention in the recent control literature.
The basic methodology has its basis in the frequency response ideas outlined in Section 8.5.2
and Section 9.2. The idea is that, motivated by Proposition 8.24, one wishes to minimise
‖SL‖∞. However, as we saw in Section 9.2, this is not an entirely straightforward task.
Indeed, certain plant features—unstable poles and/or nonminimum phase zeros—can make
this task attain a subtle nature. In this section we look at some ways of getting around these
difficulties to specify realistic performance objectives. The approach makes contact with the
topic of robust stability of Section 7.3, and enables us to state a control design problem, the
so-called “robust performance problem.” The resulting problem, as we shall see, takes the
form of a minimisation problem, and its solution is the subject of Chapter 15.

We shall continue in this section to use the unity gain feedback loop of Figure 6.25 that
we reproduce in Figure 9.7.

9.3.1 Performance objectives in terms of sensitivity and transfer functions

If you ever thought that it was possible to arbitrarily assign performance specifications to
a system, it is hoped that the content of Sections 9.1 and 9.2 have made you think differently.
But perhaps by now one is frightened into thinking that there is simply no way to specify
performance objectives that are achievable. This is not true, of course. But what is true is
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r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 9.7 Unity gain feedback loop for robust performance prob-
lem

that one needs to be somewhat cagey about how these specifications are stated.
Let us begin by reinforcing our results about the difficulty facing us by trying something

näıve. According to Proposition 8.24, if we wish to minimise the energy of the error, we
should minimise the H∞-norm of SL. Thus, we could try to specify ε > 0 and then set out
to design a controller with the property that ‖SL‖∞ ≤ ε. This objective may be impossible
for many reasons, and let us list some of these.

9.19 Reasons why näıve sensitivity minimisation fails

1. If RP is strictly proper, and we wish to design a proper controller RC , then the loop
gain RL = RCRP is strictly proper. Thus TL is also strictly proper. Therefore,
limω→∞|TL(iω)| = 0 from which it follows (from the fact that SL + TL = 1) that
limω→∞|SL(iω)| = 1. Thus, in such a setting, we cannot possibly specify a H∞-norm
bound for SL which is less than 1.

2. Based upon Proposition 8.22 we have two situations that provide limitations on possible
sensitivity reduction.

(a) If RP and RC have no poles in C+ and if either have a zero in C+, then RL is
analytic in C+ and has a zero z ∈ C+. From Proposition 8.22 we have SL(z) =
1. Thus it follows from the Maximum Modulus Principle (Theorem D.9) that
|SL(iω)| ≥ 1 for some ω ∈ R.

(b) This is much like the previous situation, except we reflect things about the imag-
inary axis. Thus, if RP and RC have no poles in C− and if either have a zero in
C−, then RL is analytic in C− and has a zero z ∈ C−. Arguing as above, we see
that |SL(iω)| ≥ 1 for some ω ∈ R.

3. If the relative degree of RL = RCRP exceeds 1 and if RL is strictly proper, then, from
Theorem 9.7 we know that ‖SL‖∞ > 1. Furthermore, this same result tells us that
this effect is exacerbated by RL having unstable poles.

4. If RL is nonminimum phase and if we minimise |SL| over a certain range of frequencies,
then the result will be an increase in ‖SL‖∞.

5. The previous point is reiterated in the various corollaries to the Poisson integral formu-
lae given in Theorem 9.13. Here the location of nonminimum phase zeros is explicitly
seen in the estimate for the H∞-norm for the sensitivity function. •

The above, apart from providing a neat summary of some of the material in Section 9.2,
indicates that the objective of minimising |SL(iω)| over the entire frequency range is perhaps
not a good objective. What’s more, from a practical point of view, it is an excessively
stringent condition. Indeed, remember why we want to minimise the sensitivity function: to
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reduce the L2-norm of the error to a given input signal. However, in a given application,
one will often have some knowledge about the nature of the input signals one will have to
deal with. This knowledge may come in the form of, or possibly be converted into the form
of, frequency response information. Let us give some examples of how such a situation may
arise.

9.20 Examples

1. Suppose that we are interested in tracking sinusoids with frequencies in a certain range
with minimal error. Thus we take a class of nominal signals to be sinusoids of the form

{r(t) = a sinωt | 0 ≤ a ≤ 1}.
Now we bias a subset of these inputs as follows:

Lref = {|Wp(iω)a| sinωt | 0 ≤ a ≤ 1},
where Wp ∈ R(s) is a function for which the magnitude of restriction to the imaginary
axis captures the behaviour we wish be giving more weight to certain frequencies. With
this set of inputs, the maximum error is

sup
r∈Lref

‖e‖∞ = sup
ω
|Wp(iω)SL(iω)|

=‖WpSL‖∞.
Note here that the measure of performance we use is the L∞-norm of the error. In the
following two examples, different measures will be used.

2. One can also think of specifying the character of reference signals by providing bounds
on the H2-norm of the signal. Thus we could think of nominal signals as being those of
the form

{rnom : [0,∞)→ R | ‖r̂nom‖2 ≤ 1},
and these are shaped to a set of possible reference signals

Lref = {r : [0,∞)→ R | r̂ = Wprnom, ‖r̂nom‖2 ≤ 1},
where Wp is a specified transfer function that shapes the energy spectrum of the signal
to a desired shape. Simple manipulation then shows that

Lref =

{
r : [0,∞)→ R

∣∣∣∣
1

2π

∫ ∞

−∞

∣∣∣ r̂(iω)

Wp(iω)

∣∣∣
2

dω ≤ 1

}
.

If we wish to minimise the L2-norm of the error, then the maximum error is given by

sup
r∈Lref

‖e‖2 = sup{‖WpSLrnom‖2 | rnom ≤ 1}

= ‖WpSL‖∞,
where we have used part (i) of Theorem 5.21. Again, we have arrived at a specification
of the form of ‖WpSL‖∞ < ε.

3. The above argument can be carried out for nominal reference signals

{rnom : [0,∞)→ R | pow(r̂nom) ≤ 1}.
Similar arguments, now asking that the power spectrum of the error be minimised, lead in
the same way (using part (ix) of Theorem 5.21) to a condition of the form ‖WpSL‖∞ < ε.
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4. Suppose that one knows from past experience that a controller will perform well if the
frequency response of the sensitivity function lies below that of a given transfer function.
Thus one would have a specification like

|SL(iω)| ≤ |R(iω)|, ω > 0, (9.8)

where R ∈ R(s) comes from somewhere or other. In this case, if we define Wp(s) =
R(s)−1, this turns (9.8) into a condition of the form ‖WpTL‖∞ < 1. •

Note that all specifications like ‖WpSL‖∞ < ε are by simple scaling transfered to a condition
of the form ‖WpSL‖∞ < 1. This is the usual form for these conditions to take, in practice.

The above examples present, in sort of general terms, possible natural ways in which
one can arrive at performance criterion of the form ‖WpSL‖∞ < 1, for some Wp ∈ R(s). In
making such specifications, one in only interested in the magnitude of Wp on the imaginary
axis. Therefore one may as well suppose that Wp has no poles or zeros in C+.1 In this book,
we shall alway deal with specifications that come in the form ‖WpSL‖∞ < 1. Note also that
one might use the other transfer functions

TL =
RCRP

1 +RCRP

, RCSL =
RC

1 +RCRP

, RPSL =
RP

1 +RCRP

for performance specifications in the case when the loop gain RL is the product of RC with
RP . There is nothing in principle stopping us from using these other transfer functions; our
choice is motivated by a bald-faced demand for simplicity. Below we shall formulate criterion
that use our performance conditions of this section, and these results are complicated if one
uses the any of the other transfer functions in place of the sensitivity function.

There is a readily made graphical interpretation of the condition ‖WpSL‖∞ < 1, mirroring
the pictures in Figures 7.21 and 7.25. To see how this goes, note the following:

‖WpSL‖∞ < 1

⇐⇒ |Wp(iω)SL(iω)| < 1, ω ∈ R

⇐⇒
∣∣∣ Wp(iω)

1 +RL(iω)

∣∣∣ < 1, ω ∈ R

⇐⇒ |Wp(iω)| < |1 +RL(iω)|, ω ∈ R
⇐⇒ |Wp(iω)| < |−1−RL(iω)|, ω ∈ R.

Now note that |−1 − RL(iω)| is the distance away from the point −1 + i0 of the point
RL(iω) on the Nyquist contour for RL. Thus the interpretation we make is that the Nyquist
contour at frequency ω remain outside the closed disk centred at −1 + i0 of radius |Wp(iω)|.
This is depicted in Figure 9.8. Note that we could just as well have described the con-
dition ‖WpSL‖∞ < 1 just as we did in Figures 7.21 and 7.25 by saying that the circle
of radius |Wp(iω)| and centre RL(iω) does not contain the point −1 + i0. However, the
interpretation we have given has greater utility, at least as we shall use it. Also, note
that one can make similar interpretations using any of the other performance conditions
|WpTL|∞, |WpRCSL|∞, |WpRPSL|∞ < 1.

1If Wp has, say, a zero z ∈ C+, then we can write Wp = (s − z)kW (s) where W (z) 6= 0. One can then

easily verify that the new weight W̃p(s) = (s + z)kW (s) has the same magnitude as Wp on the imaginary
axis. Doing this for all poles and zeros, we see that we can produce a function with no poles or zeros in C+

that has the same magnitude on iR.
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−1 + i0

|Wp(iω)|

RL(iω)

Figure 9.8 Interpretation of weighted performance condition

9.3.2 Nominal and robust performance

Now that we have a method for producing frequency domain performance specifications
that we can hope are manageable, let us formulate some problems based upon combining
this strategy with the uncertainty models of Section 4.5 and the notions of robust stability
of Section 7.3. The situation is roughly this: we have a set of plants P and a performance
weighting function Wp that gives a performance specification ‖WpSL‖∞ < 1. We wish to
examine questions dealing with stabilising all plants in P while also meeting the performance
criterion.

The following definition makes precise the forms of stability possible in the framework
just described.

9.21 Definition Let R̄P ∈ R(s) be proper and suppose that RC ∈ R(s) renders IBIBO stable
the interconnection of Figure 9.7. Let S̄L and T̄L denote the corresponding sensitivity and
closed-loop transfer functions. Let Wu ∈ RH+

∞ and recall the definitions of P×(R̄P ,Wu)
and P+(R̄P ,Wu) and for RP ∈ P×(R̄P ,Wu) or RP ∈ P+(R̄P ,Wu) denote by SL(RP ) and
TL(RP ) the corresponding sensitivity and closed-loop transfer functions, respectively. Let
Wp ∈ R(s) have no poles or zeros in C+.

(i) RC provides nominal performance for P×(R̄P ,Wu) (resp. P+(R̄P ,Wu)) relative
to Wp if

(a) RC provides robust stability for P×(R̄P ,Wu) (resp. P+(R̄P ,Wu)) and

(b) ‖WpS̄L‖∞ < 1.

(ii) RC provides robust performance for P×(R̄P ,Wu) (resp. P+(R̄P ,Wu)) relative to
Wp if

(a) RC provides robust stability for P×(R̄P ,Wu) (resp. P+(R̄P ,Wu)) and

(b) ‖WpSL(RP )‖∞ < 1 for every RP ∈P×(R̄L,Wu). •
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Thus by nominal performance we mean that the controller provides robust stability, and
meets the performance criterion for the nominal plant. However, robust performance requires
that we have robust stability and that the performance criterion is met for all plants in the
uncertainty set. Thus nominal performance consists of the two conditions

‖WuT̄L‖∞ < 1, ‖WpS̄L‖∞ < 1

for multiplicative uncertainty, and

‖WuRCS̄L‖∞ < 1, ‖WpS̄L‖∞ < 1

for additive uncertainty. To interpret robust performance, note that for multiplicative per-
turbations we have

SL(RP ) =
1

1 +RCRP

=
1

1 +RC(1 + ∆)R̄P

=

1
1+RCR̄P

1 + ∆ RCR̄P
1+RCR̄P

=
S̄L

1 + ∆WuT̄L
, (9.9)

where ∆ is the allowable perturbation giving RP ∈P×(R̄P ,Wu). A similarly style calcula-
tion for additive perturbations gives

SL(RP ) =
S̄L

1 + ∆WuRCS̄L
, (9.10)

where ∆ is the allowable perturbation giving RP ∈P+(R̄P ,Wu).
To state a theorem on robust performance we need some notation. For R1, R2 ∈ R(s) we

define a R-valued function of s by

s 7→ |R1(s)|+ |R2(s)|.

We denote this function by |R1| + |R2|, making a slight, but convenient, abuse of notation.
Although this function is not actually in the class of functions for which we defined the
H∞-norm, we may still denote

∥∥|R1|+ |R2|
∥∥
∞ = sup

ω∈R

(
|R1(iω)|+ |R2(iω)|

)
.

This notation and the calculations of the preceding paragraph are useful in stating and
proving the following theorem.

9.22 Theorem Let R̄P ∈ R(s) be proper and suppose that RC ∈ R(s) renders IBIBO stable the
interconnection of Figure 9.7. Let S̄L and T̄L denote the corresponding sensitivity and closed-
loop transfer functions. Let Wu ∈ RH+

∞ and recall the definitions of P×(R̄P ,Wu) and
P+(R̄P ,Wu) and for RP ∈ P×(R̄P ,Wu) or RP ∈ P+(R̄P ,Wu) denote by SL(RP ) and
TL(RP ) the corresponding sensitivity and closed-loop transfer functions, respectively. Let
Wp ∈ R(s) have no poles or zeros in C+. The following statements hold:
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(i) RC provides robust performance for P×(R̄P ,Wu) relative to Wp if and only if∥∥|WuT̄L|+ |WpS̄L|
∥∥
∞ < 1;

(ii) RC provides robust performance for P+(R̄P ,Wu) relative to Wp if and only if∥∥|WuRCS̄L|+ |WpS̄L|
∥∥
∞ < 1;

Proof (i) First we make a use equivalent formulation of the condition
∥∥|WuT̄L|+|WpS̄L|

∥∥
∞ <

1. We compute

∥∥|WuT̄L|+ |WpS̄L|
∥∥
∞ < 1

⇐⇒
(
|Wu(iω)T̄L(iω)|+ |Wp(iω)S̄L(iω)|

)
< 1, ω ∈ R

⇐⇒ |Wp(iω)S̄L(iω)| < 1− |Wu(iω)T̄L(iω)|, ω ∈ R

⇐⇒ |Wu(iω)T̄L(iω)| < 1, ω ∈ R,
∣∣∣ Wp(iω)S̄L(iω)

1− |Wu(iω)T̄L(iω)|
∣∣∣, ω ∈ R

⇐⇒ ‖WuT̄L‖∞ < 1,
∥∥∥ WpS̄L

1− |WuT̄L|
∥∥∥
∞
< 1. (9.11)

Now suppose that
∥∥|WuT̄L|+ |WpS̄L|

∥∥
∞ < 1. For any allowable ∆ we then have

1 = |1 + ∆(iω)Wu(iω)T̄L(iω)−∆(iω)T̄L(iω)|
≤ |1 + ∆(iω)Wu(iω)T̄L(iω)|+ |Wu(iω)R̄L(iω)|,

for all ω ∈ R. Thus we conclude that

1− |Wu(iω)T̄L(iω)| ≤ |1 + ∆(iω)Wu(iω)T̄L(iω)|, ω ∈ R.

From this it follows that

∥∥∥ WpS̄L
1− |WuT̄L|

∥∥∥
∞
≥
∥∥∥ WpS̄L

1 + ∆WuT̄L

∥∥∥
∞
.

From (9.11) it now follows that

∥∥∥ WpS̄L
1 + ∆WuT̄L

∥∥∥
∞
< 1,

and robust performance now follows from (9.9).
Now suppose that RC provides robust performance for P×(R̄P ,Wu) relative to Wp.

From (9.9) and Theorem 7.18 it follows that

‖WuT̄L‖∞ < 1,
∥∥∥ WpS̄L

1 + ∆WuT̄L

∥∥∥
∞
< 1

for all allowable ∆. Let ω̄ ≥ 0 be a frequency for which the function

ω 7→ |Wp(iω)S̄L(iω)|
1− |Wu(iω)T̄L(iω)|

is maximum. Let θ = π−]Wu(iω̄)T̄L(iω̄). Using Lemma 1 from the proof of Theorem 7.18,
let Gθ ∈ RH+

∞ have the property that ]Gθ(iω̄) = θ and |Gθ(iω̄)| = 1. Then ∆ = Gθ is
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allowable and the quantity ∆(iω̄)Wu(iω̄)T̄L(iω̄) is real and negative. Therefore, with this
allowable ∆, we have

1− |Wu(iω̄)T̄L(iω̄)| = |1 + ∆(iω̄)Wu(iω̄)T̄L(iω̄)|.

It now follows that for the ∆ just defined,

∥∥∥ WpS̄L
1− |WuT̄L|

∥∥∥
∞

=
|Wp(iω̄)S̄L(iω̄)|

1− |Wu(iω̄)T̄L(iω̄)|

=
|Wp(iω̄)S̄L(iω̄)|

|1 + ∆(iω̄)Wu(iω̄)T̄L(iω̄)|

≤
∥∥∥ WpS̄L

1 + ∆WuT̄L

∥∥∥
∞

Thus we have shown that ∥∥∥ WpS̄L
1− |WuT̄L|

∥∥∥
∞
< 1.

Along with our hypothesis that ‖WuT̄L‖ < 1, from (9.11) it now follows that
∥∥|WuT̄L| +

|WpS̄L|
∥∥
∞ < 1.

(ii) Since the idea here is in spirit identical to that of part (i), we are allowed to be a
little sketchy. In fact, the key is the following computation:

∥∥|WuRCS̄L|+ |WpS̄L|
∥∥
∞ < 1

⇐⇒
(
|Wu(iω)RC(iω)S̄L(iω)|+ |Wp(iω)S̄L(iω)|

)
< 1, ω ∈ R

⇐⇒ |Wp(iω)S̄L(iω)| < 1− |Wu(iω)RC(iω)S̄L(iω)|, ω ∈ R

⇐⇒ |Wu(iω)RC(iω)S̄L(iω)| < 1, ω ∈ R,
∣∣∣ Wp(iω)S̄L(iω)

1− |Wu(iω)RC(iω)S̄L(iω)|
∣∣∣, ω ∈ R

⇐⇒ ‖WuRCS̄L‖∞ < 1,
∥∥∥ WpS̄L

1− |WuRCS̄L|
∥∥∥
∞
< 1. (9.12)

First assume that
∥∥|WuRCS̄L|+ |WpS̄L|

∥∥
∞ < 1. Now we readily compute

1− |Wu(iω)RC(iω)S̄L(iω)| ≤ |1 + ∆(iω)Wu(iω)RC(iω)S̄L(iω)|

for all ω ∈ R from which it follows that

1 >
∥∥∥ WpS̄L

1− |WuRCS̄L|
∥∥∥
∞
≥
∥∥∥ WpS̄L

1 + ∆WuRCS̄L

∥∥∥
∞
.

Robust performance now follows from (9.10).
Now suppose that RC provides robust performance for P+(R̄P ,Wu) relative to Wp.

By (9.10) and Theorem 7.21 this means that

‖WuRCS̄L‖∞ < 1,
∥∥∥ WpS̄L

1 + ∆WuRCS̄L

∥∥∥
∞
< 1

for all allowable ∆. Now let ω̄ ≥ 0 be a frequency which maximises the function

ω 7→ |Wp(iω)S̄L(iω)|
1− |Wu(iω)RC(iω)S̄L(iω)| .
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Arguing as in part (i) we may find an allowable ∆ so that

1− |Wu(iω̄)RC(iω)S̄L(iω̄)| = |1 + ∆(iω̄)Wu(iω̄)RC(iω)S̄L(iω̄)|.

Again arguing as in (i) it follows that

∥∥∥ WpS̄L
1− |WuRCS̄L|

∥∥∥
∞
< 1,

and from this it follows from (9.12) that
∥∥|WuRCS̄L|+ |WpS̄L|

∥∥
∞ < 1. �

This is an important theorem in SISO robust control theory, and it forms the basis
for many MIMO generalisations [see Dullerud and Paganini 1999]. It is useful because it
gives a single H∞-norm test for robust performance. For SISO systems this means that the
condition can be tested by producing Bode plots, and this is something that is easily done.
For MIMO systems, the matter of checking the conditions that generalise

∥∥|WuRCS̄L| +
|WpS̄L|

∥∥
∞ < 1 becomes a serious computational issue. In any event, the theorem allows

us to state a precisely formulated design problem from that simultaneously incorporates
stability, uncertainty, and performance.

9.23 Robust performance problem Given

(i) a nominal proper plant R̄P ,

(ii) a function Wu ∈ RH+
∞,

(iii) an uncertainty model P×(R̄P ,Wu) or P+(R̄P ,Wu), and

(iv) a performance weight Wp ∈ R(s),

find a controller RC that

(v) stabilises the nominal system and

(vi) satisfies either
∥∥|WuT̄L| + |WpS̄L|

∥∥
∞ < 1 or

∥∥|WuRCS̄L| + |WpS̄L|
∥∥
∞ < 1, depending

on whether one is using multiplicative or additive uncertainty. •

9.24 Remarks

1. The material leading up to the given statement in the robust performance problem has its
basis in the robust stability results of Doyle and Stein [1981] and Chen and Desoer [1982],
and seems to have its original statement in the book of Doyle, Francis, and Tannenbaum
[1990].

2. It is possible that the robust performance problem can have no solution. Indeed, it is
easy to come up with plant uncertainty models and performance weights that make the
problem unsolvable. An example of how to do this is the subject of Exercise E9.8.

3. A graphical interpretation of the condition
∥∥|WuT̄L| + |WpS̄L|

∥∥
∞ < 1 (or

∥∥|WuRCS̄L| +
|WpS̄L|

∥∥
∞ < 1) is given in Figure 9.9. The picture says that for each frequency ω,

the open disk of radius |Wp(iω)| centred at −1 + i0 should not intersect the open disk
of radius |Wu(iω)R̄L(iω)| centred at RL(iω) (a similar statement holds, of course, for
additive uncertainty). •
In Chapter 15 we shall provide a way to find a solution to a slightly modified version

of the robust performance problem. In the stated form, it appears too difficult to admit a
simple solution. However, for now we can content ourselves with a couple of examples that
play with the problem in an ad hoc manner.

First we look at a case where we use multiplicative uncertainty.
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−1 + i0

|Wp(iω)|

|Wu(iω)R̄L(iω)| or |Wu(iω)RC(iω

R̄L(iω)

Figure 9.9 Graphical interpretation of robust performance condi-
tion

9.25 Example (Example 7.20 cont’d) Recall that we have taken

R̄P (s) =
1

s2

as our nominal plant and had used an uncertainty description of the form

Wu(s) =
as

s+ 1
, a > 0.

In Example 7.20 we had concluded that provided that a < amax ≈ 3
4
, the controller

RC(s) = 1 + 2s+
1

s

robustly stabilises P×(R̄P ,Wu). To make this into a robust performance problem, we need
to provide a performance weight Wp. Let us suppose that we know that the reference signals
will have low energy below 10rad/ sec. Given our discussion in Example 9.20, one might say
that taking

Wp(s) =
1
2

s
10

+ 1

is a good choice, so let us go with this. Our objective will be to decide upon the maximum
value of a so that the associated robust performance problem has a solution. According to
Theorem 9.22 we should choose a > 0 so that

∥∥|WuT̄L| + |WpS̄L|
∥∥
∞ < 1. In Figure 9.10

we show the magnitude Bode plot for |WuT̄L| + |WpS̄L| when a = 1. The peak magnitude
is about 4dB. Thus we need to reduce a. However, not like the case for robust stability,
the quantity |WuT̄L| + |WpS̄L| is not linear in a so we cannot simply use a näıve scaling
argument to determine a. The easiest way to proceed is by trial and error, reducing a until
the magnitude Bode plot for |WuT̄L| + |WpS̄L| dips below 0dB. Doing this trial and error
gives amax ≈ 1

2
. The magnitude Bode plot for |WuT̄L| + |WpS̄L| when a = 2

3
is also shown
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Figure 9.10 Bode plot of |WuT̄L|+ |WpS̄L| for a = 1 (left) and for
a = 2

3 (right)

in Figure 9.10, and one can see that it satisfies the robust performance constraint. Note
that not surprisingly the maximum allowable value for a is smaller than was the case in
Example 7.20 when we were merely looking to attain robust stability. The demand that our
controller also meet the performance specifications places upon it further restrictions. In the
current situation, if one wishes to allow greater variation in the set of plants contained in
the uncertainty description, one might look into backing off on the performance demands. •

Next, we give an example along similar lines that uses additive uncertainty.

9.26 Example (Example 7.23 cont’d) We proceed along the lines of the previous example, now
carrying on from Example 7.23 where we used the nominal plant and controller

R̄P (s) =
1

s2
, RC(s) = 1 + 2s+

1

s
.

To model plant uncertainty we use

Wu(s) =
as

(s+ 1)2
,

and we use the same performance weight Wp as in Example 9.25. With this data we give
the magnitude Bode plot for |WuRCS̄L| + |WpS̄L| in Figure 9.11 for the case when a = 1.

Figure 9.11 Bode plot of |WuRC S̄L|+ |WpS̄L| for a = 1 (left) and
for a = 1

4 (right)

Again, the easiest way to determine the upper bound on a is by trial and error. Doing so
gives amax ≈ 1

4
. In Figure 9.11 is shown the Bode plot of |WuRCS̄L|+ |WpS̄L| for this value

of a, and one can see that it satisfies the bounds for robust performance. •
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The preceding example illustrate that the matter of checking a controller for robust
performance is largely a Bode plot issue. This is one thing that makes Theorem 9.22 a
valuable result in this day of the easily fabricated Bode plot.

9.4 Summary

When designing a controller, the first step is typically to determine acceptable perfor-
mance criterion. In this chapter, we have come up with a variety of performance measures.
Let us review what we have said.

1.
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Exercises

E9.1 Consider the pendulum/cart of Exercises E1.5 and E2.4. In this exercise, you will
use the cart position as the output, and you will take as the equilibrium position the
upright position for the pendulum.

(a) Compute the transfer function for the linearised system, and show that it has
both an unstable pole and a nonminimum phase zero.

(b) Choose parameter values for the system, then design a feedback vector f that
makes the closed-loop system IBIBO stable.

(c) For the closed-loop system, use Proposition 3.40 to compute the step response.
Verify that the bounds of Proposition 9.6 are satisfied.

E9.2 Poisson integral formulae for the pendulum on a cart.

Vidyasagar [1986] proposes a definition of undershoot different from the one we use, his def-
inition being as follows. Let (N,D) be a BIBO stable, strictly proper, steppable SISO linear

system in input/output form and let r > 0 be the smallest integer for which 1
(r)
N,D(0) 6= 0.

Note that limt→∞ 1N,D(t) = TN,D(0). The system (N,D) exhibits immediate undershoot

if 1
(r)
N,D(0)TN,D(0) < 0. Thus, the system exhibits immediate undershoot when the initial

response heads off in a different direction that is attained by the steady-state response. In
the next exercise, you will explore this alternative definition of undershoot.

E9.3 Let (N,D) be a BIBO stable strictly proper, steppable SISO linear system in in-

put/output form and let r > 0 be the smallest integer for which 1
(r)
N,D(0) 6= 0.

(a) Prove the following theorem of Vidyasagar [1986].

Theorem (N,D) exhibits immediate undershoot (in the sense of the above defini-
tion) if and only if N has an odd number of positive real roots.

Hint: Factor the numerator and denominator into irreducible factors, and use
the fact that

1
(r)
N,D(0) = lim

s→∞
srTN,D(s).

Now consider the system

(N(s), D(s)) = (s2 − 2s+ 1, s3 + 2s2 + 2s+ 2).

For this system, answer the following questions.

(b) Verify that this system is BIBO stable.

(c) According to the theorem of part (a), will the system exhibit immediate under-
shoot?

(d) Produce the step response for the system. Does it exhibit immediate undershoot
according to the definition of Vidyasagar? Would you say it exhibits undershoot?

E9.4 Let RL be a proper BIBO stable loop gain with the property that the standard unity
gain feedback loop (e.g., Figure 9.3) is IBIBO stable. Also suppose that RL has a single
real zero z ∈ C+. We wish to have the sensitivity function fit under the shaded area
in Figure 9.6, and we take ω1 = 3

4
ω2. We also define ε2 so that ω2 is the closed-loop

bandwidth: ε2 = 1√
2
.

(a) For various values of ε1, plot the lower bound for ‖SL‖∞ given by (9.7) as a
function of z

ωb
.
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(b) Would you expect better performance for the closed-loop system for larger of
smaller ratios z

ωb
?

The following exercise should be done after you have designed a state feedback vector for
the pendulum/cart system. An arbitrary such state feedback vector is constructed in Exer-
cise E10.11, and an optimal state feedback vector is determined in Exercise E14.7. For the
following exercise, you may use the parameter values, and the state feedback vector from
either of those exercises.

E9.5 Consider the pendulum/cart system of Exercises E1.5 and E2.4, and let f ∈ R4

be a stabilising state feedback vector, and consider the loop gain Rf as defined in
Exercise E7.11.

(a) For this loop gain, produce the magnitude Bode plot of the corresponding sensi-
tivity and complementary sensitivity functions.

(b) Verify that the bounds of Corollaries 9.16 and 9.17 are satisfied, as well as that
of (9.7).

The next two exercises give conditions for robust performance for the uncertainty description
presented in Section 4.5, but that we have not discussed in detail in the text. The conditions
for robust stability for these descriptions you derived in Exercises E7.12 and E7.13. For these
plant uncertainty models, it turns out to be convenient to give the performance specifications
not on the sensitivity function SL, but on the closed-loop transfer function TL.

Thus the performance criterion for the following two exercises should take the
form ‖WpTL‖∞ < 1.

With this as backdrop, you may readily adapt the proof of Theorem 9.22 to prove the
conditions for robust performance in the next two exercises.

E9.6 For the plant uncertainty description of Exercise E7.12, and the performance criterion
‖WpTL‖∞ < 1 (see above), show that a controller RC stabilising the nominal plant
R̄P provides robust performance if and only if

∥∥|WuR̄P S̄L|+ |WpT̄L|
∥∥
∞ < 1.

E9.7 For the plant uncertainty description of Exercise E7.13, and the performance criterion
‖WpTL‖∞ < 1 (see above), show that a controller RC stabilising the nominal plant
R̄P provides robust performance if and only if

∥∥|WuS̄L|+ |WpT̄L|
∥∥
∞ < 1.

E9.8 Use the fact that S̄L + T̄L = 1 to show that in order for the robust performance
problem to have a solution, it must be the case that

min{Wp(iω),Wu(iω)} < 1, ω ∈ R.
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Chapter 10

Stabilisation and state estimation

While Chapter 5 dealt with various types of stability, and Chapter 6 provided a general
setting, with some specialisations in the later sections, for feedback, in this chapter we
combine feedback and stability to get stabilisation. The idea is quite simple: one wishes to
consider feedback that leaves a closed-loop system stable, or perhaps stabilises an unstable
system. In this chapter we also touch upon the matter of state estimation. The need for this
arises in practice where one can only measure outputs, and not the entire state. Therefore, if
one wishes to design feedback laws using the state of the system, it is necessary to reconstruct
the state from the output.

This is our first chapter concerned with controller design. As such, the design issue with
that we are concerned is merely stability. Design for performance is dealt with in later
chapters. An important outcome of this chapter is the parameterisation in Section 10.3 of
all stabilising dynamic output feedback controllers.

Contents

10.1 Stabilisability and detectability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
10.1.1 Stabilisability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
10.1.2 Detectablilty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
10.1.3 Transfer function characterisations of stabilisability and detectability . . . . . . . 399

10.2 Methods for constructing stabilising control laws . . . . . . . . . . . . . . . . . . . . . . 401
10.2.1 Stabilising static state feedback controllers . . . . . . . . . . . . . . . . . . . . . 401
10.2.2 Stabilising static output feedback controllers . . . . . . . . . . . . . . . . . . . . 404
10.2.3 Stabilising dynamic output feedback controllers . . . . . . . . . . . . . . . . . . . 412

10.3 Parameterisation of stabilising dynamic output feedback controllers . . . . . . . . . . . . 416
10.3.1 More facts about RH+

∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
10.3.2 The Youla parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

10.4 Strongly stabilising controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
10.5 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

10.5.1 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
10.5.2 Luenberger observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
10.5.3 Static state feedback, Luenberger observers, and dynamic output feedback . . . . 428

10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

10.1 Stabilisability and detectability

In Chapters 2 and 3, we saw some interconnections between controllability, observability,
and pole/zero cancellations in the transfer function. At the time, we did not pay too much
attention to the nature of the poles and zero that were cancelled. In fact, the illustrative ex-
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amples of Section 2.3 were cooked with the goal in mind of illustrating the possible disastrous
effects that lack of controllability and observability can have. This need not always be the
case. Indeed, it is possible that the a system can be both uncontrollable and unobservable,
yet be a system that is tolerable. In this section, we provide the language that expresses the
form of this tolerability.

10.1.1 Stabilisability

In Theorem 6.49 we saw that if a system Σ = (A, b, ct,D) is controllable, then it is
possible by state feedback to render the closed-loop system internally asymptotically stable,
and so make the system BIBO stable. The controllability hypothesis is not necessary, and this
is captured by the notion of stabilisability. To wit, the system Σ is stabilisable if Ss(Σ) 6= ∅.
That is, Σ is stabilisable if there exists f ∈ Rn so that A − bf t is Hurwitz. Note that
stabilisability depends only on (A, b), so we may sometimes say that (A, b) is stabilisable
rather than saying Σ is stabilisable. The following result describes stabilisability.

10.1 Proposition Let Σ = (A, b, ct,D) be a SISO linear system and let T ∈ Rn×n be invertible
with the property that

TAT−1 =

[
A11 A12

0n−`,` A22

]
, Tb =

[
b1

0n−`

]
(10.1 )

where (A11, b1) is in controller canonical form (cf. Theorem 2.39). The following are equiv-
alent:

(i) Σ is stabilisable;

(ii) A22 is Hurwitz;

(iii) the matrix [
sIn −A b

]

has rank n for all s ∈ C+.

Proof (i) =⇒ (ii) Let f ∈ Ss(Σ). Then T (A− bf t)T−1 is Hurwitz. Now write

T−tf = (f 1,f 2) ∈ R` × Rn−`.

We then have

T (A− bf t)T−1 =

[
A11 − b1f

t
1 A12 − b1f

t
2

0n−`,` A22

]
.

This matrix is Hurwitz if and only if A11 − b1f
t
1 and A22 are Hurwitz, and that A22 is

Hurwitz is our assertion.
(ii) =⇒ (iii) Let us define Ã and b̃ to be the expressions for TAT−1 and Tb in (10.1).

The matrix
[
sIn − Ã b̃

]
has rank n exactly when there exists no nonzero vector x ∈ Rn

with the property that

xt
[
sIn − Ã b̃

]
=
[
xt(sIn − Ã) xtb

]
=
[

0tn 0
]

So suppose that x has the property that this equation does hold for some s0 ∈ C+. Let us
write x = (x1,x2) ∈ R` × Rn−`. Thus we have

xt
[
s0In − Ã b̃

]
=
[
xt1 xt2

] [s0I` −A11 −A12 b1

0n−`,` s0In−k` −A22 0n−`

]

=
[
xt1(s0I` −A11) −xt1A12 + s0x

t
2(In−k` −A22) xt1b1

]
,
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so that
xt1(s0I` −A11) = 0t`, xt1b1 = 0,

−xt1A12 + s0x
t
2(In−k` −A22) = 0tn−`

(10.2)

Since (A11, b1) is controllable, by Exercise E2.13 the matrix
[
s0I` −A11 b1

]
is full rank so

that the first two of equations (10.2) implies that x1 = 0`. The third of equations (10.2) then
says that x2 is a vector in the eigenspace of At

22 with eigenvalue s0 ∈ C+. However, since
A22 is Hurwitz this implies that x2 = 0n−`. This shows that the matrix

[
s0I` − Ã b̃

]

has rank n for s0 ∈ C+. Now we note that

[
s0I` − Ã b̃

]
= T

[
s0I` −A b

] [T−1

1

]
.

Therefore, the ranks of
[
s0I` − Ã b̃

]
and

[
s0I` −A b

]
agree and the result follows.

(iii) =⇒ (i) This is Exercise E10.2. �

The following corollary is obvious from the implication (i) =⇒ (ii) of the above result.

10.2 Corollary A SISO linear system Σ = (A, b, ct,D) is stabilisable if it is controllable.

Let us explore these results with some examples.

10.3 Examples Note that if a system is controllable, then it is stabilisable. Therefore, interesting
things concerning stabilisability will happen for uncontrollable systems.

1. Let us first consider a system that is not controllable and not stabilisable. We let Σ =
(A, b, ct,01) be defined by

A =

[
0 1
1 0

]
, b =

[
1
−1

]
, c =

[
0
1

]
.

We compute

C(A, b) =

[
1 −1
−1 1

]

that has rank 1, so the system is indeed uncontrollable. To put the system into the
proper form to test for stabilisability, we use the change of basis matrix T defined by

T−1 =

[
1 1
−1 1

]
.

Note that the first column of T−1 is the input vector b, and the other column is a vector
not collinear with b. We then compute

TAT−1 =

[
−1 0
0 1

]
, Tb =

[
1
0

]
.

These are in the form of (10.1). Note that A22 = [1] which is not Hurwitz. Thus the
system is not stabilisable.

2. Now we consider an example that is not controllable but is stabilisable. We define
Σ = (A, b, ct,01) by

A =

[
0 1
1 0

]
, b =

[
1
1

]
, c =

[
0
1

]
.
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We compute

C(A, b) =

[
1 1
1 1

]

so the system is uncontrollable. Now we define T by

T−1 =

[
1 1
1 −1

]
.

Again note that b forms the first column of T . We also compute

TAT−1 =

[
1 0
0 −1

]
, Tb =

[
1
0

]
,

which is in the form of (10.1). Now we have A22 = [−1] which is Hurwitz, so the system
is stabilisable. •

10.1.2 Detectablilty

The notion of detectability is dual to stabilisability in the same manner that observability
is dual to controllability. But let us be precise. A SISO linear system Σ = (A, b, ct,D) is
detectable if there exists a vector ` ∈ Rn with the property that the matrix A − `ct is
Hurwitz. The following result is analogous to Proposition 10.1.

10.4 Proposition Let Σ = (A, b, ct,D) be a SISO linear system and let T ∈ Rn×n be invertible
with the property that

TAT−1 =

[
A11 0n−k,k
A21 A22

]
, ctT−1 =

[
ct1 0tn−k

]
(10.3 )

where (A11, c1) are in observer canonical form (cf. Theorem 2.40). The following statements
are equivalent:

(i) Σ is detectable;

(ii) A22 is Hurwitz;

(iii) the matrix [
sIn −A
ct

]

has rank n for all s ∈ C+.

Furthermore, the condition

(iv) there exists an output feedback constant F ∈ R so that the closed-loop system ΣF is
internally asymptotically stable,

implies the above three conditions.

Proof (i) =⇒ (ii) Let ` ∈ Rn have the property that A − `ct is Hurwitz. Writing T` =
(`1, `2) ∈ Rk × Rn−k we have

T (A− `ct)T−1 =

[
A11 − `1c

t
1 0k,n−k

A21 − `2c
t
1 A22

]
.

This matrix is Hurwitz if and only if the matricesA11−`1c
t
1 andA22 are Hurwitz. Therefore,

if A− `ct is Hurwitz then A22 is Hurwitz as claimed.
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(ii) =⇒ (iii) Let Ã and c̃ be the matrix and vector in (10.3). The matrix

[
sIn − Ã
c̃t

]

has rank n if the only vector x ∈ Rn for which

[
sIn − Ã
c̃t

]
x =

[
0n
0

]

is the zero vector. So let x be a vector for which the above equation is satisfied. Then,
writing x = (x1,x2) ∈ Rk × Rn−k and letting s0 ∈ C+, we have

[
s0In − Ã

c̃t

]
x =



s0Ik −A11 0k,n−k
−A21 s0In−k −A22

ct1 0tn−k



[
x1

x2

]

=




(s0Ik −A11)x1

(s0Ik−n −A22)x2 −A21x1

ct1x1


 .

The right-hand side is zero if and only if

(s0Ik−n −A22)x2 −A21x1 = 0n−k,

(s0Ik −A11)x1 = 0k, ct1x1 = 0.
(10.4)

Since (A11, c1) is observable, the last two of equations (10.4) imply that x1 = 0k (see
Exercise E2.14). Now the first of equations (10.4) imply that x2 is in the eigenspace of A22

for the eigenvalue s0 ∈ C+. However, since A22 is Hurwitz, this implies that x2 = 0n−k.
Thus we have shown that if A22 is Hurwitz then the matrix

[
sIn − Ã
c̃t

]

has full rank. Now we note that
[
sIn − Ã
c̃t

]
=

[
T
1

] [
sIn −A
ct

]
T

so that if A11 is Hurwitz, it also follows that the matrix

[
sIn −A
ct

]

has full rank, as claimed.
(iii) =⇒ (i) This is Exercise E10.3.
(iv) =⇒ (i) This follows since ` = Fb has the property that A− `ct is Hurwitz. �

The following corollary follows from the implication (i) =⇒ (ii).

10.5 Corollary A SISO linear system Σ = (A, b, ct,D) is detectable if it is observable.
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10.6 Remark The content of the Propositions 10.1 and 10.4 is easily described in words. A system
is stabilisable if the uncontrollable dynamics, represented by the matrix A22 in (10.1), are
themselves asymptotically stable. Thus, even though the system may not be controllable,
this does not hurt you as far as your ability to render the system stable by static state
feedback. Similarly, a system is detectable if the unobservable dynamics, represented by
the matrix A11 in (10.3), are asymptotically stable. Therefore an unobservable system may
be made stable under static output feedback if it is detectable. The consequences of these
observations are explored in Section 10.2. •

Let us explore these detectability results via examples.

10.7 Examples Note that if a system is observable, then it is detectable. Therefore, interesting
things concerning interesting things for detectability will happen for unobservable systems.

1. Let us first consider a system that is not observable and not detectable. We let Σ =
(A, b, ct,01) be defined by

A =

[
0 1
1 0

]
, b =

[
0
1

]
, c =

[
1
−1

]
.

We compute

O(A, c) =

[
1 −1
−1 1

]

which has rank 1, so the system is indeed unobservable. To put the system into the
proper form to test for detectability, we use the change of basis matrix T defined by

T t =

[
1 1
−1 1

]
.

Note that the first column of T t is the vector c itself, whereas the second column is a
vector in ker(ct). We then compute

TAT−1 =

[
−1 0
0 1

]
, ctT−1 =

[
1 0

]
.

These are in the form of (10.3). Note that A22 = [1] which is not Hurwitz. Thus the
system is not detectable.

2. Now we consider an example that is not observable but is detectable. We define Σ =
(A, b, ct,01) by

A =

[
0 1
1 0

]
, b =

[
0
1

]
, c =

[
1
1

]
.

We compute

O(A, c) =

[
1 1
1 1

]

so the system is unobservable. Now we define T by

T t =

[
1 1
−1 1

]
.

Again note that c forms the second column of T and that the first column is in ker(ct).
We compute

TAT−1 =

[
1 0
0 −1

]
, ctT−1 =

[
1 0

]
,

which is in the form of (10.3). Now we have A22 = [−1] which is Hurwitz, so the system
is detectable. •
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10.1.3 Transfer function characterisations of stabilisability and detectability

The results of the previous two sections were concerned with state-space characterisations
of stabilisability and detectability. In this section we look into how these may be manifested
in the transfer function. This treatment follows closely that of Section 3.3.

First let us look at the detectability result.

10.8 Proposition Let Σ = (A, b, ct,01) be a SISO linear system and define polynomials

P1(s) = ctadj(sIn −A)b, P2(s) = det(sIn −A).

If (A, b) is controllable then Σ is detectable if and only if the GCD of P1 and P2 has no
roots in C+.

Proof We may as well assume that P1 and P2 are not coprime since the result follows from
Theorem 3.5 and Corollary 10.5 otherwise. Thus we may as well suppose that (A, c) are not
observable, and that

A =

[
A11 A12

0k,n−k A22

]
, ct =

[
0tk ct2

]

where (A22, c2) is observable. Therefore, if we write b = (b1, b2) ∈ Rk × Rn−k then we
compute

ct(sIn −A)b = ct2(sIn−k −A22)b.

Therefore
ctadj(sIn −A)b

det(sIn −A)
=
ct2adj(sIn −A22)b2

det(sIn−k −A22)
.

But we also have

det(sIn −A) = det(sIk −A11) det(sIn−k −A22),

from which we conclude that

ctadj(sIn −A)b = det(sIk −A11)ct2adj(sIn −A22)b2.

Since (A22, c2) is observable, the GCD of P1 and P2 must be exactly det(sIk −A11). By
Proposition 10.4, the roots of the GCD are in C− if and only if Σ is detectable. �

The consequences of the above result are readily observed in the detectability example
we have already introduced.

10.9 Examples (Example 10.7 cont’d)

1. Here we had

A =

[
0 1
1 0

]
, b =

[
0
1

]
, c =

[
1
−1

]
.

so that we compute

ct(sI2 −A)b = 1− s, det(sI2 −A) = s2 − 1

The GCD of these polynomials is s − 1 which has the root 1 ∈ C+. Thus, as we have
seen, the system is not detectable.
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2. Here we take

A =

[
0 1
1 0

]
, b =

[
0
1

]
, c =

[
1
1

]

and so compute

ct(sI2 −A)b = s+ 1, det(sI2 −A) = s2 − 1.

The GCD of these polynomials is s + 1 which has the single root −1 ∈ C−, so that the
system is detectable. •
Now let us give the analogous result for stabilisability.

10.10 Proposition Let Σ = (A, b, ct,01) be a SISO linear system and define polynomials

P1(s) = ctadj(sIn −A)b, P2(s) = det(sIn −A).

If (A, c) is observable then Σ is stabilisable if and only if the GCD of P1 and P2 has no
roots in C+.

Proof The idea is very much like the proof of Proposition 10.8. We assume that (A, b) is
not controllable and that

A =

[
A11 A12

0n−`,` A22

]
, b =

[
b1

0n−`

]

with (A11, b1) controllable. By arguments like those in the proof of Proposition 10.8 we
show that the GCD of P1 and P2 is det(sIn−` −A22). By Proposition 10.1 the roots of the
GCD are in C− if and only if Σ is stabilisable. �

Again, we may use our existing stabilisability example to illustrate the consequences of
this result.

10.11 Examples (Example 10.3 cont’d)

1. First we take

A =

[
0 1
1 0

]
, b =

[
1
−1

]
, c =

[
0
1

]
,

which is observable as it is in observer canonical form. We compute

ctadj(sI2 −A)b = 1− s, det(sI2 −A) = s2 − 1.

The GCD of these polynomials is s − 1 whose root is 1 ∈ C+, leading us to the correct
conclusion that the system is not stabilisable.

2. Next we take

A =

[
0 1
1 0

]
, b =

[
1
1

]
, c =

[
0
1

]
.

We compute
ctadj(sI2 −A)b = s+ 1, det(sI2 −A) = s2 − 1,

so the GCD of these polynomials is s+ 1 whose roots are in C−. Thus we conclude that
the system is stabilisable. •
Finally, we state a result that characterises stabilisability and detectability in terms of

cancellation of poles and zeros in the transfer function. This result is rather analogous to
Corollary 3.13.
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10.12 Corollary Let Σ = (A, b, ct,D) be a SISO linear system and define polynomials

P1(s) = ctadj(sIn −A)b, P2(s) = det(sIn −A).

The following statements are equivalent:

(i) Σ is stabilisable and detectable;

(ii) the GCD of P1 and P2 has no roots in C+.

We comment that without additional information, one cannot decide whether a system
is not stabilisable or not detectable by simply looking at the numerator and denominator
of the transfer function. This is made clear in Exercise E10.6. Also, note that now we can
complete the implications indicated in Figures 5.1 and Figure 5.2. The result is shown in
Figure 10.1.
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Figure 10.1 Precise relationship between internal and BIBO sta-
bility

10.2 Methods for constructing stabilising control laws

In this section, under certain assumptions, we provide explicit formulas for constructing
stabilising controllers of various types. The formulas we give are most interesting in that
they show that it is in principle possible to explicitly design stabilising controllers of various
types. However, as a means for designing controllers, it should be emphasised that the
techniques we give here may not in and of themselves be that useful as they only address
one aspect of controller design; the necessity that the closed-loop system be stable. There
are often present other more demanding criterion given in the form of specific performance
criterion (see Chapter 8), or a demand for robustness of the controller to uncertainties in
the plant model (see Chapter 15).

10.2.1 Stabilising static state feedback controllers

There is a method for systematically determining the state feedback vector f that will
produce the desired poles for the closed-loop transfer function. The formula is called Ack-
ermann’s formula [Ackermann 1972].

10.13 Proposition Let (A, b, ct,D) be a controllable SISO linear system and suppose that the char-
acteristic polynomial for A is

PA(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0.
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Let P ∈ R[s] be monic and degree n. The state feedback vector f defined by

f t =
[
0 · · · 0 1

]
(C(A, b))−1P (A).

has the property that the characteristic polynomial of the matrix A− bf t is P .

Proof For the proof of this result, it is convenient to employ a different canonical form than
the controller canonical form of Theorem 2.37. From Exercise E2.32 we recall that if we
define

T 1 =




1 −pn−1 0 · · · 0 0
0 1 −pn−1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −pn−1

0 0 0 · · · 0 1



,

then the matrix T̃ = T−1
1 (C(A, b))−1 has the property that

T̃AT̃−1 =




−pn−1 −pn−2 · · · −p1 −p0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



, T̃ b =




1
0
0
...
0



.

One readily verifies that the vector

f̃ = (αn−1 − pn−1, . . . , α1 − p1, α0 − p0)

has the property that the matrix T̃AT̃−1 − T̃ bf̃ t has as characteristic polynomial

sn + αn−1s
n−1 + · · ·+ α1s+ α0.

The actual state feedback vector will then be defined by f t = f̃ tT̃ .
We denote Ã = T̃AT̃−1, and note that by Cayley-Hamilton we have

Ãn + pn−1Ã
n−1 + · · ·+ p1Ã+ p0In = 0n.

Suppose that
P (s) = sn + αn−1s

n−1 + · · ·+ α1s+ α0

so that
P (Ã) = Ãn + αn−1Ã

n−1 + · · ·+ α1Ã+ α0In,

and subtracting from this the previous expression gives

P (Ã) = (αn−1 − pn−1)Ãn−1 + · · ·+ (α1 − p1)Ã+ (α0 − p0)In. (10.5)

One readily determines that if {e1, . . . en} is the standard basis for Rn, then

etnA
k = etn−k, k = 1, . . . , n− 1.

Therefore, using (10.5), we have

etnP (Ã) = (αn−1 − pn−1)et1 + · · ·+ (α1 − p1)etn−1 + (α0 − p0)etn.



2016/09/21 10.2 Methods for constructing stabilising control laws 403

But this shows that f̃ t = et1P (Ã). It remains to transform f̃ back into the original coor-
dinates to get the state feedback vector f . This we do by recalling that f t = f̃ tT̃ with
T̃ = T−1

1 C(A, b)−1. Thus we arrive at

f t = etnP (Ã)T̃ = etnP (T̃AT̃−1)T̃ = etnT̃P (A)

where we have used the fact that P (TMT−1) = TP (M)T−1 for T ,M ∈ Rn×n with T
invertible. Now we see from Exercise E2.31 that etnT

−1
1 = etn, and so this proves that

f t = etnT
−1
1 (C(A, b))−1P (A) = etn(C(A, b))−1P (A),

as desired. �

10.14 Remarks

1. The static state feedback of Proposition 10.13 gives an explicit controller that stabilises
the closed-loop system, provided that the system is controllable. There are, of course,
other stabilising state feedbacks. In fact, there are algorithms for computing static state
feedback vectors that place the poles in desirable places. Often an ad hoc guess for
pole locations will not work well in practice, as, for example, model inaccuracies may
have adverse effects on the behaviour of the actual system with a controller designed as
in Proposition 10.13. A popular method for designing stabilising static state feedback
vectors is the linear quadratic regulator (LQR), where the state feedback is defined
to have an optimal property. This is discussed in many books, a recent example of
which is [Morris 2000]. In Chapter 14 we look at this for SISO systems using polynomial
machinery.

2. In the proof of Proposition 10.13 we have made use of the canonical form developed in
Exercise E2.32. The matter of choosing which canonical form to employ is often a matter
of convenience. •
Let us illustrate this technology with an example.

10.15 Example (Example 6.50 cont’d) We recall that in this example we had

A =

[
0 1
−1 0

]
, b =

[
0
1

]
.

Suppose we wish the closed-loop characteristic polynomial to be s2 + 4s + 4 which has the
repeated root −2. Thus we compute

P (A) = A2 + 4A+ 4I2 =

[
3 4
−4 3

]
.

To apply Proposition 10.13 we compute

C(A, b) =

[
0 1
1 0

]
.

In this case we compute f to be

f t =
[
0 1

]
C(A, b)−1P (A) =

[
3 4

]
.

This was the state feedback vector presented out of the blue in Example 6.50, and now we
see where it came from. •
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In Proposition 10.13 the assumption of controllability is made. However, only the as-
sumption of stabilisability need be made for stabilisation under static state feedback (pretty
much by the very definition of stabilisability). The details of how to construct a stabilising
static state feedback for a system that is stabilisable but not controllable is the subject of
Exercise E10.7. Let us here state the result.

10.16 Proposition If Σ = (A, b, ct,D) is stabilisable, it is possible to explicitly construct a feed-
back vector f with the property that the closed-loop system Σf is internally asymptotically
stable, i.e., so that f ∈ Ss(Σ).

For this result, we also have the following corollary, that is the analogous result for
detectability.

10.17 Corollary If Σ = (A, b, ct,D) is detectable, it is possible to explicitly construct a vector
` ∈ Rn with the property that the matrix A− `ct is Hurwitz.

Proof Since Σ is detectable, it follows from part (iii) of Proposition 10.1 and part (i) of
Proposition 10.4 that the system Σ̃ = (At, c, bt,D) is stabilisable. Therefore, by Proposi-
tion 10.16, there exists a vector f ∈ Rn so that At − cf t is Hurwitz. Therefore, A− fct is
also Hurwitz, and the result follows by taking ` = f . �

Note that the result merely tells us to construct a feedback vector as in Proposition 10.13
(or Exercise E10.7 if (A, c) is not observable) using At and c in place of A and b.

10.2.2 Stabilising static output feedback controllers

Interestingly, the problem of stabilisation by static output feedback is significantly more
difficult than the problem of stabilisation by static state feedback (see [Syrmos, Abdallah,
Dorato, and Grigoriadis 1987] for a fairly recent survey, and [Geromel, Souza, and Skelton
1998] for convexity results). For example, a system can be stabilised by static state feedback
if and only if it is stabilisable, and stabilisability is a condition one can computationally
get a handle on. However, Blondel and Tsitsiklis [1997] essentially show that the problem
of determining whether a system is stabilisable by static output feedback is NP-hard.1

Thus there is no easily computable check to see when it is even possible for a system to
be stabilisable under static output feedback, never mind an algorithm to compute a static
output feedback that actually stabilises.

We shall therefore have to be satisfied with a discussion of static output feedback that
is not as complete as the corresponding discussion surrounding static state feedback. To
motivate what we do say, recall from Theorem 6.54 that one may express the form of the
closed-loop transfer functions available via static output feedback. We wish to determine
conditions to test whether the poles of the closed-loop transfer function are those of a given
polynomial.

1Let us recall, for our own amusement, roughly the idea behind this NP-business. The class of P problems
are those for which there is a solution algorithm whose computational complexity satisfies a polynomial
bound. The class of problems NP are those with the property that every solution can be verified as actually
being a solution with an algorithm whose computational complexity satisfies a polynomial bound. A famous
open problem is, “Does P=NP?” This problem was posed by Cook [1970] and listed by Smale [1998] as
one of the most important problems in mathematics. A problem is NP-hard if every problem in NP can
be reduced to it. An NP-hard problem may not be in NP, and all known NP-hard problems are not
solvable by an algorithm whose complexity satisfies a polynomial bound. A problem is NP-complete if it
is NP-hard, and further is in NP. These are, in essence, the “hardest” of the problems in NP. All known
NP-complete problems are not solvable by an algorithm whose complexity satisfies a polynomial bound.
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Our first result gives a state space test, and is extracted from [van der Woude 1988]. For
a SISO linear system Σ = (A, b, c,D), for k ∈ {1, . . . , n} define a n× k matrix by

Ck(A, b) =
[
b Ab · · · Ak−1b

]

and define a k × n matrix by

Ok(A, c) =




ct

ctA
...

ctAk−1


 .

Thus Ck(A, b) is comprised of the first k columns of C(A, b) and Ok(A, c) is comprised of
the first k rows of O(A, c). With this notation, we have the following result.

10.18 Theorem Let Σ = (A, b, c,D) be a complete SISO linear system, and let P ∈ R[s] be a
degree n monic polynomial. The following statements are equivalent:

(i) it is possible to choose an output feedback constant F so that the poles of the closed-loop
system ΣF are the roots of P ;

(ii) for some k ∈ {1, . . . , n− 1} we have P (A)
(
ker(Ok(A, c))

)
⊂ image(Cn−k(A, b)).

(iii) for all k ∈ {1, . . . , n− 1} we have P (A)
(
ker(Ok(A, c))

)
⊂ image(Cn−k(A, b)).

Proof First recall from Theorem 6.54 that the poles of the closed-loop transfer function ΣF

are the roots of
det(sIn − (A− Fbct)).

First let us show that (i) is equivalent to (ii) with k = 1. First suppose that (i) holds.
Note that if x ∈ ker(ct) then

(A− Fbct)x = Ax.

Therefore,
(A− Fbct)2x = A2x− FbctAx.

Thus (A−Fbct)2x = A2x+y2 where y2 ∈ span(b). An easy induction now shows that for
j ∈ {2, . . . , n} we have

(A− Fbct)jx = Ajx+ yj,

where yj ∈ span(b,Ab, . . . ,Aj−2b). By the Cayley-Hamilton theorem we have

P (A− Fbct) = 0n.

Combined with our above calculations this shows that for x ∈ ker(ct) we have

0 = P (A− Fbct)x = P (A)x+ y

where y ∈ span(b,Ab, . . . ,An−2b). Thus we conclude that

P (A)
(
ker(O1(A, c))

)
⊂ image(Cn−1(A, b)),

and, therefore, that (ii) holds with k = 1.
Now suppose that (ii) holds with k = 1. We first claim that

image(Cn−1(A, b)) = ker
(
etn(C(A, b))−1

)
, (10.6)
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if en is the nth standard basis vector for Rn. Indeed, if x ∈ image(Cn−1(A, b)) if and only
if the components of x in the basis {b,Ab, . . . ,An−1b} are of the form (x1, . . . , xn−1, 0).
However, these components are exactly (C(A, b))−1x:




x1
...

xn−1

0


 = (C(A, b))−1x.

The relation (10.6) now follows immediately, and by our current hypothesis, so does the
relation

P (A)
(
ker(ct)

)
⊂ ker

(
etn(C(A, b))−1

)

⇐⇒ ker(ct) ⊂ ker
(
etn(C(A, b))−1P (A)

)

⇐⇒ Fct = etn(C(A, b))−1P (A),

for some F ∈ R. Now, since (A, b) is controllable, by Proposition 10.13, if we define f ∈ Rn

by
f t = et(C(A, b))−1P (A),

then det(sIn − (A − bf t)) = P (s). This completes the proof of our assertion that (i) is
equivalent to (ii) with k = 1.

Next let us show that (ii) holds with k = 1 if and only if it holds with k = n − 1. The
equivalence of (i) and (ii) with k = 1 tells us that there exists F ∈ R so that

P (s) = det(sIn − (Atcbt)) (10.7)

if and only if
P (At)

(
ker(O1(At, b))

)
⊂ image(Cn−1(At, c)).

Now we note that O1(At, b) = C1(A, b)t and Cn−1(At, c) = On−1(A, c)t. Thus there exists
an F so that (10.7) is satisfied if and only if

P (At)
(
ker(C1(A, b)t)

)
⊂ image(On−1(A, c)t)

Let us make use of a lemma.

1 Lemma Let T ∈ Rn×n, M ∈ Rn×k, and L ∈ R(n−k)×n. Then the following statements are
equivalent:

(i) T t(ker(M t)) ⊂ image(Lt);

(ii) T (ker(L)) ⊂ image(M ).

Proof Assume that (i) holds. Statement (i) asserts that T t maps ker(M t) to image(Lt). We
claim that this implies that T maps the orthogonal complement of image(Lt) to the orthog-
onal complement of ker(M t). Indeed, if x is in the orthogonal complement to image(Lt)
and if y ∈ ker(M t) then we have

〈Tx,y〉 = 〈x,Ty〉.

Since (i) holds, it follows that Ty ∈ image(Lt), showing that 〈Tx, y〉 = 0 if x is in the
orthogonal complement to image(Lt) and if y ∈ ker(M t). That is, T maps the orthogonal
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complement of image(Lt) to the orthogonal complement of ker(M t). However, the orthogo-
nal complement of image(Lt) is exactly ker(L) and the orthogonal complement of ker(M t)
is exactly image(M ). Thus we have shown that

T (ker(L)) ⊂ image(M),

thus (ii) holds. Clearly this proof is symmetric, so the converse holds trivially. H
Applying the lemma to the case when T = P (A), u = C1(A, b), and L = On−1(A, c) we
complete the proof of the fact that (ii) with k = 1 implies (ii) with k = n− 1. The converse
implication is a matter of reversing the above computations.

To this point we have shown that the following three statements are equivalent:

1. it is possible to choose an output feedback constant F so that the poles of the closed-
loop system ΣF are the roots of P ;

2. P (A)
(
ker(O1(A, c))

)
⊂ image(Cn−1(A, b));

3. P (A)
(
ker(On−1(A, c))

)
⊂ image(C1(A, b)).

We complete the proof by showing that if (ii) holds with k = ` then it also holds with
k = `− 1.

Without loss of generality, suppose that (A, c) are in observer canonical form so that

A =




0 0 0 · · · 0 −p0

1 0 0 · · · 0 −p1

0 1 0 · · · 0 −p2

0 0 1 · · · 0 −p3
...

...
...

. . .
...

...
0 0 0 · · · 0 −pn−2

0 0 0 · · · 1 −pn−1




, b =




b0

b1

b2
...

bn−2

bn−1



, c =




0
0
0
...
0
1



.

A direct computation than shows that

ker(O`(A, c)) = span(e1, . . . , en−`)

and A`−1e1 = e` for ` ∈ {1, . . . , n− 1}. If we let y = P (A)e1 it therefore follows that

P (A)
(
ker(O`(A, c))

)
= span(y,Ay, . . . ,An−`−1y).

Now assume that
P (A)

(
ker(O`(A, c))

)
⊂ image(Cn−`(A, b)).

We then compute

P (A)
(
ker(O`−1(A, c))

)
= span(y,Ay, . . . ,An−`y)

= span(y,Ay, . . . ,An−`−1y) +A span(y,Ay, . . . ,An−`−1y)

= P (A)
(
ker(O`(A, c))

)
+AP (A)

(
ker(O`(A, c))

)

⊂ image(Cn−`(A, b)) +A
(
image(Cn−`(A, b))

)

= image(Cn−`+1(A, b)).

This completes the proof. �
The theorem gives an insight into the difficultly in determining which closed-loop poles

are available to us. Unlike its static state feedback counterpart Proposition 10.13, the
conditions given by Theorem 10.18 for determining whether the closed-loop poles are the
roots of a polynomial P involve the polynomial P itself . This is what makes the problem a
computationally difficult one. Let us illustrate Theorem 10.18 on an example.
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10.19 Example (Example 6.55 cont’d) We take

A =

[
0 1
−1 0

]
, b =

[
0
1

]
, c =

[
3
4

]
, D = 01,

noting that A and b are as in Example 10.15. For F ∈ R we determine that

det(sI2 − (A− Fbct)) = s2 + 4Fs+ 1 + 3F.

Thus, if we let PF (s) = s2 + 4Fs+ 1 + 3F , we see that the only places we may assign poles
under static output feedback are at the roots of PF for some F . Let us see how this checks
in with Theorem 10.18. A simple computation gives

PF (A) =

[
3F 4F
−4F 3F

]
.

Because n = 2, the only cases that are applicable for statements (ii) and (iii) of Theorem 10.18
are when k = 1. We then have O1(A, c) = ct and C1(A, b) = b. Therefore

ker(O1(A, c)) = span((4,−3)), image(C1(A, b)) = span((0, 1)).

We compute

PF (A)

[
4
−3

]
=

[
0

−25F

]
.

Therefore PF (A)
(
ker(O1(A, c))

)
⊂ image(C1(A, b)), just as stated in Theorem 10.18.

Conversely, let P (s) = s2 + as+ b and compute

P (A) =

[
b− 1 a
−a b− 1

]
,

and

P (A)

[
4
−3

]
=

[
4b− 3a− 4
3− 4a− 3b

]
.

Thus we have [
4b− 3a− 4
3− 4a− 3b

]
∈ image(C1(A, b))

if and only if 4b− 3a− 4 = 0. The linear equation

[
−3 4

] [a
b

]
= 4

does not have a unique solution, of course. One may check that (a, b) = (0, 1) is a solution.
All solutions are then of the form

(0, 1) + x, x ∈ ker((−3, 4)t) = span((4, 3)).

That is to say, if the poles of the closed-loop system are to roots of P (s) = s2 + as+ b, then
we must have (a, b) = (0, 1) + F (4, 3). Thus P (s) = s2 + 4Fs+ (1 + 3F ), just as we noticed
initially. •

Note that Theorem 10.18 does not tell us when we may choose an output feedback
constant F with the property that the closed-loop system ΣF is stable. The following result
of Kučera and Souza [1995] gives a characterisation of stabilisability in terms of the Liapunov
ideas of Section 5.4 and the Riccati equations ideas that will come up in Section 14.3.2.
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10.20 Theorem For a SISO linear system Σ = (A, b, ct,01), the following two statements are
equivalent:

(i) So(Σ) 6= ∅;
(ii) the following two conditions hold:

(a) Σ is stabilisable and detectable;

(b) there exists F ∈ R and g ∈ Rn so that

Fct + btP = gt, (10.8 )

where P is the unique positive-semidefinite solution of the equation

AtP + PA− PbbtP = −cct − ggt. (10.9 )

Proof (i) =⇒ (ii) Let F ∈ R have the property that A − Fbct is Hurwitz. Then clearly
(A, b) is stabilisable and (A, c) is detectable. Since A − Fbct is Hurwitz, by part (ii) of
Theorem 5.32 there exists a unique positive-semidefinite matrix P that satisfies

(A− Fbct)tP + P (A− Fbct) = −(1 + F 2)cct.

Straightforward manipulation of this expression gives

AtP + PA− PbbtP = −cct − (btP − Fct)t(btP − Fct).
This part of the proof now follows by taking g = PbP − Fc.

(ii) =⇒ (i) Let F and g be as in the statement of the theorem. One then directly verifies
using the properties of F and g that

(A− Fbct)tP + P (A− Fbct) = −(1 + F 2)cct.

Let ` ∈ R have the property that A− `ct is Hurwitz. We then note that

A− `ct = (A− Fbct) +
[
` −b

] [ ct
Fct

]
.

This means that the two output system Σ̃ = (Ã = A− Fbct, b,C,01) where

C =

[
ct

Fct

]

is detectable since (A− Fbct)−LC is Hurwitz if

L =
[
` −b

]
.

From the MIMO version of Exercise E10.4, the result now follows. �

10.21 Remark In Section 14.3.2 we will see that the equation (10.9) comes up naturally in an opti-
misation problem. This equation is called an algebraic Riccati equation , and there are
well-developed numerical schemes for obtaining solutions; it is a “nice” equation numerically.
However, in the statement of Theorem 10.20 we see that not only must the algebraic Riccati
equation be satisfied, but the subsidiary condition (10.8) must also be met. This, it turns
out, takes the numerical problem out of the “nice” category in which the algebraic Riccati
equations sits. Again, with static output feedback, things are never easy. •

Now let us adopt a different, more constructive approach. While the approach is more
constructive, it is not a sharp construction, as we shall see. First, the following result gives
a crude necessary condition for an output feedback constant to stabilise.
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10.22 Proposition Let Σ, P , and Q be as in Theorem 10.23 and write

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0

Q(s) = qms
m + · · ·+ q1s+ q0.

Define

Flower = −min
{pj
qj

∣∣ qj > 0, j = 0, . . . ,m
}

Fupper = −max
{pj
qj

∣∣ qj < 0, j = 0, . . . ,m
}
.

If qj ≤ 0 for all j ∈ {0, 1, . . . ,m} then take Flower = −∞ and if qj ≥ 0 for all j ∈
{0, 1, . . . ,m} then take Fupper =∞. If the closed-loop system ΣF is internally asymptotically
stable for some F ∈ R, then it must be the case that F ∈ (Flower, Fupper).

Proof By Theorem 6.54, the poles of the closed-loop transfer function ΣF are the roots of
the polynomial

PF (s) = P (s) + FQ(s).

If PF is Hurwitz then all coefficients of PF be positive (see Exercise E5.18). In particular,
we should have

pj + Fqj > 0, j = 1, . . . ,m.

This relation will be satisfied in F ∈ (Flower, Fupper). �

Thus we can now restrict our search for feasible output feedback constants to those
in the interval (Flower, Fupper). However, we still do not know when an output feedback
constant F does stabilise. Let us address this by giving a result of Chen [1993]. To state the
result, we need the notion of a “generalised eigenvalue.” Given matrices M 1,M 2 ∈ Rn×n,
a generalised eigenvalue is a number λ ∈ C that satisfies

det(M 1 − λM 2) = 0.

We denote by σ(M 1,M 2) the set of generalised eigenvalues. We also recall from Section 5.5.2
the n× n Hurwitz matrix H(P ) that we may associate to a polynomial P ∈ R[s] of degree
n. Note that if Q ∈ R[s] has degree less than n, then we may still define an n × n matrix
H(Q) by thinking of Q as being degree n with the coefficients of the higher order terms
being zero.

10.23 Theorem Let Σ = (A, b, ct,01) be a controllable SISO linear system. Denote

P (s) = det(sIn −A), Q(s) = ctadj(sIn −A)b

with H(P ) and H(Q) the corresponding Hurwitz matrices, supposing both to be n× n. Let

σ(H(P ),−H(Q)) ∩ R = {λ1, . . . , λk}

with λ1 ≤ · · · ≤ λk. The following statements hold:

(i) for i ∈ {1, . . . , k}, the closed-loop system Σλi is not internally asymptotically stable;

(ii) for j ∈ {1, . . . , k − 1}, the closed-loop system ΣF is internally asymptotically stable
for all F ∈ (λj, λj+1) if and only if ΣF̄ is internally asymptotically stable for some
F̄ (λj, λj+1).
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We do not present the proof of this theorem, as the elements needed to get the proof
underway would take us too far afield. However, let us indicate how one might use the
theorem.

10.24 Method for generating stabilising output feedback constants Suppose you are given Σ =
(A, b, ct,D).

1. Compute
P (s) = det(sIn −A), Q(s) = ctadj(sIn −A)b.

2. Compute Flower and Fupper as in Proposition 10.22.

3. Compute H(P ) and H(Q) as in Theorem 10.23.

4. Compute and order {λ1, . . . , λk} = σ(H(P ),−H(Q)) ∩ R.

5. If (λj, λj+1) 6⊂ (Flower, Fupper), then any F ∈ (λj, λj+1) is not stabilising.

6. If (λj, λj+1) ⊂ (Flower, Fupper), then choose F̄ ∈ (λj, λj+1) and check whether PF̄ (s) =
P (s) + FQ(s) is Hurwitz (use, for example, the Routh/Hurwitz criterion).

7. If PF̄ is Hurwitz, then PF is Hurwitz for any F ∈ (λj, λj+1). •
Let us try this out on a simple example.

10.25 Example ((10.19) cont’d) We resume our example where

A =

[
0 1
−1 0

]
, b =

[
0
1

]
, c =

[
3
4

]
, D = 01.

We compute
P (s) = s2 + 1, Q(s) = 4s+ 3,

which gives
Flower = 0, Fupper =∞.

One may also determine that

H(P ) =

[
0 1
0 1

]
, H(Q) =

[
4 0
0 3

]
.

We then compute
det(H(P ) + λH(Q)) = 12s2 + 4s.

Thus
σ(H(P ),−H(Q)) ∩ R =

{
−1

3
, 0
}
,

so λ1 = −1
3

and λ2 = 0. We note that (λ1, λ2) 6⊂ (Flower, Fupper), so from Theorem 10.23
we may only conclude that there are no stabilising output feedback constants in (λ1, λ2).
However, note that in this example, any F ∈ (Flower, Fupper) is actually stabilising. Thus
while Theorem 10.23 provides a way to perhaps obtain some stabilising output feedback
constants, it does not provide all of them. This further points out the genuine difficulty of
developing a satisfactory theory for stabilisation using static output feedback, even in the
SISO context. •
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10.26 Remark While the above discussion suggests that obtaining a fully-developed theory for
stabilisation by static output feedback may be troublesome, in practice, things are not as
grim as they have been painted out to be, at least for SISO systems. Indeed, the matter of
finding stabilising output feedback constants is exactly the problem of finding constants F
so that the polynomial

PF (s) = P (s) + FQ(s)

is Hurwitz. A standard way to do this is using root-locus methods developed by Evans (1948,
1950), and presented here in Chapter 11. It is also possible to use the Nyquist criterion to
obtain suitable values for F . Note, however, that both of these solution methods, while
certainly usable in practice, are graphical, and do not involve concrete formulas, as do the
corresponding formulas for static state feedback in Section 10.2.1 and for dynamic output
feedback in Section 10.2.3. Thus one’s belief in such solutions methods is exactly as deep as
one’s trust in graphical methods. •

10.2.3 Stabilising dynamic output feedback controllers

In this section we will show that it is always possible to construct a dynamic output
feedback controller that renders the resulting closed-loop system internally asymptotically
stable, provided that the plant is stabilisable and detectable. This is clearly interesting. First
of all, we should certainly expect that we will have to make the assumption of stabilisability
and detectability. If these assumptions are not made, then it is not hard to believe that there
will be no way to make the plant internally asymptotically stable under feedback since the
plant has internal unstable dynamics that are neither controlled by the input nor observed
by the output.

First we recall that if ΣP = (AP , bP , c
t
P ,DP ) is stabilisable and detectable there exists

two vectors f , ` ∈ Rn with the property that the matrices AP − bPf t and AP − `ctP are
Hurwitz. With this as basis, we state the following result.

10.27 Theorem Let ΣP = (AP , bP , c
t
P ,DP ) be a SISO linear plant. Then the following statements

are equivalent:

(i) ΣP is stabilisable and detectable;

(ii) there exists a SISO linear controller ΣC = (AC , bC , c
t
C ,DC) with the property that the

closed-loop system is internally asymptotically stable.

Furthermore, if either of these equivalent conditions is satisfied and if f , ` ∈ Rn have the
property that the matrices AP − bPf t and AP − `ctP are Hurwitz, then the SISO linear
controller ΣC defined by

AC = AP − `ctP − bPf t +DP`f
t,

bC = `, ctC = f t, D = 01

has the property that the closed-loop system is internally asymptotically stable.

Proof (i) =⇒ (ii) Using Proposition 6.56 we compute the closed-loop system matrix Acl to
be

Acl =

[
AP bPf

t

−`ctP AP − `ctP − bPf t
]
.

Now define T ∈ R2n×2n by

T =

[
In In
0n In

]
=⇒ T−1 =

[
In −In
0n In

]
.
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One readily computes that

TAclT
−1 =

[
AP − `ctP 0n
−`ctP A− bf t

]
.

In particular,
spec(Acl) = spec(AP − `ctP ) ∪ spec(A− bf t),

which says that the eigenvalues of Acl are in C−, as desired, provided we choose f and `
appropriately. This also proves the second assertion of the theorem.

(ii) =⇒ (i) If ΣP is neither stabilisable nor detectable, it is also neither controllable nor
observable. Therefore, by Theorem 2.41 we may suppose that AP , bP , and cP have the form

AP =




A11 A12 A13 A14

0k×j A22 0j×` A24

0`×j 0`×k A33 A34

0m×j 0m×k 0m×` A44


 , bP =




b1

b2

0`
0m


 , cP =




0j
c2

0`
c4


 ,

for suitable j, k, `, and m. The assumption that ΣP is neither stabilisable nor detectable is
equivalent to saying that the matrix A33 is not Hurwitz. First let us suppose that A33 has
a real eigenvalue λ ∈ C+ with v an eigenvector. Consider a controller SISO linear system
ΣC = (AC , bC , c

t
C ,DC), giving rise to the closed-loop equations

ẋP (t) = APxP (t) + bPu(t)

ẋC(t) = ACxC(t)− bCy(t)

y(t) = ctPxP (t) +DPu(t)

u(t) = ctCxC(t)−DCy(t).

If we choose initial conditions for xP and xC as

xP (0) =




0j
0k
v

0m


 , xC(0) = 0,

the resulting solution to the closed-loop equations will simply be

xP (t) = eλt




0j
0k
v

0m


 , xC(t) = 0.

In particular, the closed-loop system is not internally asymptotically stable. If the eigenvalue
in C+ is not real, obviously a similar argument can be constructed. �

10.28 Remark The stabilising controller ΣC constructed in the theorem has the same order, i.e., the
same number of state variables as the plant ΣP . It can be expected that frequently one can
do much better than this and design a significantly “simpler” controller. In Section 10.3 we
parameterise (almost) all stabilising controllers which includes the one of Theorem 10.27 as
a special case. •

This gives the following interesting corollary that relates to the feedback interconnection
of Figure 10.2. Note that this answer the question raised at the end of Section 6.3.1.
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r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 10.2 Unity gain feedback loop

10.29 Corollary Let RP ∈ R(s) which we assume to be represented by its c.f.r. (NP , DP ). Then it is
possible to compute a controller rational function RC with the property that the closed-loop
interconnection of Figure 10.2 is IBIBO stable.

Proof This follows immediately from Theorem 10.27 since the canonical minimal realisation
of RP is controllable and observable, and so stabilisable and detectable. �

Let us see how this works in an example. We return to the example of Section 6.4.3,
except now we do so with a methodology in mind.

10.30 Example (Example 6.59) In this example we had

AP =

[
0 1
0 0

]
, bP =

[
0
1
m

]
, cP =

[
1
0

]
, DP = 01.

To apply Theorem 10.27 we need to design vectors f and ` so that AP −bPf t and AP −`ctP
are Hurwitz. To do this, it is required that (AP , bP ) be stabilisable and that (AP , cP ) be
detectable. But we compute

C(A, b) =

[
0 1
1 0

]
, O(A, c) =

[
1 0
0 1

]
.

Thus ΣP is controllable (and hence stabilisable) and observable (and hence detectable). Thus
we may use Proposition 10.13 to construct f and Corollary 10.17 to construct `. In each
case, we ask that the characteristic polynomial of the closed-loop matrix be α(s) = s2 + 2s2

which has roots −1± i. Thus we define

f t =
[
0 · · · 0 1

]
C(A, b)−1α(A) =

[
2m 2m

]

`t =
[
0 · · · 0 1

]
O(At, c)−1α(At) =

[
2 2

]
.

Here, following Proposition 10.13, we have used

α(A) = A2 + 2A+ 2I2, α(At) = (At)2 + 2At + 2I2.

Using Theorem 10.27 we then ascertain that

AC = AP − `ctP − bPf t =

[
−2 1
−4 −2

]

bC = ` =

[
2
2

]
, ctC = f t =

[
2m 2m

]
.
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Let us check that the closed-loop system, as defined by Proposition 6.56, is indeed internally
asymptotically stable. A straightforward application of Proposition 6.56 gives

Acl =




0 1 0 0
0 0 2 2
−2 0 −2 1
−2 0 −4 −2


 ,

bcl =




0
0
2
2


 , ctcl =

[
1 0 0 0

]
, Dcl = 01.

One may check that the eigenvalues of the Acl are {−1± i} where each root is has algebraic
multiplicity 2. As predicted by the proof of Theorem 10.27, these are the eigenvalues of
AP − bPf t and AP − `ctP .

Now let us look at this from the point of view of Corollary 10.29. Instead of thinking
of the plant as a SISO linear system ΣP , let us think of it as a rational function RP (s) =
TΣP (s) = 1

ms2
. This is not, of course, a BIBO stable transfer function. However, if we use

the controller rational function

RC(s) = TΣC (s) =
4m(2s+ 1)

s2 + 4s+ 8
,

then we are guaranteed by Corollary 10.29 that the closed-loop configuration of Figure 10.2
is IBIBO stable. In Figure 10.3 is shown the Nyquist plot for RL = RCRP . Note that the

Figure 10.3 Nyquist plot for dynamic output feedback problem

Nyquist criterion is indeed satisfied. However, one could certainly make the point that the
gain and phase margins could use improvement. This points out the general drawback of
the purely algorithmic approach to controller design that is common to all of the algorithms
we present. One should not rely on the algorithm to produce a satisfactory controller out of
the box. The control designer will always be able to improve an initial design by employing
the lessons only experience can teach. •
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10.3 Parameterisation of stabilising dynamic output feedback
controllers

The above discussion of construction stabilising controllers leads one to a consideration
of whether it is possible to describe all stabilising controllers. The answer is that it is,
and it is best executed in the rational function framework. We look at the block diagram
configuration of Figure 10.4. We think of the plant transfer function RP as being proper and

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 10.4 The block diagram configuration for the investigation
of stabilising controller parameterisation

fixed. The objective is to find all controller transfer functions RC so that the interconnection
is IBIBO stable. This will happen when the transfer functions between all inputs and outputs
are in RH+

∞. The four relevant transfer functions are

T1 =
1

1 +RCRP

, T2 =
RC

1 +RCRP

,

T3 =
RP

1 +RCRP

, T4 =
RCRP

1 +RCRP

.

(10.10)

Let us first provide a useful properties rational functions in RH+
∞.

10.3.1 More facts about RH+
∞

It is useful to investigate in more detail some algebraic properties of RH+
∞. These will

be useful in this section, and again in Chapter 15. Many of our results in this section may
be found in [Fuhrmann 2012].

For a rational function R ∈ R(s), the c.f.r. is a representation of R by the quotient of
coprime polynomials where the denominator polynomial is monic. Let us look at another
way to represent rational functions. We shall say that R1, R2 ∈ RH+

∞ are coprime if they
have no common zeros in C+ and if at least one of them is not strictly proper.

10.31 Definition A coprime fractional representative of R ∈ R(s) is a pair (RN , RD) with the
following properties:

(i) RN , RD ∈ RH+
∞;

(ii) RD and RN are coprime in RH+
∞;

(iii) R = RN
RD

. •
The following simple result indicates that any rational function has a coprime fractional

representative.
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10.32 Proposition If R ∈ R(s) then R has a coprime fractional representative.

Proof Let (N,D) be the c.f.r. of R and let k = max{deg(D), deg(N)}. Then (RN , RD) is a
coprime fractional representative where

RN(s) =
N(s)

(s+ 1)k
, RD(s) =

D(s)

(s+ 1)k
. �

Note that unlike the c.f.r., there is no unique coprime fractional representative. However,
it will be useful for us to come up with a particular coprime fractional representative. Given
a polynomial P ∈ R[s] we may factor it as P (s) = P−(s)P+(s) where all roots of P− lie in
C− and all roots of P+ lie on C+. This factorisation is unique except in a trivial way; the
coefficient of the highest power of s may be distributed between P− and P+ in an arbitrary
way. Now let (N,D) be the c.f.r. for R ∈ R(s). We then have

R(s) =
N(s)

D(s)
=
N−(s)N+(s)

D(s)
=
N−(s)(s+ 1)`+k

D(s)

N+(s)

(s+ 1)`+k
(10.11)

where ` = deg(N+) and k is the relative degree of (N,D). Note that N−(s)(s+1)`+k

D(s)
∈ RH+

∞

and that D(s)
N−(s)(s+1)`+k

∈ RH+
∞. Generally, if Q ∈ RH+

∞ and Q−1 ∈ RH+
∞, then we say that Q

is invertible in RH+
∞. The formula (10.11) then says that any rational function R ∈ RH+

∞
is the product of a function invertible in RH+

∞, and a function in RH+
∞ all of whose zeros lie

in C+.
The following result introduces the notion of the “coprime factorisation.” This will play

for us an essential rôle in determining useful representations for stabilising controllers.

10.33 Theorem Rational functions R1, R2 ∈ RH+
∞ are coprime if and only if there exists ρ1, ρ2 ∈

RH+
∞ so that

ρ1R1 + ρ2R2 = 1. (10.12 )

We call (ρ1, ρ2) a coprime factorisation of (R1, R2).

Proof First suppose that ρ1, ρ2 ∈ RH+
∞ exist as stated. Clearly, if z ∈ C+ is a zero of, say,

R1 is cannot also be a zero of R2 as this would contradict (10.12). What’s more, if both R1

and R2 are strictly proper then we have

lim
s→∞

(
ρ1(s)R1(s) + ρ2(s)R2(s)

)
= 0,

again in contradiction with (10.12).
Now suppose that R1, R2 ∈ RH+

∞ are coprime and suppose that R1 is not strictly proper.
Let (N1, D1) and (N2, D2) be the c.f.r.’s for R1 and R2. Denote σ = (s+1), let `j = deg(Nj,+),
and let kj be the relative degree of (Nj, Dj), j = 1, 2. Thus k1 = 0. Write

Rj = R̃j
Nj,+

σ`j+kj
, j = 1, 2,

where R̃j, j = 1, 2, is invertible in RH+
∞. Suppose that (ρ̃1, ρ̃2) are a coprime factorisation

of ( N1,+

σ`1+k1
, N2,+

σ`2+k2
). Then

ρ̃1
N1,+

σ`1
+ ρ̃2

N2,+

σ`2+k2
= 1

=⇒ ρ̃1R̃
−1
1 R̃1

N1,+

σ`1
+ ρ̃2R̃

−1
2 R̃2

N2,+

σ`2+k2
= 1.
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Since R̃1 and R̃2 are invertible in RH+
∞ this shows that (ρ̃1R̃

−1
1 , ρ̃2R̃

−1
2 ) is a coprime factori-

sation of (R1, R2). Thus we can assume, without loss of generality, that R1 and R2 are of
the form

R1 =
P1

σ`1
, R2 =

P2

σ`2+k
,

where the coprime polynomials P1 and P2 have all roots in C+, deg(Pj) = `j, j = 1, 2, and
`2 ≤ `1. By Lemma C.4 we may find polynomials Q1, Q2 ∈ R[s] so that

Q1P1 +Q2P2 = σ`1+`2+k,

and with deg(Q2) < deg(P1). Thus we have

Q1

σ`2+k

P1

σ`1
+
Q2

σ`1
P2

σ`2+k
= 1. (10.13)

Since R2 ∈ RH+
∞, P2

σ`2+k is proper. Since deg(Q2) < deg(P1), Q2

σ`1
is strictly proper. Therefore,

the second term in (10.13) is strictly proper. Since P1

σ`1
is not strictly proper, it then follows

that Q1

σ`2+k is also not strictly proper since we must have

lim
s→∞

( Q1

σ`2+k

P1

σ`1
+
Q2

σ`1
P2

σ`2+k

)
= 1

and

lim
s→∞

(Q2

σ`1
P2

σ`2+k

)
= 0.

Therefore, if we take

ρ1 =
Q1

σ`2+k
, ρ2 =

Q2

σ`1
,

we see that the conditions of the theorem are satisfied. �

The matter of determining rational functions ρ1 and ρ2 in the lemma is not necessarily
straightforward. However, in the next section we shall demonstrate a way to do this, at
least if one can find a single stabilising controller. The following corollary, derived directly
from the computations of the proof of Theorem 10.33, declares the existence of a particular
coprime factorisation that will be helpful in the course of the proof of Theorem 10.37.

10.34 Corollary If R1, R2 ∈ RH+
∞ are coprime with R1 not strictly proper, then there exists a

coprime factorisation (ρ1, ρ2) of (R1, R2) having the property that ρ2 is strictly proper.

Proof As in the initial part of the proof of Theorem 10.33, let us write

R1 = R̃1
P1

σ`1
, R2 = R̃2

P2

σ`2+k
,

where R̃1 and R̃2 are invertible in RH+
∞ and where `j = deg(Pj), j = 1, 2. In the proof of

Theorem 10.33 were constructed ρ̃1 and ρ̃2 (in the proof of Theorem 10.33, these are the
final ρ1 and ρ2) with the property that

ρ̃1
P1

σ`1
+ ρ̃2

P2

σ`2+k
= 1

and ρ2 is strictly proper. Now we note that if ρj = R̃−1
j ρ̃j, j = 1, 2, then (ρ1, ρ2) is a coprime

factorisation of (R1, R2) and that ρ2 is strictly proper since R̃−1
2 ∈ RH+

∞, and so is proper.�
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10.3.2 The Youla parameterisation

Now we can use Theorem 10.33 to ensure a means of parameterising stabilising controllers
by a single function in RH+

∞. Before we begin, let us establish some notation that we will
use to provide an important preliminary results. We let RP ∈ R(s) be proper with coprime
fractional representative (P1, P2), and let (ρ1, ρ2) be a coprime factorisation for (P1, P2). We
call θ ∈ RH+

∞ admissible for the coprime fractional representative (P1, P2) and the coprime
factorisation (ρ1, ρ2) if

1. θ 6= ρ2

P1

, and

2. lim
s→∞

(
ρ2(s)− θ(s)P1(s)

)
6= 0.

Now we define

Spr(P1, P2, ρ1, ρ2) =

{
ρ1 + θP2

ρ2 − θP1

∣∣∣∣ θ admissible

}
.

At this point, this set depends on the choice of coprime factorisation (ρ1, ρ2). The following
lemma indicates that the set is, in fact, independent of this factorisation.

10.35 Lemma Let RP ∈ R(s) be proper with coprime fractional representative (P1, P2). If (ρ1, ρ2)
and (ρ̃1, ρ̃2) are coprime factorisations for (P1, P2), then the map

ρ1 + θP2

ρ2 − θP1

7→ ρ̃1 + θ̃(θ)P2

ρ̃2 − θ̃(θ)P1

from Spr(P1, P2, ρ1, ρ2) to Spr(P1, P2, ρ̃1, ρ̃2) is a bijection if

θ̃(θ) = θ + ρ1ρ̃2 − ρ2ρ̃1.

Proof First note that θ̃(θ) ∈ RH+
∞ so the map is well-defined. To see that the map is a

bijection, it suffices to check that the map

ρ̃1 + θ̃P2

ρ̃2 − θ̃P1

7→ ρ1 + θ(θ̃)P2

ρ2 − θ(θ̃)P1

is its inverse provided that
θ(θ̃) = θ̃ + ρ̃1ρ2 − ρ̃2ρ1.

This is a straightforward, if slightly tedious, computation. �

The upshot of the lemma is that the set Spr(P1, P2, ρ1, ρ2) is independent of ρ1 and ρ2.
Thus let us denote it by Spr(P1, P2). Now let us verify that this set is in fact only dependent
on RP , and not on the coprime fractional representative of RP .

10.36 Lemma If RP ∈ R(s) is proper, and if (P1, P2) and (P̃1, P̃2) are coprime fractional repre-
sentatives of RP , then Spr(P1, P2) = Spr(P̃1, P̃2).

Proof Since we have

RP =
P1

P2

=
P̃1

P̃2
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it follows that P̃j = UPj for an invertible U ∈ RH+
∞. If (ρ1, ρ2) is a coprime factorisation of

(P1, P2) it then follows that (U−1ρ1, U
−1ρ2) is a coprime factorisation of (P̃1, P̃2). We then

have

Spr(P̃1, P̃2) =

{
ρ̃1 + θ̃P̃2

ρ̃2 − θ̃P̃1

∣∣∣∣∣ θ admissible

}

=

{
U−1ρ1 + θ̃UP2

U−1ρ2 − θ̃UP1

∣∣∣∣∣ θ̃ admissible

}

=

{
ρ1 + θ̃U2P2

ρ2 − θ̃U2P1

∣∣∣∣∣ θ̃ admissible

}

=

{
ρ1 + θP2

ρ2 − θP1

∣∣∣∣ θ admissible

}

= Spr(P1, P2),

as desired. �

Now we are permitted to denote Spr(P1, P2) simply by Spr(RP ) since it indeed only
depends on the plant transfer function. With this notation we state the following famous
result due to [Youla, Jabr, and Bongiorno 1976], stating that Spr(RP ) is exactly the set of
proper stabilising controllers. Thus, in particular, Spr(RP ) ⊂ S (RP ).

10.37 Theorem Consider the block diagram configuration of Figure 10.4 and suppose that RP is
proper. For the plant rational function RP , let (P1, P2) be a coprime fractional representative
with (ρ1, ρ2) a coprime factorisation of (P1, P2):

ρ1P1 + ρ2P2 = 1. (10.14 )

Then there is a one-to-one correspondence between the set of proper rational functions RC ∈
R(s) that render the interconnection IBIBO stable and the set

Spr(RP ) =

{
ρ1 + θP2

ρ2 − θP1

∣∣∣∣ θ admissible

}
. (10.15 )

Furthermore, if RP is strictly proper, every θ ∈ RH+
∞ is admissible.

Proof Let us first translate the conditions (10.10) into conditions on coprime fractional
representatives for RP and RC . Let (P1, P2) be a coprime fractional representative of RP as
in the statement of the theorem. Also denote a coprime fractional representative of RC as
(C1, C2). Then the four transfer functions of (10.10) are computed to be

T1 =
C2P2

C1P1 + C2P2

, T2 =
C1P2

C1P1 + C2P2

,

T3 =
C2P1

C1P1 + C2P2

, T4 =
C1P1

C1P1 + C2P2

.

(10.16)

We are thus charged with showing that these four functions are in RH+
∞.

Now let θ ∈ RH+
∞ and let RC be the corresponding rational function defined by (10.15).

Let
C1 = ρ1 + θP2, C2 = ρ2 − θP1.
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We claim that (C1, C2) is a coprime fractional representative of RC . This requires us to show
that C1, C2 ∈ RH+

∞, that the functions have no common zeros in C+, and that at least one
of them is not strictly proper. That C1, C2 ∈ RH+

∞ follows since θ, ρ1, ρ2, P1, P2 ∈ RH+
∞. A

direct computation, using (10.14), shows that

C1P1 + C2P2 = 1. (10.17)

From this it follows that C1 and C2 have no common zeros. Finally, we shall show that
RC is proper. By Lemma 10.35 we may freely choose the coprime factorisation (ρ1, ρ2). By
Corollary 10.34 we choose (ρ1, ρ2) so that ρ1 is strictly proper. Since

lim
s→∞

(
ρ1(s)P1(s) + ρ2(s)P2(s)

)
= 1,

it follows that ρ2 is not strictly proper. Therefore, C2 = ρ2 − θP1 is also not strictly proper,
provided that θ is admissible.

Now consider the case when RP is proper (i.e., the final assertion of the theorem). Note
that if RP is strictly proper, then so is P1. Condition 1 of the definition of admissibility
then follows since if θ = ρ2

P1
, then θ would necessarily be improper. Similarly, if P1 is strictly

proper, it follows that lims→∞C2(s) = ρ2(s) 6= 0. Thus condition 2 for admissibility holds.
Now suppose that RC ∈ R(s) stabilises the closed-loop system so that the four transfer

functions (10.10) are in RH+
∞. Let (C1, C2) be a coprime fractional representative of RC .

Let D = C1P1 + C2P2. We claim that D and 1
D

are in RH+
∞. Clearly D ∈ RH+

∞. Also, if
α1, α2 ∈ RH+

∞ have the property that

α1C1 + α2C2 = 1,

(such functions exist by Theorem 10.33), then we have

1

D
=

(α1C1 + α2C2)(ρ1P1 + ρ2P2)

D
= α1ρ1T4 + α1ρ2T2 + α2ρ1T3 + α2ρ2T1.

By the assumption that the transfer functions T1, T2, T3, and T4 are all in RH+
∞, it follows

that 1
D
∈ RH+

∞. Thus D is proper and not strictly proper so that we may define a new
coprime fractional representative for RC by (C1

D
, C2

D
) so that

C1P1 + C2P2 = 1.

We therefore have
[
ρ1 ρ2

C1 C2

] [
P1

P2

]
=

[
1
1

]

=⇒ θ

[
P1

P2

]
=

[
−C2 ρ2

C1 −ρ1

] [
1
1

]
,

if we take θ = ρ2C1 − ρ1C2 ∈ RH+
∞. It therefore follows that

C1 = ρ1 + θP2, C2 = ρ2 − θP1,

as desired. �
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10.38 Remarks

1. This is clearly an interesting result as it allows us the opportunity to write down all
proper stabilising controllers in terms of a single parameter θ ∈ RH+

∞. Note that there is
a correspondence between proper controllers and those obtained in the dynamic output
feedback setting. Thus the previous result might be thought of as capturing all the
stabilising dynamics output feedback controllers.

2. Some authors say that all stabilising controllers are obtained by the Youla parameteri-
sation. This is not quite correct.

3. In the case that RP is not strictly proper, one should check that all admissible θ’s give
loop gains RL = RCRP that are well-posed in the unity gain feedback configuration of
Figure 10.4. This is done in Exercise E10.15. •
Things are problematic at the moment because we are required to determine ρ1, ρ2 ∈ RH+

∞
with the property that (10.14) holds. This may not be trivial. However, let us indicate a
possible method for determining ρ1 and ρ2. First let us show that the parameter θ ∈ RH+

∞
uniquely determines the controller.

10.39 Proposition Let RP be a strictly proper rational function with (P1, P2) a coprime fractional
representative. Let ρ1, ρ2 ∈ RH+

∞ have the property that

ρ1P1 + ρ2P2 = 1.

Then the map

θ 7→ ρ1 + θP2

ρ2 − θP1

from RH+
∞ into the set of stabilising controllers for the block diagram configuration of Fig-

ure 10.4 is injective.

Proof Let Φ be the indicated map from RH+
∞ into the set of stabilising controllers, and

suppose that Φ(θ1) = Φ(θ2). That is,

ρ1 + θ1P2

ρ2 − θ1P1

=
ρ1 + θ2P2

ρ2 − θ2P1

.

This implies that

− θ1θ2P1P2 + θ1P2ρ2 − θ2P1ρ1 + ρ1ρ2 = −θ1θ2P1P2 − θ1P1ρ1 + θ2P2ρ2 + ρ1ρ2

=⇒ θ1(ρ1P1 + ρ2P2) = θ2(ρ1P1 + ρ2P2)

=⇒ θ1 = θ2,

as desired. �

Let us now see how to employ a given stabilising controller to determine ρ1 and ρ2.

10.40 Proposition Let RP be a strictly proper rational function with (P1, P2) a coprime fractional
representative. If RC is a stabilising controller for the block diagram configuration of Fig-
ure 10.4, define ρ1 and ρ2 bycheck

ρ1 =
RC

P2 + P1RC

, ρ2 =
1

P2 + P1RC

.

Then the following statements hold:
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(i) ρ1, ρ2 ∈ RH+
∞;

(ii) ρ1P1 + ρ2P2 = 1.

Proof (i) Let (C1, C2) be a coprime fractional representative for RC . Then

ρ1 =
C1

C2

P2 + P1
C1

C2

=
C1

C1P1 + C2P2

.

As in the proof of Theorem 10.37, it follows then that if D = C1P1 +C2P2 then D, 1
D
∈ RH+

∞.
Since C1 ∈ RH+

∞, it follows that ρ1 ∈ RH+
∞. A similar computation gives ρ2 ∈ RH+

∞.
(ii) This is a direct computation. �
This result allows us to compute ρ1 and ρ2 given a coprime fractional representative for a

plant transfer function. This allows us to produce the following algorithm for parameterising
the set of stabilising controllers.

10.41 Algorithm for parameterisation of stabilising controllers Given a proper plant transfer function
RP perform the following steps.

1. Determine a coprime fractional representative (P1, P2) for RP using Proposition 10.32.

2. Construct the canonical minimal realisation ΣP = (AP , bP , c
t
P ,DP ) for RP .

3. Using Proposition 10.13, construct f ∈ Rn so that AP − bPf t is Hurwitz.

4. Using Corollary 10.17 construct ` ∈ Rn so that AP − `ctP is Hurwitz. Note that this
amounts to performing the construction of Proposition 10.13 with A = At

P and b = c.

5. Using Theorem 10.27 define a stabilising controller SISO linear system ΣC =
(AC , bC , c

t
C ,DC).

6. Define the stabilising controller rational function RC = TΣC .

7. Determine ρ1, ρ2 ∈ RH+
∞ using Proposition 10.40.

8. The set of all stabilising controllers is now given by

Spr(RP ) =

{
ρ1 + θP2

ρ2 − θP1

∣∣∣∣ θ admissible

}
. •

Let us carry this out for an example.

10.42 Example (Example 6.59 cont’d) We return to the example where RP = 1
ms2

, and perform
the above steps.

1. A coprime fractional representative of RP is given by (P1, P2) where

P1(s) =
1/m

(s+ 1)2
, P2(s) =

s2

(s+ 1)2
.

2. As in Example 6.59, we have

AP =

[
0 1
0 0

]
, bP =

[
0
1
m

]
, cP =

[
1
0

]
, DP = 01.

3. In Example 10.30 we computed

f =

[
2m
2m

]
,
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4. In Example 10.30 we also computed

` =

[
2
2

]
.

5. Using Example 10.30 we have

AC =

[
−2 1
−4 −2

]
bC =

[
2
2

]
, ctC =

[
2m 2m

]
, DC = 01.

6. In Example 10.30 we computed

RC(s) =
4m(2s+ 1)

s2 + 4s+ 8
.

7. From Proposition 10.40 we calculate, after some simplification,

ρ1 =
(s+ 1)2(s2 + 4s+ 8)

(s2 + 2s+ 2)2
, ρ2 =

4m(s+ 1)2(2s+ 1)

(s2 + 2s+ 2)2
.

8. Finally, after simplification, we see that the set of stabilising controllers is given by

Spr(RP ) =

{
m
(
4m(s+ 1)4(2s+ 1) + θ(s)s2((s2 + 2s+ 2)2)

)

m(s+ 1)4(s2 + 4s+ 8)− θ(s)((s2 + 2s+ 2)2)

∣∣∣∣∣ θ ∈ RH+
∞

}
.

This is a somewhat complicated expression. It can be simplified by using simpler ex-
pressions for ρ1 and ρ2. In computing ρ1 and ρ2 above, we have merely applied our rule
verbatim. Indeed, simpler functions that also satisfy ρ1P1 + ρ2P2 = 1 arefinish

ρ1(s) = 1, ρ2(s) = m.

With these functions we compute the set of stabilising controllers to be
{
m
(
θ(s)s2 −m(s2 + 1)

)

θ +m(s2 + 1)

∣∣∣∣∣ θ ∈ RH+
∞

}
,

which is somewhat more pleasing than our expression derived using our rules. •

10.4 Strongly stabilising controllers

In the previous section we expressed all controllers that stabilise a given plant. Of course,
one will typically not want to allow any form for the controller. For example, one might
wish for the controller transfer function to itself be stable. This is not always possible, and
in this section we explore this matter.

10.5 State estimation

One of the problems with using static or dynamic state feedback is that the assumption
that one knows the value of the state is typically over-optimistic. Indeed, in practice, it is
often the case that one can at best only know the value of the output at any given time.
Therefore, what one would like to be able to do is infer the value of the state from the
knowledge of the output. A moments reflection should suggest that this is possible for
observable systems. A further moments reflection should lead one to allow the possibility
for detectable systems. These speculations are correct, and lead to the theory of observers
that we introduce in this section.
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10.5.1 Observers

Let us give a rough idea of what we mean by an observer before we get to formal
definitions. Suppose that we have a SISO linear system Σ = (A, b, ct,D) evolving with
its usual differential equations:

ẋ = Ax(t) + bu(t)

y(t) = ctx(t) +Du(t).
(10.18)

An observer should take as input the original input u(t), along with the measured output
y(t). Using these inputs, the observer constructs an estimate for the state, and we denote
this estimate by x̂(t). In Figure 10.5 we schematically show how an observer works. Our

u(t) plant e(t)

observer

−

x(t)

x̂(t)

y(t)

Figure 10.5 A schematic for an observer using the error

first result shows that an observer exists, although we will not use the given observer in
practice.

10.43 Proposition Let Σ = (A, b, ct,D) be an observable SISO linear system satisfying (10.18).
There exists oo(s),oi(s) ∈ R[s]n×1 with the property that

x(t) = oo

(
d
dt

)
y(t) + oi

(
d
dt

)
u(t).

Proof In (10.18), differentiate y(t) n − 1 times successively with respect to t, and use the
equation for ẋ(t) to get




y(t)
y(1)(t)
y(2)(t)

...
y(n−1)(t)




=




ct

ctA
ctA2

...
ctAn−1



x(t) +




D 0 · · · 0 0
ctb D · · · 0 0
ctAb ctb · · · 0 0

...
...

. . .
...

...
ctAn−2b ctAn−3b · · · ctb D







u(t)
u(1)(t)
u(2)(t)

...
u(n−1)(t).




Since Σ is observable, O(A, c) is invertible, and so we have

x(t) = O(A, c)−1




y(t)
y(1)(t)
y(2)(t)

...
y(n−1)(t)



−O(A, c)−1




D 0 · · · 0 0
ctb D · · · 0 0
ctAb ctb · · · 0 0

...
...

. . .
...

...
ctAn−2b ctAn−3b · · · ctb D







u(t)
u(1)(t)
u(2)(t)

...
u(n−1)(t),






426 10 Stabilisation and state estimation 2016/09/21

which proves the proposition if we take

oo = O(A, c)−1




1
s
s2

...
sn−1



, oi = −O(A, c)−1




D 0 · · · 0 0
ctb D · · · 0 0
ctAb ctb · · · 0 0

...
...

. . .
...

...
ctAn−2b ctAn−3b · · · ctb D







1
s
s2

...
sn−1



.

�

While the above result does indeed prove the existence of an observer which exactly
reproduces the state given the output and the input, it suffers from repeatedly differentiating
the measured output, and in practice this produces undesirable noise. To circumvent these
problems, in the next section we introduce an observer that does not exactly measure the
state. Indeed, it is an asymptotic observer , meaning that the error e(t) = x(t)− x̂(t)
satisfies limt→∞ e(t) = 0.

10.5.2 Luenberger observers

The error schematic in Figure 10.5 has the feature that it is driven using the error e(t).
The asymptotic observer we construct in this section instead uses the so-called innovation
defined as i(t) = y(t) − ŷ(t) where ŷ(t) is the estimated output ŷ(t) = ctx̂(t) + Du(t).
The schematic for the sort of observer is shown in Figure 10.6. Note that the inputs to the

y(t) ℓ
internal
model

x̂(t)

u(t)

ct

−
ŷ(t)

i(t)

D

Figure 10.6 The schematic for a Luenberger observer

observer are the actual measured output y(t) and the actual input u(t), and that the output
is the estimated state x̂(t). The vector ` ∈ Rn we call the observer gain vector . There
is a gap in the schematic, and that is the “internal model.” We use as the internal modelinternal model

principle?

the original system model, but now with the inputs as specified in the schematic. Thus we
take the estimated state to satisfy the equation

˙̂x(t) = Ax̂(t) + bu(t) + `i(t)

ŷ(t) = ctx̂(t) +Du(t)

i(t) = y(t)− ŷ(t).

(10.19)

From this equation, the following lemma gives the error e(t) = x(t)− x̂(t).

10.44 Lemma If Σ = (A, b, ct,D) is a SISO linear system and if x̂(t), ŷ(t), and i(t) sat-
isfy (10.19), then e(t) = x̂(t)− x(t) satisfies the differential equation

ė(t) = (A− `ct)e(t).
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Proof Subtracting

ẋ(t) = Ax(t) + bu(t), ˙̂x(t) = Ax̂(t) + bu(t) + `i(t),

and using the second and third of equations (10.19) we get

ė(t) = Ae(t)− `i(t)
= Ae(t)− `(y(t)− ŷ(t))

= Ae(t)− `ct(x(t)− x̂(t))

= Ae(t)− `cte(t),

as desired. �
The lemma now tells us that we can make our Luenberger observer an asymptotic observer

provided we choose ` so that A − `ct is Hurwitz. This is very much like the Ackermann
pole placement problem, and indeed can be proved along similar lines, giving the following
result.

10.45 Proposition Let (A, b, ct,D) be an observable SISO linear system and suppose that the char-
acteristic polynomial for A is

PA(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0.

Let P ∈ R[s] be monic and degree n. The observer gain vector ` defined by

` = P (A)(O(A, c))−1




0
· · ·
0
1




has the property that the characteristic polynomial of the matrix A− `ct is P .

Proof Note that observability of (A, c) is equivalent to controllability of (At, c). Therefore,
by Proposition 10.13 we know that if

`t =
[
0 · · · 0 1

]
(C(At, c))−1P (At), (10.20)

then the matrix At− c`t has characteristic polynomial P . The result now follows by taking
the transpose of equation (10.20), and noting that the characteristic polynomial of At− c`t
is equal to that of A− `ct. �

10.46 Remarks

1. As expected, the construction of the observer gain vector is accomplished along the same
lines as the static state feedback vector as in Proposition 10.13. Indeed, the observer
gain vector is obtained by using the formula of Proposition 10.13 with At in place of A,
and with c in place of b. This is another example of the “duality” between controllability
and observability.

2. The eigenvalues of A − `ct are called the observer poles for the given Luenberger
observer.

3. The notion of an observer is lurking in the proof of Theorem 10.27. This is flushed out
in Section 10.5.3.

4. We are, of course, interested in choosing the observer gain vector ` so that A − `ct is
Hurwitz. This can be done if Σ is observable, or more generally, detectable. To this end,
let us denote by D(Σ) those observer gain vectors for which A− `ct is Hurwitz. •
Let us illustrate this with an example.
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10.47 Example We consider the SISO linear system Σ = (A, b, ct,D) with

A =

[
0 −1
1 0

]
, c =

[
0
1

]
.

Suppose that we wish a closed-loop characteristic polynomial of P (s) = s2 + 4s + 4. We
compute

P (A) = A2 + 2A+ 2I2 =

[
1 −2
2 1

]
,O(A, c) =

[
0 1
1 0

]
.

Then we have

` = P (A(O(A, c))−1

[
0
1

]
=

[
1
2

]
,

giving

A− `ct =

[
0 −2
1 −2

]
,

which has the desired characteristic polynomial.
Now let us see how the observer does at observing. In Figure 10.7 we show the results

of a simulation of equations (10.18) and (10.19) with

b = (0, 1), D = 01, x(0) = (1, 1), x̂(0) = 0, u(t) = 1(t).

Note that the error is decaying to zero exponentially as expected. •

10.5.3 Static state feedback, Luenberger observers, and dynamic output feedback

In this section we bring together the ideas of static state feedback, Luenberger observers,
and dynamic output feedback. It is by no means obvious that these should all be tied
together, but indeed they are. To make the connection we make the obvious observation
that if one does not possess accurate knowledge of the state, then static state feedback seems
a somewhat optimistic means of designing a controller. However, if one uses an observer to
estimate the state, one can use the estimated state for static state feedback. The schematic
is depicted in Figure 10.8. If the observer is a Luenberger observer satisfying (10.19) and if
the plant is the usual SISO state representation satisfying (10.18), then one may verify that
the equations governing the interconnection of Figure 10.8 are

[
ẋ(t)
˙̂x(t)

]
=

[
A −bf t
`ct A− bf t − `ct

] [
x(t)
x̂(t)

]
+

[
b
b

]
r(t)

y(t) =
[
ct −Df t

] [x(t)
x̂(t)

]
+Dr(t).

(10.21)

The next result records the characteristic polynomial and the closed-loop transfer function
for these equations.

10.48 Theorem Let Σ = (A, b, ct,D) be a SISO linear system with f ∈ Rn a static state feedback
vector and ` ∈ Rn an observer gain vector for a Luenberger observer (10.19). Suppose
that the observer is combined with state feedback as in Figure 10.8, giving the closed-loop
equations (10.21). Also consider the interconnection of Figure 10.9 where
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Figure 10.7 The state (top left), the estimated state (top right),
and the norm of the error for a Luenberger observer

r(t) plant y(t)

observer

f t

−

x̂(t)

u(t)

Figure 10.8 Static state feedback using the estimated state
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r(t) RC(s) RP (s) y(t)

RO(s)

−

Figure 10.9 A dynamic output feedback loop giving the closed-
loop characteristic polynomial of static state feedback using a
Luenberger observer to estimate the state

RC(s) =
det(sIn −A+ `ct)

det(sIn −A+ bf t + `(ct −Df t))
RP (s) = ct(sIn −A)−1b+D

RO(s) =
f tadj(sIn −A)`

det(sIn −A+ `ct)
.

Then the following statements hold:

(i) the closed-loop characteristic polynomial for (10.21) is the product of the characteristic
polynomials of A− bf t and A− `ct.

(ii) the closed-loop system for (10.21) (i.e., the transfer function from r to y) is the same
transfer function for the interconnection of Figure 10.9, and what’s more, both transfer
functions are exactly the transfer function for (A− bf , b, ct −Df t,01).

Proof (i) The “A-matrix” for the observer/feedback system (10.21) is

Acl =

[
A −bf t
`ct A− bf t − `ct

]
.

Let us define an invertible 2n× 2n matrix

T =

[
In −In
0 In

]
(10.22)

=⇒ T−1 =

[
In In
0 In

]
.

It is a simple computation to show that

TAclT
−1 =

[
A− `ct 0
`ct A− bf t

]
.

Thus we see that the characteristic polynomial of TAclT
−1, and therefore the characteristic

polynomial of Acl, is indeed the product of the characteristic polynomials of A − `ct and
A− bf t, as claimed.

(ii) Let us use the new coordinates corresponding to the change of basis matrix T defined
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in (10.22). Thus we take

Ācl =

[
A− `ct 0
`ct A− bf t

]

b̄cl = T

[
b
b

]
=

[
0
b

]

c̄tcl =
[
ct −Df t

]
T−1 =

[
ct ct −Df t

]

D̄cl = D,

and determine the transfer function for Σ̄ = (Ācl, b̄cl, c̄
t
cl, D̄cl). We have

(sI2n − Ācl)
−1 =

[
(sIn −A+ `ct)−1 0

∗ (sIn −A+ bf t)−1

]
,

where “∗” denotes a term whose exact form is not relevant. One then readily computes

TΣ̄(s) = c̄tcl(sI2n − Ācl)
−1b̄cl = (ct −Df t)(sIn −A+ bf t)−1b.

From this it follows that the transfer function of the closed-loop system (10.21) is as claimed.
Now we determine this same transfer function in a different way, proceeding directly from

the closed-loop equations (10.21). First let us define

NC(s) = det(sIn −A+ `ct), DC(s) = det(sIn −A+ bf t + `(ct −Df t))
NP (s) = D det(sIn −A) + ctadj(sIn −A)b, DP (s) = det(sIn −A)

NO(s) = f tadj(sIn −A)`, DO(s) = det(sIn −A+ `ct).

Now, the equation governing the observer states is

˙̂x(t) = (A− `ct)x̂(t) + (b−D`)u(t) + `y(t).

Taking left causal Laplace transforms gives

x̂(s) = (sIn −A+ `ct)−1
(
(b−D`)û(s) + `ŷ(s)

)
.

Let us define

T 1(s) = (sIn −A+ `ct)−1(b−D`), T 2(s) = (sIn −A+ `ct)−1`

so that
x̂(s) = T 1(s)û(s) + T 2(s)ŷ(s).

Given that u(t) = r(t)− f tx̂(t), we have

û(s) = r̂(s)− f tT 1(s)û(s)− f tT 1(s)ŷ(s)

=⇒ û(s) = − f tT 2(s)

1 + f tT 1(s)
ŷ(s) +

1

1 + f tT 1(s)
r̂(s).

From the proof of Lemma A.3 we have that

1 + f tT 1(s) = 1 + f t(sIn −A+ `ct)−1(b−D`)
= det

[
1 + f t(sIn −A+ `ct)−1(b−D`)

]

= det(In + (sIn −A+ `ct)−1(b−D`)f t)
= det

(
(sIn −A+ `ct)−1(sIn −A+ `(ct −Df t) + bf t

)

=
det(sIn −A+ `(ct −Df t) + bf t)

det(sIn −A+ `ct)

=
DC(s)

NC(s)
.
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We also clearly have

f tT 2(s) = f t(sIn −A+ `ct)−1`

=
f tadj(In −A+ `ct)`

det(In −A+ `ct)

=
f tadj(In −A)`

det(In −A+ `ct)

=
NO(s)

DO(s)
,

where we have used Lemma A.5. Thus we have

û(s) =
NO(s)

DO(s)

NC(s)

DC(s)
ŷ(s) +

NC(s)

DC(s)
r̂(s). (10.23)

Also noting that

ŷ(s) =
NP (s)

DP (s)
û(s), (10.24)

we may eliminate r̂(s) from equations (10.23) and (10.24) to get

TΣ̄(s) =
ŷ(s)

r̂(s)
=

NC(s)NP (s)

DC(s)DP (s) +NP (s)NO(s)
, (10.25)

if we use the fact that DO = NC .
Let us now turn to the transfer function of the interconnection of Figure 10.9. The

transfer function may be computed in the usual manner using Mason’s Rule:

ŷ(s)

r̂(s)
=

RC(s)RP (s)

1 +RC(s)RP (s)RO(s)
=

DO(s)NC(s)NP (s)

DC(s)DP (s)DO(s) +NC(s)NP (s)NO(s)
.

Since DO = NC this may be simplified to

ŷ(s)

r̂(s)
=

NC(s)NP (s)

DC(s)DP (s) +NP (s)NO(s)
.

Comparing this to (10.25), we see that indeed the transfer function of Figure 10.9 is the
same as that of the closed-loop system (10.21). �

10.49 Remarks

1. One of the consequences of part (i) of the theorem is that one can separately choose the
observer poles and the controller poles. This is a phenomenon that goes under the name
of the separation principle .

2. The change of coordinates represented by the matrix defined in (10.22) can easily be seen
as making a change of coordinates from (x, x̂) to (e,x). It is not surprising, then, that
in these coordinates we should see that the characteristic polynomial gets represented as
a product of two characteristic polynomials. Indeed, we have designed the observer so
that the error should be governed by the matrix A− `ct, and we have designed the state
feedback so that the state should be governed by the matrix A− bf t.
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3. Note that for the interconnection of Figure 10.9 there must be massive cancellation in
the transfer function since the system nominally has 3n states, but the denominator
of the transfer function has degree n. Indeed, one can see that in the loop gain there
is directly a cancellation of a factor det(sIn − A + `ct) from the numerator of RC

and the denominator of RO. What is not so obvious at first glance is that there is an
additional cancellation of another factor det(sIn−A+ `ct) that happens when forming
the closed-loop transfer function. Note that these cancellations are all stable provided
one chooses ` so that A− `ct is Hurwitz. Thus they need not be disastrous. That there
should be this cancellation in the closed-loop equations (10.21) is not surprising since the
control does not affect the error. Thus the closed-loop system with the observer is not
controllable (also see Exercise E10.23). One should also be careful that the characteristic
polynomial for the closed-loop system (10.21) is different from that for the interconnection
Figure 10.9. •
Let us illustrate Theorem 10.48 via an example.

10.50 Example (Example 10.47 cont’d) Recall that we had

A =

[
0 −1
1 0

]
, c =

[
0
1

]
.

Suppose that we want both observer poles and controller poles to be roots of the polynomial
P (s) = s2 + 4s + 4. In Example 10.47 we found the required observer gain vector to be
` = (1, 2). To find the static state feedback vector we employ Ackermann’s formula from
Proposition 10.13. The controllability matrix is

C(A, b) =

[
0 −1
1 0

]
.

Thus we compute
f t =

[
0 1

]
(C(A, b))−1P (A) =

[
−1 2

]
.

This gives the closed-loop system matrix

Acl =




0 −1 0 0
1 0 1 −2
0 1 0 −2
0 2 2 −4




for the interconnections of Figure 10.8. For the interconnection of Figure 10.8 we determine
that the closed-loop input and output vectors are

bcl =




0
1
0
1


 , ccl =




0
1
0
0


 .

In Figure 10.10 we show the state x(t) and the estimated state x̂(t) for the initial conditions
x(0) = (1, 1) and x̂(0) = (0, 0), and for u(t) = 1(t). Note that the quantities approach the
same value as t → ∞, as should be the case as the observer is an asymptotic observer. In
Figure 10.11 we show the output for the interconnection of Figure 10.8. •
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Figure 10.10 The state (left) and the estimated state (right) for
the closed-loop system

Figure 10.11 The output for the interconnection of Figure 10.8

10.6 Summary

1. Stabilisability and detectability extend the notions of controllability and observability.
The extensions are along the lines of asking that the state behaviour that you cannot
control or observe is stable.

2. Ackermann’s formula is available as a means to place the poles for a SISO linear system
in a desired location.
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Exercises

E10.1 Show that (A,v) is stabilisable if and only if (At,v) is detectable.

E10.2 Show that Σ = (A, b, ct,D) is stabilisable if and only if the matrix

[
sIn −A b

]

has rank n for all s ∈ C+.

E10.3 Show that Σ = (A, b, ct,D) is detectable if and only if the matrix

[
sIn −A
ct

]

has rank n for all s ∈ C+.

E10.4 If (A, c) is detectable and if P ∈ Rn×n is positive-semidefinite and satisfies

AtP + PA = −cct, (E10.1)

show that A is Hurwitz.
Hint: Show that (E10.1) implies that

P = eA
ttP eAt +

∫ t

0

eA
tτccteAτ dτ.

In the next exercise, we will introduce the notion of a linear matrix inequality (LMI ).
Such a relation is, in general, a matrix equation, invariant under transposition (i.e., if one
takes the matrix transpose of the equation, it remains the same), for an unknown matrix.
Since the equation is invariant under transposition, it makes sense to demand that the
unknown matrix render the equation positive or negative-definite or semidefinite. In recent
years, LMI’s have become increasingly important in control theory. A survey is [El Ghaoui
and Niculescu 1987]. The reason for the importance of LMI’s is one can often determine
their solvability using “convexity methods.” These are often numerically tractable. This
idea forms the backbone, for example, of the approach to robust control taken by Dullerud
and Paganini [1999].

E10.5 Consider a SISO linear system Σ = (A, b, ct,D).

(a) Use the Liapunov methods of Section 5.4 to show that Σ is stabilisable if and
only if there exists f ∈ Rn so that the linear matrix inequality

(A− bf t)P + P (At − fbt) < 0

has a solution P > 0.

(b) Use your result from part (a) to prove the following theorem.
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Theorem For a stabilisable SISO linear system Σ = (A, b, ct,D), a state feed-
back vector f ∈ Rn stabilises the closed-loop system if and only if there exists
P > 0 and g ∈ Rn so that

(i) f = P−1g and

(ii) so that the LMI
[
A b

] [P
gt

]
+
[
P g

] [At

bt

]
< 0

is satisfied.

The point of the exercise is that the LMI gives a way of parameterising all stabilising
state feedback vectors.

E10.6 Consider the two polynomials that have a common factor in C+:

P1(s) = s2 − 1, P2(s) = s3 + s2 − s− 1.

Construct three SISO linear systems Σi = (Ai, bi, c
t
i,01), i = 1, 2, 3, with the follow-

ing properties:

1. TΣi = P1

P2
, i = 1, 2, 3;

2. Σ1 is stabilisable but not detectable;

3. Σ2 is detectable but not stabilisable;

4. Σ3 is neither stabilisable nor detectable.

E10.7 Let Σ = (A, b, ct,D) be a SISO linear system.

(a) If Σ is stabilisable show how, using Proposition 10.13, to construct a stabilising
state feedback vector f in the case when Σ is not controllable.

(b) Show that if Σ is not stabilisable then it is not possible to construct a stabilising
state feedback vector.

E10.8 Let (A, b) ∈ Rn×n × Rn be controllable and let P ∈ R[s] be a monic polynomial of
degree n. Show that there exists a unique static state feedback vector f ∈ Rn with
the property that P (s) = det(sIn − (A− bf t)).
Hint: Refer to Exercise E2.38.

E10.9 Suppose that (A, b) ∈ Rn×n × Rn is controllable, and let P ∈ R[s] be a monic
polynomial of degree n− 1.

(a) Show that there exists a static state feedback vector f ∈ Rn with the following
properties:

1. A− bf t possesses an invariant (n− 1)-dimensional subspace V ⊂ Rn with
the property that for each basis {v1, . . . ,vn−1} for V , {v1, . . . ,vn−1, b} is a
basis for Rn;

2. The characteristic polynomial of (A− bf t)|V is P .

(b) For V as in part (a), define a linear map AV : V → V by AV (v) = prV ◦A(v),
where prV : Rn → V is defined by

prV (a1v1 + · · ·+ an−1vn−1 + anb) = a1v1 + · · ·+ an−1vn−1,

for {v1, . . . ,vn−1} a basis for V .

E10.10 Consider the pendulum/cart system of Exercises E1.5. In this problem, we shall
change the input for the system from a force applied to the cart, to a force applied
to the mass on the end of the pendulum that is tangential to the pendulum motion;
see Figure E10.1. For the following cases,



Exercises for Chapter 10 437

x

θ

F

Figure E10.1 The pendulum/cart with an alternate input

(a) the equilibrium point (0, 0) with cart position as output;

(b) the equilibrium point (0, 0) with cart velocity as output;

(c) the equilibrium point (0, 0) with pendulum angle as output;

(d) the equilibrium point (0, 0) with pendulum angular velocity as output;

(e) the equilibrium point (0, π) with cart position as output;

(f) the equilibrium point (0, π) with cart velocity as output;

(g) the equilibrium point (0, π) with pendulum angle as output;

(h) the equilibrium point (0, π) with pendulum angular velocity as output,

do the following:

1. obtain the linearisation Σ = (A, b, ct,D) of the system;

2. obtain the transfer function for Σ;

3. determine whether the system is observable and/or controllable;

4. determine whether the system is detectable and/or stabilisable.

E10.11 Consider the pendulum/cart system of Exercises E1.5 and E2.4. Construct a state
feedback vector f that makes the linearisation of pendulum/cart system stable about
the equilibrium point with the pendulum pointing “up.” Verify that the closed-loop
system has the eigenvalues you asked for.

E10.12 Consider the double pendulum system of Exercises E1.6 and E2.5. For the following
equilibrium points and input configurations, construct a state feedback vector f that
makes the linearisation of double pendulum about that equilibrium point stable:

(a) the equilibrium point (0, π, 0, 0) with the pendubot input;

(b) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(c) the equilibrium point (π, π, 0, 0) with the pendubot input;

(d) the equilibrium point (0, π, 0, 0) with the acrobot input;

(e) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (π, π, 0, 0) with the acrobot input.

In each case, take the output to be the angle of the second link. Verify that the
closed-loop system has the eigenvalues you asked for.

E10.13 Consider the coupled tank system of Exercises E1.11, E2.6. For the following equi-
librium points and input configurations, construct a state feedback vector f that
makes the linearisation of double pendulum about that equilibrium point stable:
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(a) the output is the level in tank 1;

(b) the output is the level in tank 2;

(c) the output is the difference in the levels.

In each case, take the output to be the angle of the second link. Verify that the
closed-loop system has the eigenvalues you asked for.

E10.14 Let Σ = (A, b, ct,01) with

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
0 0 0 0 · · · 0



.

Answer the following questions.

(a) Show that Σ is stabilisable by static output feedback only if all components of
c are nonzero and of the same sign.

(b) If A is as given, and if all components of c are nonzero and of the same sign, is
it true that Σ can be stabilised using static output feedback? If so, prove it. If
not, find a counterexample.

E10.15 (a) Show that the closed-loop transfer function for any one of the stabilising con-
trollers from Theorem 10.37 is an affine function of θ. That is to say, show that
the closed-loop transfer function has the form R1θ + R2 for rational functions
R1 and R2.

(b) Show that in the expression R1θ + R2 from part (a) that R1 ∈ RH+
∞, and is

strictly proper if and only if RP is strictly proper.

(c) Conclude that if

RC =
ρ1 + θP2

ρ2 − θP1

for an admissible θ then the unity gain feedback loop with RL = RCRP is
well-posed.

E10.16 Let RP ∈ RH+
∞ be a stable plant transfer function. Show that the set of controllers

RC for which the closed-loop system in Figure 10.4 is given by

{ θ

1− θRP

| θ ∈ RH+
∞}.

E10.17 Consider the plant transfer function RP (s) = 1
s2

, and consider the interconnection
of Figure 10.4. Show that there is a rational function RC(s), not of the form given
in Theorem 10.37, for which the closed-loop system is IBIBO stable.
Hint: Consider PD control.

E10.18 Exercise on restricted domain for poles.Finish

In the next exercise you will demonstrate what is a useful feature of RH+
∞. Recall that

a ring is a set R with the operations of addition and multiplication, and these operations
should satisfy the “natural” properties associated with addition and multiplication (see [Lang
2005]). A ring is commutative when the operation of multiplication is commutative (as for
example, with the integers). A commutative ring is an integral domain when the product
of nonzero elements is nonzero. An ideal in a ring R is a subset I for which
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1. 0 ∈ I,

2. if x, y ∈ I then x+ y ∈ I, and

3. if x ∈ I then ax ∈ I and xa ∈ I for all a ∈ R.

An ideal I is principal if it has the form

I = {xa | a ∈ R}.

The ideal above is said to be generated by x. An integral domain R is a principal ideal
domain when every ideal I is principal.

E10.19 Answer the following questions.

(a) Show that RH+
∞ is an integral domain.

(b) Show that RH+
∞ is a principal ideal domain.

(c) Show that H+
∞ is not a principal ideal domain.

Normally, only condition 1 is given in the definition of admissibility for a function θ ∈ RH+
∞

to parameterise Spr(RP ). This is a genuine omission of hypotheses. In the next exercise,
you will show that, in general, the condition 2 also must be included.

E10.20 Consider the plant transfer function

RP (s) =
s

s+ 1
.

For this plant, do the following.

(a) Show that (P1(s), P2(s)) = ( s
s+1

, 1) is a coprime fractional representative for RP .

(b) Show that

(ρ1(s), ρ2(s)) =
(
− s+ 1

(s+ 2)2
,
(s+ 1)(s+ 4)

(s+ 2)2

)

is a coprime factorisation of (P1, P2).

(c) Define θ ∈ RH+
∞ by

θ(s) =
s

s+ 1
.

Is θ admissible?

(d) For the function θ ∈ RH+
∞ from part (c), show that the controller

RC =
ρ1 + θP2

ρ2 − θP1

is improper. Thus for the conclusions of Theorem 10.37 to hold, in particular, for
the controller parameterisation to be one for proper controller transfer functions,
the condition 2 for admissibility is necessary.

(e) Show that despite our conclusions of part (d), the unity gain interconnection
with loop gain RL = RCRP , using RC from part 2, is IBIBO stable.

E10.21 Consider the plant

RP (s) =
s

(s+ 1)(s− 1)
.

For this plant, do the following.
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(a) Find a coprime fractional representative (P1, P2) for RP (choose the obvious one,
if you want to make life easy).

(b) Show that

RC(s) =
2(s+ 2)

s− 1
2

stabilises RP .

(c) Use the stabilising controller from the previous step to construct a coprime
factorisation (ρ1, ρ2) for (P1, P2).

(d) Write the expression for the set of proper stabilising controllers for RP depending
on the parameter θ ∈ RH+

∞.

(e) For two different values of θ, produce the Nyquist plots for the loop gain RCRP

and comment on the properties of the controller you have chosen.

E10.22 Let Σ = (A, b, ct,01) be a SISO linear system.

(a) Show that for a Luenberger observer with observer gain vector ` the state and
the estimated state together satisfy the vector differential equation

[
ẋ(t)
˙̂x(t)

]
=

[
A 0
`ct A− `ct

] [
x(t)
x̂(t)

]
+

[
b
b

]
u(t).

(b) What is the differential equation governing the behaviour of x(t) and the error
e(t) = x(t)− x̂(t).

E10.23 Verify that the system (10.21) is not controllable.
Hint: Consider the system in the basis defined by the change of basis matrix
of (10.21).
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Chapter 11

Ad hoc methods I: The root-locus method

The root-locus method we study in this section was put forward in the papers of
Evans (1948, 1950). The study is of roots of polynomials when the coefficients depend
linearly on a parameter. In control systems, the parameter is typically the gain of a feed-
back loop, and our interest is in choosing the gain so that the closed-loop system is IBIBO
stable. As we saw in Section 10.2.2, with static output feedback of SISO systems, there
naturally arises a control problem where one has a polynomial with coefficients linear in a
parameter, and stabilisation requires choosing this parameter so that the polynomial is Hur-
witz. In Section 11.1.1 below, we discuss some control problems where this scenario arises.
The manner of studying such problems in this chapter is to study how the roots move in
the complex plane as functions of the parameter. That is to say, we look at the locus of all
roots of the polynomial as the parameter varies, hence the name “root-locus.”

In many introductory texts, one will find a laying out of a “design method” using root-
locus methods. We do not devote significant effort to this for the reason that, according
to Horowitz [1963], “It appears, therefore, that the root locus approach to the sensitivity
problem is justified only in systems where there are few dominant poles and zeros.” These
systems are quite well understood in any case (see Section 13.2.3).
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11.1 The root-locus problem, and its rôle in control

The aim in this section is to provide some situations in control where a certain type of
problem involving a certain type of polynomial arises. Once this has been nailed down, we
can talk in generality about this problem, and some of its broad properties. We reserve for
Section 11.2 a more or less complete discussion of the properties of such polynomials.
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11.1.1 A collection of problems in control

Our first task is to indicate that there are a collection of control problems which can be
reduced to a problem of a certain type.

11.1 Examples

1. To get things rolling, let us consider the unity gain feedback loop of Figure 11.1 where

r̂(s) K RL(s) ŷ(s)
−

Figure 11.1 Root-locus from a negative feedback configuration

the loop gain is known up to a multiplicative constant K, and let us suppose that we ask
that K be nonnegative. The transfer function from r̂(s) to ŷ(s) is, as usual,

ŷ(s)

r̂(s)
=

KRL(s)

1 +KRL(s)
.

If RL has the c.f.r. (NL, DL), then the characteristic polynomial for the interconnection
is DL+KNL. If RL is strictly proper, as is quite often the case, then we have deg(NL) <
deg(DL). The design objective is to determine whether there is a constant K0 ≥ 0 so
that the characteristic polynomial DL+K0NL is Hurwitz. One may even want to choose
K so that certain performance objectives are met. This is discussed in Section 11.3.

2. As we saw in Section 6.4.2, the closed-loop characteristic polynomial for static output
feedback of a SISO linear system Σ = (A, b, ct,01) is given by

PA(s) + Fctadj(sIn −A)b

where F is the output feedback constant. Since ctadj(sIn−A)b is a polynomial of degree
at most n− 1, this will have the form of P1 + FP2 where deg(P2) < deg(P2).

3. It is possible that the variable constant K may not appear in as simple a manner as
indicated in Figure 11.1. However, in some such cases, one can still reduce the char-
acteristic polynomial to one of the desired form. Suppose that we have a plant with
RP (s) = 1

ms2
and we wish to stabilise it in a unity gain feedback loop with a PID con-

troller RC(s) = K(1 + TDs + 1
TI
s). Let us suppose that, for whatever reason, we are

interested only in changing the reset time TI , and not the gain K. Furthermore, we
restrict our interest to TI > 0. Thus we are not immediately in the situation illustrated
in Figure 11.1. Nevertheless, we proceed. The closed-loop characteristic polynomial is

s3 +KTDs
2 +Ks+

K

TI
.

Now note that we may write this closed-loop characteristic polynomial as P1 +αP2 if we
take

P1 = s3 +KTDs
2 +Ks, P2 = K, α =

1

TI
.

Now, as TI runs from 0 to ∞, α runs from ∞ to 0. Thus, even though we are not
immediately in the form of Figure 11.1, we can write the characteristic polynomial is the
form of a sum of two polynomials, one with a positive coefficient. Note that this may
not always be possible, but sometimes it is. •
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In each of the preceding three examples, we arrive at a characteristic polynomial that is
of the form P1 + KP2 where deg(P2) < deg(P1). It is such polynomials that are of interest
to us in this chapter.

11.1.2 Definitions and general properties

Based on the discussion of the preceding section, we make the following definition.

11.2 Definition Let N,D ∈ R[s] have the following properties:

(i) D is monic;

(ii) either N or −N is monic;

(iii) deg(N) < deg(D).

A (N,D)-polynomial family is a family of polynomials of the form P(N,D) = {D +
KN | K ≥ 0}. For a fixed K ≥ 0 we shall denote PK = D + KN ∈ R[s]. The root-locus
of an (N,D)-polynomial family is the subset

RL(P(N,D)) = {z ∈ C | PK(z) = 0 for some K ≥ 0}

of the complex plane.1 A (N,D)-polynomial family is Hurwitz if there exists K ≥ 0 so
that PK is Hurwitz. •

11.3 Remark Note that we do ask for D to be monic and either N or −N to be monic when
defining a (N,D)-polynomial family. That D should be taken as monic seems natural. As
for N , clearly one can make either N or −N monic by simply redefining K if necessary.
Thus we loose no generality with these assumptions. •

Note that the problem of determining whether a (N,D)-polynomial family is Hur-
witz is exactly equivalent to the problem of determining whether a SISO linear system
Σ = (A, b, ct,D) admits a stabilising static output feedback controller (see Exercise E11.2).
Therefore, to determine whether a (N,D)-polynomial family is Hurwitz is as difficult as
proving the existence of stabilising static output feedback. This problem, as was noted at
the beginning of Section 10.2.2 is NP hard. Thus we cannot expect to solve this problem
is an easily computable manner. However, we shall provide a rough description of the root-
locus for a (N,D)-polynomial family which suggests that you might be able to numerically
ascertain whether such a family is Hurwitz.

Note that the root-locus consists of collections of roots of polynomials that depend con-
tinuously, in this case linearly, on a parameter K. Let us record some properties of the roots
of such parameterised polynomials.

11.4 Lemma Let P (s,K) = sn + pn−1(K)sn−1 + · · · + p1(K)s + p0(K) be a polynomial with
coefficients differentiable functions of the parameter K ∈ R. For K ∈ R, denote by
{z1(K), . . . , zn(K)} the roots of P (s,K).

(i) The functions R 3 K 7→ zi(K) ∈ C, i = 1, . . . , n, may be chosen to be continuous.

(ii) If the roots zi(K), i = 1, . . . , n, are chosen to be continuous functions, then, if zi(K0)
is a root of multiplicity one for P (s,K0) then there exists ε > 0 so that zi|[K0−ε,K0+ε]
so that

(a) fi(K0) = zi(K0) and

1Note that S denotes the closure of the set S, meaning the set and all of its limit points.
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(b) P (zi(K), K) = 0.

More succinctly, near nondegenerate roots of P (s,K0), the roots are differentiable
functions of the parameter K.

11.5 Remark With the notation of the lemma, we may write the roots of P (s,K) as
{z1(K), . . . , zn(K)}. We shall do this frequently, and we always make the assumption that
this is done in such a way that the functions K 7→ zi(K), i = 1, . . . , n, are continuous. •

We do not prove this lemma, although part (ii) is easily proved using the implicit function
theorem (see Exercise E11.3). Let us illustrate the lemma with a simple example.

11.6 Example Let us take P (s,K) = s2 + K. For K ≤ 0 the roots are {z1(K) =
√
−K, z2(K) =

−
√
−K} and for K > 0 the roots are {z1(K) = i

√
K, z2(K) = −i

√
K}. In Figure 11.2 we

Figure 11.2 Locus of roots for P (s,K) = s2 +K

plot the locus of roots for this polynomial as K runs from −4 to 4. Note that if K varies
slightly, the location of the roots also change only slightly. What’s more, as long as K 6= 0
the roots are distinct, and the locus of roots near such values of K are smooth curves in
the complex plane (lines in this case). However, for the repeated root when K = 0, the
character of the locus of roots is not smooth near this repeated root. Indeed, at the origin
where this repeated root lies, the locus of roots has an intersection. This will typically be
the case, and constitutes one of the more challenging aspects of making root-locus plots. •

11.2 Properties of the root-locus

In this section we do two things. First we provide a list of provable properties of the
root-locus of a (N,D)-polynomial family. These are presented with proofs as these do not
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seem to be part of the standard discussion of the root-locus method. The presentation in
this first part of the section produces for us a good understanding of what is known and
unknown about the nature of the root-locus. The next thing we do is put this understanding
together to develop a methodology for graphically producing the root-locus for a (N,D)-
polynomial family. It is this graphical method which forms the bulk of the presentation on
the root-locus method in most standard texts.

11.2.1 A rigorous discussion of the root-locus

We follow here the paper of Krall [1961], starting with a (N,D)-polynomial family
P(N,D). The essential idea is that when K = 0 the roots of PK are obviously those
of D. Suppose that deg(D) = n so that P0 has n roots, if one counts multiplicities. Now,
as K increases, Lemma 11.4 suggests that these n roots should move about continuously in
the complex plane. Now suppose that m = deg(N). What will turn out to happen is that
m of the n roots of PK will start at the roots for D = P0 and end up at the roots of N as
K →∞. One must then account for the remaining n−m roots, which, it turns out, shoot
off to infinity in predictable ways.

Let’s get down to it. For concreteness let us write

D(s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0

N(s) = ±sm + qm−1s
m−1 + · · ·+ q1s+ q0.

We define the centre of gravity of P(N,D) to be

CG(P(N,D)) =

{
−pn−1−qm−1

n−m , N monic

−pn−1+qm−1

n−m , −N monic.
(11.1)

The following result gives a simple characterisation of the centre of gravity in terms of the
roots of N and D.

11.7 Lemma CG(P(N,D)) =
1

n−m
( n∑

j=1

zj −
m∑

k=1

ζk

)
, where z1, . . . , zn are the roots of D and

ζ1, . . . , ζm are the roots for N .

Proof For a monic polynomial

P (s) = sn + an−1s
n−1 + · · ·+ a1s+ a0,

one may easily show that the sum of the roots of P is equal to −an−1 (see Exercise EC.3).
Thus the sum of the roots for D is pn−1, and the sum of the roots for N is qm−1 is N is
monic and −qn−1 is −N is monic. �

Now, through the centre of gravity we construct n −m rays in the complex plane. We
denote these rays by α1, . . . , αn−m and define them by

αj =

{
{CG(P(N,D)) + re(2j−1)πi/(n−m) | r ≥ 0}, N monic

{CG(P(N,D)) + re2jπi/(n−m) | r ≥ 0}, -N monic.
(11.2)

We call these rays the asymptotes for P(N,D). In Figure 11.3 we show the asymptotes
when the centre of gravity is at 1 + i0 and when n − m = 3. Note that generally the
asymptotes will depend on whether N or −N is monic.

With the notion of asymptotes in place, we may state the following result which indicates
in what manner some of the roots of PK go to infinity.
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Figure 11.3 Asymptotes if CG(P(N,D)) = 1 + i0 and n−m = 3,
and when N is monic (left) and −N is monic (right)

11.8 Proposition Let P(N,D) be a (N,D)-polynomial family and denote the roots of PK =
D+KN by {z1(K), . . . , zn(K)}. Then there exists distinct j1, . . . , jn−m ∈ {1, . . . , n} so that

(i) if N is monic, limK→∞
∣∣zjk(K)− CG(P(N,D))−K1/(n−m)e(2k−1)πi/(n−m)

∣∣ = 0, and

(ii) if −N is monic, limK→∞
∣∣zjk(K)− CG(P(N,D))−K1/(n−m)e2kπi/(n−m)

∣∣ = 0,

for each k = 1, . . . , n−m.

Proof The bulk of the proof is contained in the following result.

1 Lemma The proposition holds when CG(P(N,D)) = 0 + i0.

Proof In this case we can write

PK(s) =
(
sn+asn−1+pn−2s

n−2+· · ·+p1s+p0

)
−Keiθ

(
sm+asm−1+qm−2s

m−2+· · ·+q1s+q0

)
,

where K ≥ 0 and θ ∈ {0,−π}. The main point is that since CG(P(N,D)) = 0+i0, the next
to highest coefficients of D and N must be equal if N is monic. Now fix k ∈ {1, . . . , n−m}
and make the substitution

s = weiθk , θk =
2kπ + θ

n−m ,w ∈ C,

so that

e−iθkPK(weiθk) =
(
wn + awn−1e−iθk +

n−2∑

j=0

ajw
j
)
−K

(
wm + awm−1e−iθk +

m−2∑

j=0

bjw
j
)
,

for some coefficients a0, . . . , an−2, b0, . . . , bm−2 whose exact character are not of much interest
to us. Now define

M =
n−2∑

j=0

|aj|(3|a|+ 1)n−2−j
(4

3

)j
+

m−2∑

j=0

|bj|(3|a|+ 1)m−2−j
(4

3

)j
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and

ρ = K1/(n−m), ε =
3mM

ρ2
=

3mM

K2/(n−m)
.

The key observation to make is that M is independent of K. Let

K0 = max
{

(3|a|+ 1)n−m, (3m+1M)(n−m)/2,
( 3mM

1
2
|1− e±πi/(2(n−m))|

)(n−m)/2}
.

If K > K0 then we have

ρ = K1/(n−m) >
(
(3|a|+ 1)n−m

)1/(n−m)
> 3|a|+ 1,

and

ε =
3mM

K2/(n−m)
<

3mM
(
(3m+1M)(n−m)/2

)2/(n−m)
=

1

3
,

and

ε =
3mM

K2/(n−m)
<

3mM
((

3mM
1
2
|1−e±πi/(2(n−m))|

)(n−m)/2)2/(n−m)
=

1

2
|1− e±πi/(2(n−m))|. (11.3)

Now make the substitution ξ = w
ρ
∈ C so that, with our previous substitution for s, we have

ρ−ne−iθkPK(ρξeiθk) =
(
ξn +

a

ρ
e−iθkξn−1 +

n−2∑

j=0

ajρ
j−nξj

)
−
(
ξm +

a

ρ
e−iθkξm−1 +

m−2∑

j=0

bjρ
j−mξj

)

= ξm−1
(
ξ
a
ρ e−iθk

)
(ξn−m − 1) +

1

ρ2

(n−2∑

j=0

ajρ
j−n+2ξj −

m−2∑

j=0

bjρ
j−m+2ξj

)
.

Now define

f(ξ) = ξm−1
(
ξ +

a

ρ
e−iθk

)
(ξn−m − 1)

g(ξ) =
1

ρ2

(n−2∑

j=0

ajρ
j−n+2ξj −

m−2∑

j=0

bjρ
j−m+2ξj

)
.

Now let Γε be the circle of radius ε centred at 1+i0, with ε as previously defined. Since ε < 1
3
,

the real part of ξk ∈ C is positive on Γε for k = 1, . . . , n−m. Note that ξn−m − 1 vanishes
when ξ ∈ {1, e2πi/(n−m), e−2πi/(n−m), . . . }. Therefore, by the inequality (11.3), ξn−m − 1 is
greater than ε when ξ ∈ Γε. By the triangle inequality we also have check

∣∣∣ξ +
a

ρ
e−iθk

∣∣∣ ≤ |ξ||a
ρ
e−iθk |

≤

Therefore, for ξ ∈ Γε we have

|f(ξ)| > (1− ε)m−1 · 1
3
· 1 · ε >

(
1
3

)m
ε.

Thus there exists K0 (redefine this if necessary) so that for all K > K0, f has only the zero
at 1 + i0 within Γε. By definition of M , for ξ ∈ Γε we have

|g(ξ)| ≤ M

ρ2
=
(

1
3

)m
ε.
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Therefore, for ξ ∈ Γε we have |f(ξ)| > |g(ξ)|. From Rouchés theorem, Theorem D.6, we may
conclude that the number of zeros for f + g within Γε is the same as the number of zeros f ,
namely 1, provided that K > K0. This shows that there is a zero ξ0 inside Γε so that

ρ−ne−iθkPK(ρξ0e
iθk) = 0 =⇒ PK(z0) = 0,

where
z0 = ρξ0e

iθk = K1/(n−m)ξ0e
iθk .

The lemma now follows since limK→∞ ξ0 = 1, since limK→∞ ε = 0. H

With the lemma in hand, it is now comparatively straightforward to prove the proposi-
tion. Let us proceed in the case when N is monic so that

CG(P(N,D)) = −pn−q − qn−1

n−m .

Making the substitution s = w + CG(P(N,D)) gives

PK(w + CG(P(N,D))) = wn +
nqn−1 −mpn−1

n−m wn−1 +
n−2∑

j=0

ajw
j+

K
(
wm +

nqn−1 −mpn−1

n−m wm−1 +
m−2∑

j=0

bjw
j
)
,

for some coefficients a0, an−2, b0, . . . , bm−2 whose exact form is not of particular interest to us.
Now, by Lemma 1, there is a collection of roots {ωj1(K), . . . , ωjn−m(K)} to this polynomial
that satisfy

lim
K→∞

∣∣ωjk(K)−K1/(n−m)e2kπi/(n−m)
∣∣ = 0.

These clearly give rise to the roots {zj1(K), . . . , zjn−m(K)} as given in the statement of the
proposition. �

Let us see how this works in a simple example.

11.9 Example Let us take (N(s), D(s)) = (±1, s2). Note that CG(P(N,D)) = 0 + i0.
First let us consider the case where N = 1 so that PK(s) = s2 +K. Since n−m = 2 we

expect there to be 2 roots that shoot off to infinity. According to Proposition 11.8(i), in the
limit as K →∞ these roots should behave like

√
Keπi/2 = i

√
K and

√
Ke3πi/2 = −i

√
K as

K gets large. Not only do the roots behave like this as K gets large, they are exactly given
by these expressions for all K!

When N = −1 we have PK(s) = s2 −K. In this case, Proposition 11.8(ii) predicts that
as K → ∞ the two roots of PK behave like

√
Keπi = −

√
K and

√
Ke2πi = +

√
K. Again,

these happen to be the exact values of the roots. Clearly we do not expect this to generally
be the case. •

Now let us consider what happens to those remaining m roots of PK as K varies.
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11.10 Proposition Let P(N,D) be a (N,D) polynomial family with {z1(K), . . . , zn(K)} the roots
of PK for K ≥ 0. Also denote {ζ1, . . . , ζm} as the roots for N . There exists distinct
j1, . . . , jm ∈ {1, . . . , n} so that for each k = 1, . . . ,m, the curve K 7→ zjk(K) is a continuous
curve starting from zjk(0) and satisfying limK→∞ zjk(K) = ζk.

Proof By part (i) of Lemma 11.4 we know that the curve K 7→ zj(K) is continuous for
every j = 1, . . . , n. Now fix k ∈ {1, . . . ,m} and suppose that the multiplicity of the root ζk
is `. Choose ε > 0 and let Γε be the circle of radius ε centred at ζk. Take ε sufficiently small
that there are no roots of N within Γε but zk. The number of zeros of PK within Γε is given
by the Principle of the Argument to be

1

2πi

∫

Γε

P ′K(s)

PK(s)
ds.

Using PK(s) = D(s) +KN(s) we compute

1

2πi

∫

Γε

P ′K(s)

PK(s)
ds =

1

2πi

∫

Γε

N ′(s)

N(s)
ds+

1

2πi

∫

Γε

1

K

D′(s)N(s)−D(s)N ′(s)

( 1
K
D(s) +N(s))N(s)

ds.

Since Γε is bounded, both polynomials N and D are bounded on Γε. Therefore, we may
choose K sufficiently large that 1

K
|D(s)| < |N(s)| for s ∈ Γε. Therefore we see that the

number of zeros of PK within Γε is given by `+δ where δ may be made as small as we please
by increasing K. Thus we conclude that for K sufficiently large, PK has ` zeros in Γε. As
this holds for all ε > 0, we conclude that ` zeros of PK limit to ζk as K → ∞. As this is
true for all roots ζk for N , this proves the proposition. �

Let us illustrate this proposition in another simple example.

11.11 Example We take (N(s), D(s)) = (s + 1, s2) so that PK(s) = s2 + Ks + K. Note that
CG(P(N,D)) = 1 + i0. Since n −m = 1 and N is monic, by part (i) of Proposition 11.8
we expect to see one of the roots approaching 1 +Keπi = 1−K as K →∞. The other root
should start at one of the roots for D and end up in the root ζ = −1 for N . We compute
the roots to be

−K
2
±
√

(K
2

)2 −K,
and the root-locus is shown in Figure 11.4. Note that one of the roots does indeed start
out at 0 + i0, a root for D, and moves continuously toward −1 + i0, a root for N . In the
root-locus of Figure 11.4, the path taken by this root is not unique. It can start at 0 + i0
and go down along the semi-circle, then turn right toward −1 + i0, or it can go up along the
other semi-circle, and then again turn right toward −1 + i0. Note that Proposition 11.10
does not preclude this ambiguity. Also, we see in Figure 11.4 that one of the roots is going
off to −∞ as predicted.

Let us see if we can verify the limiting behaviour analytically. For K large, both roots
of PK are real. Let us write

z1(K) = −K
2
−
√

(K
2

)2 −K, z2(K) = −K
2

+
√

(K
2

)2 −K
Note that

z1(K)− (1−K) = − 1 + K
2
−
√

(K
2

)2 −K

= − 1 + K
2
− (K

2
)
√

1− 4
K

= −1 + K
2
− (K

2
)
(
1− 1

2
4
K
− 1

8
( 4
K

)2 + · · ·
)

= 1
K

+ · · · ,
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Figure 11.4 Root locus for (N(s), D(s)) = (s+ 1, s2)

so that limK→∞(z1(K)− (1−K)) = 0 as desired. Similarly we have

z2(K)− (−1) = 1− K
2

+
√

(K
2

)2 −K

= 1− K
2

+ (K
2

)
√

1− 4
K

= 1− K
2

+ (K
2

)
(
1− 1

2
4
K
− 1

8
( 4
K

)2 + · · ·
)

= − 1
K

+ · · · ,
so that limK→∞(z2(K) − (−1)) = 0, as predicted. In both of these computations, we have
used the Taylor series for

√
1− x about x = 0. •

Now we wish to examine the way that the root-locus passes through certain points on
the root-locus. Let z0 ∈ RL(P(N,D)) so that z0 is a root of PK0 for some K0 ≥ 0. If
the multiplicity of z0 is one, then the root-locus passes differentiably through z0. Denote by
zi(K) that root for PK for which zi(K0) = z0. We define the arrival angle of RL(P(N,D))
at z0 to be the angle θa(z0) ∈ (−π, π] for which

lim
K↑K0

zi(K)− z0

K −K0

= αae
iθa(z0)

for some suitable αa > 0. This make precise the intuitive notion of arrival angle. Similarly,
the departure angle of RL(P(N,D)) at z0 is the angle θd(z0) ∈ (−π, π] for which

lim
K↓K0

zi(K)− z0

K −K0

= αde
iθd(z0)

for some suitable αd > 0. Since the root-locus is differentiable at z0, one can easily see that
we must have θd(z0) ∈ {θa(z0) + π, θa(z0) − π}. When z0 has multiplicity ` > 1, things are
not so transparent since there will be more than one arrival and departure angle. In this
case we have ` roots zj1(K), . . . , zj`(K) which can pass through z0 when K0. We may define
` arrival angles , θa,1(z0), . . . , θa,`(z0), by

lim
K↑K0

zi(K)− z0

K −K0

= αa,ke
iθa,k(z0), k = 1, . . . , `,
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for some suitable αa,1, . . . , αa,` > 0. Similarly, we may define ` departure angles,
θd,1(z0), . . . , θd,`(z0), by

lim
K↑K0

zi(K)− z0

K −K0

= αd,ke
iθd,k(z0), k = 1, . . . , `,

for some suitable αd,1, . . . , αd,` > 0. For any multiplicity of the root z0, let us denote by
Θa(z0) the collection of all arrival angles, and by Θd(z0) the collection of all departure
angles.

We are now ready to state the character of some of the arrival and departure angles,
namely the departure angles for the roots of D and the arrival angles for the roots of N . In
practice, these are the most helpful to know in terms of being able to produce the root-locus
for an (N,D)-polynomial family.

11.12 Proposition Let P(N,D) be an (N,D)-polynomial family and let {z1, . . . , zn} be the roots of
D and {ζ1, . . . , ζm} be the roots of N .

(i) If zj has multiplicity `, then Θd(zj) is the following collection of ` angles:

(a) if N is monic, take

θd,k(zj) =
1

`

( m∑

α=1

](zj − ζα)−
n∑

α=1
excluding zj

](zj − zα)− (2k − 1)π
)
, k = 1, . . . , `;

(b) if −N is monic, take

θd,k(zj) =
1

`

( m∑

α=1

](zj − ζα)−
n∑

α=1
excluding zj

](zj − zα)− 2kπ
)
, k = 1, . . . , `.

(ii) If ζj has multiplicity `, then Θa(ζj) is the following collection of ` angles:

(a) if N is monic, take

θa,k(ζj) =
1

`

( n∑

α=1

](ζj − zα)−
m∑

α=1
excluding zj

](ζj − ζα) + (2k − 1)π
)
, k = 1, . . . , `;

(b) if −N is monic, take

θd,k(ζj) =
1

`

( n∑

α=1

](ζj − zα)−
m∑

α=1
excluding ζj

](ζj − ζα) + 2kπ
)
, k = 1, . . . , `.

Proof Let us for convenience write PK = D −KeiθN and assume that N is monic. Thus,
we recover the monic cases for N and −N by taking θ = π and θ = 0, respectively. We then
write

D(s) =
n∏

j=1

(s− zj), N(s) =
m∏

j=1

(s− ζj). (11.4)

(i) For j ∈ {1, . . . , n}, let ` be the multiplicity of zj. For k ∈ {1, . . . , `} let zjk(K) be a
root of PK which approaches zj as K → 0. Note that

D(zjk(K))−KeiθN(zjk(K)) = 0 =⇒ KeiθN(zjk(K))

D(zjk(K))
= 1.
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Taking complex logarithms of both sides, using (11.4), we obtain

θ +
m∑

j=1

](s− ζj)−
n∑

j=1

](s− zj) = 2kπ

where k ∈ Z. Therefore,

`](s− zj) =
m∑

α=1

](s− ζα)−
n∑

α=1
excluding zj

](s− zα) + θ − 2kπ, k ∈ Z.

In the limit as K → 0, the result follows, noting the relation between θ and N or −N being
monic.

(ii) The argument is exactly as in part (i), except we let K →∞. �

Let us examine this again in an example.

11.13 Example (Example 11.11 cont’d) We again take (N(s), D(s)) = (s + 1, s2). In this case
we have a root z1 = 0 for D of multiplicity 2 and a root ζ1 = −1 for N of multiplicity 1.
Since N is monic, Proposition 11.12 predicts that

Θd(z1) = {−π
2
,−3π

2
}, Θa(ζ1) = {−π}.

This is indeed consistent with Figure 11.4. •
The next result tells us that we should expect to see certain parts of the real axis within

the root-locus.

11.14 Proposition Let P(N,D) be an (N,D)-polynomial family, and denote the roots of D by
{z1, . . . , zn} and the roots of N by {ζ1, . . . , ζm}.
(i) Suppose that N is monic and let x0 ∈ R ⊂ C. Then x0 ∈ RL(P(N,D)) if and only if

the set
{j | Re(zj) > x0} ∪ {j | Re(ζj) > x0}

has odd cardinality.2

(ii) Suppose that −N is monic and let x0 ∈ R ⊂ C. Then x0 ∈ RL(P(N,D)) if and only
if the set

{j | Re(zj) > x0} ∪ {j | Re(ζj) > x0}
has even cardinality.

Proof (i) First note that since the roots of PK come in complex conjugate pairs, roots with
nonzero imaginary part will always contribute an even number to the cardinality of the sets

{j | Re(zj) > x0}, {j | Re(ζj) > x0}.

Thus it suffices to consider only the sets

{j | zj real and zj > x0}, {j | ζj real and ζj > x0}
2The cardinality of a set S is simply the number of points in S.
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for odd cardinality. Let x0 ∈ R ∩ RL(P(N,D)). Then

D(x0) +KN(x0) = 1 =⇒ KN(x0)

D(x0)
= −1.

Taking complex logarithms, and using the fact that D and N can be written as in (11.4),
gives

m∑

j=1

](x0 − ζj)−
n∑

j=1

](x0 − zj) = (2k − 1)π (11.5)

for k ∈ Z. Clearly, the sums can be taken as being over real roots since the terms corre-
sponding to a complex root for N or D and its conjugate will cancel from (11.5). If the
cardinality of the set

{j | Re(zj) > x0} ∪ {j | Re(ζj) > x0}
is odd, then we will have

m∑

j=1

](x0 − ζj)−
n∑

j=1

](x0 − zj) = (2r − 1)π

for some r ∈ Z. Thus this part of the proposition follows.
(ii) The proof here goes just as in part (i), except that we write D(x0) − KN(x0) = 1

and assume N monic. �

As always, let us check the conclusions of the proposition on an example.

11.15 Example (Example 11.11 cont’d) We again take (N(s), D(s)) = (s + 1, s2). The roots of
D are {z1 = 0, z2 = 0} and the roots of N are {ζ1 = −1}. Thus, if x0 ∈ R ⊂ C, there are
an odd number of zeros for both D and N to the right of x0 is and only if x0 < −1. Then
Proposition 11.14 tells us that

RL(P(N,D)) ∩ R = {x+ i0 | x < −1}.

This is indeed consistent with Figure 11.4. •

11.2.2 The graphical method of Evans

Now we may present the graphical technique typically presented in classical texts for pro-
ducing the root-locus. This rather ingenious technique was that developed by Evans (1948,
1950). For us, this is simply a matter of applying the results of the preceding section, and
we shall only enumerate the steps one typically takes in such a construction.

11.16 Steps for making a plot of the root-locus Given: an (N,D)-polynomial family P(N,D).

1. Compute the roots {z1, . . . , zn} for D and place an X at the location of each root in C.

2. Compute the roots {ζ1, . . . , ζm} for N and place an O at the location of each root in C.

3. Compute the centre of gravity using (11.1) or Lemma 11.7.

4. Draw the n−m asymptotes using (11.2).

5. Use Proposition 11.14 to determine RL(P(N,D)) ∩ R.

6. Use Proposition 11.12 to determine how the root-locus departs from the roots of D.

7. Use Proposition 11.12 to determine how the root-locus arrives at the roots of N .
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8. If you are lucky, you can give a reasonable guess as to how the root locus behaves. For
filling in the gaps in a root-locus plot, a useful property of the root-locus is that it is
invariant under complex conjugation. •
The last step is in some sense the most crucial. It is possible that one can do the steps

preceding it, and still get the root-locus wrong. Some experience is typically involved in
knowing how a “typical” root-locus diagram looks, and then extrapolating this to a given
example. Thankfully, computers typically do a good job with producing root-locus plots.
These can run into problems when there are repeated roots of PK , however. Thus one should
check that a computer produced root-locus has the essential properties, mainly the correct
number of branches.

Let us go through the steps outlined above in an example to see how well it works.

11.17 Example We take (N(s), D(s) = (s+ 1, s4 + 6s3 + 14s2 + 16s+ 8).

1. The roots for D are {z1 = −2, z2 = −2, z3 = −1− i, z4 = −1 + i}.
2. The roots for N are {ζ1 = −1}.
3. CG(P(N,D)) = −5

3
.

4. The asymptotes are given by

α1 =
{
− 5

3
+ re

πi
3

∣∣ r ≥ 0
}

α2 =
{
− 5

3
+ reπi

∣∣ r ≥ 0
}

α3 =
{
− 5

3
+ re

5πi
3

∣∣ r ≥ 0
}
.

We show these asymptotes in Figure 11.5.

Figure 11.5 The asymptotes for (N(s), D(s) = (s + 1, s4 + 6s3 +
14s2 + 16s+ 8).
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5. The point on the real-axis which lie on the root-locus are those points x < −2.

6. The departure angles from the roots of D are

Θd(z1) = Θd(z2) = {0,−Pi}, Θd(z3) = {−π
2
}, Θd(z4) = {−3π

2
}.

These departure angles are shown in Figure 11.6

Figure 11.6 Departure angles from roots ofD(s) = s4+6s3+14s2+
16s+ 8 (left) and arrival angle from the roots of N(s) = s+ 1
(right).

7. The arrival angles from the roots of N are

Θa(ζ1) = {π}.

8. We play “connect the dots,” hoping that we will arrive at a decent approximation of
the actual root-locus. The actual root locus, along with the skeleton produced by our
procedure, is shown in Figure 11.7. Note that without the knowledge of which roots of
D go where as K →∞, it is in actuality difficult to know the details of the character of
the root locus. Nevertheless, in simple examples one can often figure out the character
of the root locus. •

11.3 Design based on the root-locus

The root-locus method can be thought of as a design technique. As such, it is most
useful for plants that can be stabilised using simple controllers. For such plants, the root-
locus method allows one to evaluate a one-parameter family of controllers by investigating
the root-locus plot as the parameter varies. This assumes that one can put the system into
a form where as the parameter varies we produce an (N,D)-polynomial family. We argued
in Section 11.1.1 that this can sometimes be done, although it will by no means always be
the case.
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Figure 11.7 The skeleton and the actual root-locus for
(N(s), D(s) = (s+ 1, s4 + 6s3 + 14s2 + 16s+ 8).

11.3.1 Location of closed-loop poles using root-locus

For systems that have simple enough behaviour, one can attempt to determine the quality
of the performance of the system based on the location of the transfer function poles in
the complex plane. For example, as we saw in Section 8.2, first and second-order transfer
functions have performance attributes that are easily related to pole locations. Sometimes
in practice one is able to design a controller that makes a system behave similarly to one of
these two simple transfer functions, so one can use them as a basis for control design. With
this as flimsy justification, we deal with interconnections like that depicted in Figure 11.8,
and make the following assumption.

r̂(s) K RL(s) ŷ(s)
−

Figure 11.8 Interconnection for investigating closed-loop pole lo-
cations

In this section we will assume that the closed-loop interconnection of Figure 11.8
is designed so that for some values of K, the closed-loop transfer function is
stable, and has a pair of complex conjugate poles whose real part is larger than
that of all other poles. We call these complex conjugate poles the dominant
poles.
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The idea is that we pretend the dominant poles allow us to think of the closed-loop system
as being second-order, and we base our choice of K on this consideration. In practice, one
may wish to find a second-order transfer function that well approximates the system by, say,
matching Bode plots as best one can.

Our approach is to carefully observe the relationship between system performance and
pole location for second-order transfer functions. Thus we let

Tζ,ω0(s) =
ω2

0

s2 + 2ζω0s+ ω2
0

.

For this transfer function, let us list some of the more important performance measures,
some approximately, in terms of the parameters ζ and ω0.

11.18 Performance measures for second-order transfer functions Consider the transfer function Tζ,ω0 .

1.

11.3.2 Root sensitivity in root-locus

See Bishop and Dorf.

11.4 The relationship between the root-locus and the Nyquist contour

It turns out that there are some rather unobvious connections between the root-locus
and the Nyquist contour. This is explained in a MIMO setting in [MacFarlane 1982], and cite info

we only look at the SISO case here.

11.4.1 The symmetry between gain and frequency

We begin with a proper rational function R with c.f.r. (N,D) and canonical minimal real-
isation Σ = (A, b, ct,D). We next place R, represented by its canonical minimal realisation,
into a positive feedback loop with feedback gain k−1 as shown in the upper block diagram
in Figure 11.9. There are a few things to note here: (1) there is no negative sign where the
feedback enters the summer with the reference r, (2) except for the sign, the block diagram
is the same as that for static output feedback as studied in Section 6.4.2, and (3) the top
block diagram in Figure 11.9 is equivalent to the bottom block diagram in the same figure.
The second of these block diagrams has the advantage of making apparent a symmetry that
exists between the parameter s and the parameter k. It is this symmetry which we study
here.

Let us write

K(s) = ct(sIn −A)−1b+D ∈ R(s)1×1

S(k) = ct(kI1 −D)−1b+A ∈ R(k)n×n.

The following lemma tells us how we should interpret these matrices of rational functions.

11.19 Lemma The following statements hold:

(i) K(s) is the open-loop transfer function from r to y for the uppermost block diagram
in Figure 11.9, i.e., the transfer function if the feedback loop is snipped;

(ii) S(k) is the “A-matrix” for the closed-loop system in Figure 11.9, i.e., if the closed-loop
transfer function has canonical minimal realisation Σ̃ = (Ã, b̃, c̃t, D̃), then Ã = S(k).
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r̂(s) b (sIn −A)−1 ct ŷ(s)

D

k−1

r̂(s)

b

(sIn −A)−1

ct

ŷ(s)(kI1 −D)−1

Figure 11.9 Equivalent block diagrams for studying the relation-
ship between the root-locus and the Nyquist contour

Proof The first assertion is clear. The second follows from the same computations that gave
the closed-loop system under static output feedback in Section 6.4.2. �

Note that the closed-loop system is internally stable if and only if spec(S(k)) ⊂ C−.
We wish to understand a similar relationship between closed-loop stability and K(s). The
following lemma gives us the essence of this relationship

11.20 Lemma If s ∈ C\spec(A) and k ∈ C\spec(D), then the following statements are equivalent:

(i) det(sIn − S(k)) = 0;

(ii) det(kI1 −K(s)) = 0.

Proof First note that if s and k are as hypothesised, then S(k) and K(s) are well-defined.
Since Σ is assumed controllable and observable, the poles of the closed-loop transfer func-
tion for the system in Figure 11.9 are exactly the eigenvalues of S(k), as a consequence of
Lemma 11.19(ii). However, the closed-loop transfer function is

k−1K(s)

1− k−1K(s)
=

K(s)

kI1 −K(s)
,

giving the lemma. �

From this we have as a consequence the test for closed-loop stability in terms of K(s).

11.21 Corollary spec(S(k)) ⊂ C− if and only if spec(K(s)) ⊂ C−.

Proof The closed-loop system of Figure 11.9 is BIBO stable if and only if spec(S(k)) ⊂ C−
if and only if the poles of the closed-loop transfer function lie in C−. The result then follows
from Lemma 11.20. �
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What we have done to this point how the gain k ∈ C and the frequency s ∈ C have a
symmetric relationship in determining the closed-loop stability of the system in Figure 11.9.
Now let us see how this investigation bears fruit.

11.4.2 The characteristic gain and the characteristic frequency functions

What we saw in the preceding discussion was that the two meromorphic functions

Fk(s) = det(sIn − S(k)) ∈ R(s)

Fs(k) = det(kI1 −K(s)) ∈ R(k).

With this as motivation we have the following result giving us the precise manner in which
the gain and frequency are related. First we make two important definitions. To do so, the
reader will wish to recall our discussion in Section D.5 on algebraic functions and Riemann
surfaces.
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Exercises

E11.1 Let P(N,D) = {D +KN | K ≥ 0} be a (N,D)-polynomial family.

(a) Show that there exists RL ∈ R[s] so that the closed-loop characteristic polyno-
mial for the interconnection of Figure 11.1 is D + KN . Explicitly give RL in
terms of N and D.

(b) Provide RL for the (N,D)-polynomial family of Example 11.1–3.

In Section 11.1.1 we saw that the problem of static output feedback leads naturally to
a (N,D)-polynomial family. In the next exercise, you will show that the converse also
happens, i.e., that a (N,D)-polynomial family leads naturally to a static output feedback
problem.

E11.2 Let P(N,D) = {D+KN | K ≥ 0} be a (N,D)-polynomial family. Show that there
exists a SISO linear system Σ = (A, b, ct,D) so that the closed-loop characteristic
polynomial for the static output feedback interconnection of Figure E11.1 is exactly

r̂(s) b (sIn −A)−1 ct ŷ(s)

D

x0

−

K

Figure E11.1 Static output feedback and (N,D)-polynomial fam-
ilies

PK .

E11.3 Prove part (ii) of Lemma 11.4 using the implicit function theorem.

The development of the root-locus properties for an (N,D)-polynomial family assumed that
deg(N) < deg(D). It is also possible to proceed when confronted with the case when
deg(N) > deg(D).

E11.4 Let N,D ∈ R[s] and assume that D is monic, that either N or −N is monic, and
that deg(N) > deg(D). Define

P̃(N,D) = {D +KN | K ≥ 0},

PK = D +KN , and let

R̃L(P̃(N,D)) = {z ∈ C | PK(z) = 0 for some K ≥ 0}.

Show that there exists Ñ, D̃ ∈ R[s] satisfying the conditions of Definition 11.2 so
that RL(P(Ñ, D̃)) = R̃L(P̃(N,D)).
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E11.5 Let Σ = (A, b, ct,01) where

A =




0 1 0
0 0 1
0 0 0


 , b =




0
0
1


 , c =

[
1
−1 1

]
.

Show using root-locus method that it is not possible to stabilise the system using
static output feedback.
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Chapter 12

Ad hoc methods II: Simple frequency response
methods for controller design

In Chapter 7 we introduced a frequency domain technique, the Nyquist criterion, for
studying closed-loop stability. The stability margins introduced in Section 7.2 suggest that
the frequency domain techniques may be useful in control design, as they offer tangible
objectives for the properties of the closed-loop system. The design ideas we discuss in this
chapter are essentially ad hoc, but are frequently useful in situations where controller design
is not essentially difficult—at least as concerns obtaining closed-loop stability—but where
one would like guidance in improving the performance of a controller. The methods we use
in this chapter fall under the broad heading of loop shaping , as the objective is to shape
the Nyquist plot to have desired properties. In this chapter the emphasis is on choosing a
priori a form for the controller, then using the design methodology to improve the closed-
loop response. In Chapter 15, the design method does not assume a form for the controller,
but rather the form of the controller is decided upon by the objectives of the problem.

Contents
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12.1 Compensation in the frequency domain

The discussion of the previous few sections has focused on analysis of closed-loop systems
using frequency domain techniques. In this discussion, certain key contributors to stability
were identified, principally gain and phase margin. Faced with a plant transfer function
RP , one will want to design a controller rational function RC which has certain desirable
characteristics. The term compensation is used for the process of designing a controller
rational function, reflecting the fact that one is “compensating” for deficiencies in the innate
properties of the plant. In Section 6.5 we investigated the PID controller, and discussed some
of its properties. In this section we introduce another class of controller transfer functions
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which are useful in shaping the frequency response. We also discuss PID compensation in a
manner slightly different from our previous discussion.

12.1.1 Lead and lag compensation

The first type of compensation we look at deals essentially with the manipulation of the
phase of the closed-loop system.

12.1 Definition A lead/lag compensator is a rational function of the form

RC(s) =
K(1 + ατs)

1 + τs

for K,α, τ ∈ R with α 6∈ {0, 1} and K, τ 6= 0. It is a lead compensator when |α| > 1 and
a lag compensator when |α| < 1. •
Note that any rational function of the form A s+z

s+p
can be put into the form of a lead/lag

compensator by defining

τ =
1

p
, α =

p

z
, K =

A

α
.

The form for the lead/lag compensator as we define it is convenient for analysing the nature
of the compensator, as we shall see.

The following result gives the essential properties of a lead/lag compensator.

12.2 Proposition If RC(s) = 1+ατs
1+τs

is a lead/lag compensator then, with HC(ω) = RC(iω), the
following statements hold:

(i) limω→0]HC(ω) = 0;

(ii) (a) limω→∞]HC(ω) = 0 if α > 0;

(b) limω→∞]HC(ω) = 180◦ if α < 0 and τ < 0;

(c) limω→∞]HC(ω) = −180◦ if α < 0 and τ > 0;

(iii) limω→0|HC(ω)| = 0dB;

(iv) limω→∞|HC(ω)| = 20 logαdB;

(v) for α > 0, the function ω 7→ |]HC(ω)| achieves its maximum at ωm = (|τ |√α)−1, and
this maximum value is φm = arcsin α−1

α+1
. Furthermore,

(a) if α > 1, ]HC(ω) has a maximum at ωm and the maximum value is between 0◦

and 90◦, and

(b) if α < 1, ]HC(ω) has a minimum at ωm and the minimum value is between −90◦

and 0◦;

(vi) |HC(ωm)| = √α.

Proof (i) This is evident since limω→0HC(ω) = 1.
(ii) In this case, the assertion follows since limω→∞HC(ω) = ατ

τ
. Keeping track of the

signs of the real and imaginary parts gives the desired result.
(iii) This follows since limω→0HC(ω) = 1.
(iv) This is evident since limω→∞HC(ω) = α.
(v) We compute

Re(HC(ω)) =
1 + ατ 2ω2

1 + τ 2ω2
, Im(HC(ω)) =

τω(α− 1)

1 + τ 2ω2
,
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so that
]HC(ω) = ]

(
τω(α− 1) + i(1 + ατ 2ω2)

)
.

In differentiating this with respect to ω, we need to take care of the various branches of
arctan. Let us first consider τ > 0 and α > 1 so that

]HC(ω) = arctan
τω(α− 1)

1 + ατ 2ω2
.

Differentiating this with respect to ω gives

d]HC(ω)

dω
=
τ(α(1 + τ 2ω2 − ατ 2ω2)− 1)

(1 + τ 2ω2)(1 + α2τ 2ω2)
,

which has a zero at ω =
√
ατ 2

−1
. If τ > 0 and α < 1, let us define β = 1

α
so that

]HC(ω) = arctan
τω(1− 1

β
)

1 + 1
β
τ 2ω2

.

Differentiating this with respect to ω gives

d]HC(ω)

dω
=
τ(β(1 + τ 2ω2 − β)− τ 2ω2)

(1 + τ 2ω2)(β2 + τ 2ω2)
,

which has a zero at ω =
√
β√
τ2

. The computations are the same for τ < 0, except that the
phase angle has the opposite sign. One may also check that the second derivative is not zero
at ω = 1√

α|τ | , and so the function must have a maximum or minimum at this frequency. A

straightforward substitution gives

tanφm =
α− 1

2
√
α
.

If α > 1 this angle is positive, and if α < 1 it is negative. That the value is bounded in
magnitude by 90◦ is a consequence of the maximum argument of 1 + iατω being 90◦ for
τ > 0 and the minimum argument of (1 + iτω)−1 being −90◦ for τ > 0. A similar statement
holds for τ < 0. To get the final form for φm given in the statement of the proposition, we
recall that if tan θ = x then sin θ = x√

1+x2 . Taking x = tanφm gives the result.

(vi) This is a simple matter of substituting the expression for ωm into HC(ω). �

12.3 Remarks

1. One sees from part (v) of Proposition 12.2 why the names lead and lag compensator are
employed. For a lead compensator with α, τ > 0 the phase angle has a frequency window
in which the phase angle is increased, and similarly for a lag compensator with α, τ > 0
there is a frequency window in which the phase is decreased.

2. A plot of the maximum phase lead φm for α > 1 is shown in Figure 12.1. When α < 1
we can define β = 1

α
and then see that

φm = − arcsin
β − 1

β + 1
.

Therefore, to determine the maximum phase lag when α < 1, one can reads off the phase
angle from Figure 12.2 at 1

α
, and changes the sign of the resulting angle.

Note that the equation sinφm = α−1
α+1

can be solved for α given φm, and the result is

α =
1 + sinφm
1− sinφm

. (12.1)
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Figure 12.1 Maximum phase shift versus α for lead compensator
and versus 1

α for lag compensator

3. Although in Proposition 12.2 we have stated the characterisation of lead/lag compen-
sators in fairly general terms, typically one deals with the case when α, τ > 0.

4. If one plots the Bode plot for a lead/lag compensator by hand using the methods of
Section 4.3.2, there are two break frequencies, one at ω1 = 1

τ
and another at ω2 = 1

ατ
.

Depending on whether the compensator is lead or lag, one or the other of these frequencies
will be the smaller. In either case, the geometric mean of these two break frequencies is, by
definition,

√
ω1ω2 which is equal to ωm. On a Bode plot for the lead/lag compensator we

therefore have logωm = 1
2
(logω1 + logω2), showing that on the Bode plot, the maximum

phase shift occurs exactly between the two break frequencies.

5. The behaviour of the magnitude portion of the frequency response at ωm is also nice on
a Bode plot. By (vi) the magnitude at ωm is 20 log

√
α = 10 logα, and so is half of the

limiting value of the magnitude as ω →∞. •
Let us look at some simple examples of lead/lag compensators. We illustrate the various

things which can happen when choosing parameters in the compensator. But do keep in
mind that one normally uses a lead/lag compensator with τ > 0, and either 0 < α < 1 (lag
compensator) or α > 1 (lead compensator).

12.4 Examples

1. We look at a lead compensator with transfer function

RC(s) =
1 + 10s

1 + s
,

meaning that τ = 1 and α = 10. Based on Proposition 12.2 and Remark 12.3–4, it is
actually easy to guess what the Bode plot for this transfer function will look like. The
two break frequencies are ω1 = 1 ad ω2 = 1

10
. Thus the maximum phase lead will occur

at logωm = 1
2
(log 1 + log 1

10
) = −1

2
. The magnitude part of the Bode plot will start at

0dB and turn up at about logω = −1 until it reaches logω = 0 where it will level off at
20dB. Given that α = 10, from Figure 12.1 we determine that the maximum phase lead
is about 55◦ (the calculation gives φm ≈ 54.9◦). The actual Bode plot can be found in
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Figure 12.2 Bode plots for a lead compensator RC(s) = 1+10s
1+s

(left) and lag compensator RC(s) =
1+ 1

10
s

1+s (right)

Figure 12.2. One should note that the maximum phase shift does indeed occur between
the two break frequencies, for example.

2. Here we take the lag compensator

RC(s) =
1 + 1

10
s

1 + s
,

so that τ = 1 and α = 1
10

. Here on determines that the two break frequencies are ω1 = 1
and ω2 = 10. Thus logωm = 1

2
(log 1 + log 10) = 1

2
. The magnitude portion of the Bode

plot will start at 0dB and turn down at logω = 0 until it reaches logω = 1 where it levels
off at −20dB. The maximum phase lag can be determined from Figure 12.1. Since α < 1
we need to work with 1

α
which is 10 in this case. Thus, from the graph, we determine that

the maximum phase lag is about −55◦. The actual Bode plot is shown in Figure 12.2. •

12.1.2 PID compensation in the frequency domain

We now look at how a PID controller looks in the frequency domain. First we need to
modify just a little the type of PID controller which we introduced in Section 6.5.

12.5 Definition A PID compensator is a rational function of the form

RC(s) =
K

s
(1 + TDs)

(
s+ 1

TI

)
(12.2)

for K,TI , TD > 0. •
If we expand this form of the PID compensator we get

RC(s) = K
(

1 +
TD
TI

+
1

TIs
+ TDs

)
,

and this expression is genuinely different from the PID compensator we investigated in
Section 6.5. However, the alteration is not one of any substance (the difference is merely
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a constant factor K TD
TI

), and it turns out that the form (12.2) is well-suited to frequency
response methods.

The following result gives some of the essential features of the transfer function RC in
(12.2).

12.6 Proposition Let RC be a PID compensator of the form (12.2) and define HC(ω) = RC(iω)
for ω > 0. The following statements hold:

(i) limω→0 ω|HC(ω)| = K
TI

;

(ii) limω→∞
1
ω
|HC(ω)| = KTD;

(iii) limω→0]HC(ω) = −90◦;

(iv) limω→∞]HC(ω) = 90◦;

(v) the function ω 7→ |HC(ω)| has a minimum of K TD+TI
TI

at ωm =
√
TDTI

−1
;

(vi) ]HC(ωm) = 0;

Proof The first four assertions are readily ascertained from the expression

RC(s) = K
(

1 +
TD
TI

+
1

TIs
+ TDs

)

for PID compensator. The final two assertions are easily derived from the decomposition

HC(ω) =
K

TI

(
(TD + TI) + i

TDTIω
2 − 1

ω

)

of HC(ω) into its real and imaginary parts, and then differentiating the magnitude to find
extrema. �

12.7 Remarks

1. The frequency ωm at which the magnitude of the frequency response achieves its minimum
is the geometric mean of the frequencies 1

TD
and 1

TI
. Thus on a Bode plot, this minimum

will occur at the midpoint of these two frequencies.

2. If one redefines a normalised frequency ω̃ = TIω and a normalised derivative time T̃D =
TD
TI

, the frequency response for a PID compensator, as a function of the normalised
frequency, is given by

HC(ω) = K
(
T̃D + 1) + i

T̃Dω̃
2 − 1

ω̃

)
.

This identifies the normalised derivative time and the gain K as the essential parameters
in describing the behaviour of the frequency response of a PID compensator. Of these,
of course the dependence on the gain is straightforward, so it is really the normalised
derivative time T̃D = TD

TI
which is most relevant. •

We have a good idea of what the Bode plot will look like for a PID compensator based
on the structure outline in Proposition 12.6. Let’s look at two “typical” examples to see how
it looks in practice.
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Figure 12.3 The Bode plots for a PID compensator with K = 1,
TD = 1, and TI = 10 (left) and with K = 1, TD = 10, and
TI = 1 (right)

12.8 Example In each of these examples, we take K = 1 since the effect of changing K is merely
reflected in a shift of the magnitude Bode plot by logK.

1. We take TD = 1 and TI = 10. In this case, Proposition 12.6 tells us that the magnitude

Bode plot will have its minimum at ωm =
√

10
−1

or logωm = −1
2
. The value of the

minimum will be TD+TI
TI

= 11
10

. At the frequency ωm, the phase will be zero. Below this
frequency the phase is negative and above it the phase is positive. Putting this together
gives the frequency response shown in Figure 12.3.

2. Now we take TD = 10 and TI = 1. Again we have ωm =
√

10
−1

. The magnitude Bode

plot has its minimum at ωm =
√

10
−1

and the value of the minimum is TD+TI
TI

= 11. At
the frequency ωm the phase is 0◦, and it is negative below this frequency and positive
above it. The Bode plot is shown in Figure 12.3. •

12.2 Design using controllers of predetermined form

In this section we indicate how the procedures of the preceding sections can be helpful
in controller design. The basic idea of the frequency response methods we discuss here are
that one designs controllers which do various things to the system’s frequency response, and
so alter both the Bode plot for the loop gain as well as the Nyquist plot. The technique of
using the frequency response to design a controller is called loop shaping since, as we shall
see, the idea is to shape the Nyquist plot to have a shape we like.

In Sections 12.2.2 and 12.2.3 we discuss ways to design controller rational functions which
shape the Nyquist contour, or equivalently the Bode plot, to have desired characteristics.
Let us begin, however, with a simple design situation where one wants to determine the
effects of adjusting a gain.



470 12 Ad hoc methods II: Simple frequency response methods for controller design 2016/09/21

12.2.1 Using the Nyquist plot to choose a gain

We work with the unity gain feedback setup of Figure 6.21 which we reproduce here
in Figure 12.4. In this scenario, we have chosen RC (perhaps it is a PID controller) and

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 12.4 Closed-loop system

we wish to tune the gain K. To determine whether a given gain K produces an IBIBO
stable closed-loop system, we could, for example, plot the Nyquist contour for the loop gain
RL = KRCRP . However, if we have to do this for very many gains, it might get a bit
tedious. The following result relieves us of this tedium.

12.9 Proposition For the closed-loop interconnection of Figure 12.4, define RL = RCRP , and let
R, r > 0 be selected so that the (R, r)-Nyquist contour is defined. Then, for K 6= 0, the
number of encirclements of −1 + i0 by the (R, r)-Nyquist contour for KRL is equal to the
number of encirclements of − 1

K
+ i0 by the (R, r)-Nyquist contour for RL.

Proof A point s ∈ C is on the (R, r)-Nyquist contour for KRL if and only if 1
K
s is on the

(R, r)-Nyquist contour for RL. That is, the (R, r)-Nyquist contour for KRL is the (R, r)-
Nyquist contour for RL scaled by a factor of K. From this the result follows. If K < 0
the result still holds as the (R, r)-Nyquist contour for KRL is reflected about the imaginary
axis. �

This result allows one to simply plot the Nyquist contour for RCRP , and then determine
stability for the closed-loop system with gain K merely by counting the encirclements of
− 1
K

+ i0. The following example illustrates this.

12.10 Example Let us look at the open-loop unstable system with RP (s) = 1
s−1

, and we wish
to stabilise this using a proportional controller, i.e., RC(s) = 1. Let us use the Nyquist
criterion to determine for which values of the gain the closed-loop system is stable. The
Nyquist contour for RL(s) = RC(s) = RP (s) = 1

s−1
is shown in Figure 12.5. Since the loop

gain has 1 pole in C+, by Proposition 12.9, for IBIBO stability of the closed-loop system we
must have one counterclockwise encirclement of − 1

K
+ i0, provided K 6= 0. From Figure 12.5

we see that this will happen if and only if K > 1.
Of course, we can determine this directly also. The closed-loop transfer function is

TL(s) =
KRL(s)

1 +KRL(s)
=

K

s+K − 1
.

The Routh/Hurwitz criterion (if you wish to hit this with an oversized hammer) says that
we have closed-loop IBIBO stability if and only if K > 1. •
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Figure 12.5 Stabilising an open-loop unstable system using the
Nyquist criterion

12.2.2 A design methodology using lead and integrator compensation

In the previous section we assumed that we had in hand the nature of the controller
we would be using, and that the only matter to account for was the gain. In doing this,
we glossed over how one can choose the controller rational function RC . There are, in
actuality, many ways in which one can use PID control elements, in conjunction with lead/lag
compensators, to make a frequency response look like what we need it to look like. We shall
explore just a few design methodologies, and these can be seen as representative of how one
can approach the problem of controller design.

We look at a methodology which first employs a lead compensator to obtain a desired
phase margin for stability, and then combines this with an integrator for low frequency
performance and disturbance rejection. The rough idea is described in the following “algo-
rithm.”

12.11 A design methodology Consider the closed-loop system of Figure 12.6. To design a controller

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 12.6 Closed-loop system for loop shaping

transfer function RC , proceed as follows.

(i) Select a gain crossover frequency for your system. This choice of frequency is based
upon requirements for transient response since larger gain crossover frequencies are
related to shorter rise times. One cannot expect to specify an arbitrary gain crossover
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frequency, however. The bandwidth of a system will be limited by the bandwidth of
the system components.

(ii) Design a phase lead controller rational function RC,1 so that the closed-loop system
will meet the phase and gain margin requirements.

(iii) Use phase lag compensation or integral control to boost the low frequency gain of the
controller transfer function. These terms will assist in the tracking of step inputs, and
the rejection of disturbances. Take care here not to degrade the stability of the system.

(iv) Should the plant not have sufficient attenuation at high frequencies, add a term which
“rolls off” at high frequencies to alleviate the systems susceptibility to high frequency
noise. Most plants will have sufficient attenuation at high frequencies, however. •

We can illustrate this design methodology with an example. Although this example is
illustrative, it is simply not possible to come up with a design methodology, or an example,
which will work in all cases.

12.12 Example We consider the problem of controlling a mass in space in the absence of gravity.
We again suppose that the motive force is applied through a propeller, as in Example 6.60.
The governing differential equations are

mÿ(t) = f(t) + d(t),

where f is the input force from the propeller, and d(t) is a disturbance force on the system.
In the Laplace transform domain, the block diagram is as depicted in Figure 12.7. In this

r̂(s) RC(s)
1

ms2
ŷ(s)

−

d̂(s)

f̂(s)

Figure 12.7 Block diagram for controller design for mass

example we fix m = 1. Let us suppose that we have determined that a respectable value
for the gain crossover frequency is ωgc (in stating this, we are implicitly assuming that we
will have just one gain crossover frequency). For suitable stability we require that the phase
margin for the system be at least 40◦. We also ask that the system have zero steady-state
error to a step disturbance.

Now we can go about ascertaining how to employ our design methodology to obtain the
specifications. First we look at the Bode plot for the plant transfer function RP (s) = 1

ms2
.

This is shown in Figure 12.8. At the gain crossover frequency ωgc = 10rad/ sec (i.e., logωgc =
1), the phase of the plant transfer function is 180◦. Indeed, the phase of the plant transfer
function is 180◦ for all frequencies. To get the desired phase margin, we employ a lead
compensator. Indeed, we should choose a lead compensator which gives us the phase margin
we desire, and hopefully with some to spare. We need a minimum phase lead of 40◦, and
from (12.1) we can see that this means that α ≥ 1+sin 40

1−sin 40
≈ 4.60. Let us be really conservative

and choose α = 20. Now, we not only need for the phase shift to be at least 40◦, we need it to
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Figure 12.8 Plant Bode plot for mass system

exceed this value at a specific frequency. But Proposition 12.2 tells us how to manage this:
we need to specify ωm. We have ωm = (|τ |√α)−1, and solving this for τ with α = 20 and
ωm = 10 gives τ = 1

20
√

5
≈ 0.022. We have been sufficiently conservative with our choice of

α that we can afford to make τ a nice number, so let’s take τ = 1
50

. With this specification,
the lead compensator is

RC,1(s) =
1 + 2s

1 + 1
50
s
.

Let’s evaluate where we are for the moment. In Figure 12.9 we give the Nyquist and Bode

Figure 12.9 The (100, 0.25)-Nyquist contour and the Bode plot for
mass and lead compensator

plots for RC1RP . From the Nyquist plot we see that there are no encirclements of −1 + i0,
and so the system is IBIBO stable. From the Bode plot, we see that the phase is about −105◦
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(about −104.2◦ to be more precise) at ωgc, which gives a phase margin of about 75◦, well
in excess of what we need. There is a problem at the moment, however, in that the desired
gain crossover frequency is, in fact, not a gain crossover frequency since the transfer function
has less magnitude than we desire at ωgc. We can correct this by boosting the gain of the
lead compensator. The matter of just how much to boost the gain is easily resolved. At
ω = ωgc, from the Bode plot of Figure 12.9 we see that the magnitude is about −15dB (about
−14.1dB to be more precise). So we need to adjust K so that 20 logK = 15 or K ≈ 5.62.
Let us take K = 51

2
. The Nyquist and Bode plots for the gain boosted led compensator are

provided in Figure 12.10. Also note from the Bode plot that the magnitude is falling off at

Figure 12.10 The (100, 0.25)-Nyquist contour and the Bode plot
for mass and lead compensator with increased gain

40dB/decade, which means that the system is type 2 by Proposition 8.14. Therefore this
system meets our objective to track step inputs. In Figure 12.11 we plot the response of the

Figure 12.11 Step response of mass with lead compensator
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closed-loop system to a unit step input which we obtained by using Proposition 3.40. Note
that the error decays to zero as predicted.

Let’s now look at how the system handles step disturbances since we have asked that these
be handled gracefully (specifically, we want no error to step disturbances). In Figure 12.12
we display the response of the system to a unit step disturbance (no input). Clearly this is

Figure 12.12 Step disturbance response of mass with lead compen-
sator

not satisfactory, given our design specifications. To see what is going on here, we determine
the transfer function from the disturbance to the output to be

Td(s) =
RP (s)

1 +RC,1(s)RP (s)
.

We compute

lim
s→0

Td(s) =
1

lims→0
1

RP (s)
+ lims→0RC,1(s)

=
1

lims→0RC,1(s)
= 1,

and so the system has disturbance type 0 with respect to this disturbance. This is not
satisfactory for the purpose of eliminating error resulting from a step input, so we need to
repair this in some way. As we have seen in the past, a good way to do this is to add an
integrator to the controller transfer function. Let’s see how this works. We work with the
new controller rational function

RC,2(s) =
KI

s
+

1 + 2s

1 + 1
10
s
.

First note that lims→0RC,2(s) =∞ and so this immediately means that the system type with
respect to the disturbance is at least 1 (and is in fact exactly 1). We look to ascertain how
changing the integrator gain KI affects system stability. In Figure 12.13 the Bode plots are
shown for various values of KI . We can see that, as expected since an integrator will decrease
the phase, the phase margin becomes worse as KI increases. What’s more, one can check the
Nyquist criterion to show that the system is in fact unstable for K sufficiently large. Thus
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Figure 12.13 Bode plots for mass with lead and integrator com-
pensation: KI = 1

10 (top left), KI = 10 (top right), and
KI = 100 (bottom)

we choose a not too large integrator gain of KI = 1
10

. Let’s see how this choice of controller
performs. First, in Figure 12.14 we display the step response (no disturbance) of the system
with the integrator added to the controller. Note that the overshoot and the settling time
have increased from the situation when we simply employed the lead compensator, but may
be considered acceptable. If they are not, then one should iterate the design methodology
until satisfactory performance is achieved. Also in Figure 12.14 we display the response of
the system to a step disturbance (no input). Note that this response ends up at zero as we
have ensured by designing the controller as we have done. The decay of the effect of the
error is quite slow, however. One may wish to improve this by increasing the integrator gain.

Now that we have added the integrator to reject disturbances, we need to ensure that
the other performance specifications are still met. A look at Figure 12.13 shows that our
gain crossover frequency has decreased. We may wish to repair this by further boosting the
gain on the lead compensator. •
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Figure 12.14 Step response of mass (top) and response to step
disturbance (bottom) with lead and integrator compensation

This example, even though simple, shows some of the tradeoffs which must take place in
designing a controller to meet sometimes conflicting performance requirements.

12.2.3 A design methodology using PID compensation

Let’s see in this section how one can employ a PID controller in a systematic way in the
frequency domain to obtain a desired response. The rough idea of PID design is outlined as
follows.

12.13 A design methodology Consider the closed-loop system of Figure 12.6. To design a controller
transfer function RC , proceed as follows.

(i) Select a gain crossover frequency consistent with the demands for quick response and
the limitations of the system components.

(ii) Commit to TI being quite a bit larger than TD.

(iii) Adjust TD so that the phase margin requirements are met.

(iv) Adjust K so that the gain crossover frequency is as desired. •
Let us illustrate this in an example.



478 12 Ad hoc methods II: Simple frequency response methods for controller design 2016/09/21

12.14 Example (Example 12.12 cont’d) We again take the plant transfer function

RP (s) =
1

ms2
.

The Bode plot for this transfer function is reproduced in Figure 12.15. We suppose that we

Figure 12.15 Plant Bode plot for mass system

are given the criterion of having a phase margin of at least 65◦ at as high a gain crossover
frequency as possible.

Let us decide to go with TD
TI

= 1
5
. In order to achieve the prescribed phase margin,

we must use the PID compensator to produce a phase for the loop gain RCRP which is
somewhere negative and greater than −115◦. Note that given the relative degree of the
plant and the PID controller, the phase for large frequencies will approach −90◦. The

contribution to the phase made by the controller changes sign at ωm =
√
TDTI

−1
. Given

our choice of TD
TI

= 1
5
, this means that ωm = 1√

5
T−1
D . Thus choosing a large derivative time

will decrease the frequency at which the phase becomes negative. In Figure 12.16 we show
the situation for TD = 1

5
and TD = 2. For the smaller value of TD, we see that the phase

margin requirements are met at a quite high frequency (around 20rad/ sec). However, a
peek at the Nyquist contour for TD = 1

5
shows that there are 2 clockwise encirclements of

−1 + i0. Since RCRP has no poles in C+, this means the system is not IBIBO stable for the
given PID parameters. When the derivative time is TD = 2, the phase requirement is met
at roughly 2rad/ sec, but now the Nyquist contour is predicting IBIBO stability. Thus we
see that we should expect there to be a tradeoff between stability and performance in this
design methodology. Let us fix TD = 1 (and hence TI = 5), for which we plot the Bode plot
and Nyquist contour in Figure 12.17.

We now choose the gain K in order to make the gain crossover frequency large. From
Figure 12.17 we see that when the phase is −115◦ the frequency is roughly given by logω =
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Figure 12.16 Effect of varying PID derivative time for RP = 1
s2

:
TD = 1

5 (left) and TD = 2 (right). In both cases K = 1 and
TI = 5TD, and Nyquist plots are on top and Bode plots are on
the bottom

0.5, so we take ωgc = 100.5 ≈ 3.16. At this frequency the magnitude of the frequency response
is about −10dB. Thus we need to choose K so that 20 logK = 10, or K ≈ 3.16. Let’s make
this K = 31

4
so that our final controller is given by

RC(s) =
31

4

s
(1 + TDs)

(
s+ 1

TI

)
.

The Bode and Nyquist plots for the corresponding loop gain are shown in Figure 12.18.
From the Nyquist plot we see that the system is IBIBO stable, and we also see that out
phase margin requirements are satisfied.

In Figure 12.19 is the response of the system to a unit step input. We may also compute
the effect of a disturbance entering between the controller and the plant. The corresponding
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Figure 12.17 Nyquist plot (left) and Bode plot (right) for mass
with PID controller and K = 1, TD = 1, and TI = 5

Figure 12.18 Nyquist plot (left) and Bode plot (right) for mass
with PID controller and K = 31

4 , TD = 1, and TI = 5

transfer function is

Td(s) =
RP (s)

1 +RC(s)RP (s)
=

s

s3 + 31
4
s2 + 3 9

10
s+ 13

20

,

and the response to a unit step is shown in Figure 12.20. •
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Figure 12.19 Step response of mass with PID controller

Figure 12.20 Unit step disturbance of mass with PID controller

12.2.4 A discussion of design methodologies

The above examples give an idea of how one can use ideas of frequency response in
designing controller rational functions. Indeed, it is interesting to compare the examples
since they use the same plant with different control design strategies. For example, the one
thing we notice straight away is the better disturbance response for the PID compensator.
This should come as no surprise since the reset time for the integrator is significantly larger
for the PID compensator.

We should emphasise that the process is rarely as straightforward as the examples suggest,
and that in practice one will usually have to iterate the design process to account for the
various tradeoffs which exist between stability and performance. Also, the methodologies we
discuss above can only be expected to have a reasonable chance at success when the plant
transfer function RP has no poles or zeros in C+. If RP does have poles in C+, then one
must design the controller RC so that the point −1 + i0 is encircled. If RP has zeros in C+,
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then it typically turns out to be more difficult to design a stabilising controller that meets
goals for stability margins. In such cases, mundane considerations of gain and phase margin
become less satisfactory measures of a good design unless weighed against other factors.

12.3 Design with open controller form

In the previous section, the emphasis was on tuning controllers of a specified type. This
can be a difficult exercise for plants which are unstable and/or nonminimum phase (see
Exercise E12.6). The difficulty is that be fixing the form on the controller, one also limits
what can be done to the sensitivity function and the closed-loop transfer function. It may
be possible that the plant will not allow stabilisation by a controller of a certain form.

12.4 Summary

In this section, we have been able to assimilate our knowledge gained to this point to
generate some design methods for controller rational functions. One should note that our
methods are not guaranteed to work, but for “simple” applications, they provide a starting
point for serious controller design. Let us review some of the basic ideas.

1. The basis for the frequency response design methodology is the Nyquist criterion. This
can be a somewhat subtle notion, so it would be best to understand it. A good way to
do this is to study the proof of the Nyquist criterion since it is quite simple, given the
Principle of the Argument.

2. We have presented two design methodologies using frequency response: one for lead
compensation and the other for PID compensation. One should make sure to understand
the idea behind these design methodologies.
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Exercises

The next three exercises have to do with designing circuits to implement various controllers.
Although we look at only a three specific controller transfer functions, it is possible, in
principle, to design a circuit using only passive resistors, capacitors, and inductors, to realise
any transfer function in RH+

∞. A means of doing this was first pointed out in the famous
paper of Bott and Duffin [1949].

E12.1 Consider the circuit of Figure E12.1.

−
V1

+ R1 +

V2

−
R2

C

Figure E12.1 Circuit for lead compensation

(a) Determine the differential equation governing the output voltage V2 given the
input voltage V1.

(b) Convert this differential equation to a transfer function, and show that the
resulting transfer function is that of a lead compensator.

(c) Determine expressions for K, α, and τ in the standard form for a lead compen-
sator in terms of R1, R2, and C.

E12.2 Consider the circuit of Figure E12.2.

−
V1

+

R1

C

R2

−

V2

+

Figure E12.2 Circuit for lag compensation

(a) Determine the differential equation governing the output voltage V2 given the
input voltage V1.

(b) Convert this differential equation to a transfer function, and show that the
resulting transfer function is that of a lag compensator.

(c) Determine expressions for K, α, and τ in the standard form for a lag compen-
sator in terms of R1, R2, and C.
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−
V1

+ R

R
2

R

2C

C C

+

V2

−

Figure E12.3 Circuit for notch filter

E12.3 Consider the circuit of Figure E12.3.

(a) Determine the differential equation governing the output voltage V2 given the
input voltage V1.

(b) Convert this differential equation to a transfer function, and show that the
resulting transfer function is that of a notch filter.

(c) Determine expressions for K, α, and τ in the standard form for a lag compen-
sator in terms of Rand C.

E12.4 Consider the plant transfer function RP (s) = 2
s2(s+2)

. Design a PID controller using
frequency domain methods which produces an IBIBO stable system with a phase
margin of at least 65◦ at as large a gain crossover frequency as possible. Check the
stability of your design using the Nyquist criterion, and produce the step response,
and the response to a step disturbance which enters the loop between the controller
and the plant.

E12.5 Consider a controller transfer function RC(s) = K
(

1+ατs
1+τs

+ 1
TIs

)
where K, α, τ , and

TI are all finite and nonzero. Determine a SISO linear system Σ = (A, b, ct,D) so
that TΣ = RC .

E12.6 In this problem you will design a controller for the unstable, nonminimum phase
plant shown in Figure E12.4.

r̂(s) RC(s) 3
2− s

s2 + s− 3
ŷ(s)

−

Figure E12.4 A closed-loop system with an unstable, nonminimum
phase plant

(a) Why is the plant unstable? nonminimum phase?

(b) Produce the Nyquist and Bode plots for the plant transfer function. Is the
closed-loop system stable with RC(s) = 1?

(c) Is it possible to design a proportional controller RC(s) = K which renders the
closed-loop system IBIBO stable?
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(d) We will design a stabilising controller by manipulating the Nyquist contour to
look like the cartoon in Figure E12.5. Sketch the Bode plot for such a Nyquist

Figure E12.5 The desired Nyquist contour

contour, being particularly concerned with the phase of the Bode plot. As-
sume that the loop gain RL = RCRP is strictly proper and that its maximum
magnitude occurs at ω = 0.

(e) Design a phase lead controller RC with the property that the Bode plot for
RL = RCRP has the Bode plot phase which looks qualitatively like that you
drew in part (d). For the moment, design RC to that RC(0) = 1. Plot the
Nyquist contour for RL to verify that it has the shape shown in Figure E12.5.

(f) With the lead compensator you have designed, is your closed-loop system IBIBO
stable? By adding a gain K to the lead compensator from part (e), it can be
ensured that the system will be IBIBO stable for some values of K. Using your
Nyquist contour from part (e), for which values of K will the closed-loop system
be IBIBO stable? Pick one such value of K and produce the Nyquist contour to
verify that the controller you have designed does indeed render the closed-loop
system IBIBO stable.

Congratulations, you have just designed a controller for an unstable, nonminimum
phase plant, albeit a contrived one. Let us see how good this controller is.

(g) Comment on the gain and phase margins for your system.

(h) Produce the step response for the closed-loop system, and comment on its per-
formance.

E12.7 In this exercise you will be given a plant transfer function for which it is not possible
to achieve arbitrary design objectives. The transfer function is

RP (s) = R̃P (s)
s− z
s− p

for s, p ∈ R positive. Thus, we know that our plant has an unstable real pole p, and
a nonminimum phase real zero z. All other poles and zeros are assumed to be stable
and minimum phase, respectively. Let RC be a stable, minimum phase controller
transfer function and define RL = RCRP .

(a) Define a Finish this
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E12.8 Consider the plant transfer function

RP (s) =
1

s3 − s2 + s− 1
,

and the lead/lag controller transfer function

RC(s) =
K(1 + ατs)

1 + τs
.

Answer the following two questions.

(a) Show that it is not possible to design a lead/lag controller RC for which RC ∈
S (RP ).

(b) Show that for any proper, second-order plant transfer function RP ∈ R(s) there
exists a lead/lag controller RC for which RC ∈ S (RP ).

E12.9 Consider the plant transfer function

RP (s) =
1

s4 − s3 + s2 − s+ 1
,

and the PID controller transfer function

RC(s) = K
(

1 + TDs+
1

TIs

)
.

Answer the following two questions.

(a) Show that it is not possible to design a PID controller RC for which RC ∈
S (RP ).

(b) Show that for any proper, third-order plant transfer function RP ∈ R(s) there
exists a PID controller RC for which RC ∈ S (RP ).

E12.10 Consider the coupled tank system of Exercises E1.11, E2.6, and E3.17. Take as
system parameters α = 1

3
, δ1 = 1, A1 = 1, A2 = 1

2
, a1 = 1

10
, a2 = 1

20
, and g = 9.81.

As output, take the level in tank 2.

(a) Design a PID controller for the system that achieves a phase margin of at least
75◦ with as large a gain crossover frequency as possible.

We now wish to simulate the behaviour of the system with the controller that you
have designed. The states of the system are nominally h1 and h2. However, since the
controller involves an integration, an additional state will need to be defined. With
this in mind, answer the following question.

(b) Suppose that a reference output h2,ref has been specified, and that the control
u is specified by the PID controller you designed in part (a). Develop the
nonlinear state differential equations for the system, starting with the equations
you linearised in Exercise E2.6. As indicated in the preamble to this part of the
problem, you will have three state equations.

(c) With the controller that you have designed, simulate the differential equations
from part (b) with initial conditions equal to the equilibrium initial conditions,
and subject to a reference step input of size 1

4
.

(d) Plot the height in both tanks, and comment on the behaviour of your controller.
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Chapter 13

Advanced synthesis, including PID synthesis

We saw in Chapters 11 and 12 that one can use ad hoc methods to choose PID parameters
that can serve as acceptable starting points for final designs of such controllers. These
classical methods, while valuable in terms of providing some insight into the process of
control design, can often be surpassed in effectiveness by more modern methods. In this
chapter we survey some of these, noting that they rely on some of the more sophisticated
ideas in the text to this point. This explains why they may not form a part of the typical
introductory text dealing with PID control.
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13.1 Ziegler-Nichols tuning for PID controllers

The ideas we discuss here are the result of an empirical investigation by Ziegler and Nicols
[1942]. We give two methods for specifying PID parameters. The first will be applicable quite
often, especially for BIBO stable plants, whereas the second makes some assumptions about
the nature of the system. In each case, the criterion for optimisation was the minimisation of
the integral of the absolute value of the error due to a unit step input. Thus one minimises

∫ ∞

0

|e(t)| dt,

where e(t) is the difference between the step response and the desired response to a step
input. In particular, it is assumed that this integral is finite. Since the methods in this
section are ad hoc, they should not be thought of as being guarantees, but rather as a good
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starting point for beginning a final tuning of the parameters. A methodology for this is the
subject of [Hang, Åstrom, and Ho 1990].

13.1.1 First method

We shall work with systems in input/output form. Thus let RP be a plant transfer
function with c.f.r. (N,D), and let 1N,D(t) be the step response for the system. We assume
that (N,D) is BIBO stable. Define a parameter σ ∈ R+ by

σ = sup
t≥0
|1̇N,D(t)|.

Thus σ is the maximum slope of the step response. Let tσ ∈ R be the smallest time
satisfying |1̇N,D(t)| = σ. Thus tσ is the time at which the slope of the step response reaches
its maximum value. Typically this time is unique. We then define τ ∈ R by

τ = tσ −
1N,D(tσ)

σ
.

The meaning of τ is as shown in Figure 13.1. With the parameters σ and τ at hand, we can

Figure 13.1 The definitions of σ and τ for Ziegler-Nicols PID tun-
ing

specify the parameters in a P, PI, or PID control law of the form

RC(s) = K (P)

RC(s) = K
(

1 +
1

TIs

)
(PI)

RC(s) = K
(

1 + TDs+
1

TIs

)
(PID).

(13.1)

In Table 13.1 we tabulate choices of the parameter values for various types of controllers.
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Table 13.1 Controller parameters for the first Ziegler-Nicols tun-
ing method

Controller type Controller parameters

P K = 1
στ

PI K = 9
10στ

, TI = 10
3τ

PID K = 6
5στ

, TI = 2τ , TD = τ
2

13.1.2 Second method

We resume the setting above with a plant RP with c.f.r. (N,D). In this method, we
make the following assumption.

13.1 Assumption The closed-loop transfer function with proportional control,

T =
KRP

1 +KRP

,

is BIBO stable for K very near zero. Furthermore, if the gain K is increased from K = 0,
there exists a critical gain Ku where exactly one pair of the poles of the transfer function
crosses the imaginary axis, with the remaining poles in C−. •
Under the conditions of the assumption, at the gain Ku the step response will exhibit an
oscillatory behaviour for sufficiently large times. If the poles on the imaginary axis are at
±iωu, the period of this oscillation will be Tu = 2π

ωu
. With this information, the criterion for

choosing the parameters in the controller (13.1) are as given in Table 13.2.

Table 13.2 Controller parameters for the second Ziegler-Nicols
tuning method

Controller type Controller parameters

P K = Ku
2

PI K = 9Ku
20

, TI = 5
6
Tu

PID K = 6Ku
10

, TI = Tu
2

, TD = Tu
8

Note that there are some simple cases in which the Ziegler-Nicols criterion will not apply
(see Exercise E13.1). However, for cases where the method does apply, it can be a useful
starting point. It also has the advantage that it can be applied to an experimentally obtained
step response.

13.1.3 An application of Ziegler-Nicols tuning

Let us apply the Ziegler-Nicols tuning methods to an example. Suppose that we have
a rotor spinning on a shaft supported by bearings. The angular position of the rotor will
satisfy a differential equation of the form

Jθ̈ + dθ̇ + kθ = u,
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where J is the inertia of the rotor, d accounts for the viscous friction in the bearings, k is
the shaft spring constant, and u is the torque applied to the shaft. This then gives a plant
transfer function

RP (s) =
1

Js2 + ds+ k
.

Let us take J = 1, d = 1
10

, and k = 2.
Let us look at the first Ziegler-Nicols method. The step response for the plant is shown

in Figure 13.2. One may compute σ and τ graphically. However, in this case it is possible to

Figure 13.2 Step response for rotor on shaft

compute these numerically since the step response is a known function on t. To find tσ one
determines where 1̈N,D(tσ) = 0, where (N,D) is the c.f.r. for RP . We compute tσ ≈ 1.08 and
then easily compute σ ≈ 0.70 and τ ≈ 0.40. The values for the P, PI, or PID parameters
are shown in Table 13.3. The three corresponding step responses for the closed-loop transfer

Table 13.3 Controller parameters for the rotor example first
Ziegler-Nicols tuning method

Controller type Controller parameters

P K ≈ 3.83

PI K ≈ 3.45, TI ≈ 8.55

PID K ≈ 4.60, TI = 0.78, TD ≈ 0.19

function, normalised so that they have the same steady state value, are shown in Figure 13.3.
Notice that the closed-loop performance is actually rather abysmal. Furthermore, it is quite
evident that what is needed in more derivative time. If we arbitrarily set TD = 1 in the
PID controller, the resulting step response is shown in Figure 13.4. Note that the response
is now more settled. This exercise points out that the Ziegler-Nicols tuning method does
not produce guaranteed effective control laws. Indeed, the system we have utilised is quite
benign, and it still needed some adjustment to work well.
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Figure 13.3 Normalised step responses for rotor example using
first Ziegler-Nicols tuning method: P (top left), PI (top right),
and PID (bottom)

Let us now move onto the second of the Ziegler-Nicols methods. We cannot use the
rotor example, because it does not satisfy Assumption 13.1. So let us come up with a plant
transfer function that does work. An example is

RP (s) =
1

s3 + 3s2 + 4s+ 1
.

In Figure 13.5 is a plot of the behaviour of the poles of the closed-loop system as a function
of K with RC(s) = K. As we can see, the roots behave as specified in Assumption 13.1, so
we can proceed with that design methodology. The method asks that we find the critical
gain Ku for which the roots cross the imaginary axis. One can do this by trial and error,
looking at the step response. For example, in Figure 13.6 we plot the step response for two
values of K. As we can see, for the plot on the left K < Ku and for the plot on the right
K > Ku. One can imagine iteratively finding something quite close to Ku by looking at such
plots. However, I found Ku by numerically determining when the real part of the poles for
the closed-loop transfer function

T (s) =
KRP (s)

1 +KRP (s)
=

1

s3 + 3s2 + 4s+ 1 +K

are zero. The answer is approximately Ku ≈ 11.0. With this value of K the imaginary part
of the poles is then ω ≈ 2.0. Thus we have Tu = 2π

ωu
≈ 3.14. The corresponding values for the

PID parameters are displayed in Table 13.4, and the normalised closed-loop step responses
are shown in Figure 13.7. The PID response is respectable, but might benefit from more
derivative time given its largish overshoot.
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Figure 13.4 Normalised step response for rotor example using first
Ziegler-Nicols tuning method and derivative time adjusted to
TD = 1

Figure 13.5 Behaviour of poles for plant RP (s) = 1
s3+3s2+4s+1

and
RC(s) = K as K varies

Table 13.4 Controller parameters for example using second
Ziegler-Nicols tuning method

Controller type Controller parameters

P K ≈ 5.5

PI K ≈ 4.95, TI ≈ 2.62

PID K ≈ 6.6, TI = 1.57, TD ≈ 0.39
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Figure 13.6 The step response of the plant RP (s) = 1
s3+3s2+4s+1

and RC(s) = K for K = 10 (left) and K = 12 (right)

Figure 13.7 Normalised step responses for example using second
Ziegler-Nicols tuning method: P (top left), PI (top right), and
PID (bottom)

13.2 Synthesis using pole placement

In this section we use a form of pole placement to indicate how to select PID parameters
based upon the location of poles. Clearly one cannot choose a PID controller to place the
poles anywhere for a general controller. However, in this section we see exactly how well we
can do.
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13.2.1 Pole placement using polynomials

In this section we engage in a rather general discussion of the closed-loop poles using
purely polynomial methodology. We consider the standard unity gain feedback loop of
Figure 13.8. Our objective is to characterise some of the possible closed-loop characteristic

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 13.8 Feedback loop for polynomial pole placement

polynomials for the system. The main result is the following.

13.2 Theorem Consider the interconnection of Figure 13.8 and let (NP , DP ) be the c.f.r. for RP ,
supposing deg(DP ) = n. The following statements hold:

(i) if deg(NP ) ≤ n − 1 and if P ∈ R[s] is monic and degree 2n − 1, then there exists a
proper RC ∈ R(s) with c.f.r. (NC , DC) so that the closed-loop characteristic polynomial
of the interconnection, DCDP +NPNC, is exactly P ;

(ii) if deg(NP ) ≤ n and if P ∈ R[s] is monic and degree 2n, then there exists a strictly
proper RC ∈ R(s) with c.f.r. (NC , DC) so that the closed-loop characteristic polynomial
of the interconnection, DCDP +NPNC, is exactly P .

Proof The following result contains the essential part of the proof.

1 Lemma (Sylvester’s theorem) For polynomials

P (s) = pns
n + pn−1s

n−1 + · · ·+ p1s+ p0

Q(s) = qns
n + qn−1s

n−1 + · · ·+ q1s+ q0,

with p2
n + q2

n 6= 0, define their eliminant as the 2n× 2n matrix

M (P,Q) =




pn 0 · · · 0 qn 0 · · · 0
pn−1 pn · · · 0 qn−1 qn · · · 0

...
...

. . .
...

...
. . .

...
p1 p2 · · · pn q1 q2 · · · qn
p0 p1 · · · pn−1 q0 q1 · · · qn−1

0 p0 · · · pn−2 0 q0 · · · qn−2
...

...
. . .

...
...

. . .
...

0 0 · · · p0 0 0 · · · q0




.

Then P and Q are coprime if and only if detM(P,Q) 6= 0.

Proof Note that if P and Q are not coprime then there exists z ∈ C so that

P (s) = (s− z)(p̃n−1s
n−1 + · · ·+ p̃1s+ p̃0)

Q(s) = (s− z)(q̃n−1s
n−1 + · · ·+ q̃1s+ q̃0).
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This implies that

(q̃n−1s
n−1 + · · ·+ q̃1s+ q̃0)P (s)− (p̃n−1s

n−1 + · · ·+ p̃1s+ p̃0)Q(s) = 0.

We now balance the coefficients of powers of s in this expression:

s2n−1 : pnq̃n−1 − qnp̃n−1 = 0

s2n−2 : pn−1q̃n−1 + pnq̃n−2 − qn−1p̃n−1 − qnp̃n−2 = 0

...

s1 : p0q̃1 + p1q̃0 − q0p̃1 − q1p̃0 = 0

s0 : p0q̃0 − q0q̃0 = 0.

One readily ascertains that this is exactly equivalent to

M (P,Q)




q̃n−1
...
q̃1

q̃0

−p̃n−1
...
−p̃1

−p̃0




= 0.

This then implies that detM(P,Q) = 0 since not all of the coefficients
q̃n−1, . . . , q̃0, p̃n−1, . . . , p̃0 can vanish.

Now suppose that detM(P,Q) = 0. This implies that there is a nonzero vector x ∈ R2n

so that M (P,Q)x = 0. Let us write

x =




q̃n−1
...
q̃1

q̃0

−p̃n−1
...
−p̃1

−p̃0




.

Now reversing the argument for the preceding part of the proof shows that

(q̃n−1s
n−1 + · · ·+ q̃1s+ q̃0)P (s) = (p̃n−1s

n−1 + · · ·+ p̃1s+ p̃0)Q(s)

=⇒ Q(s)

P (s)
=
q̃n−1s

n−1 + · · ·+ q̃1s+ q̃0

p̃n−1sn−1 + · · ·+ p̃1s+ p̃0

.

Since either P or Q has degree n, it must be the case that P and Q have a common factor.H
Now we proceed with the proof.
(i) Since NP and DP are coprime, their eliminant M(DP , NP ) is invertible by Lemma 1.

Now let P ∈ R[s] be monic and of degree 2n− 1 and write

P (s) = s2n−1 + p2n−2s
2n−2 + · · ·+ p1s+ p0.
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Now define a vector in R2n by




bn−1
...
b1

b0

an−1
...
a1

a0




= M (DP , NP )−1




p2n−1
...
p1

p0


 . (13.2)

One verifies by direct computation that the resulting equation

M (DP , NP )




bn−1
...
b1

b0

an−1
...
a1

a0




=




p2n−1
...
p1

p0




is exactly the result of equating DCDP +NCNP = P , provided that we define

RC(s) =
an−1s

n−1 + · · ·+ a1s+ a0

sn−1 + bn−2sn−2 + · · ·+ b1s+ b0

.

To complete the proof, we must also show that the numerator and denominator in this
expression for RC are coprime.finish

(ii) In this case we take

P (s) = s2n + p2n−1s
2n−1 + · · ·+ p1s+ p0,

and define a vector in R2n+1 by




bn
bn−1

...
b1

b0

an−1
...
a1

a0




= M̄ (DP , NP )−1




p2n

p2n−1
...
p1

p0



. (13.3)

Here the matrix M̄ (DP , NP ) is defined by

M̄ (DP , NP ) =

[
p2n 0t

m(DP ) M (DP , NP )

]
, (13.4)
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and where m(DP ) ∈ R2n is a vector containing the coefficients of DP , with the coefficient
of sn−1 in the first entry, and with the last n entries being zero. Clearly M̄(DP , NP ) is
invertible since M (DP , NP ) is invertible. Now one checks that if

RC(s) =
an−1s

n−1 + · · ·+ a1s+ a0

sn + bn−1sn−1 + · · ·+ b1s+ b0

,

then this controller satisfies the conclusions of this part of the proposition. �

13.3 Remarks

1. This result is analogous to Theorem 10.27 in that it provides an explicit formula, in this
case either (13.2) or (13.3), for a stabilising controller for the feedback loop of Figure 13.8.
In fact, in each case we can achieve a prescribed characteristic polynomial of a certain
type.

2. In Theorem 10.27 the characteristic polynomial had to be of degree 2n and had to be
writable as a product of two polynomials (this latter restriction is only a restriction when
n is odd). However, in Theorem 13.2 we go this one better because the characteristic
polynomial had degree one less, 2n − 1, at least in cases when RP is strictly proper.
This means we have a controller whose denominator has one degree less than that of
Theorem 10.27. This can be advantageous.

3. One of the things we loose in Theorem 13.2 is the separation principle interpretation
available for Theorem 10.27 (cf. Theorem 10.48). •
An example illustrates how to explicitly apply Theorem 13.2.

13.4 Example Let us consider the unstable, nonminimum phase plant

RP (s) =
1− s
s2 + 1

.

We first wish to design a proper controller that produces the closed-loop characteristic poly-
nomial

P (s) = s3 + 3s2 + 4s+ 2.

We determine the eliminant M(DP , NP ) to be

M(DP , NP ) =




1 0 0 0
0 1 −1 0
1 0 1 −1
0 1 0 1


 .

An application of (13.2) gives

M (DP , NP )−1




1
3
4
2


 =




1
4
1
−2


 .

This then gives the controller

RC(s) =
s− 2

s+ 4
.
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T (s) =
RC(s)RP (s)

1 +RC(s)RP (s)
=

(s− 1)(s− 2)

s3 + 3s2 + 4s+ 2
.

Note that RC is indeed a proper, but not a strictly proper, controller.
To achieve a proper controller we use part (ii) of Theorem 13.2. To do this, we must

specify a closed-loop characteristic polynomial of degree 4. Let us go with

P (s) = s4 + 4s3 + 7s2 + 6s+ 2.

Next we must determine the matrix M̄ (DP , NP ) in the equation (13.3). Using the description
of this provided in the proof we get

M̄ (DP , NP ) =




1 0 0 0 0
1 1 0 0 0
0 0 1 −1 0
1 1 0 1 −1
0 0 1 0 1



.

An application of (13.3) gives

M̄(DP , NP )




1
4
7
6
2




=




1
4
5
−1
−3



.

This then gives the strictly proper controller

RC(s) =
−s− 3

s2 + 4s+ 5
.

The corresponding closed-loop transfer function is

T (s) =
RC(s)RP (s)

1 +RC(s)RP (s)
=

(s+ 3)(s− 1)

s4 + 4s3 + 7s2 + 6s+ 2
.

Note that the order of the two controllers we have designed is as predicted by Theorem 13.2,
and are comparable to the order of the plant.

The closed-loop characteristic polynomials are designed to be stable. In Figure 13.9 we
show the Nyquist plots for both systems. One can get some idea of the stability margins of
the closed-loop system from these. •

Let us discuss this a little further by looking into a couple of related results. The first is
that if we wish to increase the denominator degree of the controller, we may.

13.5 Corollary Consider the interconnection of Figure 13.8 and let (NP , DP ) be the c.f.r. for RP ,
supposing deg(DP ) = n ≥ deg(NP ). If P ∈ R[s] is monic, of degree k ≥ 2n − 1, and if
the coefficient of s2n−1 in P is nonzero, then there exists RC ∈ R(s) with c.f.r. (NC , DC)
so that the closed-loop characteristic polynomial of the interconnection, DCDP + NPNC, is
exactly P .
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Figure 13.9 Nyquist plots for polynomial pole placement for
RP (s) = 1

s2+1
for a proper controller (left) and a strictly proper

controller (right)

Proof Define
DC,1(s) = sk + bk−1s

k−1 + · · ·+ bns
n

by asking that the polynomial DC,1DP − P have degree 2n − 1. Thus DC,1 is obtained
by equating the coefficients of sk, . . . , s2n in the polynomials DC,1DP and P . Now define
P̃ = 1

p2n−1
(P −DC,1DP ). By construction of DC,1, P̃ is monic and has degree 2n− 1. Thus,

by Theorem 13.2, there exists

R̃C(s) =
ãn−1s

n−1 + · · ·+ ã1s+ ã0

sn−1 + b̃n−2sn−2 + · · ·+ b̃1s+ b̃0

with the property that DC,2DP +NC,2NP = P̃ , if (NC,2, DC,2) is the c.f.r. for R̃C . Taking

DC = DC,1 + p2n−1DC,2, NC = p2n−1NC,2, RC =
NC

DC

gives the corollary. �

13.6 Remark The controller RC in the corollary will not be unique as it will be, for example, in
Theorem 13.2. •

Let us now see that the above result works in an example.

13.7 Example (Example 13.4 cont’d) Let us see what happens when we choose a closed-loop
characteristic polynomial whose degree is “too high.” Let us suppose that we wish to achieve
the closed-loop characteristic polynomial

P (s) = s5 + 5s4 + 12s3 + 16s2 + 12s+ 4.

We should look for a controller of order 5− 2 = 3. One may verify that the controller

RC(s) =
−5s3 − 16s2 − 8s− 20

s3 + 24
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achieves the desired characteristic polynomial. However, this is not the only controller that
accomplishes this task. Indeed, one may verify that any controller of the form

−5s3 − 16s2 − 8s− 20 + a1(s3 + s2 + s+ 1) + a2(s2 + 1)

s3 + 24 + a1(s2 − 1) + a2(s− 1)

will achieve the same characteristic polynomial. Thus we see explicitly how the freedom of
the high degree characteristic polynomial plays out in the controller. This may be helpful
in practice to fine tune the controller do have certain properties. •

It is not surprising that we should be able to achieve a characteristic polynomial of degree
higher than that of Theorem 13.2. It is also the case that we can generally expect to do not
better. The following result gives this in precise terms.

13.8 Proposition For the interconnection of Figure 13.8, let RP be proper with c.f.r. (NP , DP ) and
deg(DP ) = n. If k < 2n − 1 then there exists a monic polynomial P of degree k so that
there is no proper controller RC with the property that deg(DC) = k − n, where (NC , DC)
is the c.f.r. for RC.

Proof The most general proper controller RC for which deg(DC) = k−n will have 2(n−k+1)
undetermined coefficients. The equation DCDP +NCNP = P gives a linear equation in these
coefficients by balancing powers of s. This linear equation is one with k + 1 equations in
2(k − n+ 1). However, we have

k < 2n− 1

=⇒ − k > −2n+ 1

=⇒ k + 1 > 2k − 2n+ 2.

This means that the linear equation for determining the coefficients of RC has more equations
than unknowns. Since a linear map from a vector space into one of larger dimension is
incapable of being surjective, the proposition follows. �

This means that we cannot expect to stabilise a general plant except with a controller
whose denominator has comparable degree. This is easily illustrated with an example

13.9 Example (Example 13.4 cont’d) Let us continue with our example where

RP (s) =
1− s
s2 + 1

.

We wish to show that we cannot find a proper controller RC with the property that the
closed-loop characteristic polynomial for the interconnection of Figure 13.8 is an arbitrary
Hurwitz polynomial of degree 2. Clearly a proper controller of degree 1 or greater will lead
to a closed-loop characteristic polynomial of degree 3 or greater. Thus we may only use a
constant controller: RC(s) = K. In this case the closed-loop characteristic polynomial is
readily determined to be

P (s) = s2 −Ks+ 1 +K.

Note that this polynomial is Hurwitz only for K ∈ (−1, 0). Thus the class of closed-loop
characteristic polynomials of degree 2 that we may achieve is limited. Indeed, in Figure 13.10
we show the locus of roots for those values of K for which the closed-loop system is IBIBO
stable. The placement of poles is clearly restricted. •
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Figure 13.10 Locus of roots for s2−Ks+1+K where K ∈ (−1, 0)

13.2.2 Enforcing design considerations

Sometimes one wants to design a controller with certain properties. One of the most often
encountered of these is that RC have a pole at s = 0 so as to ensure asymptotic tracking
of step inputs and rejection of step disturbances. With this in mind, we have the following
result.

13.10 Proposition Consider the interconnection of Figure 13.8 and suppose that (NP , DP ) if the
c.f.r. for RP . For k ∈ N the following statements hold:

(i) if deg(NP ) ≤ n− 1 and if P ∈ R[s] is monic and degree 2n+ k− 1, then there exists
a controller RC ∈ R(s) with c.f.r. (NC , DC) with the following properties:

(a) RC is proper;

(b) RC has a pole of order at least k at s = 0;

(c) deg(DC) = n+ k − 1;

(d) the closed-loop characteristic polynomial of the interconnection, DCDP +NPNC,
is exactly P ;

(ii) if deg(NP ) ≤ n and if P ∈ R[s] is monic and degree 2n + k, then there exists a
controller RC ∈ R(s) with c.f.r. (NC , DC) with the following properties:

(a) RC is strictly proper;

(b) RC has a pole of order at least k at s = 0;

(c) deg(DC) = n+ k;

(d) the closed-loop characteristic polynomial of the interconnection, DCDP +NPNC,
is exactly P .
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Proof (i) Let us write

RP (s) =
cn−1s

n−1 + · · ·+ c1s+ c0

sn + dn−1sn−1 + · · ·+ d1s+ d0

and
P (s) = s2n+k−1 + p2n+k−2s

2n+k−2 + · · ·+ p1s+ p0.

The idea is the same as in the proof of Theorem 13.2 in that the issue is matching coefficients.
The content lies in ascertaining the form of the coefficient matrix. In this case we define a
(2n+ k)× k matrix Ak(NP ) by

Ak(NP ) =




0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
cn−1 0 · · · 0 0
cn−2 cn−1 · · · 0 0

...
...

. . .
...

...
0 0 · · · c0 c1

0 0 · · · 0 c0




.

The way to assemble Ak(NP ) in practice is to put the components of the polynomial NC

into the last column of Ak(NP ), starting with c0 in the last row and working backwards.
The next column to the left is made by shifting the last column up one row and placing a
zero in the last row. One proceeds in this way until all k columns have been formed. Now
define

M k(DP , NP ) =

[
M(DP , NP )

0
Ak(NP )

]
∈ R(2n+k)×(2n+k).

One now defines a vector in R2n+k by




bn+k−1
...
bk

an+k−1
...
a0




= M k(DP , NP )−1




p2n+k−1

p2n+k−2
...
p0


 .

One now checks that if

RC(s) =
an+k−1s

n+k−1 + · · ·+ a1s+ a0

bn+k−1sn+k−1 + · · ·+ bksk
,

then RC has the properties stated in the proposition.
(ii) Here we write

RP (s) =
cns

n + cn−1s
n−1 + · · ·+ c1s+ c0

sn + dn−1sn−1 + · · ·+ d1s+ d0

and
P (s) = s2n+k + p2n+k−1s

2n+k−1 + · · ·+ p1s+ p0.
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The next step is to define Āk(NP ) ∈ R(2n+k+1)×k by

Āk(NP ) =




0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
cn 0 · · · 0 0
cn−1 cn · · · 0 0

...
...

. . .
...

...
0 0 · · · c0 c1

0 0 · · · 0 c0




.

Then we let

M̄ k(DP , NP ) =

[
M̄ (DP , NP )

0
Āk(NP )

]
∈ R(2n+k−2)×(2n+k−2),

where M̄ (DP , NP ) is as defined in (13.4). Then we define a vector in R2n+k+1 by




bn+k
...
bk

an+k−1
...
a0




= M̄ k(DP , NP )−1




p2n+k

p2n+k−1
...
p0


 .

The rational function

RC(s) =
an+k−1s

n+k−1 + · · ·+ a1s+ a0

bn+ksn+k + · · ·+ bksk

has the desired properties. �
Let us apply this in an example, as the proof, as was the proof of Theorem 13.2, is

constructive.

13.11 Example (Example 13.4 cont’d) We take

RP (s) =
1− s
s2 + 1

,

and design a controller with a pole at s = 0 that produces a desired characteristic polynomial.
First let us achieve a pole of degree k = 1 at the origin. To derive a proper controller, P
must have degree 2n+ k − 1 = 4. Let us take

P (s) = s4 + 4s3 + 7s2 + 6s+ 2.

The matrix M 1(DP , NP ) is then constructed as in the proof of Proposition 13.10 as

M 1(DP , NP ) =




1 0 0 0 0
0 1 −1 0 0
1 0 1 −1 0
0 1 0 1 −1
0 0 0 0 1



.
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We then compute

M 1(DP , NP )−1




1
4
7
6
2




=




1
9
5
−1
2



.

Thus we take

RC(s) =
5s2 − s+ 2

s2 + 9s
.

The Nyquist plot for the loop gain RCRP is shown in Figure 13.11.

Figure 13.11 Nyquist plot for plant RP (s) = 1−s
s2+1

and controllers

RC(s) = 5s2−s+2
s2+9s

(top left), RC(s) = 8s2−3s+4
s3+5s2+19s

(top right),

RC(s) = 19s3+8s2+16s+4
s3+24s2

(bottom left and right)

If we demand that RC be proper, then we use part (ii) of Proposition 13.10. We must
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now specify a polynomial of degree 2n+ k = 5; let us take

P (s) = s5 + 5s4 + 12s3 + 16s2 + 12s+ 4.

We compute

M̄ 1(DP , NP ) =




1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 −1 0 0
0 1 0 1 −1 0
0 0 1 0 1 −1
0 0 0 0 0 1



,

giving

M̄ 1(DP , NP )−1




1
5
12
16
12
4




=




1
5
19
8
−3
4



.

Thus we have

RC(s) =
8s2 − 3s+ 4

s3 + 5s2 + 19s
.

One may see the Nyquist plot for the controller in Figure 13.11.
We may also design a controller giving a pole of degree k = 2 at s = 0. This requires the

specification of a closed-loop characteristic polynomial of degree 2n+ k − 1 = 5; let us take

P (s) = s5 + 5s4 + 12s3 + 16s2 + 12s+ 4.

again. We compute

M 2(DP , NP ) =




1 0 0 0 0 0
0 1 −1 0 0 0
1 0 1 −1 0 0
0 1 0 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1




and

M 2(DP , NP )−1




1
5
12
16
12
4




=




1
24
19
8
16
4



.

Thus we take

RC(s) =
19s3 + 8s2 + 16s+ 4

s3 + 24s2
.

The Nyquist plot for this plant/controller is shown in Figure 13.11. This is not strictly
proper, and one may of course apply part (ii) of Proposition 13.10 to get a strictly proper
controller. However, it is hopefully clear how to do this at this point. •
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13.12 Remark It is interesting to look at the Nyquist plots for the controllers designed in Exam-
ples 13.4 and 13.11. First of all, the Nyquist plots get increasingly more complicated as
we increase the controller order. One’s ability to design controllers of this complexity with
ad hoc methods is quite limited. On the other hand, one can see that the Nyquist plot for
the third controller of Example 13.11 (the bottom Nyquist plots in Figure 13.11) has very
bad gain and phase margins. One would be suspicious of such a controller, even though the
theory tells us that it produces a desirable closed-loop characteristic polynomial. This points
out the importance of using all the tools at one’s disposal when designing a controller. •

One can also ask that more general polynomials appear in the denominator ofRC . Indeed,
the proof of Proposition 13.10 can easily, if tediously, be adapted to prove the following
result.

13.13 Corollary Consider the interconnection of Figure 13.8 and suppose that (NP , DP ) if the c.f.r.
for RP . For F ∈ R[s] a monic polynomial of degree k, the following statements hold:

(i) if deg(NP ) ≤ n− 1 and if P ∈ R[s] is monic and degree 2n+ k− 1, then there exists
a controller RC ∈ R(s) with c.f.r. (NC , DC) with the following properties:

(a) RC is proper;

(b) DC has F as a factor;

(c) deg(DC) = n+ k − 1;

(d) the closed-loop characteristic polynomial of the interconnection, DCDP +NPNC,
is exactly P ;

(ii) if deg(NP ) ≤ n and if P ∈ R[s] is monic and degree 2n + k, then there exists a
controller RC ∈ R(s) with c.f.r. (NC , DC) with the following properties:

(a) RC is strictly proper;

(b) DC has F as a factor;

(c) deg(DC) = n+ k;

(d) the closed-loop characteristic polynomial of the interconnection, DCDP +NPNC,
is exactly P .

Just when one might wish to do this is a matter of circumstance. The following example
gives one such instance.

13.14 Example Suppose we are given a plant RP with c.f.r. (NP , DP ) where deg(DP ) = n. A
reasonable design specification is that the closed-loop system be able to track well signals of
a certain period ω. This would seem to demand that the transfer function from the input
to the error should be zero at s = iω. For the interconnection of Figure 13.8 the transfer
function from the input to the error is the sensitivity function for the loop,

SL(s) =
1

1 +RC(s)RP (s)
.

By ensuring that RC has a pole at s = iω, we can ensure that SL(iω) = 0. Thus we should
seek a controller of the form

RC(s) =
NC(s)

(s2 + ω2)D̃C(s)
.

Corollary 13.13 indicates that we can find a proper such controller provided that the closed-
loop characteristic polynomial is specified to be of degree 2n + k − 1. If the controller is
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to be strictly proper, then we must allow the closed-loop characteristic polynomial to have
degree 2n+ k. While we do not produce the explicit formula for the coefficients in NC and
D̃C , one can easily produce such a formula by balancing polynomial coefficients, just as is
done in Theorem 13.2 and Proposition 13.10. •

One may also wish to specify that the numerator of RC have roots at some specified
locations. The following result tells us when this can be done, and the degree of the closed-
loop polynomial necessary to guarantee the required behaviour. We omit the details of the
proof, as these go much like the proofs of Theorem 13.2 and Proposition 13.10, except that
there are more complications.

13.15 Proposition Consider the interconnection of Figure 13.8 and suppose that (NP , DP ) if the
c.f.r. for RP . For F ∈ R[s] a monic polynomial of degree k, the following statements hold:

(i) if deg(NP ) ≤ n− 1 and if P ∈ R[s] is monic and degree 2n+ k− 1, then there exists
a controller RC ∈ R(s) with c.f.r. (NC , DC) with the following properties:

(a) RC is proper;

(b) NC has F as a factor;

(c) deg(DC) = n+ k − 1;

(d) the closed-loop characteristic polynomial of the interconnection, DCDP +NPNC,
is exactly P ;

(ii) if deg(NP ) ≤ n and if P ∈ R[s] is monic and degree 2n + k, then there exists a
controller RC ∈ R(s) with c.f.r. (NC , DC) with the following properties:

(a) RC is strictly proper;

(b) NC has F as a factor;

(c) deg(DC) = n+ k;

(d) the closed-loop characteristic polynomial of the interconnection, DCDP +NPNC,
is exactly P .

Note that if the GCD of NC and DP is F , then F is guaranteed to appear as a factor in
the closed-loop characteristic polynomial.

13.2.3 Achievable poles using PID control

We begin by noting that in this section, as in the rest of this chapter, we use a PID
controller that renders proper the derivative term in the controller. Thus we take a controller
transfer function of the form

RC(s) = K
(

1 +
TDs

τDs+ 1
+

1

TIs

)
. (13.5)

The advantage of this from our point of view in this section is contained in the following
result.

13.16 Lemma Let R ∈ R[s] be any rational function of the form

R(s) =
a2s

2 + a1s+ a0

s2 + b1s
.

If one defines

K =
a1b1 − a0

b2
1

, TD =
a0 − a1b1 + a2b

2
1

b1(a1b1 − a0)
, TI =

a1b1 − a0

a0b1

, τD =
1

b1

,



508 13 Advanced synthesis, including PID synthesis 2016/09/21

then R = RC, where RC is as in (13.5).

Proof We compute

RC(s) =
K(1 + TD

τD
)s2 +K( 1

τD
+ 1

TI
)s+ K

τDTI

s2 + 1
τD
s

The lemma follows by setting

a2 = K(1 + TD
τD

), a1 = K( 1
τD

+ 1
TI

), a0 =
K

τDTI
, b1 =

1

τD
,

and solving for a0, a1, a2, and b1. �

It is appropriate to employ a PID controller for first and second-order plants. To design
PID controllers using the machinery of Sections 13.2.1 and 13.2.2, we use Proposition 13.10
with k = 1 to take the integrator into account. Let us see explicitly how to do this for
general first and second-order plants.naı̈ve PID

controllers

with positive

parameters13.17 Proposition Consider the three strictly proper plant transfer functions

Rτ (s) =
1

τs+ 1
, Rζ,ω0,τ (s) =

ω2
0(τs+ 1)

s2 + 2ζω0s+ ω2
0

, Rτ1,τ2,τ (s) =
τs+ 1

(τ1s+ 1)(τ2s+ 1)
,

and the two polynomials

P1(s) = s3 + as2 + bs+ c, P2(s) = s4 + as3 + bs2 + cs+ d.

The following statements hold:

(i) if RP = Rτ and if

RC(s) =
(aτ − 1)s2 + bτs+ cτ − αs(τs+ 1)

s2 + αs

for α ∈ R, then the closed-loop polynomial of the interconnection of Figure 13.8 is P1;

(ii) if RP = Rζ,ω0,τ and if

RC(s) =
a2s

2 + a1s+ a0

s2 + b1s

a2 =
b− cτ + dτ 2 − ω2

0 + aτω2
0 − 2aω0ζ − 2τω3

0ζ + 4ω2
0ζ

2

ω2
0(1 + τ 2ω2

0 − 2τω0ζ)

a1 =
c

ω2
0

− dτ

ω2
0

− a− bτ + cτ 2 − dτ 3 + τω2
0 − 2ω0ζ

1 + τ 2ω2
0 − 2τω0ζ

a0 =
d

ω2
0

b1 =
a− bτ + cτ 2 − dτ 3 + τω2

0 − 2ω0ζ

1 + τ 2ω2
0 − 2τω0ζ

then the closed-loop polynomial of the interconnection of Figure 13.8 is P2;
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(iii) if RP = Rτ1,τ2,τ and if

RC(s) =
(a2/b2)s2 + (a1/b2)s+ (a0/b2)

s2 + (b1/b2)s

a2 = −τ 2
2 − dτ 2τ 2

1 τ
2
2 + τ1τ2(−1 + aτ2) + τ 2

1 (−1 + aτ2 − bτ 2
2 ) + τ(τ1 + τ2 − aτ1τ2 + cτ 2

1 τ
2
2 )

a1 = −τ1 − τ2 + aτ1τ2 − cτ 2
1 τ

2
2 − dτ 2τ1τ2(τ1 + τ2) + τ(1− bτ1τ2 + dτ 2

1 τ
2
2 + cτ1τ2(τ1 + τ2))

a0 = −(d(τ − τ1)τ1(τ − τ2)τ2)

b2 = −(τ − τ1)(τ − τ2)

b1 = τ1 + τ2 − aτ1τ2 − cτ 2τ1τ2 + dτ 3τ1τ2 + τ(−1 + bτ1τ2),

then the closed-loop polynomial of the interconnection of Figure 13.8 is P2.

13.18 Remarks

1. Using Lemma 13.16 one can turn the controllers of Proposition 13.17 into PID controllers
of the form (13.5).

2. Note that the three plants Rτ , Rζ,ω0,τ and Rτ1,τ2,τ cover all possible strictly proper first
and second-order plants.

3. The essential point is not so much the formulae themselves as their existence. That is to
say, the main point is that for a first-order plant, a PID controller can be explicitly found
that produces a desired third-order characteristic polynomial, and that for a second-
order plant, a PID controller can be explicitly found that produces a desired fourth-order
characteristic polynomial.

4. In practice, one would not use the formulae of Proposition 13.17, but would simply
design a controller of the type RC(s) = a2s2+a1s+a0

s(s+b1)
by enforcing a pole at s = 0 as in

Proposition 13.10.

5. Note that for first-order plants, there is some freedom in the design of an appropriate PID
controller (characterised by the presence of the parameter α in part (i) of the proposition).
However, the PID controller of part (ii) is uniquely specified by the desired characteristic
polynomial. •
Let us illustrate a PID design using Proposition 13.17.

13.19 Example (Example 12.14 cont’d) So that we may contrast our design with that of the ad
hoc PID design of Section 12.2.3, we take RP = 1

s2
. Let us design a controller with poles at

{−5,−5,−2± 2i}. Thus we require the characteristic polynomial

P = s4 + 14s3 + 73s2 + 180s+ 200.

By contrast, the closed-loop characteristic polynomial of Example 12.14 is

s3 + 13
4
s2 + 39

10
s+ 13

20
,

which has roots of approximately {−0.197,−1.53 ± 0.984i}. The lower degree of the char-
acteristic polynomial is Example 12.14 is a consequence of the derivative term not being
proper as in (13.5). In any event, an application of Proposition 13.17, or more conveniently
of Proposition 13.10, gives

RC(s) =
73s2 + 180s+ 200

s(s+ 14)
.
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Converting this to the PID form of (13.5) using Lemma 13.16 gives

K =
580

49
, TD = −2997

8120
, TI =

29

35
, τD =

1

14
.

In Figure 13.12 we show the Nyquist plot for the loop gain RCRP . Note that this controller

Figure 13.12 Nyquist plot for plant RP (s) = 1
s2

and controller

RC(s) = 73s2+180s+200
s(s+14)

has off the bat presented us with respectable gain and phase margins. If one wished, this
controller could be used as a starting point for further refinements to the stability margins.
In Figure 13.13 is shown the step response and the response to a step disturbance between

Figure 13.13 Step response (top) and response to step disturbance
(bottom)

which enters the system at the output. The response time is quite good, although the
overshoot is a bit large, and could be improved with a larger derivative time, perhaps. •
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13.3 Two controller configurations

In the preceding section we considered the achieving of a specified closed-loop charac-
teristic polynomial using a unity gain feedback configuration as in Figure 13.8. Next we
turn our attention to a richer specification of the closed-loop transfer function to allow the
determination of not only the closed-loop characteristic polynomial, but also additional fea-
tures of the closed-loop transfer function. To do this we must consider a more complicated
interconnection, and we consider the interconnection of Figure 13.14. There are now two

r̂(s) Rff(s) RP (s) ŷ(s)

Rfb(s)

−

Figure 13.14 A two controller feedback loop

controllers we may specify, and we call Rfb the feedback controller and Rff the feedfor-
ward controller . It certainly makes sense that having two controllers makes it possible
to do more than was possible in Section 13.2. The objective of this section is to quantify
how much can be done with the richer configuration, and to detail exactly how to do what
is possible.

13.3.1 Implementable transfer functions

First let us be clear about what we are after.

13.20 Definition Let RP ∈ R(s) be a proper plant. R ∈ R(s) is implementable for RP if there
exists proper feedback and feedforward controllers Rfb, Rff ∈ R(s) so that

(i) R is the closed-loop transfer function for the interconnection of Figure 13.14,

(ii) the interconnection is IBIBO stable, and

(iii) the only zeros of R in C+ are those of RP , including multiplicities.

We denote by I (RP ) the collection of implementable closed-loop transfer functions for the
plant RP . •

The next result tells us that it is possible to achieve an implementable transfer function
with an interconnection of the form Figure 13.14.

13.21 Theorem Let RP be a proper plant with c.f.r. (NP , DP ), and let R ∈ R(s) have c.f.r. (N,D).
The following conditions are equivalent.

(i) R is implementable;

(ii) R, R
RP
∈ RH+

∞ and the strictly nonminimum phase zeros of R and RP agree, including
multiplicities;

(iii) the following three conditions hold:

(a) D is Hurwitz;

(b) deg(D)− deg(N) ≥ deg(DP )− deg(NP );
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(c) the roots of N in C+ are exactly the roots of N in C+, including multiplicities.

Proof (i) =⇒ (ii) If R is implementable, the interconnection of Figure 13.14 is IBIBO
stable. In particular, the closed-loop transfer function is IBIBO stable, and since this is
by hypothesis R, we have R ∈ RH+

∞. The transfer function from the plant input û to the
reference r̂ should also be BIBO stable. This means that

û

r̂
=
ŷ/r̂

ŷ/û
=

R

RP

∈ RH+
∞.

Thus (ii) holds.
(ii) =⇒ (iii) As R = N

D
obviously D is Hurwitz so (iii a) holds. Since R

RP
∈ RH+

∞, R
RP

must
be proper. Since

R

RP

=
NDP

DNP

, (13.6)

this implies that deg(DNP ) ≥ deg(NDP ). Since the degree of the product of polynomials is
the sum of the degrees, it follows that

deg(D) + deg(NP ) ≥ deg(N) + deg(DP ),

from which (iii b) follows. If R, R
RP
∈ RH++∞ it follows from (13.6) that all roots of NP in

C+ must also be roots of N , and vice versa. Thus (iii c) holds.
(iii) =⇒ (i) Suppose that R has c.f.r. (N,D) satisfying the conditions of (iii). Let F be

the GCD of N and NP and write N = FÑ and NP = FÑP . Then define P1 = DÑP . Note
that by (iii a) and (iii c), P1 is Hurwitz. Now let P2 be an arbitrary Hurwitz polynomial
having the property that deg(P1P2) = 2n − 1, where n = deg(DP ). By Corollary 13.5 we
may find polynomials Dff and Nfb so that

DffDP +NfbNP = P1P2. (13.7)

We also take Nff = Dfb = ÑP2. We now claim that if we take Rff = Nff

Dff
and Rfb = Nfb

Dfb
, then

the interconnection of Figure 13.14 is IBIBO stable. The relevant transfer functions that
must be checked as belonging to RH+

∞ are

T1 =
RPRffRfb

1 +RPRffRfb

, T2 =
RPRff

1 +RPRffRfb

T3 =
RPRfb

1 +RPRffRfb

, T4 =
RffRfb

1 +RPRffRfb

T5 =
RP

1 +RPRffRfb

, T6 =
Rff

1 +RPRffRfb

T7 =
Rfb

1 +RPRffRfb

.

NEED T3 and T7

To see that all of the transfer functions are have no poles in C+ first note that they can
all be written as rational functions with denominator

DffDfbDP +NffNfbNP = ÑP2(DffDP +NfbNP ) = ÑP1P
2
2 . (13.8)

P2 is Hurwitz by design, P1 is Hurwitz by (iii a) and (iii c), and Ñ is Hurwitz by (iii c). Thus
all transfer functions T1 and T7 are analytic in C+.
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Let us now give the numerator for each of the transfer functions T1 through T7 when put
over the denominator (13.8), and use this to ascertain that these transfer functions are all
proper. In doing this, it will be helpful to have a bound on deg(ÑP2), which we now obtain.
We suppose that deg(P1) = k so that deg(P2) = 2n− k − 1. Now,

deg(P1) = deg(D) + deg(ÑP )

= deg(D) + deg(NP )− deg(F )

≥ deg(DP ) + deg(N)− deg(F )

= n+ deg(Ñ),

using (iii b). Therefore

deg(P2) = 2n− 1− deg(P1) ≤ 2n− 1− n− deg(Ñ)

=⇒ deg(ÑP2) ≤ n− 1. (13.9)

Now we proceed with our calculations.

1. T1: The numerator is NPNffNfb. Since Nff = ÑP2 this gives

T1 =
NPNfb

P1P2

.

We have deg(P1P2) = 2n − 1 and deg(NP ) ≤ n. Since Nfb is obtained from (13.7),
deg(Tfb) ≤ n− 1. From this we deduce that T1 is proper.

2. T2: The numerator of T2 is NPNffDfb. Since Nff = ÑP2 this gives

T2 =
NPDfb

P1P2

. (13.10)

Again, deg(P1P2) = 2n − 1 and deg(NP ) ≤ n. In (13.9) we showed that deg(Dfb) ≤
n− 1, thus T2 is proper.

3. T3: The numerator of T3 is NPNfbDff, giving

T3 =
NPNfbDff

ÑP1P 2
2

We have deg(NP ) ≤ n and deg(P1P2) = 2n − 1. Since Dff and Nfb satisfy (13.7),
deg(Dff), deg(Nfb) ≤ n− 1. finish

4. T4: The numerator is DPNffNfb. Since Nff = ÑP2 this gives

T4 =
DPNfb

P1P2

.

We have deg(DP ) = n and deg(P1P2) = 2n− 1. Since Nfb satisfies (13.7), deg(Nfb) ≤
n− 1. This shows that T4 is proper.

5. T5: The numerator is NPDffDfb. Since Dfb = ÑP2 this gives

T5 =
NPDff

P1P2

.

We have deg(DP ) = n and deg(P1P2) = 2n − 1. Since Dff satisfies (13.7), deg(Dff) ≤
n− 1. This shows that T5 is proper.
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6. T6: The numerator is DPDfbNff. Since Nff = ÑP2 this gives

T6 =
DPDfb

P1P2

.

We have deg(DP ) = n and deg(P1P2) = 2n− 1. By (13.9) deg(Dfb) ≤ n− 1, showing
that T6 is proper.

7. T7: The numerator is DPDffNfb, giving

T7 =
DPDffNfb

ÑP1P 2
2

We have deg(DP ) = n and deg(P1P2) = 2n − 1. Since Dff and Nfb satisfy (13.7) we
have deg(Dff), deg(Nfb) ≤ n− 1.

Finally we check that the closed-loop transfer function is R. Indeed, the closed-loop
transfer function is T2 and we have

R =
N

D
=
ÑNP

DÑP

=
ÑNPP2

P1P2

=
NPDfb

P1P2

= T2,

using (13.10).
Thus we have shown that the interconnection of Figure 13.14 is IBIBO stable with transfer

function R. This means that R is implementable. �

13.22 Remarks

1. The conditions R, R
RP
∈ RH+

∞ are actually the weakest possible for a class of intercon-
nections more general than that of Figure 13.14. Indeed, if (S,G) is any interconnected
SISO linear system with the property that every forward path from the reference r̂ to the
output ŷ passes through the plant, then one readily sees that the transfer function from
the reference r̂ to the input û to the plant is exactly R

RP
(cf. the proof that (i) implies (ii)

in Theorem 13.21 below). Thus we have the following statement:

If (S,G) is an interconnected SISO linear system with the property that every
forward path from the input to the output passes through the plant, then the
interconnection is IBIBO stable with transfer function R ∈ R(s) only if R, R

RP
∈

RH+
∞.

(This is Exercise E6.14.) This indicates that the conditions R, R
RP
∈ RH+

∞ are the weak-
est one can impose on a closed-loop transfer function if it is to be realisable by some
“reasonable” interconnection. The additional hypothesis that R have no nonminimum
phase zeros other than those of RP is reasonable: the nonminimum phase zeros of RP

must appear in R, and we would not want any more of these than necessary, given the
discussions of Chapters 8 and 9 concerning the effects of nonminimum phase zeros.

2. As with our results of Section 13.2, Theorem 13.21 is constructive.

3. Note that the interconnection of Figure 13.14 is the same as that of Figure 10.9. Indeed,
there is a relationship between the controllers constructed in Theorem 13.21 and the
combination of the observer combined with static state feedback in Theorem 10.48. The
procedure of Theorem 13.21 is a bit more flexible in that the order of the closed-loop
characteristic polynomial is not necessarily 2n.

Let us first illustrate via an example that implementability is indeed different that sta-
bilisation of the closed-loop system.



2016/09/21 13.4 Synthesis using controller parameterisation 515

13.23 Example Let RP (s) = s−2
s2−1

. One can verify that R(s) = 2−s
s2+2s+2

is implementable. Indeed,

clearly R ∈ RH+
∞ and we also have

R(s)

RP (s)
=

1− s2

s2 + 2s+ 2
∈ RH+

∞.

Since we have

R(s) =
RC(s)RP (s)

1 +RC(s)RP (s)
,

we can solve this for RC to get

RC(s) =
R

(R− 1)RP
=

1− s2

s(s+ 3)
.

Note that although R is implementable, the interconnection of Figure 13.8 is not IBIBO
stable. Thus we see that implementability is different from an IBIBO interconnection of the
form Figure 13.8. •

13.3.2 Implementations that meet design considerations

As we saw in Section 13.2.2, one often wants to enforce more than IBIBO stability on
one’s feedback loop. Let us see how these considerations can be enforced in the two controller
configuration of Figure 13.14.

13.4 Synthesis using controller parameterisation

In Section 10.3 we described the set of proper controllers that stabilise a proper plant
RP , and the parameterisation came to us in terms of a free function in RH+

∞. In this section
we turn to using this parameterisation to provide a useful guide to controller design. We
will be concerned with the standard plant/controller unity feedback loop, and we reproduce
this in Figure 13.15 for easy reference.

r̂(s) RC(s) RP (s) ŷ(s)
−

Figure 13.15 Interconnection for studying controller parameteri-
sation

13.4.1 Properties of the Youla parameterisation

We first recall the Youla parameterisation of Theorem 10.37. Given a proper plant RP ,
the set Spr(RP ) of proper controllers that render the interconnection of Figure 13.15 IBIBO
stable is given by

Spr(RP ) = {ρ1 + θP2

ρ2 − θP1

| θ admissible}.



516 13 Advanced synthesis, including PID synthesis 2016/09/21

Recall that (P1, P2) is a coprime fractional representative of RP and (ρ1, ρ2) is a coprime
factorisation of (P1, P2). Also recall that the collection of admissible functions θ are defined
by

1. θ 6= ρ2

P1

, and

2. lim
s→∞

(
ρ2(s)− θ(s)P1(s)

)
6= 0.

We wish to determine how the choice of the parameter θ affects the properties of the closed-
loop system. For this purpose, let us suppose that we decide that we wish to place all
poles of the closed-loop system in some region Cdes in the complex plane. Note that we
can always do this, since by, for example, Theorem 10.27 or Theorem 13.2, we may con-
struct controllers that achieve any closed-loop characteristic polynomial, provided it has
sufficiently high degree (twice the order of the plant for a strictly proper controller, and one
less than this for a proper controller). Thus we are permitted to talk about the set of all
proper controllers for which the closed-loop poles lie in Cdes, and let us denote this set of
controllers by Spr(RP ,Cdes). The following result describes these controllers using the Youla
parameterisation.

13.24 Proposition Let RP be a proper plant and Cdes ⊂ C be the set of desirable closed-loop pole
locations. Also let (P1, P2) be a coprime fractional representative for RP with (ρ1, ρ2) a
coprime factorisation of (P1, P2). Then

Spr(RP ,Cdes) = {ρ1 + θP2

ρ2 − θP1

| θ admissible and θ has all poles in Cdes}.

Proof �

The result is perhaps surprisingly “obvious,” at least in statement, and clearly provides
a useful tool for controller design.

13.5 Summary

1. Ziegler-Nichols tuning is available for doing PID control design.
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Exercises

E13.1 In this exercise, you will show that the Ziegler-Nicols tuning method cannot be
applied, even in some quite simple cases.

(a) Show that for any first-order plant, say RP = a
s+b

, both of the Ziegler-Nicols
methods will not yield PID parameter values.

(b) Show that there exists a second-order plant, say of the form RP (s) = a
s2+bs+c

, so
that Assumption 13.1 will not be satisfied.

E13.2 In this exercise, you will apply the Ziegler-Nicols tuning method to design PID
controllers for the plant transfer function

RP (s) =
1

s3 + s2 + 2s+ 1
.

First, the first method.

(a) Produce the step response numerically using Proposition 3.40.

(b) Graphically (or with the computer, if you can) determine the values of σ and τ ,
and so determine the parameters K, TI , and TD for the three cases of a P, PI,
and PID controller.

(c) Using Proposition 3.40, determine the closed-loop step response.

(d) Comment on the performance of the three controllers.

Now the second method.

(e) Verify that Assumption 13.1 is satisfied for the plant transfer function RP .
Hint: A good way to do this might be to use a computer package to solve the
equation obtained by setting the real part of the poles to zero.

(f) Determine by trial and error (or with the computer, if you can) the value Ku

of the proportional gain that makes two poles of the transfer function negative,
and the period of the oscillatory part of the step response. Use these numbers
to give the corresponding Ziegler-Nicols values for the parameters K, TI , and
TD for the three cases of a P, PI, and PID controller.

(g) Using Proposition 3.40, determine the closed-loop step response.

(h) Comment on the performance of the three controllers.

E13.3 Exercises on controlling state examples using pole placement on output.

E13.4 Let RP be a proper plant and let R ∈ I (RP ). Suppose that the feedback and
feedforward controllers giving R as the closed-loop transfer function in Figure 13.14
are Rfb and Rff, respectively. Let (N,D), (Nfb, Dfb), and (Nff, Dff) be the c.f.r.’s for
R, Rfb, and Rff, respectively.

(a) Show that all interconnections of Figure E13.1 have closed-loop transfer function
R. Note that the recipe of Theorem 13.21 gives Nff = Dfb, so let us assume that
this is the case.

(b) Show that the interconnection (a) of Figure E13.1 will not generally be IBIBO
stable.

(c) Show that the interconnection (b) of Figure E13.1 will not generally be IBIBO
stable.
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r̂(s) Rff(s) RP (s) ŷ(s)

Nfb(s)
Dff(s)

−

(a)

r̂(s) Nff(s)
Nfb(s)

Nfb(s)
Dff(s)

RP (s) ŷ(s)

Nfb(s)
Dff(s)

−

(b)

Figure E13.1 Alternate two controller configuration implementa-
tions
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Chapter 14

An introduction to H2 optimal control

The topic of optimal control is a classical one in control, and in some circles, mainly
mathematical ones, “optimal control” is synonymous with “control.” That we have covered
as much material as we have without mention of optimal control is hopefully ample demon-
stration that optimal control is a subdiscipline, albeit an important one, of control. One
of the useful features of optimal control is that is guides one is designing controllers in a
systematic way . Much of the control design we have done so far has been somewhat ad hoc.

What we shall cover in this chapter is a very bare introduction to the subject of optimal
control, or more correctly, linear quadratic regulator theory. This subject is dealt with
thoroughly in a number of texts. Classical texts are [Brockett 1970] and [Bryson and Ho
1975]. A recent mathematical treatment is contained in the book [Sontag 1998]. Design issues
are treated in [Goodwin, Graebe, and Salgado 2001]. Our approach closely follows that of
Brockett. We also provide a treatment of optimal estimator design. Here a standard text
is [Bryson and Ho 1975]. More recent treatments include [Goodwin, Graebe, and Salgado
2001] and [Davis 2002]. We have given this chapter a somewhat pretentious title involving
“H2.” The reason for this is the frequency domain interpretation of our optimal control
problem in Section 14.4.2.
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14.1 Problems in optimal control and optimal state estimation

We begin by clearly stating the problems we consider in this chapter. The problems come
in two flavours, optimal feedback and optimal estimation. While the problem formulations
have a distinct flavour, we shall see that their solutions are intimately connected.

14.1.1 Optimal feedback

We shall start with a SISO linear system Σ = (A, b, ct,01) which we assume to be
in controller canonical form, and which we suppose to be observable. As was discussed in
Section 2.5.1, following Theorem 2.37, this means that we are essentially studying the system

x(n)(t) + pn−1x
(n−1) + . . . p1x

(1)(t) + p0x(t) = u(t)

y(t) = cn−1x
(n−1)(t) + cn−2x

(n−2)(t) + · · ·+ c1x
(1)(t) + c0x(t),

(14.1)

where x is the first component of the state vector x,

PA(λ) = λn + pn−1λ
n−1 + · · ·+ p1λ+ p0

is the characteristic polynomial for A, and c = (c0, c1, . . . , cn−1). Recall that U denotes
the set of admissible inputs. For u ∈ U defined on an interval I ∈ I and for x0 =
(x00, x01, . . . , x0,n−1) ∈ R, the solution for (14.1) corresponding to u and x0 is the unique
map xu,x0 : I → R that satisfies the first of equations (14.1) and for which

x(0) = x00, x
(1)(0) = x01, , . . . , x

(n−1)(0) = x0,n−1.

The corresponding output, defined by the second of equations (14.1), we denote by yu,x0 : I →
R. We fix x0 ∈ Rn and define Ux0 to be the set of admissible inputs u ∈ U for which

1. u(t) is defined on either

(a) [0, T ] for some T > 0 or

(b) [0,∞),

and

2. if yu,x0 is the output corresponding to u and x0, then

(a) yu,x0(T ) = 0 if u is defined on [0, T ] or

(b) limt→∞ yu,x0(t) = 0 if u is defined on [0,∞).

Thus Ux0 are those controls that, in possibly infinite time, drive the output from y = y(0)
to y = 0. For u ∈ Ux0 define the cost function

Jx0(u) =

∫ ∞

0

(
y2
u,x0

(t) + u2(t)
)

dt.

Thus we assign cost on the basis of equally penalising large inputs and large outputs, but
we do not penalise the state, except as it is related to the output.

With this in hand we can state the following optimal control problem.

14.1 Optimal control problem in terms of output Seek a control u ∈ Ux0 that has the property that
Jx0(u) ≤ Jx0(ũ) for any ũ ∈ Ux0 . Such a control u is called an optimal control law . •



2016/09/21 14.1 Problems in optimal control and optimal state estimation 521

14.2 Remark Note that the output going to zero does not imply that the state also goes to zero,
unless we impose additional assumptions of (A, c). For example, if (A, c) is detectable, then
by driving the output to zero as t→∞, we can also ensure that the state is driven to zero
as t→∞. •

Now let us formulate another optimal control problem that is clearly related to Prob-
lem 14.1, but is not obviously the same. In Section 14.3 we shall see that the two problems
are, in actuality, the same. To state this problem, we proceed as above, except that we seek
our control law in the form of state feedback. Thus we now work with the state equations

ẋ(t) = Ax(t) + bu(t),

and we no longer make the assumption that (A, b) is in controller canonical form, but we
do ask that Σ be complete. We recall that Ss(Σ) ⊂ Rn is the subset of vectors f for which
A− bf t is Hurwitz. If x0 ∈ Rn, we let xf ,x0 be the solution to the initial value problem

ẋ(t) = (A− bf t)x(t), x(0) = x0.

Thus xf ,x0 is the solution for the state equations under state feedback via f with initial
condition x0. We define the cost function

Jc,x0(f) =

∫ ∞

0

(
xtf ,x0

(t)(cct + ff t)xf ,x0(t)
)

dt.

Note that this is the same as the cost function Jx0(u) if we take u(t) = −f txf ,x0(t) and
yu,x0(t) = ctxf ,x0(t). Thus there is clearly a strong relationship between the cost functions
for the two optimal control problems we are considering.

In any case, for c ∈ Rn and x0 ∈ Rn, we then define the following optimal control
problem.

14.3 Optimal control problem in terms of state Seek f ∈ Ss(Σ) so that Jc,x0(f) ≤ Jc,x0(f̃) for
every f̃ ∈ Ss(Σ). Such a feedback vector f is called an optimal state feedback vector . •

14.4 Remark Our formulation of the two optimal control problems is adapted to our SISO setting.
More commonly, and more naturally, the problem is cast in a MIMO setting, and let us do
this for the sake of context. We let Σ = (A,B,C,0) be a MIMO linear system satisfying
the equations

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t).

The natural formulation of a cost for the system is given directly in terms of states and
outputs, rather than inputs and outputs. Thus we take as cost

J =

∫ ∞

0

(
xt(t)Qx(t) + ut(t)Ru(t)

)
dt,

whereQ ∈ Rn×n andR ∈ Rm×m are symmetric, and typically positive-definite. The positive-
definiteness of R is required for the problem to be nice, but that Q can be taken to be only
positive-semidefinite. The solution to this problem will be discussed, but not proved, in
Section 14.3.2. •
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14.1.2 Optimal state estimation

Next we consider a problem that is “dual” to that considered in the preceding section.
This is the problem of constructing a Luenberger observer that is optimal in some sense. The
problem we state in this section is what is known as the deterministic version of the problem.
There is a stochastic version of the problem statement that we do not consider. However,
the stochastic version is very common, and is indeed where the problem originated in the
work of Kalman [1960] and Kalman and Bucy [1960]. The stochastic problem can be found,
for example, in the recent text of Davis [2002]. Our deterministic approach follows roughly
that of Goodwin, Graebe, and Salgado [2001]. The version of the problem we formulate for
solution in Section 14.3.3 is not quite the typical formulation. We have modified the typical
formulation to be compatible with the SISO version of the optimal control problem of the
preceding section.

Our development benefits from an appropriate view of what a state estimator does.
We let Σ = (A, b, ct,01) be a complete SISO linear system, and recall that the equations
governing the state x, the estimated x̂, the output y, and the estimated output ŷ are

˙̂x(t) = Ax̂(t) + bu(t) + `(y(t)− ŷ(t))

ŷ(t) = ctx̂(t)

ẋ(t) = Ax(t) + bu(t)

y(t) = ctx(t).

The equations for the state estimate x̂ and output estimate ŷ can be rewritten as

˙̂x(t) = (A− `ct)x̂(t) + bu(t) + `y(t)

ŷ(t) = ctx̂(t).
(14.2)

The form of this equation is essential to our point of view, as it casts the relationship between
the output y and the estimated output ŷ as the input/output relationship for the SISO linear
system Σ` = (A − `ct, `, ct,01). The objective is to choose ` in such a way that the state
error e = x − x̂ tends to zero as t → ∞. If the system is observable this is equivalent to
asking that the output error also i = y − ŷ has the property that limt→∞ i(t) = 0. Thus we
wish to include as part of the “cost” of a observer gain vector ` a measure of the output
error. We do this in a rather particular way, based on the following result.

14.5 Proposition Let Σ = (A, b, ct,01) be a complete SISO linear system. If the output error
corresponding to the initial value problem

˙̂x(t) = Ax̂(t) + `(y(t)− ŷ(t)), x̂(0) = −e0

ŷ(t) = ctx̂(t)

ẋ(t) = Ax(t) + bδ(t), x(0) = 0

y(t) = ctx(t)

satisfies limt→∞ i(t) = 0 then the output error has this same property for any input, and for
any initial condition for the state and estimated state.

Proof Since the system is observable, by Lemma 10.44 the state error estimate tends to
zero as t→∞ for all inputs and all state and estimated state initial conditions if and only
if ` ∈ D(Σ). Thus we only need to show that by taking u(t) = 0 and y(t) = hΣ(t) in (14.2),
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the output error i will tend to zero for all error initial conditions if only if ` ∈ D(Σ). The
output error for the equations given in the statement of the proposition are

ė(t) = ẋ(t)− ˙̂x(t)

= Ax(t)−Ax̂(t) + `ctx̂(t) + `hΣ(t)

= (A− `ct)e(t),

for t > 0, where we have used the fact that x(t) = hΣ(t) = cteAtb. From this the proposition
immediately follows. �

What this result allows us to do is specialise to the case when we consider the particular
output that is the impulse response. That is, one portion of the cost of the state estimator
will be the penalise the difference between the input to the system (14.2) and its output,
when the input is the impulse response for Σ. We also wish to include in our cost a penalty
for the “size” of the estimator. This penalty we take to be the L2-norm of the impulse
response for the system Σ`. This gives the total cost for the observer gain vector ` to be

J(`) =

∫ ∞

0

(
hΣ(t)−

∫ t

0

hΣ`
(t− τ)hΣ(τ) dτ

)2

dt+

∫ ∞

0

hΣ`
(t)2 dt. (14.3)

With the above as motivation, we pose the following problem.

14.6 Optimal estimator problem Seek ` ∈ Rn so that J(`) ≤ J(˜̀) for every ˜̀ ∈ D(Σ). Such an
observer gain vector ` is called an optimal observer gain vector . •

14.7 Remark The cost function for the optimal control problems of the preceding section seem
somehow more natural than the cost (14.3) for the state estimator `. This can be explained
by the fact that we are formulating a problem for an estimator in terms of what is really
a filter. We do not explain here the distinction between these concepts, as these are best
explained in the context of stochastic control. For details we refer to [Kamen and Su 1999].
We merely notice that when one penalises a filter as if it were an estimator, one deals
with quantities like impulse response, rather than with more tangible things like inputs and
outputs that we see in the optimal control problems. One can also formulate more palatable
versions cost for an estimator that make more intuitive sense than (14.3). However, the result
will not then be the famous Kalman-Bucy filter that we come up with in Section 14.3.3. For a
description of natural estimator costs, we refer to the “deterministic Kalman filter” described
by Sontag [1998]. We also mention that the problem looks more natural, not in the time-
domain, but in the frequency domain, where it relates to the model matching problem that
we will discuss in Section 14.2.6. •

14.8 Remark Our deterministic development of the cost function for an optimal state estimator
differs enough from that one normally sees that it is worth quickly presenting the normal
formulation for completeness. There are two essential restrictions we made in our above
derivation that need not be made in the general context. These are (1) the use of output
rather than state error and (2) the use of the impulse response for Σ as the input to the
estimator (14.2). The most natural setting for the general problem, as was the case for
the optimal control setting of Remark 14.4, in MIMO. Thus we consider a MIMO linear
system Σ = (A,B,C,0). The state can then be estimated, just as in the SISO case, via a
Luenberger observer defined by an observer gain vector L ∈ Rm×r. To define the analogue
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of the cost (14.3) in the MIMO setting we need some notation. Let S ∈ Rρ×ρ be symmetric
and positive-definite. The S-Frobenius norm of a matrix M ∈ Cσ×ρ is given by

‖M‖S =
(
tr(M ∗SM)

)1/2
.

With this notation, the cost associated to an observer gain vector L is given by

J(L) =

∫ ∞

0

∥∥eAtt − eAttCtLte(At−CtLt)t
∥∥

Ψ
dt+

∫ ∞

0

∥∥Lte(At−CtLt)t
∥∥

Φ
dt, (14.4)

for symmetric, positive-definite matrices Ψ ∈ Rn×n and Φ ∈ Rr×r. While we won’t discuss
this in detail, one can easily see that (14.4) is the natural analogue of (14.3) after one removes
the restrictions we made to render the problem compatible with our SISO setting. We shall
present, but not prove, the solution of this problem in Section 14.3.3. •

14.2 Tools for H2 optimisation

Before we can solve the optimal feedback and the optimal state estimation problems
posed in the preceding section, we must collect some tools for the job. The first few sections
deal with factorisation of rational functions. Factorisation plays an important rôle in control
synthesis for linear systems. While in the SISO context of this book these topics are rather
elementary, things are not so straightforward in the MIMO setting; indeed, significant effort
has been expended in this direction. The recent paper of Oară and Varga [2000] indicates
“tens of papers” have been dedicated to this since the original work of Youla [1961]. An
approach for controller synthesis based upon factorisation is given by Vidyasagar [1987].
In this book, factorisation will appear in the current chapter in our discussion of optimal
control, as well as in Chapter 15 when we talk about synthesising controllers that solve
the robust performance problem. Indeed, only the results of Section 14.2.3 will be used in
this chapter. The remaining result will have to wait until Chapter 15 for their application.
However, it is perhaps in the best interests of organisation to have all the factorisation results
in one place. In Section 14.2.5 we consider a class of path independent integrals. These will
allow us to simplify the optimisation problem, and make its solution “obvious.” Finally, in
Section 14.2.6 we describe “H2 model matching.” The subject of model matching will be
revisited in Chapter 15 in the H∞ context.

For the most part, this background is peripheral to applying the results of Sections 14.3.
Thus the reader looking for the shortest route to “the point” can skip ahead to Section 14.3
after understanding how to compute the spectral factorisation of a polynomial.

14.2.1 An additive factorisation for rational functions

Our first factorisation is a simple one for rational functions. The reader will wish to recall
some of our notation for system norms from Section 5.3.2. In that section, RH+

2 and RH+
∞

denoted the strictly proper and proper, respectively, rational functions with no poles in C+.
Also recall that RL∞ denotes the proper rational functions with no poles on the imaginary
axis. Given a rational function R ∈ R(s) let us denote R∗ ∈ R(s) as the rational function
R∗(s) = R(−s). With this notation, let us additionally define

RH−2 = {R ∈ R(s) | R∗ ∈ RH+
2 }

RH−∞ = {R ∈ R(s) | R∗ ∈ RH+
∞}.

Thus RH−2 and RH−∞ denote the strictly proper and proper, respectively, rational functions
with no poles in C−. Now we make a decomposition using this notation.
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14.9 Proposition If R ∈ RL∞ then there exists unique rational functions R1, R2 ∈ R(s) so that

(i) R = R1 +R2,

(ii) R1 ∈ RH−2 , and

(iii) R2 ∈ RH+
∞.

Proof For existence, suppose that we have produced the partial fraction expansion of R.
Since R has no poles on iR, by Theorem C.6 it follows that the partial fraction expansion
will have the form

R = R̃1 + R̃2 + C

where R̃1 ∈ RH−2 , R̃2 ∈ RH+
2 , and C ∈ R. Defining R1 = R̃1 and R2 = R̃2+C gives existence

of the stated factorisation. For uniqueness, suppose that R = R̄1 + R̄2 for R̄1 ∈ RH−2 and
R̄2 ∈ RH+

∞. Then, uniqueness of the partial fraction expansion guarantees that R̄1 = R̃1

and R̄2 = R̃2 + C. �

Note that the proof of the result is constructive; it merely asks that we produce the
partial fraction expansion.

14.2.2 The inner-outer factorisation of a rational function

A rational function R ∈ R(s) is inner if R ∈ RH+
∞ and if RR∗ = 1, and is outer if

R ∈ RH+
∞ and if R−1 is analytic in C+. Note that outer rational functions are exactly those

that are proper, BIBO stable, and minimum phase. The following simple result tells the
story about inner and outer rational functions as they concern us.

14.10 Proposition If R ∈ RH+
∞ then there exists unique Rin, Rout ∈ R(s) so that

(i) R = RinRout,

(ii) Rin is inner and Rout is outer, and

(iii) Rin(0) = (−1)`0, where `0 ≥ 0 is the multiplicity of the root s = 0 for R.

Proof Let z0, . . . , zk ∈ C+ be the collection of distinct zeros of R in C+ with each having
multiplicity `j, j = 0, . . . , k. Suppose that the zeros are ordered so that

zj =

{
0, j = 0

z̄j+ 1
2

(n+`0) = zj+`0 , j = 1, . . . , 1
2
(n− `0).

Thus the last 1
2
(n − `0) zeros are the complex conjugates of the 1

2
(n − `0) preceding zeros.

For the remainder of the proof, let us denote m = 1
2
(n− `0). If we then define

Rin =
k∏

j=1

(s− zj)`j
(s+ zj)`j

, Rout =
R

Rin

, (14.5)

then clearly Rin and Rout satisfy (i), (ii), and (iii). To see that these are unique, suppose that
R̃in and R̃out are two inner and outer functions having the properties that R = R̃inR̃out and
R̃in(0) = 1. Since R̃−1

out is analytic in C+, if z ∈ C+ is a zero for R it must be a zero for R̃in.
Thus

R̃in =
k∏

j=1

(s− zj)`jT (s)
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for some T ∈ R(s). Because R̃in is inner we have

1 =
k∏

j=1

(s− zj)`jT (s)
k∏

j=1

(−1)`j(s+ zj)
`jT (−s)

= T (s)T (−s)(−1)`0
k∏

j=1

(s− zj)`j
k∏

j=1

(s+ zj)
`j

which gives

T (s)T (−s) = (−1)`0
1∏k

j=1(s− zj)`j
∏k

j=1(s+ zj)`j
.

From this we conclude that either

T (s) = ± 1∏k
j=1(s− zj)`j

or T (s) = ± 1∏k
j=1(s+ zj)`j

.

The facts that R̃in ∈ RH+
∞ and R̃in(0) = (−1)`0 ensures that

T (s) =
1∏k

j=1(s+ zj)`j
,

and from this the follows uniqueness. �

Note that the proof is constructive; indeed, the inner and outer factor whose existence is
declared are given explicitly in (14.5).

14.2.3 Spectral factorisation for polynomials

Spectral factorisation, while still quite simple in principle, requires a little more attention.
Let us first look at the factorisation of a polynomial, as this is easily carried out.

14.11 Definition A polynomial P ∈ R[s] admits a spectral factorisation if there exists a
polynomial Q ∈ R[s] with the properties

(i) P = QQ∗ and

(ii) all roots of Q lie in C−.

If P satisfies these two conditions, then P admits a spectral factorisation by Q. •
Let us now classify those polynomials that admit a spectral factorisation. A polynomial

P ∈ R[s] is even if P (−s) = P (s). Thus an even polynomial will have nonzero coefficients
only for even powers of s, and in consequence the polynomial will be R-valued on iR.

14.12 Proposition Let P ∈ R[s] have a zero at s = 0 of multiplicity k̃0 ≥ 0. Then P admits a
spectral factorisation if and only if

(i) P is even and

(ii) if k̃0

2
is odd then P (iω) ≤ 0 for ω ∈ R, and if k̃0

2
is even then P (iω) ≥ 0 for ω ∈ R.

Furthermore, if P admits a spectral factorisation by Q then Q is uniquely defined by requir-
ing that the coefficient of the highest power of s in Q be positive.
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Proof First suppose that P satisfies (i) and (ii). If z is a root for P , then so will −z be a
root since P is even. Since P is real, z̄ and hence −z̄ are also roots. Thus, if we factor P it
will have the factored form

P (s) = A0s
2k0

k1∏

j1=1

(a2
j1
− s2)

k2∏

j2=1

(s2 + b2
j2

)

k3∏

j3=1

(
(s2 − σ2

j3
)2 + 2ω2

j3
(s2 + σ2

j3
) + ω4

j3

)
. (14.6)

where 2k0 + 2k1 + 2k2 + 4k3 = 2n = deg(P ). Here aj1 > 0, j1 = 1, . . . , k1, bj2 > 0,
j2 = 1, . . . , k2, σj3 ≥ 0, j3 = 1, . . . , k3, and ωj3 > 0, j3 = 1, . . . , k3. One may check that
condition (ii) implies that A0 > 0. By (ii), P must not change sign on the imaginary axis.
This implies that all nonzero imaginary roots must have even multiplicity, since otherwise,
terms like (s2 + b2

j2
) will change sign on the imaginary axis. Therefore we may suppose that

k2 = 0 as the purely imaginary roots are then captured by the third product in (14.6). Now
we can see that taking

Q(s) =
√
A0s

k0

k1∏

j1=1

(s+ aj1)

k3∏

j3=1

(
(s+ σj3)2 + ω2

j3

)

satisfies the conditions of the definition of a spectral factorisation.
Now suppose that P admits a spectral factorisation by Q ∈ R[s]. Since Q must have all

roots in C−, we may write

Q(s) = B0s
k0

k1∏

j1=1

(s+ aj1)

k2∏

j2=1

(s2 + b2
j2

)

k3∏

j3=1

((s+ σj3)2 + ω2
j3

),

where aj1 > 0, j1 = 1, . . . , k1, bj2 > 0, j2 = 1, . . . , k2, σj3 , ωj3 > 0, j3 = 1, . . . , k3. Computing
QQ∗ gives exactly the expression (14.6) with A0 = B2

0 , thus showing that P satisfies (i)
and (ii).

Uniqueness up to sign of the spectral factorisation follows directly from the above com-
putations. �

We denote the polynomial specified by the theorem by [P ]+ which we call the left half-
plane spectral factor for P . The polynomial [P ]− = Q∗ we call the right half-plane
spectral factor of P .

The following result gives a common example of when a spectral factorisation arises.

14.13 Corollary If P ∈ R[s] then PP ∗ admits a spectral factorisation. Furthermore, if P has no
roots on the imaginary axis, then the left half-plane spectral factor will be Hurwitz.

Proof Suppose that
P (s) = pns

n + · · ·+ p1s+ p0.

Since PP ∗ is even, if z is a root, so is −z. Thus if z is a root, so is z̄, and therefore −z̄.
Arguing as in the proof of Proposition 14.12 this gives

P (s)P (−s) = p2
ns

2k0

k1∏

j1=1

(a2
j1
− s2)

ks∏

j2=1

(
(s2 − σ2

j2
)2 + 2ω2

j2
(s2 + σ2

j2
) + ω4

j2

)
,

where 2k0 + 2k1 + 2k2 + 4k3 = 2 deg(P ). Here aj1 > 0, j1 = 1, . . . , k1, σj2 ≥ 0, j2 = 1, . . . , k2,
and ωj2 > 0, j2 = 1, . . . , k3. This form for PP ∗ is a consequence of all imaginary axis roots
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necessarily having even multiplicity. It is now evident that

Q(s) = |pn|sk0

k1∏

j1=1

(s+ aj1)

k2∏

j2=1

(
(s+ σj2)2 + ω2

j2

)

is a spectral factor. The final assertion of the corollary is clear. �

Let us extract the essence of Proposition 14.12.

14.14 Remark The proof of Proposition 14.12 is constructive. To determine the spectral factorisa-
tion, one proceeds as follows.

1. Let P be an even polynomial for which P (iω) does not change sign for ω ∈ R. Let A0

be the coefficient of the highest power of s. Divide P by |A0| so that the resulting poly-
nomial is monic, or −1 times a monic polynomial. Rename the resulting polynomial
P̃ .

2. Compute the roots for P̃ that will then fall into one of the following categories:

(a) k0 roots at s = 0;

(b) k1 roots s = aj1 for aj1 real and positive (and the associated k1 roots s = −aj1);

(c) k2 roots s = σj2 + iωj2 for σj2 and ωj2 real and nonnegative (and the associated
3k1 roots s = σj2 − iωj2 , s = −σj2 + iωj2 , and s = −σj2 − iωj2).

3. A left half-plane spectral factor for P̃ will then be

Q̃(s) =

k1∏

j1=1

(s+ aj1)

k2∏

j2=1

(
(s+ σj2)2 + ω2

j2

)
.

4. A left half-plane spectral factor for P is then Q =
√
|A0|Q̃.

Let’s compute the spectral factors for a few even polynomials.

14.15 Examples

1. Let us look at the easy case where P (s) = s2 + 1. This polynomial is certainly even.
However, note that it changes sign on the imaginary axis. Indeed, P (

√
2i) = −1 and

P (0) = 1. This demonstrates why nonzero roots along the imaginary axis should appear
with even multiplicity if a spectral factorisation is to be admitted.

2. The previous example can be “fixed” by considering instead P (s) = s4 + 2s2 + 1 =
(s2 + 1)2. This polynomial has roots {i, i,−i,−i}. The left half-plane spectral factor is
then [P (s)]+ = s2 + 1, and this is also the right half-plane spectral factor in this case.

3. Let P (s) = −s2 + 1. Clearly P is even and is nonnegative on the imaginary axis. The
roots of P are {1,−1}. Thus the left half-plane spectral factor is [P (s)]+ = s+ 1.

4. Let P (s) = s4 − s2 + 1. Obviously P is even and nonnegative on iR. This polynomial

has roots
{√

3
2

+ i1
2
,
√

3
2
− i1

2
,−
√

3
2

+ i1
2
,−
√

3
2
− i1

2

}
. Thus we have

[P (s)]+ =
(
(s+

√
3

2
)2 + 1

4

)
. •

14.2.4 Spectral factorisation for rational functions

One can readily extend the notion of spectral factorisation to rational functions. The
notion for such a factorisation is defined as follows.
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14.16 Definition A rational function R ∈ R(s) admits a spectral factorisation if there exists
a rational function ρ ∈ R(s) with the properties

(i) R = ρρ∗,

(ii) all zeros and poles of ρ lie in C−.

If ρ satisfies these two conditions, then R admits a spectral factorisation by ρ. •
Let us now classify those rational functions that admit a spectral factorisation.

14.17 Proposition Let R ∈ R(s) be a rational function with (N,D) its c.f.r. R admits a spectral
factorisation if and only if both N and D admits a spectral factorisation.

Proof Suppose that N and D admit a spectral factorisation by [N ]+ and [D]+, respectively.
Then we have

R =
[N ]+[N ]−

[D]+[D]−
.

Clearly [N ]+

[D]+
is a spectral factorisation of R.

Conversely, suppose that R admits a spectral factorisation by ρ and let (Nρ, Dρ) be the
c.f.r. of ρ. Note that all roots of Nρ and Dρ lie in C−. We then have

R = ρρ∗ =
NρN

∗
ρ

DρD∗ρ
.

Since Nρ and Dρ are coprime, so are NρN
∗
ρ and DρD

∗
ρ. Since DρD

∗
ρ is also monic, it follows

that the c.f.r. of R is (NρN
∗
ρ , DρD

∗
ρ). Thus the c.f.r.’s of R admits spectral factorisations.�

Following our notation for the spectral factor for polynomials, let us denote by [R]+ the
rational function guaranteed by Proposition 14.17. As with polynomial spectral factorisa-
tion, there is a common type of rational function for which one wishes to obtain a spectral
factorisation.

14.18 Corollary If R ∈ R(s) then RR∗ admits a spectral factorisation. Furthermore, if R ∈ RL∞
then [R]+ ∈ RH+

∞.

Proof Follows directly from Proposition 14.17 and Corollary 14.13. �

14.2.5 A class of path independent integrals

In the proof of Theorem 14.25, it will be convenient to have at hand a condition that tells
us when the integral of a quadratic function of t and its derivatives only depends on the data
evaluated at the endpoints. To this end, we say that a symmetric matrix M ∈ R(n+1)×(n+1)

is integrable if for any interval [a, b] ⊂ R there exists a map F : R2n → R so that for any n
times continuously differentiable function φ : [a, b]→ R, we have

∫ b

a

n∑

i,j=0

Mijφ
(i)(t)φ(j)(t) dt = F

(
φ(a), φ(b), φ(1)(a), φ(1)(b), . . . , φ(n−1)(a), φ(n−1)(b)

)
, (14.7)

where Mij, i, j = 0, . . . , n, are the components of the matrix M . Thus the matrix M is
integrable when the integral in (14.7) depends only on the values of φ and its derivatives at
the endpoints, and not on the values of φ on the interval (a, b). As an example, consider the
two symmetric 2× 2 matrices

M 1 =

[
0 1
1 0

]
, M 2 =

[
1 0
0 0

]
.
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The first isintegrable on [a, b] since

∫ b

a

2∑

i,j=0

M1,ijφ
(i)(t)φ(j)(t) dt =

∫ b

a

2φ(t)φ̇(t) dt = φ2(b)− φ2(b).

M 2 is not integrable. Indeed we have

∫ b

a

2∑

i,j=0

M2,ijφ
(i)(t)φ(j)(t) dt =

∫ b

a

φ2(t) dt,

and this integral will depend not only on the value of φ at the endpoints of the interval, but
on its value between the endpoints. For example, the two functions φ1(t) = t and φ2(t) = t3

3

have the same value at the endpoints of the interval [−1, 1], and their first derivatives also
have the same value at the endpoints, but

∫ 1

−1

φ2
1(t) dt =

2

3
,

∫ 1

−1

φ2
2(t) dt =

2

63
.

The following result gives necessary and sufficient conditions on the coefficients Mij,
i, j = 1, . . . , n, for a symmetric matrix M to be integrable.

14.19 Proposition A symmetric matrix M ∈ R(n+1)×(n+1) is integrable if and only if the polynomial

P (s) =
n∑

i,j=0

Mij

(
si(−s)j + (−s)isj

)

is the zero polynomial.

Proof First let us consider the terms

∫ b

a

φ(i)(t)φ(j)(t) dt

when i + j is odd. Suppose without loss of generality that i > j. If i = j + 1 then the
integral ∫ b

a

φ(j+1)(t)φ(j)(t) dt =
φ(j)(t)

2

∣∣∣
t=b

t=a

If i > j + 1 then a single integration by parts yields

∫ b

a

φ(i)(t)φ(j)(t) dt = φ(i−1)(t)φ(j)(t)
∣∣∣
t=b

t=a
−
∫ b

a

φ(i−1)(t)φ(j+1)(t) dt.

One can carry on in this manner 1
2
(i − j − 1) times until one arrives at an expression that

is a sum of evaluations at the endpoints, and an integral of the form

∫ b

a

φ(k+1)(t)φ(k)(t) dt

which is then evaluated to
φ(k)(t)

2

∣∣∣
t=b

t=a
.
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Thus all terms where i+ j is odd lead to expressions that are only endpoint dependent.
Now we look at the terms of the form

∫ b

a

φ(i)(t)φ(j)(t) dt

when i+ j is even. We integrate by parts as above 1
2
(i− j) times to get an expression that

is a sum of terms that are evaluations at the endpoints, and an integral of the form

1

2

(
(−1)i + (−1)j

) ∫ b

a

(
φ((i+j)/2)(t)

)2
dt.

Thus we will have

∫ b

a

n∑

i,j=0

Mijφ
(i)(t)φ(j)(t) dt = I0 +

1

2

n∑

i,j=0

∫ b

a

Mij

(
(−1)i + (−1)j

)(
φ((i+j)/2)(t)

)2
dt, (14.8)

where I0 is a sum of terms that are evaluations at the endpoints. In order for the expres-
sion (14.8) to involve evaluations at the endpoints for every function φ, it must be the case
that

n∑

i,j=0

Mij

(
(−1)i + (−1)j

)(
φ((i+j)/2)(t)

)2
= 0

for all t ∈ [a, b]. Now we compute directly that

n∑

i,j=0

Mij

(
(−1)i + (−1)j

)
si+j =

n∑

i,j=0

Mij

(
si(−s)j + (−s)isj

)
. (14.9)

From this the result follows. �

Note that the equation (14.9) tells us that M is integrable if and only if for k = 0, . . . , 2n
we have ∑

i+j=2k

Mij = 0.

The result yields the following corollary that makes contact with the Riccati equation
method of Section 14.3.2.

14.20 Corollary A symmetric matrix M ∈ R(n+1)×(n+1) is integrable if and only if there exists a
symmetric matrix P ∈ Rn×n so that

∫ b

a

n∑

i,j=0

Mijφ
(i)(t)φ(j)(t) dt = xt(b)Px(b)− xt(a)Px(a),

where x(t) =
(
φ(t), φ(1)(t), . . . , φ(n−1)(t)

)
.

Proof From Proposition 14.19 we see that if M is integrable, then the only contributions
to the integral come from terms of the form

∫ b

a

Mijφ
(i)(t)φ(j)(t) dt,
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where i + j is odd. As we saw in the proof of Proposition 14.19, the resulting integrated
expressions are sums of pairwise products of the form

φ(k)(t)φ(`)(t)
∣∣∣
t=b

t=a

where k, ` ∈ {0, 1, . . . , n− 1}. This shows that there is a matrix P ∈ Rn×n so that
∫ b

a

n∑

i,j=0

Mijφ
(i)(t)φ(j)(t) dt = xt(b)Px(b)− xt(a)Px(a).

That P may be taken to be symmetric is a consequence of the fact that the expressions
xt(b)Px(b) and xt(a)Px(a) depend only on the symmetric part of P (see Section A.6). �

It is in the formulation of the corollary that the notion of path independence in the title
of this section is perhaps best understood, as here we can interpret the integral (14.7) as a
path integral in Rn+1 where the coordinate axes are the values of φ and its first n derivatives.

The following result is key, and combines our discussion in this section with the spectral
factorisation of the previous section.

14.21 Proposition If P,Q ∈ R[s] are coprime then the polynomial PP ∗ + QQ∗ admits a spectral
factorisation. Let F be the left half-plane spectral factor for this polynomial. Then for any
n times continuously differentiable function φ : [a, b]→ R, the integral

∫ b

a

((
P
(

d
dt

)
φ(t)

)2
+
(
Q
(

d
dt

)
φ(t)

)2 −
(
F
(

d
dt

)
φ(t)

)2
)

dt

is expressible in terms of the value of the function φ and its derivatives at the endpoints of
the interval [a, b].

Proof For the first assertion, we refer to Exercise E14.2. Let us suppose that n = deg(P ) ≥
deg(Q) so that deg(F ) = deg(P ). Let us also write

P (s) = pns
n + · · ·+ p1s+ p0

Q(s) = qns
n + · · ·+ q1s+ q0

F (s) = fns
n + · · ·+ f1s+ f0.

According to Proposition 14.19, we should show that the coefficients of the even powers of
s in the polynomial P 2 +Q2 − F 2 vanish. By definition of F we have

PP ∗ +QQ∗ = FF ∗,

or
( n∑

i=0

pis
i
)( n∑

j=0

(−1)jpjs
j
)

+
( n∑

i=0

qis
i
)( n∑

j=0

(−1)jqjs
j
)

=
( n∑

i=0

fis
i
)( n∑

j=0

(−1)jfjs
j
)

=⇒
n∑

k=0

∑

i+j=2k

(−1)ipipjs
2k +

n∑

k=0

∑

i+j=2k

(−1)iqiqjs
2k =

n∑

k=0

∑

i+j=2k

(−1)ififjs
2k.

In particular, it follows that for k = 0, . . . , n we have
∑

i+j=2k

(pipj + qiqj)−
∑

i+j=2k

fifj = 0.

However, these are exactly the coefficients of the even powers of s in the polynomial P 2 +
Q2 − F 2, and thus our result follows. �
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14.2.6 H2 model matching

In this section we state a so-called “model matching problem” that on the surface has
nothing to do with the optimal control problems of Section 14.1. However, we shall directly
use the solution to this model matching problem to solve Problem 14.6, and in Section 14.4.2
we shall see that the famous LQG control scheme is the solution of a certain model matching
problem.

The problem in this section is precisely stated as follows.

14.22 H2 model matching problem Given T1, T2 ∈ RH+
2 , find θ ∈ RH+

2 so that ‖T1 − θT2‖2
2 + ‖θ‖2

2

is minimised. •
The norm ‖·‖2 is the H2-norm defined in Section 5.3.2:

‖f‖2
2 =

∫ ∞

−∞
|f(iω)|2 dω.

The idea is that given T1 and T2, we find θ so that the cost

JT1,T2(θ) =

∫ ∞

−∞
|T1(iω)− θ(iω)T2(iω)|2 dω +

∫ ∞

−∞
|θ(iω)|2 dω

is minimised. The problem may be thought of as follows. Think of T1 as given. We wish to
see how close we can get to T1 with a multiple of T2, with closeness being measured by the
H2-norm. The cost should be thought of as being the cost of the difference of T1 from θT2,
along with a penalty for the size of the matching parameter θ.

To solve the H2 model matching problem we turn the problem into a problem much
like that posed in Section 14.1. To do this, we let Σj = (Aj, bj, c

t
j,01), j ∈ {1, 2}, be

the canonical minimal realisations of T1 and T2. The following lemma gives a time-domain
characterisation of the model matching cost JT1,T2(θ).

14.23 Lemma If uθ is the inverse Laplace transform of θ ∈ RH+
2 then

JT1,T2(θ) =
1

2π

∫ ∞

0

(
y(t)2 + uθ(t)

2
)

dt,

where y satisfies
ẋ(t) = Ax(t) + buθ(t)

y(t) = ctx(t),
x(0) = x0,

with

A =

[
A1 0
0 A2

]
, b =

[
0
b2

]
, ct =

[
ct1 −ct2

]
, x0 =

[
b1

0

]
.

Proof By Parseval’s theorem we immediately have

∫ ∞

−∞
|θ(iω)|2 dω =

1

2π

∫ ∞

0

|uθ(t)|2 dt,

since θ ∈ RH+
2 . We also have

T1(s) = ct1(sIn1 −A1)−1b1, T2(s)θ(s) = ct2(sIn2 −A2)−1b2θ(s),
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giving

L −1(T1(s))(t) = ct1e
A1tb, L −1(T2(s)θ(s))(t) =

∫ t

0

c2
2e

A2(t−τ)b2uθ(τ) dτ.

In other words, the inverse Laplace transform of T1(s) − θ(s)T2(s) is exactly y, if y is
specified as in the statement of the lemma. The result then follows by Parseval’s theorem
since T1(s)− θ(s)T2(s) ∈ RH+

2 . �

The punchline is that we now know how to minimise JT1,T2(θ) by finding uθ as per the
methods of Section 14.3. The following result contains the upshot of translating our problem
here to the previous framework.

14.24 Proposition Let Σj = (Aj, bj, c
t
j,01) be the canonical minimal realisation of Tj ∈ RH+

2 ,

j ∈ {1, 2}, let Σ = (A, b, ct,01) be as defined in Lemma 14.23, and let f =
[
f t1 f t2

]
be

the solution to Problem 14.3 for Σ. If we denote Σ̃1 = (A1, b1,f
t
1,01) and Σ̃2 = (A2 −

b2f 2, b2,f
2
2,01), then the solution to the model matching problem Problem 14.22 is

θ = (−1 + TΣ̃2
)TΣ̃1

.

Proof By Theorem 14.25, Corollary 14.26, and Lemma 14.23 we know that uθ(t) = −fx(t)
where x satisfies the initial value problem

ẋ(t) = (A− bf t)x(t), x(0) = x0.

Then we have

A− bf t =

[
A1 0
−b2f

t
1 A2 − b2f

t
2

]
.

Therefore

(sIn − (A− bf t)−1

=

[
(sIn1 −A1)−1 0

−(sIn2 − (A2 − b2f
t
2))−1b2f

t
1(sIn1 −A1)−1 (sIn2 − (A2 − b2f

t
2))−1

]
,

giving

(sIn − (A− bf t)−1x0 =

[
(sIn1 −A1)−1b1

−(sIn2 − (A2 − b2f
t
2))−1b2f

t
1(sIn1 −A1)−1b1

]
.

This finally gives

θ(s) = −f t1(sIn1 −A1)−1b1 + f t2(sIn2 − (A2 − b2f
t
2))−1b2f

t
1(sIn1 −A1)−1b1,

as given in the statement of the result. �

14.3 Solutions of optimal control and state estimation problems

With the developments of the previous section under our belts, we are ready to state our
main results. The essential results are those for the optimal control problems, Problems 14.1
and 14.3, and these are given in Section 14.3.1. By going through the model matching prob-
lem of Section 14.2.6, the optimal state estimation problem, Problem 14.6, is seen to follow
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from the optimal control results. The way of approaching the optimal control problem we
undertake is not the usual route, and is not easily adaptable to MIMO control problems.
In this latter case, the typical development uses the so-called “Riccati equation.” In Sec-
tion 14.3.2 we indicate how the connection between our approach and the Riccati equation
approach is made. Here the developments of Section 5.4, that seemed a bit unmotivated at
first glance, become useful.

14.3.1 Optimal control results

The main optimal control result is the following.

14.25 Theorem Let Σ = (A, b, ct,01) be an observable SISO linear system in controller canonical
form with (N,D) the c.f.r. for TΣ. Let F ∈ R[s] be defined by

F = −[DD∗ +NN∗]+ +D.

For x0 ∈ Rn, a control u ∈ Ux0 solves Problem 14.1 if and only if it satisfies

u(t) = F
(

d
dt

)
xu,x0(t),

and is defined on [0,∞).

Proof First note that observability of Σ implies that the polynomial DD∗ + NN∗ is even
and positive on the imaginary axis (see Exercise E14.2), so the left half-plane spectral factor
[DD∗ + NN∗]+ does actually exist. The system equations are given by (14.1), which we
write as

D
(

d
dt

)
xu,x0(t) = u(t), N

(
d
dt

)
xu,x0(t) = y(t).

Let u ∈ Ux0 . If u is defined on [0, T ] then we may extend u to [0,∞) by asking that u(t) = 0
for t > T . Note that if we do this, the value of Jx0(u) is unchanged. Therefore, let us
suppose that u is defined on [0,∞). Now let us write

Jx0(u) =

∫ ∞

0

(
y2
u,x0

(t) + u2(t)
)

dt

=

∫ ∞

0

((
N
(

d
dt

)
xu,x0(t)

)2
+
(
D
(

d
dt

)
xu,x0(t)

)2
)

dt.

Now define F̃ = [DD∗ +NN∗]+ and write

Jx0(u) =

∫ ∞

0

((
N
(

d
dt

)
xu,x0(t)

)2
+
(
D
(

d
dt

)
xu,x0(t)

)2 −
(
F̃
(

d
dt

)
xu,x0(t)

)2
)

dt+

∫ b

a

(
F̃
(

d
dt

)
xu,x0(t)

)2
dt.

By Proposition 14.21 the first integral depends only on the value of xu,x0(t) and its derivatives
at its initial point and terminal point. Thus it cannot be changed by changing the control.
This means the best we can hope to achieve will be by choosing u so that

F̃
(

d
dt

)
xu,x0(t) = 0.

Note that if xu,x0 does satisfy this condition, then it and its derivatives do indeed go to zero
since the zeros of F̃ are in C− (see Exercise E14.2). Clearly, since D

(
d
dt

)
xu,x0(t) = u, this

can be done if and only if u(t) satisfies

u(t) = −F̃
(

d
dt

)
xu,x0(t) +D

(
d
dt

)
xu,x0(t),

as specified in the theorem statement. �
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Note that, interestingly, the control law is independent of the initial condition x0 for the
state. Also, motivated by Corollary 14.20, let P ∈ Rn×n be the symmetric matrix with the
property that

∫ b

a

((
N
(

d
dt

)
φ(t)

)2
+
(
D
(

d
dt

)
φ(t)

)2 −
(
F̃
(

d
dt

)
φ(t)

)2
)

dt = x(b)Px(b)− x(a)Px(a),

where x(t) = (φ(t), φ(1)(t), . . . , φ(n−1)(t)). We then see that the cost of the optimal control
with initial state condition x0 is

Jx0(u) = xt0Px0.

Let us compare Theorem 14.25 to something we are already familiar with, namely the
method of finding a state feedback vector f to stabilise a system.

14.26 Corollary Let Σ = (A, b, ct,01) be a controllable and detectable SISO linear system, and
let T ∈ Rn×n be an invertible matrix with the property that (TAT−1,Tb) is in controller
canonical form. If f̃ = (f̃0, f̃1, . . . , f̃n−1) ∈ Rn is defined by requiring that

f̃n−1s
n−1 + · · ·+ f̃1s+ f̃0 = [D(s)D(−s) +N(s)N(−s)]+ −D(s),

where (N,D) is the c.f.r. for TΣ, then f = T tf̃ is a solution of Problem 14.3.

Proof Let us denote by

Σ̃ = (Ã, b̃, c̃t,01) = (TAT−1,Tb,T−tct,01)

the system in coordinates where (Ã, b̃) is in controller canonical form. We make the obser-
vation that the cost function is independent of state coordinates. That is to say, if x̃0 = Tx0

then Jc̃,x̃0(f̃) = Jc,x0(f), where f̃ = T−tf . Thus it suffices to prove the corollary for the
system in controller canonical form.

Thus we proceed with the proof under this assumption. Theorem 14.25 gives the form of
the control law u in terms of xu,x0 that must be satisfied for optimality. It remains to show
that the given u is actually in state feedback form. However, since the system is in controller
canonical form we have xu,x0(t) = (x(t), x(1)(t), . . . , x(n−1)(t)), and so it does indeed follow
that (

[D
(

d
dt

)
D
(
− d

dt

)
+N

(
d
dt

)
N
(
− d

dt

)
]+ −D

(
d
dt

))
xu,x0(t) = −f txu,x0(t),

with f as defined in the statement of the corollary. The corollary now follows since in this
case we have Jc,x0(f) = Jx0(u). �

14.27 Remarks

1. The corollary gives, perhaps, the easiest way of seeing what is going on with Theo-
rem 14.25 in that it indicates that the control law that solves Problem 14.1 is actually a
state feedback control law. This is not obvious from the statement of the problem, but
is a consequence of Theorem 14.25.

2. The assumption of controllability in the corollary may be weakened to stabilisability.
In this case, to construct the optimal state feedback vector, one would put the system
into the canonical form of Theorem 2.39, with (A1, b1) in controller canonical form.
One then constructs f t = [ f t1 0t ], where f 1 is defined by applying the corollary to
Σ1 = (A1, b1, c

t
1,01). •

Let us look at an example of an application of Theorem 14.25, or more properly, of
Corollary 14.26.



2016/09/21 14.3 Solutions of optimal control and state estimation problems 537

14.28 Example (Example 6.50 cont’d) The system we look at in this example had

A =

[
0 1
−1 0

]
, b =

[
0
1

]
.

In order to specify an optimal control problem, we also need an output vector c to specify
an output cost in Problem 14.3. In actuality, one may wish to modify the output vector
to obtain suitable controller performance. Let us look at this a little here by choosing two
output vectors

c1 =

[
1
0

]
, c2 =

[
0
1

]
.

To simplify things, note that (A, b) is in controller canonical form. Thus Problems 14.1
and 14.3 are related in a trivial manner. If Σ1 = (A, b, ct1,01) and Σ2 = (A, b, ct2,01), then
one readily computes

TΣ1(s) =
1

s2 + 1
, TΣ2(s) =

s

s2 + 1
.

Let us denote (N1(s), D1(s)) = (1, s2 +1) and (N2(s), D2(s)) = (s, s2 +1). We then compute

D1(s)D1(−s) +N1(s)N1(−s) = s4 + 2s2 + 2

D2(s)D2(−s) +N2(s)N2(−s) = s4 + s2 + 1.

Following the recipe of Remark 14.14, one determines that

[D1(s)D1(−s) +N1(s)N1(−s)]+ = s2 + 2
4
√

2 sin π
8
s+
√

2

[D2(s)D2(−s) +N2(s)N2(−s)]+ = s2 + s+ 1.

Then one follows the recipe of Corollary 14.26 and computes

[D1(s)D1(−s) +N1(s)N1(−s)]+ −D1(s) = 2
4
√

2 sin π
8
s+
√

2− 1

[D2(s)D2(−s) +N2(s)N2(−s)]+ −D2(s) = s.

Thus the two optimal state feedback vectors are

f 1 =

[ √
2− 1

2 4
√

2 sin π
8

]
, f 2 =

[
0
1

]
.

The eigenvalues of the closed-loop system matrices

A− bf t1, A− bf t2
are

{
4
√

2
(
− sin π

8
± i
√

1− sin2 π
8

)}
≈ {−0.46 ± i1.10} and {−1

2
± i

√
3

2
}. In Figure 14.1

are plotted the trajectories for the closed-loop system in the (x1, x2)-plane for the initial
condition (1, 1). One can see a slight difference in that in the optimal control law for c2

the x2-component of the solution is tending to zero somewhat more sharply. In practice,
one uses ideas such as this to refine a controller based upon the principles we have outlined
here. •

14.3.2 Relationship with the Riccati equation

In classical linear quadratic regulator theory, one does not normally deal with polynomials
in deriving the optimal control law. Normally, one solves a quadratic matrix equation called
the “algebraic Riccati equation.”1 In this section, that can be regarded as optional, we make
this link explicit by proving the following theorem.

1After Jacopo Francesco Riccati (1676–1754) who made original contributions to the theory of differential
equations. Jacopo also had a son, Vincenzo Riccati (1707–1775), who was a mathematician of some note.
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Figure 14.1 Optimal trajectories for output vector c1 (left) and c2

(right)

14.29 Theorem If Σ = (A, b, c,01) is a controllable SISO linear system, then there exists at least
one symmetric solution P ∈ Rn×n of the equation

AtP + PA− PbbtP = −cct, (14.10 )

and, furthermore, exactly one of these solutions is positive-definite. The equation (14.10) is
called the algebraic Riccati equation .

Proof Let
Σ̃ = (Ã, b̃, c̃t,01) = (TAT−1,Tb,T−tct,01)

be the system in state coordinates where (Ã, b̃) is in controller canonical form. Note that if
P̃ is a solution for the equation

ÃtP̃ + P̃ Ã− P̃ b̃b̃tP̃ = −c̃c̃t,
then P = T P̃T−1 is a solution to (14.10). Therefore, without loss of generality we assume
that (A, b) is in controller canonical form. Let TΣ(s) = ct(sIn − A)−1b be the transfer
function for Σ with (N,D) its c.f.r. Then we have

T tΣ(−s)TΣ(s) + 1 = bt(−sIn −A)cct(sIn −A)−1b+ 1,

which is nonnegative for s = iω. Let us denote this rational function by R. Defining
F̃ = [RDD∗]+ we see that

T tΣ(−s)TΣ(s) + 1 =
F̃ (s)F̃ (−s)
D(s)D(−s)

(here we have used the fact that A and At have the same eigenvalues). Note that F̃ is monic
and of degree n. Because A is in controller canonical form, a simple computation along the
lines of that in the proof of Theorem 6.49 shows that if f ∈ Rn is defined by

f t(sIn −A)−1b =
F̃ (s)−D(s)

D(s)
(14.11)
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then det(sIn − (A− bf t)) = F̃ (s). By the spectral factorisation theorem, A− bf t is thus
Hurwitz. By Theorem 5.32(i) there exists a unique positive-definite solution to the equation

(At − fbt)P + P (A− bf t) = −cct − ff t. (14.12)

Let us denote this solution by P 1. A straightforward computation shows that the previous
equation is equivalent to

AtP 1 + P 1A− P 1bb
tP 1 = −cct − (P 1b− f)(P 1b− f)t. (14.13)

Thus the existence part of the theorem will follow if we can show that P 1b = f . Let us
show this.

The argument is outlined as follows:

1. multiply (14.13) by −1, add and subtract P 1s, and multiply on the left and right by
bt(−sIn −A)−1 and (sIn −A)−1b, respectively, to get an equation (∗);

2. let Q1 ∈ R[s] be defined by

btP 1(sIn −A)−1b =
Q1(s)

D(s)
;

3. let P = Q1 − F̃ +D;

4. substitute the above definitions into the equation (∗) and the resulting expression turns
out to be

PF̃ ∗

DD∗
+
P ∗F̃

DD∗
= 0;

5. as D and F̃ are monic, this reduces to

P

F̃
+
P ∗

F̃ ∗
= 0; (14.14)

6. since F̃ is analytic in C+, the rational functions P
F̃

and P ∗

F̃ ∗
have no common poles

so (14.14) holds if and only if P = P ∗ = 0;

7. by the definition of P , P (s) = 0 implies that

(btP 1 − f t)(sIn −A)−1b = 0; (14.15)

8. this implies that the components of the vector btP 1 − f t are zero, or that P 1b = f ,
as desired.

Thus we have shown that (14.10) has a solution, and the solution P 1 we found was
positive-definite. Let us show that this is the only positive-definite solution. Let P 2 be
positive-definite and suppose that

AtP 2 + P 2A− P 2bb
tP 2 = −cct. (14.16)

Now argue as follows:

1. multiply (14.16) by −1, add and subtract P 2s, and multiply on the left and right by
bt(−sIn −A)−1 and (sIn −A)−1b, respectively, to get an expression (∗∗);
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2. Define Q2 ∈ R[s] by requiring that

btP 2(sIn −A)−1b =
Q2(s)

D(s)
;

3. following the arguments in the existence part of the proof, show that P 2b = f ;

4. this implies that (14.16) is equivalent to

(At − fbt)P 2 + P 2(A− bf t) = −cct − ff t;

5. by Theorem 5.32(i), P 2 = P 1.

This completes the proof. �

During the course of the proof of the theorem, we arrived at the relationship between
the solution to the algebraic Riccati equation and the optimal state feedback vector f . Let
us record this.

14.30 Corollary Consider a controllable SISO linear system Σ = (A, b, ct,01). If f is the optimal
state feedback vector of Corollary 14.26 and P is the unique positive-definite solution to the
algebraic Riccati equation (14.10), then f = Pb.

Proof By Corollary 14.26 the vector f = (f0, f1, . . . , fn−1) is defined by

fn−1s
n−1 + · · ·+ f1s+ f0 = [D(s)D(−s) +N(s)N(−s)]+ −D(s).

However, this is exactly the relation (14.11) in the proof of Theorem 14.29, since in the
statement of the theorem we had assumed (A, b) to be in controller canonical form. During
the course of the same proof, the relation f = Pb was also shown to be true when (A, b)
is in controller canonical form. The result now follows from the transformation property for
control systems under state similarity stated in Proposition 2.36. �

14.31 Example (Example 14.28 cont’d) We resume with the situation where

A =

[
0 1
−1 0

]
, b =

[
0
1

]
.

and where we used the two output vectors

c1 =

[
1
0

]
, c2 =

[
0
1

]
.

The two feedback vectors were computed to be

f 1 =

[ √
2− 1

2 4
√

2 sin π
8

]
, f 2 =

[
0
1

]
,

respectively. Let us denote by P 1 and P 2 the two corresponding positive-definite matrices
guaranteed by Theorem 14.29. Referring to the equation (14.12) in the proof of Theo-
rem 14.29, we see that the matrices P 1 and P 2 satisfy

(At − f jbt)P j + P j(A− bf tj) = −cjctj − f jf tj, j = 1, 2.
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Now we refer to the proof of part (i) of Theorem 5.32 to see that

P j =

∫ ∞

0

eA
t
jtQje

Ajt dt, j = 1, 2,

where
Aj = A− bf tj, Qj = cjc

t
j + f jf

t
j, j = 1, 2.

One may do the integration (I used Mathematica®, of course) to obtain

P 1 =

[
2 4
√

8 sin π
8

√
2− 1√

2− 1 2 4
√

2 sin π
8

]
, P 2 =

[
1 0
0 1

]
.

In each case we readily verify that f j = P jb, j = 1, 2, just as predicted by Corollary 14.30. •

14.32 Remarks

1. The algebraic Riccati equation must generally be solved numerically. Indeed, note that
Theorem 14.25 provides essentially the same information as the algebraic Riccati equation
(as made precise in Corollary 14.30). In the former case, we must find the left half-
plane spectral factor of an even polynomial, and this involves finding the roots of this
polynomial. This itself is something that typically must be done numerically.

2. Note that the matrix on the right-hand side of the algebraic Riccati equation is the matrix
that determines the penalty given to states (as opposed to control) in the cost function of
Problems 14.1 and 14.3. One can easily imagine using more general symmetric matrices
to define this cost, thus looking at cost functions of the form

Jx0(u) =

∫ ∞

0

(
xtu,x0

(t)Qxu,x0(t) +Ru2
)

dt.

where Q ∈ Rn×n is symmetric and positive-semidefinite, and R > 0. This can also be
seen to be generalisable to multiple inputs by making the cost associated to the input
be of the form ut(t)Ru(t) for an m × m symmetric matrix Q. Making the natural
extrapolation gives the analogue of equation (14.10) to be

AtP + PA− PBR−1BtP = −Q.

This is indeed the form of the algebraic Riccati equation that gets used in MIMO gener-
alisations of our Theorem 14.25.

3. The optimal feedback vector f determined in this section is often referred to as the
linear quadratic regulator (LQR). •

14.3.3 Optimal state estimation results

With the optimal control results of the preceding two sections, and with the (now known)
solution of the model matching problem of Section 14.2.6, we can prove the following result
which characterises the solution to the optimal state estimation problem.
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14.33 Theorem For Σ = (A, b, ct,D) a complete SISO linear system, the following statements
regarding ` ∈ Rn are equivalent:

(i) ` is a solution for Problem 14.6;

(ii) if (N,D) is the c.f.r. of TΣ, if T ∈ Rn×n is the invertible matrix with the property that
(TAT−1,T−tc) is in observer canonical form, and if ˜̀ = (˜̀

0, ˜̀
1, . . . , ˜̀

n−1) is defined
by requiring that

˜̀
n−1s

n−1 + · · ·+ ˜̀
1s+ ˜̀

0 = [D(s)D(−s) +N(s)N(−s)]+ −D(s),

then ` = T−1˜̀;

(iii) ` = Pc where P is the unique positive-definite solution to the algebraic Riccati equation

AP + PAt − PcctP = −bbt.

Proof First let us demonstrate the equivalence of (ii) and (iii). Let us define Σ̃ =
(At, c, bt,D), and let T̃ ∈ Rn×n be the invertible matrix which puts (At, c) into controller
canonical form. From Corollaries 14.26 and 14.30 we infer the following. If (Ñ, D̃) is the
c.f.r. for TΣ̃ then if ˜̀ is defined by

˜̀
n−1s

n−1 + · · ·+ ˜̀
1s+ ˜̀

0 = [D̃(s)D̃(−s) + Ñ(s)Ñ(−s)]+ − D̃(s),

we have ` = T̃ t˜̀. Now we note that (T̃AtT̃−1, T̃ c) is in controller canonical form if and
only if (T̃−tAT̃ t, T̃ c) is in observer canonical form. From this we infer that T̃ = T−t. The
equivalence of parts (ii) and (iii) now follow from the fact that (Ñ, D̃) = (N,D).

We now show the equivalence of parts (i) and (iii). First we note that by Parseval’s
Theorem we have

J(`) =
1

2π

∫ ∞

−∞

∣∣TΣ(iω)− TΣ`
(iω)TΣ(iω)

∣∣2 dω +
1

2π

∫ ∞

−∞

∣∣TΣ`
(iω)

∣∣2 dω,

where Σ` = (A − `ct, `, ct,01). Since the transfer functions are scalar, they may be trans-
posed without changing anything. That is to say, we have

TΣ(s) = ct(sIn −A)−1b = bt(sIn −At)−1ct

TΣ`
(s) = ct(sIn −A+ `ct)−1` = `t(sIn −At + c`t)−1c.

We shall think of these transfer functions as being in this form for the moment. Now,
thinking of TΣ`

as the unknown, we wish to choose this unknown to minimise J(`). This,
however, is exactly the model matching problem posed in Section 14.2.6. The solution
to the model matching problem is given, if we know the solution to the optimal control
problem Problem 14.3. But since we now know this, we do indeed know the solution to
the model matching problem, and let us translate the solution into our current notation.
The transfer function TΣ`

minimising J(`) is given by TΣ`
= (−1 + TΣ̃2

)TΣ̃1
where Σ̃1 =

(At, c, `t1,01) and Σ̃2 = (At − c`t2, c, `t2,01), and where `t = [ `t1 `t1 ] is given by `t = b̃tP̃ ,
where P̃ is the unique positive-definite solution to the algebraic Riccati equation

ÃtP̃ + P̃ Ã− P̃ b̃b̃tP̃ = −c̃c̃t, (14.17)

with

Ã =

[
At 0
0 At

]
, b̃ =

[
0
c

]
, c̃t =

[
bt −bt

]
.
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Writing

P̃ =

[
P 11 P 12

P 12 P 22

]

and expanding (14.17), we arrive at the following four equations:

AP 11 + P 11A
t − P 12cc

tP 12 = −bbt
AP 12 + P 12A

t − P 12cc
tP 22 = bbt

AP 12 + P 12A
t − P 22cc

tP 12 = bbt

AP 22 + P 22A
t − P 22cc

tP 22 = −bbt.

(14.18)

Since P is symmetric and positive-definite, so too is P 22 (since xtPxt > 0 for all x of the
form xt = [ 0 xt2 ]). The last of equations (14.18) then uniquely prescribes P 22 as being the
matrix prescribed in part (iii) of the theorem. Adding the last two of equations (14.18) gives

A(P 12 + P 22) + (P 12 + P 22)At − P 22cc
t(P 12 + P 22) = 0.

This gives P 12 + P 22 = 0 by . We then have

[
`t1 `t2

]
=
[
0 ct

] [ P 11 −P 22

−P 22 P 22

]
=
[
−ctP 22 ctP 22

]
,

and we take ` = `2. Now we obtain

TΣ̃1
(s) = −`t(sIn −At)−1c = −ct(sIn −A)−1`

TΣ̃2
(s) = `t(sIn −At + c`t)−1c = ct(sIn −A+ `ct)−1`,

thus giving

(−1 + TΣ̃2
(s))TΣ̃1

(s) = (1− ct(sIn −A+ `ct)−1`)ct(sIn −A)−1`

= ct(sIn −A)−1(In − `ct(sIn −A+ `ct)−1)`

= ct(sIn −A+ `ct − `ct)(sIn −A+ `ct)`

= ct(sIn −A+ `ct)`,

as desired. �

14.4 The linear quadratic Gaussian controller

In Section 10.5.3 we showed how one could combine state estimation via a Luenberger
observer with static state feedback to obtain a controller that worked by using the estimated
states in the state feedback law.

14.4.1 LQR and pole placement

We know that if the state feedback vector f is chosen according to Corollary 14.26, then
the matrix A− bf t will be Hurwitz. However, we have said nothing about the exact nature
of the eigenvalues of this matrix. In this section we address this issue.
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14.4.2 Frequency domain interpretations

Our above presentations for the linear quadratic regulator and the optimal state estima-
tor are presented in the time-domain. While we present their solutions in terms of spectral
factorisation of polynomials, we also see that these solutions are obtainable using the alge-
braic Riccati equation, and this is how these problems are typically solved in the MIMO
case. However, it is also possible to give frequency response formulations and solutions to
these problems, and in doing so we make a connection to the H2 model matching problem
of Section 14.2.6.

14.4.3 H2 model matching and LQG

In this section we show that LQG control may be posed as an H2 model matching
problem. This will provide us with a natural segue to the next chapter where we discuss a
more difficult model matching problem, that of H∞ model matching. By representing the
somewhat easily understood LQG control in the context of model matching, we hope to
motivate the less easily understood material in the next chapter.

14.5 Stability margins for optimal feedback

In this section we wish to investigate some properties of our optimal feedback law. We
shall work in the setting of Corollary 14.26. It is our desire to talk about the gain and phase
margin for the closed-loop system in this case. However, it is not quite clear that it makes
sense to do this as gain and phase margins are defined in the context of unity gain feedback
loops, not in the context of static state feedback. Therefore, the first thing we shall is recall
from Exercise E7.11 the connection between static state feedback and unity gain feedback
loop concepts. In particular, recall that A− bf t is Hurwitz if and only if

f t(sIn −A)−1b

1 + f t(sIn −A)−1b
∈ RH+

∞.

This result tells us that closed-loop stability of the closed-loop system Σf is equivalent to
IBIBO stability of a unity gain feedback loop with loop gain RL(s) = f t(sIn − A)−1b.
Note that this enables us to employ our machinery for these interconnections, thinking of
f(sIn −A)−1b as being the loop gain.

14.5.1 Stability margins for LQR

In particular, as is made clear in Exercise E7.11, we may employ the Nyquist criterion
to determine closed-loop stability under static state feedback. Recall that rather than the
poles of the loop gain in C+, one uses the eigenvalues of A in C+ to compare with the
encirclements of −1 + i0. Let us illustrate the Nyquist criterion on an unstable system.

14.34 Example We take

A =

[
0 1
1 −2

]
, b =

[
0
1

]
, c =

[
1
1

]
.

We ascertain that A has a repeated eigenvalue of +1, thus np = 2. Exercise E7.11(b)
indicates that any stabilising state feedback vector f will have the property that the Nyquist
plot for the loop gain Rf (s) = f t(sIs−A)−1b will encircle the origin twice in the clockwise
direction. Let us test this, not for just any stabilising state feedback vector, but for the
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optimal one. Without going through the details as we have done this for one example
already, the optimal feedback state vector is

f =

[
1 +
√

2√
7
2
−
√

41
2

+
√

7
2

+
√

41
2
− 2

]
.

In Figure 14.2 is shown the Nyquist plot for the loop gain Rf (s) = f t(sI2 −A)−1b. One

Figure 14.2 Nyquist plot for optimal state feedback with two un-
stable eigenvalues

can see that it encircles the origin twice in the clockwise direction, as predicted. •
The discussion to this point has largely been with respect to general feedback vectors.

However, notice that the Nyquist plot of Example 14.34, done for the optimal state feedback
vector of Corollary 14.26, has an interesting feature: the Nyquist contour remains well clear
of the critical point −1 + i0. The following result tells us that we can generally expect this
to happen when we use the optimal state feedback vector.

14.35 Theorem Let Σ = (A, b, ct,01) be a controllable SISO linear system and let f ∈ Rn be the
optimal state feedback vector of Corollary 14.26. We have

|−1− f(iωIn −A)−1b| ≥ 1

for every ω ∈ R. In other words, the point Rf (iω) is at least distance 1 away from the point
−1 + i0.

Proof We assume without loss of generality that (A, b) is in controller canonical form. We
let P be the unique positive-definite matrix guaranteed by Theorem 14.29. Thus

AtP + PA− PbbtP + cct = 0n×n. (14.19)

Now perform the following computations:

1. to (14.19), add and subtract iωP ;
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2. multiply the resulting equation on the left by bt(−iωIn −At)−1 and on the right by
(iωIn −A)−1b;

3. use the identity f = Pb from Corollary 14.30.

The result of these computations is

|1 + f t(iωIn −A)−1b|2 = 1 + bt(−iωIn −At)−1cct(iωIn −A)−1b.

Since the matrix cct is positive-semidefinite, we have

bt(−iωIn −At)−1cct(iωIn −A)−1b ≥ 0.

The result follows. �

This interesting result tells us that the Nyquist contour remains outside the circle of
radius 1 in the complex plane with centre −1 + i0. Thus, it remains well clear of the critical
point.

14.36 Example (Example 14.28 cont’d) We resume looking at the system with

A =

[
0 1
−1 0

]
, b =

[
0
1

]
,

and where we’d considered the two output vectors

c1 =

[
1
0

]
, c2 =

[
0
1

]
,

leading to the optimal state feedback vectors

f 1 =

[ √
2− 1

2 4
√

2 sin π
8

]
, f 2 =

[
0
1

]
,

respectively. In Figure 14.3 we give the Nyquist plots for both loop gains Rf1
and Rf2

. As
predicted by Theorem 14.35, both Nyquist contours remain outside the circle of radius 1
centred at −1 + i0. •

14.5.2 Stability margins for LQG

Results of the nature of Theorem 14.35 demand full knowledge of the state. Doyle [1978]
shows that as soon as one tries to estimate the state from the output using a Kalman
filter, the stability margin of Theorem 14.35 disappears. Although state estimation, and in
particular Kalman filtering, is something we do not cover in this book, the reader should be
aware of these lurking dangers.

14.6 Summary
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Figure 14.3 Nyquist plots for the optimal state feedback vectors
of Example 14.36

Exercises

E14.1 Show that an inner function has a magnitude Bode plot that is a constant 0dB.

E14.2 Let P,Q ∈ R[s] have no common roots on the imaginary axis.

(a) Show that the polynomial PP ∗ + QQ∗ is even and positive when evaluated on
iR.

(b) Conclude that PP ∗ +QQ∗ admits a spectral factorisation.

(c) Show that [PP ∗+QQ∗]+ is Hurwitz (i.e., show that [PP ∗+QQ∗]+ has no roots
on the imaginary axis).

E14.3 Show that if polynomials R1, R2 ∈ R(s) admit a spectral factorisation, then so does
R1R2.

E14.4 Show that if R ∈ RH+
∞, then its outer factor is also a spectral factor.

E14.5 In Theorem 14.25 the optimal control law drives the output to zero, but it is not
said what happens to the state. In this exercise, you will redress this problem.

(a) Show that not only does limt→∞ y(t) = 0, but that limt→∞ y
(k)(t) = 0 for all

k > 0.

(b) Now use the fact that in the statement of Theorem 14.25, Σ is said to be ob-
servable to show that limt→∞ x(t) = 0.

In Exercise E10.5 you provided a characterisation of a stabilising state feedback vector using
a linear matrix inequality (LMI). In the following exercise, you will further characterise the
optimal state feedback vector using LMI’s. The characterisation uses the algebraic Riccati
equation of Theorem 14.29.

E14.6

E14.7 For the pendulum on a cart of Exercises E1.5 and E2.4, choose parameter values for
the mass of the cart, the mass of the pendulum, the gravitational constant, and the
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length of the pendulum arm to be M = 11
2
, m = 1, g = 9.81, and ` = 1

2
. For each of

the following linearisations:

(a) the equilibrium point (0, π) with cart position as output;

(b) the equilibrium point (0, π) with cart velocity as output;

(c) the equilibrium point (0, π) with pendulum angle as output;

(d) the equilibrium point (0, π) with pendulum angular velocity as output,

do the following:

1. construct the optimal state feedback vector of Problem 14.3;

2. compute the closed-loop eigenvalues;

3. plot a few trajectories of the full system with the control determined by the
state feedback vector of part (1).

E14.8 For the double pendulum system of Exercises E1.6 and E2.5, choose parameter values
for the first link mass, the second link mass, the first link length, and the second
link length to be m1 = 1, m2 = 2, `1 = 1

2
, and `2 = 1

3
. For each of the following

linearisations:

(a) the equilibrium point (0, π, 0, 0) with the pendubot input;

(b) the equilibrium point (π, 0, 0, 0) with the pendubot input;

(c) the equilibrium point (π, π, 0, 0) with the pendubot input;

(d) the equilibrium point (0, π, 0, 0) with the acrobot input;

(e) the equilibrium point (π, 0, 0, 0) with the acrobot input;

(f) the equilibrium point (π, π, 0, 0) with the acrobot input,

do the following:

1. construct the optimal state feedback vector of Problem 14.3;

2. compute the closed-loop eigenvalues;

3. plot a few trajectories of the full system with the control determined by the
state feedback vector of part (1).

E14.9 Consider the coupled tank system of Exercises E1.11, E2.6, and E3.17. Choose the
parameters α = 1

3
, δ1 = 1, A1 = 1, A2 = 1

2
, a1 = 1

10
, a2 = 1

20
, and g = 9.81. For the

linearisations in the following cases:

(a) the output is the level in tank 1;

(b) the output is the level in tank 2;

(c) the output is the difference in the levels,

do the following:

1. construct the optimal state feedback vector of Problem 14.3;

2. compute the closed-loop eigenvalues;

3. plot a few trajectories of the full system with the control determined by the
state feedback vector of part (1).

E14.10 Let Σ = (A, b, ct,01) be controllable and suppose that A is Hurwitz. Let f be the
optimal state feedback vector of Corollary 14.26 with Rf (s) = f t(sAn −A)−1b the
corresponding loop gain. Show that the gain margin for the resulting Nyquist plot
is infinite, and that the phase margin exceeds 60◦.
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Chapter 15

An introduction to H∞ control theory

The task of designing a controller which accomplishes a specified task is a challenging
chore. When one wishes to add “robustness” to the mix, things become even more challeng-
ing. By robust design, what is meant is that one should design a controller which works not
only for a given model, but for plants which are close to that model. In this way, one can
have some degree of certainty that even if the model is imperfect, the controller will behave in
a satisfactory manner. The development of systematic design procedures for robust control
can be seen to have been initiated with the important paper of Francis and Zames [1984].
Since this time, there have been many developments and generalisations. The understanding
of so-called H∞ methods has progressed to the point that a somewhat elementary treatment
is possible. We shall essentially follow the approach of Doyle, Francis, and Tannenbaum
[1990]. For a recent account of MIMO developments, see [Dullerud and Paganini 1999]. The
book by Francis [1987] is also a useful reference.

Although all of the material in this chapter can be followed by any student who has
come to grips with the more basic material in this book, much of what we do here is a
significant diversion from control theory, per se, and is really a development of the necessary
mathematical tools. Since a complete understanding of the tools is not necessary in order
to apply them, it is perhaps worthwhile to outline the bare bones guide to getting through
this chapter. This might be as follows.

1. One should first make sure that one understands the problem being solved: the robust per-
formance problem. The first thing done is to modify this problem so that it is tractable;
this is the content of Problem 15.2.

2. The modified robust performance problem is first converted to a model matching problem,
which is stated in generality in Problem 15.3. The content of this conversion is contained
in Algorithm 15.5.

3. The model matching problem is solved in this book in two ways. The first method in-
volves Nevanlinna-Pick interpolation, and to apply this method, follow the steps outlined
in Algorithm 15.18. It is entirely possible that you will have to make some modifications
to the algorithm to ensure that you arrive at a proper controller. The necessary machi-
nations are discussed following the algorithm.

4. The second method for solving the model matching problem involves approximation of
unstable rational functions by stable ones via Nehari’s Theorem. To apply this method,
follow the steps in Algorithm 15.29. As with Nevanlinna-Pick interpolation, one should
be prepared to make some modifications to the algorithm to ensure that things work
out. The manner in which to carry out these modifications is discussed following the
algorithm.

5. Other problems that can be solved in this manner are discussed in Section 15.5.
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Readers wishing only to be able to apply the methods in this chapter should go through
the chapter with the above skeleton as a guide. However, those wishing to see the
details will be happy to see very little omitted. It should also be emphasised that
Mathematica® and Maple® packages for solving these problems may be found at the URL
http://mast.queensu.ca/~math332/.1
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15.1 Reduction of robust performance problem to model matching
problem

For SISO systems, the problem of designing for robust performance turns out to be re-
ducible in a certain sense to two problems investigated by mathematicians coming under the
broad heading of complex function approximation, or, more descriptively, model matching.
In this section we shall discuss how this reduction takes place, as in itself it is not an entirely
obvious step.

15.1.1 A modified robust performance problem

First recall the robust performance problem, Problem 9.23. Given a proper nominal
plant R̄P , a function Wu ∈ RH+

∞ given an uncertainty set P×(R̄P ,Wu) or P+(R̄P ,Wu), and
a performance weight Wp ∈ R(s), we seek a controller RC that stabilises the nominal plant
and satisfies either

∥∥|WuT̄L|+ |WpS̄L|
∥∥
∞ < 1 or

∥∥|WuRCS̄L|+ |WpS̄L|
∥∥
∞ < 1,

depending on whether one is using multiplicative or additive uncertainty. The robust perfor-
mance problem, it turns out, is quite difficult. For instance, useful necessary and sufficient
conditions for there to exist a solution to the problem are not known. Thus our first step
in this section is to come up with a simpler problem that is easier to solve. The simpler
problem is based upon the following result.

1These are not currently implemented. Hopefully they will be in the near future.
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15.1 Lemma Let R1, R2 ∈ R(s) and denote by |R1| + |R2| the R-valued function s 7→ (|R1(s)| +
|R2(s)|) and by |R1|2 + |R2|2 the R-valued function s 7→ (|R1(s)|2 + |R2(s)|2). If

∥∥|R1|2 + |R2|2
∥∥
∞ <

1

2

then ∥∥|R1|+ |R2|
∥∥
∞ < 1.

Proof Define

S1 = {(x, y) ∈ R2 | x, y > 0, |x+ y| < 1},
S2 =

{
(x, y) ∈ R2

∣∣ x, y > 0, |x2 + y2| < 1
2

}
.

The result will follow if we can show that S1 ⊂ S2. However, we note that S1 = [0, 1]× [0, 1]
and S2 is the circle of radius 1√

2
centred at the origin. Clearly S1 ⊂ S2 (see Figure 15.1). �

S1
S2

Figure 15.1 Interpretation of modified robust performance condi-
tion

This leads to a modification of the robust performance problem, and we state this formally
since it is this problem to which we devote the majority of our effort in this chapter. Note
that we make a few additional assumptions in the statement of the problem that are not
present in the statement of Problem 9.23. Namely, we assume now the following.

1. Wp ∈ RH+
∞: Thus we add the assumption that Wp be proper since, without loss of

generality as we are only interested on the value of Wp on iR, we can suppose that all
poles of Wp lie in C−.

2. Wu and Wp have no common imaginary axis zeros: This is an assumption that, if not
satisfied, can be satisfied with minor tweaking of Wu and Wp.

3. RC is proper: We make this assumption mostly as a matter of convention. If we arrive
at a controller that is improper but solves the problem, then it is often possible to
modify the controller so that it is proper and still solves the problem.

Thus our problem becomes.

15.2 Modified robust performance problem Given
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(i) a nominal proper plant R̄P ,

(ii) a function Wu ∈ RH+
∞,

(iii) an uncertainty model P×(R̄P ,Wu) or P+(R̄P ,Wu), and

(iv) a performance weight Wp ∈ RH+
∞,

so that Wu and Wp have no common imaginary axis zeros, find a proper controller RC that

(v) stabilises the nominal system and

(vi) satisfies either
∥∥|WuT̄L|2+|WpS̄L|2

∥∥
∞ < 1 or

∥∥|WuRCS̄L|2+|WpS̄L|2
∥∥
∞ < 1, depending

on whether one is using multiplicative or additive uncertainty. •
As should be clear from Figure 15.1, it is possible that for a given R̄P , Wu, and Wp it will not
be possible to solve the modified robust performance problem even though a solution may
exist to the robust performance problem. Thus we are sacrificing something in so modifying
the problem, but what we gain is a simplified problem that can be solved.

15.1.2 Algorithm for reduction to model matching problem

The objective of this section is to convert the modified robust performance problem
into the model matching problem. We shall concentrate in this section on multiplicative
uncertainty, with the reader filling in the details for additive uncertainty in Exercise E15.3.

First let us state the model matching problem.

15.3 A model matching problem Let T1, T2 ∈ RH+
∞. Find θ ∈ RH+

∞(s) so that ‖T1 − θT2‖∞ is
minimised. •
The model matching problem may not have a solution. In fact, it will often be the case in
applications that it does not have a solution. However, as we shall see as we get into our
development, even when the problem has no solution, it can be used as a guide to solve the
problem that is actually of interest to us, namely the modified robust performance problem,
Problem 15.2. Some issues concerning existence of solutions to the model matching problem
are the topic of Exercise E15.2

15.4 Remark Note that since T1, T2 ∈ RH+
∞, if θ is to be a solution of the model matching problem,

then it can have no imaginary axis poles. Also, since the model matching problem only cares
about the value of θ on the imaginary axis, we can without loss of generality (by multiplying
a solution θ to the model matching problem by an inner function that cancels all poles in θ
in C+) suppose that θ has no poles in C+. •

Let us outline the steps in performing the reduction of Problem 15.2 to Problem 15.3.
After we have said how to perform the reduction, we will actually prove that everything
works. The reader will wish to recall the notion of spectral factorisation for rational functions
(Proposition 14.17) and the notion of a coprime factorisation for a pair of rational functions
(Theorem 10.33).

15.5 Algorithm for obtaining model matching problem for multiplicative uncertainty Given R̄P , Wu,
and Wp as in Problem 15.2.

1. Define

U3 =
WpW

∗
pWuW

∗
u

WpW ∗
p +WuW ∗

u

.

2. If ‖U3‖∞ ≥ 1
2
, then Problem 15.2 has no solution.
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3. Let (P1, P2) be a coprime fractional representative for R̄P .

4. Let (ρ1, ρ2) be a coprime factorisation for P1 and P2:

ρ1P1 + ρ2P2 = 1.

5. Define

R1 = Wpρ2P2, S1 = Wuρ1P1,

R2 = WpP1P2, S2 = −WuP1P2.

6. Define Q = [R2R
∗
2 + S2S

∗
2 ]+.

7. Let V be an inner function with the property that

R1R
∗
2 + S1S

∗
2

Q∗
V

has no poles in C+.

8. Define

U1 =
R1R

∗
2 + S1S

∗
2

Q∗
V, U2 = QV.

9. Define U4 = [1
2
− U3]+.

10. Define

T1 =
U1

U4

, T2 =
U2

U4

.

11. Let θ be a solution to Problem 15.3, and by Remark 15.4 suppose that it has no poles
in C+.

12. If ‖T1 − θT2‖∞ ≥ 1 then Problem 15.2 has no solution.

13. The controller

RC =
ρ1 + θP2

ρ2 − θP1

,

is a solution to Problem 15.2. •
The above procedure provides a way to produce a controller satisfying the modified

robust performance problem, provided one can find θ in Step 11. That is to say, we have
reduced the finding of a solution to the modified robust performance problem to that of
solving the model matching problem. It remains to show that all constructions made in
Algorithm 15.5 are sensible, and that all claims made are true. In the next section we will
do this formally. However, before we get into all the details, it is helpful to give a glimpse
into how Algorithm 15.5 comes about.

As we are working with multiplicative uncertainty (see Exercise E15.3 for additive un-
certainty), the problem we start out with, of course, is to find a proper RC ∈ R(s) that
satisfies ∥∥|WuT̄L|2 + |WpS̄L|2

∥∥
∞ <

1

2

for a given nominal proper plant R̄P , an uncertainty model Wu ∈ RH+
∞, and a performance

weight Wp ∈ RH+
∞. We choose a coprime fractional representative (P1, P2) for R̄P and an

associated coprime factorisation (ρ1, ρ2). By Theorem 10.37, any proper stabilising controller
is then of the form

RC =
ρ1 + θP2

ρ2 − θP1

.



554 15 An introduction to H∞ control theory 2016/09/21

A simple computation then gives

T̄L = P1P2θ + ρ1P1, S̄L = −(P1P2θ − ρ2P2).

Defining

R1 = Wpρ2P2, S1 = Wuρ1P1,

R2 = WpP1P2, S2 = −WuP1P2,

we then obtain

∥∥|WuT̄L|2 + |WpS̄L|2
∥∥
∞ =

∥∥|R1 − θR2|2 + |S1 − θS2|2
∥∥
∞.

Up to this point, everything is simple enough. Now we claim that there exists functions
U1, U2 ∈ RH+

∞ and U3 ∈ R(s), defined in terms of R1, R2, S1, and S2, and having the
property that ∥∥|R1 − θR2|2 + |S1 − θS2|2

∥∥
∞ =

∥∥|U1 − θU2|2 + U3

∥∥
∞. (15.1)

That these functions exist, and are as stated in Steps 1 and 8 of Algorithm 15.5, will be
proved in the subsequent section. Finally, with U4 as defined in Step 9, in the next section
we shall show that

∥∥|U1 − θU2|2 + U3

∥∥
∞ <

1

2
⇐⇒ ‖U−1

4 U1 − θU−1
4 U2‖∞ < 1.

With this rough justification behind us, let us turn to formal proofs of the validity of
Algorithm 15.5. Readers not interested in this sort of detail can actually skip to Section 15.4.

15.1.3 Proof that reduction procedure works

Throughout this section, we let R̄P , Wp, and Wp are as stated in Problem 15.2.
In Step 6 of Algorithm 15.5, we are asked to compute the spectral factorisation of R2R

∗
2 +

S2S
∗
2 . Let us verify that this spectral factorisation exists.

15.6 Lemma R2R
∗
2 + S2S

∗
2 admits a spectral factorisation.

Proof We have
R2R

∗
2 + S2S

∗
2 = P1P

∗
1P2P

∗
2 (WpW

∗
p +WuW

∗
u ).

Since P1, P2 ∈ RH+
∞ we may find an inner-outer factorisation

P1 = P1,inP1,out, P2 = P2,inP2,out

by Proposition 14.10. Therefore

P1P
∗
1 = P1,inP1,outP

∗
1,inP

∗
1,out = P1,outP

∗
1,out,

since P1,in is inner. Since P1,out is outer, it follows that P1,out is a left spectral factor for
P1P

∗
1 . Similarly P2P

∗
2 admits a spectral factorisation by the outer factor P2,out of P2. Thus

P1P
∗
1 and P2P

∗
2 admit a spectral factorisation, and so too then does P1P

∗
1P2P

∗
2 . Now let

(Np, Dp) and (Nu, Du) be the c.f.r.’s of Wp and Wu. We then have

WpW
∗
p +WuW

∗
u =

NpN
∗
pDuD

∗
u +NuN

∗
uDpD

∗
p

DpD∗pDuD∗u
.
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SinceWp,Wu ∈ RH+
∞ by hypothesis, Dp andDu, and thereforeD∗p andD∗u, have no imaginary

axis roots. Also by assumption, Np and Nu have no common roots on iR. One can then
show (along the lines of Exercise E14.2) that this infers that NpN

∗
pDuD

∗
u +NuN

∗
uDpD

∗
p has

constant sign on iR. Since it is clearly even, one may infer from Proposition 14.12 that
NpN

∗
pDuD

∗
u +NuN

∗
uDpD

∗
p admits a spectral factorisation. Therefore, by Proposition 14.17,

so too does WpW
∗
p +WuW

∗
u . Finally, by Exercise E14.3 we conclude that R2R

∗
2 +S2S

∗
2 admits

a spectral factorisation. �

Our next result declares that U1, U2, and U3 are as they should be, meaning that they
satisfy the relation (15.1).

15.7 Lemma If U1, U2, and U3 as defined in Steps 8 and 1 satisfy

∥∥|R1 − θR2|2 + |S1 − θS2|2
∥∥
∞ =

∥∥|U1 − θU2|2 + U3

∥∥
∞.

Proof It is sufficient that the relation

(
R1 − θR2

)(
R∗1 − θ∗R∗2

)
+
(
S1 − θS2

)(
S∗1 − θ∗S∗2

)
=
(
U1 − θU2

)(
U∗1 − θ∗U∗2

)
+ U3 (15.2)

holds for all θ and for s = iω. Doing the manipulation shows that if the three relations

(
R2R

∗
2 + S2S

∗
2

)
= U2U

∗
2

R1R
∗
2 + S1S

∗
2 = U1U

∗
2

R1R
∗
1 + S1S

∗
1 = U1U

∗
1 + U3.

(15.3)

hold for s = iω, then (15.2) will indeed hold for all θ. We let Q = [R2R
∗
2 + S2S

∗
2 ]+. If V is

an inner function with the property that

R1R
∗
2 + S1S

∗
2

Q∗
V

has no poles in C+, then if U2 = QV we have

U2U
∗
2 = QV Q∗V ∗ = QQ∗ = R2R

∗
2 + S2S

∗
2 .

Thus U2 satisfies the first of equations (15.3). Also,

U1 =
R1R

∗
2 + S1S

∗
2

Q∗
V

clearly satisfies the second of equations (15.3). To verify the last of equations (15.3), we may
directly compute

R1R
∗
1 + S1S

∗
1 − U1U

∗
1 = R1R

∗
1 + S1S

∗
1 −

(R∗1R2 + S∗1S2)(R1R
∗
2 + S1S

∗
2)

R2R∗2 + S2S∗2
, (15.4)

using our solution for U1 and the fact that V is inner. A straightforward substitution of the
definitions of R1, R2, S1, and S2 now gives U3 as in Step 1. �

Our next lemma verifies Step 2 of Algorithm 15.5.
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15.8 Lemma If ‖U3‖∞ ≥ 1
2

then Problem 15.2 has no solution.

Proof One may verify by direct computation that

U3 = R1R
∗
1 + S1S

∗
1 −

(R∗1R2 + S∗1S2)(R1R
∗
2 + S1S

∗
2)

R2R∗2 + S2S∗2

(this follows from (15.4)). Now work backwards through the proof of Lemma 15.7 to see
that

U3 =
(
R1 − θR2

)(
R∗1 − θ∗R∗2

)
+
(
S1 − θS2

)(
S∗1 − θ∗S∗2

)
−
(
U1 − θU2

)(
U∗1 − θ∗U∗2

)

for any admissible θ ∈ RH+
∞. Therefore, if ‖U3‖∞ ≥ 1

2
then

∥∥|R1 − θR2|2 + |S1 − θS2|2
∥∥
∞ ≥

1

2
.

However, a simple working through of the definitions of R1, R2, S1, and S2 shows that this
implies that for any stabilising controller RC we must have

∥∥|WuT̄L|2 + |WpS̄L|2
∥∥
∞ ≥

1

2
,

as desired. �
Next we show that with T1 and T2 as defined in Step 10, the modified robust performance

problem is indeed equivalent to the model matching problem.

15.9 Lemma With T1 and T2 as defined in Step 10 we have
∥∥|WuT̄L|2 + |WpS̄L|2

∥∥
∞ <

1

2
⇐⇒ ‖T1 − θT2‖,

where

RC =
ρ2 + θP1

ρ1 − θP2

.

Proof As outlined at the end Section 15.1.2, the condition
∥∥|WuT̄L|2 + |WpS̄L|2

∥∥
∞ <

1

2
is equivalent to ∥∥|U1 − θU2|2 + U3

∥∥
∞ <

1

2
.

Also note that by definition, U3(iω) ≥ 0 for all ω ∈ R, and that U3 = U∗3 , the latter fact
implying that U3 is even. Therefore, provided that ‖U3‖∞ < 1

2
, 1

2
− U3 admits a spectral

factorisation. Now we compute
∥∥|U1 − θU2|2 + U3

∥∥
∞ <

1

2

⇐⇒
∣∣|U1(iω)− θ(iω)U2(iω)|2 + U3(iω)

∣∣ < 1

2
, ω ∈ R

⇐⇒ |U1(iω)− θ(iω)U2(iω)|2 + U3(iω) <
1

2
, ω ∈ R

⇐⇒ |U1(iω)− θ(iω)U2(iω)|2 < 1

2
− U3(iω), ω ∈ R

⇐⇒ |U1(iω)− θ(iω)U2(iω)|2 < [1
2
− U3(iω)]+[1

2
− U3(−iω)], ω ∈ R

⇐⇒ |U1(iω)− θ(iω)U2(iω)|2 < |U4(iω)|2, ω ∈ R
⇐⇒ |U−1

4 (iω)U1(iω)− θ(iω)U−1
4 (iω)U2(iω)|2 < 1, ω ∈ R.

By definition of T1 and T2, the lemma follows. �
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It is necessary that T1, T2 ∈ RH+
∞ in order to fit them into the model matching problem.

The next lemma ensures that this follows from the constructions we have made.

15.10 Lemma T1, T2 ∈ RH+
∞.

Proof First note that ‖U3‖ < 1
2

by the time we have gotten to defining T1 and T2. Therefore
U4 = [1

2
− U3]+ is strictly proper, and so is invertible in RH+

∞. The lemma will then follow
if we can show that U1, U2 ∈ RH+

∞.
First let us show that U2 ∈ RH+

∞. By definition, U2 is the left half-plane spectral factor
of

P1P
∗
1P2P

∗
2 (WpW

∗
p +WuW

∗
u ).

As such, it is the product of the two quantities

[P1P
∗
1P2P

∗
2 ]+, [WpW

∗
p +WuW

∗
u ]+.

Since each of P1P2 ∈ RH+
∞, [P1P

∗
1P2P

∗
2 ]+ ∈ RH+

∞. Since

WpW
∗
p +WuW

∗
u =

NpN
∗
pDuD

∗
u +NuN

∗
uDpD

∗
p

DpD∗pDuD∗u
,

we have

[WpW
∗
p +WuW

∗
u ]+ =

[NpN
∗
pDuD

∗
u +NuN

∗
uDpD

∗
p]

+

DpDu

.

Since Wp,Wu ∈ RH+
∞, it follows that [WpW

∗
p +WuW

∗
u ]+ ∈ RH+

∞. Thus U2 ∈ RH+
∞.

Now let us show that U1 ∈ RH+
∞. A computation shows that

U1 =
P ∗1P

∗
2

[P1P ∗2P2P ∗2 ]−
ρ2P2WpW

∗
p − ρ1P1WuW

∗
u

[WpW ∗
p +WuW ∗

u ]−
V.

The inner function V is designed so that this function has no poles in C+. We also claim
that U1 has no poles on iR. Since Wp,Wu ∈ RH+

∞ and since they have no common imaginary
axis zeros, it follows that [WpW

∗
p +WuW

∗
u ]− has no zeros on iR. Clearly, neither P ∗1P

∗
2 nor

ρ2P2WpW
∗
p − ρ1P1WuW

∗
u have poles on iR. Thus, our claim will follow if we can show that

P ∗1 P
∗
2

[P1P ∗2 P2P ∗2 ]− has no poles on iR. This is true since the imaginary axis zeros of P ∗1P
∗
2 and

[P1P
∗
2P2P

∗
2 ]− agree in location and multiplicity. Thus we have shown that U1 is analytic in

C+. That U1 ∈ RH+
∞ will now follow if we can show that U1 is proper. � finish

15.2 Optimal model matching I. Nevanlinna-Pick theory

The first solution we shall give to the model matching problem comes from a seemingly
unrelated interpolation problem. To state the problem, we need a little notation. We let
RH+,C

∞ be the collection of proper functions in C(s) with no poles in C+. Thus RH+,C
∞ is just

like RH+
∞, except that now we allow the functions to have complex coefficients. Note that

‖·‖∞ still makes sense for functions in RH+,C
∞ . Now the interpolation problem is as follows.

15.11 Nevanlinna-Pick interpolation problem Let {a1, . . . , ak} ⊂ C+ and let {b1, . . . , bk} ⊂ C collec-
tions of distinct points. A Pick pair is then a pair (aj, bj), i ∈ {1, . . . , k}. Suppose that if
(ak, bk) is a Pick pair, then so is (āj, b̄j), j = 1, . . . , k.

Find R ∈ RH+
∞ so that
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(i) ‖R‖∞ ≤ 1 and

(ii) R(aj) = bj, j = 1, . . . , n. •
This problem was originally solved by Pick [1916], and was solved independently by

Nevanlinna [1919]. Nevanlinna also gave an algorithm for finding a solution to the interpola-
tion problem [Nevanlinna 1929]. In this section, we will state and prove Pick’s necessary and
sufficient condition for the solution of the interpolation problem, and also give an algorithm
for determining a solution.

15.12 Remark We should say that the problem solved by Pick is somewhat different than the one
we state here. The difference occurs in three ways.

1. Pick actually allowed ‖R‖∞ = 1. However, our purposes will require that the H∞-norm
of R be strictly less than 1.

2. Pick was not interested in making the restriction that if a every Pick pair have the
property that its complex conjugate also be a Pick pair.

3. Pick was interested in the case where the points a1, . . . , an lie in the open disk D(0, 1)
of radius 1 centred at 0. This is not a genuine distinction, however, as the map s 7→ 1−s

1+s

bijectively maps C+ onto D(0, 1), and so translates the domain of concern for Pick to
our domain.

4. Finally, Pick allowed interpolating functions to be general meromorphic functions,
bounded and analytic in C+. For obvious reasons, our interest is in the subset of such
functions that are in R(s), i.e., functions in RH+

∞. •

15.2.1 Pick’s theorem

Pick’s conditions for the existence of a solution to Problem 15.11 are quite simple. The
proof that these conditions are necessary and sufficient is not entirely straightforward. In
this section we only prove necessity, as sufficiency will follow from our algorithm for solv-
ing the Nevanlinna-Pick interpolation problem in the ensuing section. Our necessity proof
follows [Doyle, Francis, and Tannenbaum 1990]. For the statement of Pick’s theorem, recall

that M ∈ Cn×n is Hermitian if M = M ∗ = M
t
. A Hermitian matrix is readily verified

to have real eigenvalues. Therefore, the notions of definiteness presented in Section 5.4.1
may be applied to Hermitian matrices.

15.13 Theorem (Pick’s Theorem) Problem 15.11 has a solution if and only if the Pick matrix ,
the complex k × k symmetric matrix M with components

Mj` =
1− bj b̄`
aj + ā`

, j, ` = 1, . . . , k,

is positive-semidefinite.

Proof of necessity Suppose that Problem 15.11 has a solution R. For c1, . . . , ck ∈ C, not all
zero, consider the complex input u : (−∞, 0]→ C given by

u(t) =
k∑

j=1

cje
ajt.

This can be considered as an input to the transfer function R, with the output computed
by separately computing the real and imaginary parts. Moreover, if hR denotes the inverse
Laplace transform for R, the complex output will beCheck
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y(t) =

∫ ∞

0

hR(τ)u(t− τ) dτ

=
k∑

j=1

cj

∫ ∞

0

hR(τ)eaj(t−τ) dτ

=
k∑

j=1

cje
ajt

∫ ∞

0

hR(τ)e−ajτ dt

=
k∑

j=1

cje
ajtR(aj)

=
k∑

j=1

cjbje
ajt,

where we have used the definition of the Laplace transform. By part (i) of Theorem 5.21,
and since ‖R‖∞ ≤ 1, it follows that

∫ 0

−∞
|y(t)|2 dt ≤

∫ 0

−∞
|u(t)|2 dt.

Substituting the current definitions of u and y gives

∫ 0

−∞

∣∣∣
k∑

j=1

cjbje
ajt
∣∣∣
2

dt ≤
∫ 0

−∞

∣∣∣
k∑

j=1

cje
ajt
∣∣∣
2

dt

=⇒
∫ 0

−∞

k∑

j,`=1

cje
ajtc̄`e

ā`t dt ≥
∫ 0

−∞

k∑

j,`=1

cjbje
ajtc̄`b̄`e

ā`t dt

=⇒
∫ 0

−∞

k∑

j,`=1

cj c̄`(1− bj b̄`)e(aj+ā`)t dt ≥ 0.

We now compute ∫ 0

−∞
e(aj+ā`)t dt =

1

aj + ā`
,

thus giving
k∑

j,`=1

cj
1− bj b̄`
aj + ā`

c̄` ≥ 0,

which we recognise as being equivalent to the expression

x∗Mx ≥ 0,

where

x =



c̄1
...
c̄n


 .

Thus we have shown that the Pick matrix is positive-definite. �
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15.2.2 An inductive algorithm for solving the interpolation problem

In this section we provide a simple algorithm for solving the Nevanlinna-Pick interpo-
lation problem in the situation when the Pick matrix is positive-definite. In doing so, we
also complete the proof of Theorem 15.13. The algorithm we present in this section follows
[Marshall 1975].

Before we state the algorithm, we need to introduce some notation. First note that by
the Maximum Modulus Principle, it is necessary that for the Nevanlinna-Pick interpolation
problem to have a solution, each of the numbers b1, . . . , bk satisfy |bj| ≤ 1. Thus we may
assume this to be the case when we seek a solution to the problem. For b ∈ C satisfying
|b| < 1, define the Blaschke function Bb ∈ R(s) associated with b by

Bb(s) =





s− b
1− b̄s , b ∈ R
s2 + 2Re(b)s+ |b|2
1 + 2Re(b)s+ |b|2s2

, otherwise.

Some easily verified relevant properties of Blaschke functions are the subject of Exer-
cise E15.4. Also, for a ∈ C define a function Aa ∈ R(s) by

Aa(s) =





s− a
s+ ā

, a ∈ R
s2 − 2Re(a)s+ |a|2
s2 + 2Re(a)s+ |a|2 , otherwise.

Again, we refer to Exercise E15.4 for some of the easily proven properties of such functions.
Let us begin by solving the Nevanlinna-Pick interpolation problem when k = 1.

15.14 Lemma Let a1 ∈ C+ and let b1 ∈ C have the property that |b1| < 1. The associated
Nevanlinna-Pick interpolation problem has an infinite number of solutions if it has one so-
lution, and the set of all solutions is given by

{
Re(R)

∣∣ R(s) = B−b1
(
R1(s)Aa1(s)

)
, R1 ∈ C(s) has no poles in C+, and ‖R1‖∞ < 1

}
.

Proof First note that the Nevanlinna-Pick interpolation problem does indeed have a solu-
tion, namely the trivial solution R0(s) = b1.

Now let R1 ∈ C(s) have no poles in C+ and suppose that ‖R1‖∞ < 1. If

R(s) = B−b1
(
R1(s)Aa1(s)

)

then R is the composition of the functions

s 7→ R1(s)Aa1(s)

s 7→M−b1(s).

The first of these functions in analytic in C+ since both R1 and Aa1 are. Also, by Exer-
cise E15.4 and since ‖R1‖ < 1, the first of these functions maps C+ onto the disk D̄(0, 1).
The second of these functions, by Exercise E15.4, is analytic in D̄(0, 1) and maps it onto it-
self. Thus we can conclude that R ∈ C(s) as defined has no poles in C+ and that ‖R‖∞ < 1.
What’s more, we claim that R(a1) = b1 if R1(a1) = b1. Indeed

R(a1) = B−b1
(
R1(a1)Aa1(a1)

)
= B−b1(0) = b1,
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using the definitions of Aa1 and Bb1 . It only remains to show that Re(R) solves Prob-
lem 15.11. Clearly, since b1 must be real, it follows that Re(R(a1)) = b1. Furthermore, since
‖Re(R)‖∞ < ‖R‖∞, it follows that ‖Re(R)‖∞ < 1. Finally, Re(R) can have no poles in C+

since R has no poles in C+.
Now suppose that R ∈ R(s) solves Problem 15.11. Define R1 ∈ C(s) by

R1(s) =
Bb1(R(s))

Aa1(s)
.

The function in the numerator is analytic in C+ and has a zero at s = a1. Therefore, since
the only zero of Aa1 is at zero, R1 is analytic in C+. Furthermore, the H∞-norm of the
numerator is strictly bounded by 1, and since the H∞-norm of the denominator equals 1, we
conclude that ‖R1‖∞ < 1. This concludes the proof of the lemma. �

As stated in the proof of the lemma, if |b1| < 1, then the one point interpolation problem
always has the trivial solution R0(s) = b1. Let us also do this in the case when k = 2 and
we have a2 = ā1 6= a1 and b2 = b̄2 6= b2.

15.15 Lemma Let {a1, a2 = ā1} ⊂ C+ and let {b1, b2 = b̄1} ⊂ C have the property that |b1| < 1.
Also suppose that a1 6= a2 and b1 6= b2. The associated Nevanlinna-Pick interpolation
problem has an infinite number of solutions if it has one solution, and the set of all solutions
is given by

{
Re(R)

∣∣ R(s) = B−b1
(
R1(s)Aa1(s)

)
, R1 ∈ C(s) has no poles in C+, and ‖R1‖∞ < 1

}
.

Proof Problem 15.11 has the solution

Rs(s) =

�

The lemmas gives the form of all solutions to the Nevanlinna-Pick interpolation problem
in the cases when k = 1 and k = 2 with the points being complex conjugates of one another.
It turns out that with this case, one can construct solutions to the general problem. To
do this, one makes the clever observation (this was Nevanlinna’s contribution) that one can
reduce a k point interpolation problem to a k − 1 or k − 2 point interpolation problem by
properly defining the new k − 1 or k − 2 points. We say how this is done in a definition.

15.16 Definition For k > 1, let
{a1, . . . , ak}, {b1, . . . , bk} ⊂ C

be as in Problem 15.11. Define

k̃ =

{
k − 1, bk ∈ R
k − 1, otherwise.

The Nevanlinna reduction of the numbers {a1, . . . , ak} and {b1, . . . , bk} is the collection
of numbers

{ã1, . . . , ãk̃}, {b̃1, . . . , b̃k̃} ⊂ C

defined by •
With this in mind, we state the algorithm that forms the main result of this section.
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15.17 Algorithm for solving the Nevanlinna-Pick interpolation problem Given points

{a1, . . . , ak}, {b1, . . . , bk} ⊂ C

as in Problem 15.11, additionally assume that |bj| < 1, j = 1, . . . , k, and that the Pick
matrix is positive-definite.

1. •

15.2.3 Relationship to the model matching problem

The above discussion of the Nevanlinna-Pick interpolation problem is not obviously re-
lated to the model matching problem, Problem 15.3.

15.18 Model matching by Nevanlinna-Pick interpolation Given T1, T2 ∈ RH+
∞.

15.3 Optimal model matching II. Nehari’s Theorem

In this section we present another method for obtaining a solution, or an approximate
solution, to the model matching problem, Problem 15.3. The strategy in this section involves
significantly more development than does the Nevanlinna-Pick procedure from Section 15.2.
However, the algorithm produced in actually easier to apply than is that using Nevanlinna-
Pick theory. Unfortunately, the methods in this section suffer from on occasion producing
a controller that is improper, and one must devise hacks to get around this, just as with
Nevanlinna-Pick theory. Our presentation in this section follows that of Francis [1987].

15.3.1 Hankel operators in the frequency-domain

The key tool for the methods of this section is something new for us: a Hankel operator
of a certain type. To initiate this discussion, let us note that as in Proposition 14.9, but
restriction to functions in RL2, we have a decomposition RL2 = RH−2 ⊕ RH+

2 . That is to
say, any strictly proper rational function with no poles on iR has a unique expression as a
sum of a strictly proper rational function with no poles in C+ and a strictly proper rational
function with no poles in C−. This is no surprise as this decomposition is simply obtained
by partial fraction expansion. The essential idea of this section puts this mundane idea to
good use. Let us denote by Π+ : RL2 → RH+

2 and Π− : RL2 → RH−2 the projections.
Let us list some operators that are readily verified to have the stated properties.

1. The Laurent operator with symbol R: Given R ∈ RL∞ and Q ∈ RL2, one readily
sees that RQ ∈ RL2. Thus, given R ∈ RL∞ we have a map ΛR : RL2 → RL2 defined by
ΛR(Q) = RQ. This is the Laurent operator with symbol R.

2. The Toeplitz operator with symbol R: Clearly, if R ∈ RL∞ and if Q ∈ RH+
2 , then

RQ ∈ RL2. Therefore, Π+(RQ) ∈ RH+
2 . Thus, for R ∈ RL∞, the map ΘR : RH+

2 → RH+
2

defined by ΘR(Q) = Π+(RQ) is well-defined, and is called the Toeplitz operator with
symbol R.

3. The Hankel operator with symbol R: Here again, if R ∈ RL∞ and if Q ∈ RH−2 ,
then RQ ∈ RL2. Now we map this rational function into RH+

2 using the projection Π−.
Thus, for R ∈ RL∞, we define a map ΓR : RH+

2 → RH−2 by ΓR(Q) = Π−(RQ). This is
the Hankel operator with symbol R.
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15.19 Remarks

1. Note that the Toeplitz and Hankel operators together specify the value of the Laurent
operator when applied to functions in RH+

2 . That is to say, if R ∈ RL2 then

ΛR(Q) = ΘR(Q) + ΓR(Q).

2. It is more common to see the Laurent, Toeplitz, and Hankel operators defined for general
analytic functions rather than just rational functions. However, since our interest is
entirely in the rational case, it is to this is that we restrict our interest. •
The Laurent, Toeplitz, and Hankel operators are linear. Thus it makes sense to ask

questions about the nature of their spectrum. However, the spaces RL2, RH−2 , and RH+
2

are infinite-dimensional, so these issues are not immediately approachable as they are in
finite-dimensions. The good news, however, is that these operators are “essentially” finite-
dimensional. The easiest way to make sense of this is with state-space techniques, and this
is done in the next section.

It also turns out that the Laurent, Toeplitz, and Hankel operators are defined on spaces
with an inner product. Indeed, on RL2 we may define an inner product by

〈R1, R2〉2 =
1

2π

∫ ∞

−∞
R1(iω)R2(iω) dω. (15.5)

Note that this is an inner product on a real vector space. This inner product may clearly be
applied to any functions in RL2, including those in the subspaces RH−2 and RH+

2 . Indeed,
RH−2 and RH+

2 are orthogonal with respect to this inner product (see Exercise E15.5). One
may define the adjoint of any of our operators with respect to this inner product. The
adjoint of the Laurent operator with symbol R is the map Λ∗R : RL2 → RL2 defined by the
relation

〈ΛR(R1), R2〉2 = 〈R1,Λ
∗
R(R2)〉2

for R1, R2 ∈ RL2. In like fashion, the Toeplitz operator has an adjoint Θ∗R : RH+
2 → RH+

2

defined by
〈ΘR(R1), R2〉2 = 〈R1,Θ

∗
R(R2)〉2, R1, R2 ∈ RH+

2 ,

and the Hankel operator has an adjoint Γ∗R : RH−2 → RH+
2 defined by

〈ΓR(R1), R2〉2 = 〈R1,Γ
∗
R(R2)〉2, R1 ∈ RH+

2 , R2 ∈ RH−2 .

The following result gives explicit formulae for the adjoints.

15.20 Proposition For R ∈ RL2 the following statements hold:

(i) Λ∗R = ΛR∗;

(ii) Θ∗R = ΘR∗;

(iii) Γ∗R(Q) = Π+(ΛR∗(Q)).
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Proof (i) We compute

〈ΛR(R1), R2〉2 =
1

2π

∫ ∞

−∞
ΛR(R1)(iω)R2(iω) dω

=
1

2π

∫ ∞

−∞
R(iω)R1(iω)R2(iω) dω

=
1

2π

∫ ∞

−∞
R1(iω)R(−iω)R2(iω) dω

=
1

2π

∫ ∞

−∞
R1(iω)R∗(iω)R2(iω) dω

= 〈R1,ΛR∗(R2)〉2.
This then gives Λ∗R = ΛR∗ as desired.

(ii) For R1, R2 ∈ RH+
2 we compute

〈ΘR(R1), R2〉2 = 〈ΛR(R1), R2〉2
= 〈R1,Λ

∗
R(R2)〉2

= 〈R1,ΛR∗(R2)〉2
= 〈R1,ΘR∗(R2)〉2,

and this part of the proposition follows.
(iii) For R1 ∈ RH+

2 and R2 ∈ RH−2 we compute

〈ΓR(R1), R2〉2 = 〈ΛR(R1), R2〉2
= 〈R1,Λ

∗
R(R2)〉2

= 〈R1,ΛR∗(R2)〉2,
and from this the result follows. �

In the next section, we will come up with concrete realisations of the Hankel operator
and its adjoint using time-domain methods.

15.3.2 Hankel operators in the time-domain

The above operators defined in the rational function domain are simple enough, but
they have interesting and nontrivial counterparts in the time-domain. To simplify matters,
let us denote by L̄2(−∞,∞) those functions of time that, when Laplace transformed, give
functions in RL2. As we saw in Section E.3, this consists exactly of sums of products of
polynomial functions, trigonometric functions, and exponential functions of time. Let us
denote by L̄2(−∞, 0] the subset of L̄2(−∞,∞) consisting of functions that are bounded for
t < 0, and by L̄2[0,∞) the subset of L̄2(−∞,∞) consisting of functions that are bounded
for t > 0. Note that

L̄2(−∞,∞) = L̄2(−∞, 0]⊕ L̄2[0,∞).

That is, every function in L̄2(−∞,∞) can be uniquely decomposed into a sum of two func-
tions, one that is bounded for t < 0 and one that is bounded for t > 0. It is clear that this
decomposition corresponds exactly to the decomposition RL2 = RH−2 ⊕ RH+

2 that uses the
partial fraction expansion. Let us also define projections

Π̄+ : L̄2(−∞,∞)→ L̄2[0,∞)

Π̄− : L̄2(−∞,∞)→ L̄2(−∞, 0].
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If we employ the inner product

〈f1, f2〉2 =

∫ ∞

−∞
f1(t)f2(t) dt (15.6)

on L̄2(−∞,∞), then obviously L̄2(−∞, 0] and L̄2[0,∞) are orthogonal. We hope that it will
be clear from context what we mean when we use the symbol 〈·, ·〉2 in two different ways,
one for the frequency-domain, and the other for the time-domain.

The following result summarises the previous discussion.

15.21 Proposition The Laplace transform is a bijection

(i) from L̄2(−∞,∞) to RL2,

(ii) from L̄2(−∞, 0] to RH−2 , and

(iii) from L̄2[0,∞) to RH+
2 .

Furthermore, the diagrams

L̄2(−∞,∞)
Π̄+

//

L
��

L̄2[0,∞)

L
��

RL2
Π+

// RL+
2

L̄2(−∞,∞)
Π̄−
//

L
��

L̄2(−∞, 0]

L
��

RL2
Π+

// RL−
2

commute.

We now turn our attention to describing how the operators of Section 15.3.1 appear in
the time-domain, given the correspondence of Proposition 15.21. Our interest is particularly
in the Hankel operator. Given Proposition 15.21 we expect the analogue of the frequency
domain Hankel operator to map L̄2[0,∞) to L̄2(−∞, 0], given R ∈ RL∞. To do this, given
R ∈ RL∞, let us write R = R1 + R2 for R1 ∈ RH−2 and R2 ∈ RH+

∞ as in Proposition 14.9.
We then let Σ1 = (A, b, ct,01) be the complete SISO linear system in controller canonical
form with the property that TΣ1 = R1. Therefore, the inverse Laplace transform for R1 is
the impulse response for Σ1. Note that σ(A) ⊂ C+. Thus if r1 ∈ L̄2(−∞, 0] is the inverse
Laplace transform of R1 we have

r1(t) =

{
−cteAtb, t ≤ 0

0, t > 0,

which is the anticausal impulse response for R1. Now, for u ∈ L̄2[0,∞) and for t ≤ 0, let us
define

Γ̄R(u)(t) =

∫ ∞

0

r1(t− τ)u(τ) dτ. (15.7)

We take Γ̄R(u)(t) = 0 for t > 0. We claim that Γ̄R is the time-domain version of the Hankel
operator ΓR. Let us first prove that its takes its values in the right space.

15.22 Lemma Γ̄R(u) ∈ L̄2(−∞, 0].

Proof For t ≥ 0 we have

Γ̄R(u)(t) = −cteAt
∫ ∞

0

e−Aτbu(τ) dτ.

Since A has all eigenvalues in C+, −A has all eigenvalues in C−, so the integral converges.
Also, for the same reason, eAt is bounded for t ≤ 0. This shows that Γ̄R(u) ∈ L̄2(−∞, 0], as
claimed. �
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Now let us show that this is indeed “the same” as the frequency domain Hankel opera-
tor.

15.23 Proposition Let R ∈ RL∞ and write R = R1 + R2 with R1 ∈ RH−2 and R2 ∈ RH+
∞. Let

r1 ∈ L̄2(−∞, 0] be the inverse Laplace transform of R1 and define Γ̄R as in (15.7). Then
the diagram

L̄2[0,∞)
Γ̄R //

L
��

L̄2(−∞, 0]

L
��

RL+
2 ΓR

// RL−
2

commutes.

Proof Let u ∈ L̄2[0,∞) and denote y = Γ̄R(u) ∈ L̄(−∞, 0]. Denote as usual the Laplace
transforms of u and y by û and ŷ. We then have

ΓR(û) = Π−((R1 +R2)û).

Note that R2û ∈ RH+
2 . Therefore, Π−((R1 + R2)û) = Π−(R1û). Now let us compute the

inverse Laplace transform of R1û. Let Σ̃ = (Ã, b̃, c̃t,01) be a complete SISO linear system
defined so that TΣ̃ = û. Thus Ã has all eigenvalues in C−. Now we compute

L −1(R1û)(t) =

∫ ∞

−∞
r1(t− τ)u(τ) dτ

= − cteAt
∫ ∞

−∞
1(τ − t)e−Aτbu(τ) dτ

= − cteAt
∫ ∞

0

1(τ − t)e−Aτbu(τ) dτ,

since for τ < 0, u(τ) = 0. Now note that Π̄−(L −1(R1û)) is nonzero only for t < 0 so that
we can write

(Π̄−(L −1(R1û)))(t) = −cteAt
∫ ∞

0

eAτbu(τ) dτ.

Thus Π̄−(L −1(R1û)) = Γ̄R(û). By Proposition 15.21 this means that

L −1(Π−(R1û)) = L −1(ΓR(û)) = Γ̄R(u),

or, equivalently, that ΓR ◦L = L ◦ Γ̄R, as claimed. �

Up to this point, the value of the time-domain formulation of a Hankel operator is
not at all clear. The simple act of multiplication and partial fraction expansion in the
frequency-domain becomes a little more abstract in the time-domain. However, the value
of the time-domain formulation is in its presenting a concrete representation of the Hankel
operator and its adjoint. To come up with this representation, we introduce some machinery
harking back to our observability and controllability discussion in Sections 2.3.1 and 2.3.2.
In particular, we begin to dig into the proof of Theorem 2.21. We resume with the situation
where R = R1 + R2 ∈ RL∞ with R1 ∈ RH−2 and R2 ∈ RH+

∞. As above, we let Σ1 =
(A, b, ct,01) be the canonical minimal realisation of R1. With this notation, we define a
map CR : L̄2[0,∞)→ Rn by

CR(u) = −
∫ ∞

0

e−Aτbu(τ) dτ,
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and we call this the controllability operator . Similarly, we define OR : Rn → L̄2(−∞, 0]
by

(OR(x))(t) =

{
cteAtx, t ≥ 0

0, t < 0,

and we call this the observability operator . Note that the adjoint of the controllability
operator will be the map C ∗R : Rn → L̄2[0,∞) satisfying

〈CR(u),x〉 = 〈u,C ∗R(x)〉2, u ∈ L̄2[0,∞), x ∈ Rn,

and the adjoint of the observability operator will be the map O∗R : L̄2(−∞, 0]→ Rn satisfying

〈OR(x), y〉2 = 〈x,O∗R(y)〉, y ∈ L̄2(−∞, 0], x ∈ Rn.

In each case, the inner product of equation (15.6) is being used on L̄2(−∞, 0] and L̄2[0,∞).
The following result summarises the value of introducing this notation.

15.24 Proposition With the above notation, the following statements hold:

(i) the diagrams

Rn

OR

$$❏
❏❏

❏❏
❏❏

❏❏

L̄2[0,∞)

CR

::✈✈✈✈✈✈✈✈✈

Γ̄R

// L̄2(−∞, 0]

Rn

C∗
R

$$❍
❍❍

❍❍
❍❍

❍❍

L̄2(−∞, 0]

O∗
R

::ttttttttt

Γ̄∗
R

// L̄2[0,∞)

commute;

(ii) (C ∗R(x))(τ) =

{
−bte−Atτx, t ≤ 0

0, t > 0;

(iii) O∗R(y) =

∫ 0

−∞
eA

ttcy(t) dt;

(iv) (Γ̄∗R(y))(τ) =

{
−
∫∞

0
bteA

t(t−τ)cy(t) dt, τ ≤ 0

0, τ > 0;

(v) C ∗R is injective;

Proof (i) It suffices to show that the left diagram commutes, since if it does, the right
diagram will also commute by the definition of the adjoint. However, the left diagram may
be easily seen to commute by virtue of the very definitions of CR, OR, and Γ̄R.

(ii) This follows from the definition of CR and the inner product in equation (15.6).
(iii) This follows from the definition of OR and the inner product in equation (15.6).
(iv) This follows from the right diagram in part (i), along with parts (ii) and (ii).
(v) It suffices to show that C ∗R(x) = 0 if and only if x = 0. If (C ∗R(x))(τ) = −bte−Atτx = 0

for all τ then successive differentiation with respect to τ and evaluation at τ = 0 gives

−btx = 0, btAtx = 0, . . . , (−1)nbt(At)n−1x = 0.

Since (A, b) is controllable, this implies that x = 0. �

Thus the above result gives a simple way of relating a Hankel operator and its adjoint
to operators with either a domain or a range that is finite-dimensional. In the next section,
we shall put this to good use.
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15.3.3 Hankel singular values and Schmidt pairs

Recall that a singular value for a linear map A between inner product spaces is, by
definition, an eigenvalue of A∗A. One readily verifies that singular values are real and
nonnegative. Our objective in this section is to find the singular values of a Hankel operator
ΓR using our representation Γ̄R in the time-domain.

As in the previous section, for R ∈ RL∞ we write R = R1 + R2 with R1 ∈ RH+
2 and

R2 ∈ RH−∞. We let Σ1 = (A, b, ct,01) be the complete SISO linear system in controller
canonical form so that TΣ1 = R1. We next introduce the controllability Gramian

CR =

∫ ∞

0

e−Atbbte−A
tt dt,

and the observability Gramian

OR =

∫ ∞

0

e−A
ttccte−At dt.

These are each elements of Rn×n. We have previously encountered the controllability
Gramian in the proof of Theorem 2.21, and the observability Gramian may be used in a
similar manner. However, here we are interested in their relationship with the Hankel oper-
ator ΓR. The following result gives this relationship, as well as providing a characterisation
of CR and OR in terms of the Liapunov ideas of Section 5.4.

15.25 Proposition With the above notation, the following statements hold:

(i) (At,CR,−bbt) is a Liapunov triple;

(ii) (A,OR,−cct) is a Liapunov triple;

(iii) CR ◦C ∗R = CR;

(iv) O∗R ◦OR = OR;

(v) OR is invertible.

Proof (i) Since −A is Hurwitz, by part (i) of Theorem 5.32 there is a unique symmetric
matrix P so that (−At,P , bbt) is a Liapunov triple. What’s more, the proof of Theorem 5.32
gives P explicitly as

P =

∫ ∞

0

e−Atbbte−A
tt dt.

Now one sees trivially that (A,−P ,−b, bt) is also a Liapunov triple. This part of the
proposition now follows because CR = −P .

(ii) The proof here is exactly as for part (i).
(iii) This follows from the characterisations of CR and C ∗R given in Proposition 15.24.
(iv) This follows from the characterisations of OR and O∗R given in Proposition 15.24.
(v) Since OR is square, injectivity is equivalent to invertibility. Suppose that OR is not

invertible. Then, since OR is positive-semidefinite, there exists x ∈ Rn so that xtORx = 0,
or so that ∫ ∞

0

xte−A
ttccte−Atx dt.

This means that cte−Atx = 0 for all t ∈ [0,∞). Differentiating successively with respect to
t at t = 0 gives

ctx = 0, −ctAx = 0, . . . , (−1)n−1ctAn−1x = 0.

This implies that (A, c) is not observable. It therefore follows that OR is indeed injective.�
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This, then, is interesting as it affords us the possibility of characterising the singular
values of the Hankel operator in terms of the eigenvalues of an n × n matrix. This is
summarised in the following result.

15.26 Theorem The nonzero eigenvalues of the following three operators,

(i) Γ∗R ◦ΓR,

(ii) Γ̄∗R ◦ Γ̄R, and

(iii) CROR,

agree.

Proof That the eigenvalues for Γ∗RΓR and Γ̄∗RΓ̄R agree is a simple consequence of Proposi-
tion 15.23: the Laplace transform or its inverse will deliver eigenvalues and eigenvectors for
either of Γ∗RΓR or Γ̄∗RΓ̄R given eigenvalues and eigenvectors for the other.

Now let σ2 > 0 be an eigenvalue for Γ̄∗RΓ̄R with eigenvector u ∈ L̄2(−∞, 0]. By part (i)
of Proposition 15.24 this means that

C ∗RO∗RORCR(u) = σ2u

=⇒ CRC ∗RO∗RORCR(u) = σ2CR(u).

If x = CR(u) then x 6= 0 since otherwise it would follow that σ2 = 0. This shows that σ2 is
an eigenvalue of CROR with eigenvector x.

Now suppose that σ2 6= 0 is an eigenvalue for CROR with eigenvector x. Thus

CRORx = σ2x

=⇒ C ∗RORCROR = σ2C ∗RORx.

If u = C ∗RORx then we claim that u 6= 0. Indeed, from part (v) of Proposition 15.24, C ∗R is
injective, and from part (v) of Proposition 15.25, OR is injective. Thus u = 0 if and only if
x = 0. Thus we see that σ2 is an eigenvalue for Γ̄∗RΓ̄R with eigenvalue u. �

Thus we have a characterisation of all nonzero singular values of the Hankel operator as
eigenvalues of an n × n matrix. This is something of a coup. We shall suppose that the
nonzero singular values are arranged in descending order σ1 ≥ σ2 ≥ · · · ≥ σk, so that σ1

denotes the largest of the singular values. We shall call σ1, . . . , σk the Hankel singular
values for the Hankel operator ΓR.

Now we wish to talk about the “size” of a Hankel operator ΓR. Since ΓR is a linear map
between two inner product spaces—from RH+

2 to RH−2 —we may simply define its norm in
the same manner in which we defined the induced signal norms in Definition 5.19. Thus we
define

‖ΓR‖ = sup
Q∈RH+

2
Q not zero

‖ΓR(Q)‖2

‖Q‖2

.

This is called the Hankel norm of the Hankel operator ΓR. The following result follows
easily from Theorem 15.26 if one knows just a little more operator theory than is really
within the confines of this course. However, it is an essential result for us.
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15.27 Corollary If σ1 is the largest Hankel singular value, then ‖ΓR‖ = σ1.

Proof We can prove this using matrix norms. � finish

Next, let us look a little more closely at eigenvectors induced by singular values. Thus
we let σ2 be a nonzero singular value for Γ̄∗RΓ̄R with eigenvector u1 ∈ L̄2[0,∞). Now define
u2 ∈ L̄2(−∞, 0] by u2 = 1

σ
Γ̄R(u1). Then one readily computes

Γ̄R(u1) = σu2

Γ̄∗R(u2) = σu1.

When an operator and its adjoint possess the same eigenvalue in this manner, the resulting
eigenvectors (u1, u2) are called a σ-Schmidt pair for the operator. Of course, if Rj is the
Laplace transform of uj, j = 1, 2, then we have

ΓR(R1) = σR2

Γ∗R(R2) = σR1,

so that (R1, R2) ∈ RH+
2 ×RH−2 are a σ-Schmidt pair for ΓR. The matter of finding Schmidt

pairs for Hankel operators is a simple enough proposition as one may use Theorem 15.26.
Indeed, suppose that σ2 > 0 is an eigenvalue for CROR with eigenvector x. Then a σ-
Schmidt pair for Γ̄R is readily verified to be given by (u1, u2) where

u1 =
1

σ
O∗R(ORx)

u2 = OR(x).

15.3.4 Nehari’s Theorem

In this section we state and prove a famous theorem of Nehari [1957]. This theorem is just
one in a sweeping research effort in “Hankel norm approximation,” with key contributions
being made in a sequence of papers by Adamjan, Arov, and Krein (1968, 1968, 1971). Our
interest in this section is in a special version of this rather general work, as we are only
interested in rational functions, whereas Nehari was interested in general H∞ functions.

15.28 Theorem Let R0 ∈ RH−∞, let σ1 > 0 be the largest Hankel singular value for R0, and let
(R1, R2) ∈ RH+

2 × RH−2 be a σ1-Schmidt pair. Then

inf
R∈RH+

∞
‖R0 −R‖∞ = σ1,

and if R ∈ RH+
∞ satisfies R1(R0 −R) = σ1R2 then ‖R0 −R‖∞ = σ1.

Proof First let us show that σ1 is a lower bound for ‖R0 − R‖∞. For any R ∈ RH+
2 we

compute, using part (i) of Theorem 5.21,

‖R0 −R‖∞ = sup
Q∈RH+

2
Q not zero

‖(R0 −R)Q‖2

‖Q‖2

≥ sup
Q∈RH+

2
Q not zero

‖Π−(R0 −R)Q‖2

‖Q‖2

= sup
Q∈RH+

2
Q not zero

‖Π−(R0)Q‖2

‖Q‖2

= ‖ΓR‖.
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Now let (R1, R2) be a σ1-Schmidt pair and write Q = (R0 − R)R1 for R ∈ RH+
∞. Since

R1 ∈ RH+
2 , ΓR0(R1) ∈ RH+

2 . Since RR1 ∈ RH+
2 , Π−(Q) = Π−(R0R1) = ΓR0(R1). Therefore,

we compute

0 ≤ ‖Q− ΓR0(R1)‖2
2

= ‖Q‖2
2 + 〈ΓR0(R1),ΓR0(R1)〉2 − 2〈Q,ΓR0(R1)〉2

= ‖Q‖2
2 + 〈ΓR0(R1),ΓR0(R1)〉2 − 2〈Π−(Q),ΓR0(R1)〉2

= ‖Q‖2
2 − 〈ΓR0(R1),ΓR0(R1)〉2

= ‖Q‖2
2 − 〈R1,Γ

∗
R0

ΓR0(R1)〉2
= ‖Q‖2

2 − σ2
1〈R1, R1〉2

= ‖Q‖2
2 − σ2

1‖R1‖2
2

≤ ‖R0 −R‖2
∞‖R1‖2

2 − σ2
1‖R1‖2

2

=
(
‖R0 −R‖2

∞ − σ2
1

)
‖R1‖2

2

≥ 0.

This shows that Q = ΓR0(R1), or, equivalently,

(R0 −R)R1 = ΓR0(R1) = σ1R2,

as claimed. �

15.3.5 Relationship to the model matching problem

The previous buildup has been significant, and it is perhaps not transparent how Hankel
operators and Nehari’s Theorem relate in any way to the model matching problem. The
relationship is, in fact, quite simple, and in this section we give a simple algorithm for
obtaining a solution to the model matching problem using the tools of this section. However,
as with Nevanlinna-Pick theory, there is a drawback in that on occasion a hack will have to
be employed. Nonetheless, the process is systematic enough.

Let us come right out and state the algorithm.

15.29 Model matching by Hankel norm approximation Given T1, T2 ∈ RH+
∞.

15.4 A robust performance example

15.5 Other problems involving H∞ methods

It turns out that the robust performance problem is only one of a number of problems
falling under the umbrella of H∞ control. In this section we briefly indicate some other
problems whose solution can be reduced to a model matching problem, and thus whose
solution can be obtained by the methods in this chapter.
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Exercises

E15.1 Exercise in the ∞-norm giving a Banach algebra.

E15.2 Exercise on existence of solutions to the model matching problem.

E15.3 Verify that the following algorithm for reducing the modified robust performance
problem for additive uncertainty actually works.

15.30 Algorithm for obtaining model matching problem for additive uncertainty Given R̄P ,
Wu, and Wp as in Problem 15.2.

1. Define

U3 =
WpW

∗
pWuW

∗
u

WpW ∗
p +WuW ∗

u

.

2. If ‖U3‖∞ ≥ 1
2
, then Problem 15.2 has no solution.

3. Let (P1, P2) be a coprime fractional representative for R̄P .

4. Let (ρ1, ρ2) be a coprime factorisation for P1 and P2:

ρ1P1 + ρ2P2 = 1.

5. Define

R1 = Wpρ2P2, S1 = Wuρ1P1,

R2 = WpP1P2, S2 = −WuP1P2.

6. Define Q = [R2R
∗
2 + S2S

∗
2 ]+.

7. Let V be an inner function with the property that

R1R
∗
2 + S1S

∗
2

Q∗
V

has no poles in C+.

8. Define

U1 =
R1R

∗
2 + S1S

∗
2

Q∗
V, U2 = QV.

9. Define U4 = [1
2
− U3]+.

10. Define

T1 =
U1

U4

, T2 =
U2

U4

.

11. Let θ be a solution to Problem 15.3.

12. If ‖T1 − θT2‖∞ ≥ 1 then Problem 15.2 has no solution.

13. The controller

RC =
ρ1 + θP2

ρ2 − θP1

,

is a solution to Problem 15.2. •
E15.4 Möbius functionsFinish

E15.5 Show that RH−2 and RH+
2 are orthogonal with respect to the inner product on RL2

defined in equation (15.5).
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Appendix A

Linear algebra

Formulation of the time-domain setting for linear systems requires fluency with linear
algebra. Those of you taking this course are expected to be very familiar with essentials of
linear algebra. In this appendix we will review some of those essentials, mainly to introduce
the notation we use. The presentation is distinguished by a chain of sometimes not obvious
statements made in sequence. That is, nothing is proved in this appendix.

Contents

A.1 Vector spaces and subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
A.2 Linear independence and bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
A.3 Matrices and linear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

A.3.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
A.3.2 Some useful matrix lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
A.3.3 Linear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

A.4 Change of basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
A.5 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
A.6 Inner products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

A.1 Vector spaces and subspaces

We will work with the real numbers , denoted R, and with the complex numbers ,
denoted C. We follow the convention of mathematicians rather than of electrical engineers
and denote i =

√
−1. If we are in a situation where we wish to refer to either R or C, we

will write F. R+ denotes the set of positive real numbers.
A vector space over R is a set V with two operations: (1) vector addition, denoted

v1 + v2 ∈ V for v1, v2 ∈ V , and (2) scalar multiplication, denoted a v ∈ V for a ∈ R and
v ∈ V . Vector addition must satisfy the rules

1. v1 + v2 = v2 + v1 (commutativity);

2. v1 + (v2 + v3) = (v1 + v2) + v3 (associativity);

3. there exists a unique vector 0 ∈ V with the property that v + 0 = v for every v ∈ V
(zero vector), and

4. for every v ∈ V there exists a unique vector −v ∈ V such that v+(−v) = 0 (negative
vector),

and scalar multiplication must satisfy the rules

5. a(b v) = (ab)v (associativity);
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6. 1 v = v;

7. a(v1 + v2) = a v1 + a v2 (distributivity);

8. (a1 + a2)v = a1 v + a2 v (distributivity again).

One can also consider vector spaces over C, and on occasion we will do so, but not frequently.
Thus we shall simply call a vector space over R a “vector space” when no confusion will arise
from our doing so.

The vector space of primary importance to us is the collection Rn of n-tuples of real
numbers. Thus an element of Rn is written (x1, . . . , xn). We will write this also as a column
vector: 


x1
...
xn


 .

Vector addition and scalar multiplication in Rn are done component-wise:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn), a(x1, . . . , xn) = (ax1, . . . , axn).

We shall sometimes wish to work with Cn, the set of n-tuples of complex numbers. This can
be thought of as a vector space over either R or C with the component-wise operations. We
denote by x the vector with components (x1, . . . , xn). Thus vectors are generally denoted
with lowercase bold letters. We simply denote the zero vector by 0.

A subset U of a vector space V is a subspace if u1 + u2 ∈ U for all u1, u2 ∈ U and if
a u ∈ U for all a ∈ R and all u ∈ U . Note that a subspace of a vector space is itself a vector
space.

A.2 Linear independence and bases

Let V be a vector space. A collection of vectors {v1, . . . , vn} ⊂ V is linearly indepen-
dent if the equality

c1v1 + · · ·+ cnvn = 0

holds only for c1 = · · · = cn = 0. A collection of vectors {v1, . . . , vn} spans V if for every
vector v ∈ V there exists constants c1, . . . , cn ∈ R so that

v = c1v1 + · · ·+ cnvn.

The subset {v1, . . . , vn} is a basis for V if it is linearly independent and spans V . Note
that the number of basis vectors for a vector space V is a constant independent of the choice
of basis. This constant is the dimension of V , denoted dim(V ). It is possible that a vector
space will not have a finite basis. In such cases it is said to be infinite-dimensional . We
may talk in particular about bases for Rn. The standard basis for Rn is given by the n
vectors {e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)}.

Given a basis {v1, . . . , vn} for V and a vector v ∈ V , there is a unique collection of
constants c1, . . . , cn ∈ R so that

v = c1v1 + · · ·+ cnvn.

These are the components of v in the given basis.
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For vectors v1, . . . , vk ∈ V we define the span of these vectors to be the subspace

span(v1, . . . , vk) = {c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ R}.

Note that this does not require that the vectors be linearly independent. However, if the
vectors {v1, . . . , vk} are linearly independent, then they form a basis for span(v1, . . . , vk).

A.3 Matrices and linear maps

There are close relationships between matrices and linear maps. However, let us break
up our discussion to cover some matrix-specific topics.

A.3.1 Matrices

The set of n × m matrices we denote by Rn×m. We denote by A the matrix with
components 



a11 a12 a13 · · · a1m

a21 a22 a23 · · · a2m
...

...
...

. . .
...

an1 an2 an3 · · · anm


 .

Thus matrices are generally denoted with uppercase bold letters. At times we will think of
vectors as n× 1 matrices. We denote the n×m matrix of zeros by 0n,m. If A ∈ Rn×m then
we define the transpose of A, denoted At, to be the matrix whose rows are the columns
of A. Thus

A =




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm


 =⇒ At =




a11 a12 · · · an1

a12 a22 · · · an2
...

...
. . .

...
a1m a2m · · · anm


 .

If A ∈ Rn×p and B ∈ Rp×m then we may multiply these to get AB ∈ Rn×m. The (i, j)th
element of AB is

p∑

k=1

aikbkj.

Of special interest are the n × n matrices, i.e., the “square” matrices. In denotes the
n × n identity matrix , i.e., the matrix whose entries are all zero, except for 1’s on the
diagonal, and 0n denotes the n×n matrix of zeros. The trace of A ∈ Rn×n, denoted tr(A),
as the sum of the diagonal elements of A:

tr(A) =
n∑

i=1

aii.

Also useful is the determinant of A ∈ Rn×n, denoted detA. Let us recall the inductive
definition. The determinant of a 1 × 1 matrix [a] is simply a. The determinant of a 2 × 2
matrix is defined by

det

[
a11 a12

a21 a22

]
= a11a22 − a12a21.
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Now we indicate how to compute the determinant of an n × n matrix provided one knows
how to compute the determinant of an (n − 1) × (n − 1) matrix. One does this as follows.
For a fixed i ∈ {1, . . . , n}, let a1, . . . , an be the components of the ith row of A ∈ Rn×n.
Also let A(̂ı, ̂) be the (n− 1)× (n− 1) matrix obtained by deleting the ith row and the jth
column of A. With this notation we define

detA = (−1)i+jaj detA(̂ı, ̂).

Thus, to compute the determinant of an n× n matrix, one must compute the determinant
of n matrices of size (n− 1)× (n− 1).

There is another definition of the determinant that we will use in Section 6.1. Let Sn
be the collection of permutations of (1, . . . , n). We denote an element σ ∈ Sn by indicating
what it does to each element in the sequence (1, . . . , n) like so:

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

A transposition is a permutation that consists of the swapping of two elements of (1, . . . , n).
A permutation is odd (resp. even) if it is the composition of an odd (resp. even) number
of transpositions. We define sgn: Sn → {−1, 1} by

sgn(σ) =

{
1, σ is even

−1, σ is odd.

With this notation, it can be shown that

detA =
∑

σ∈Sn

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n. (A.1)

If and only if detA 6= 0 there exists A−1 ∈ Rn×n so that AA−1 = A−1A = In. In this
case we say A is invertible of nonsingular . If A is not invertible, it is singular .

We shall require the cofactor matrix of an n × n matrix A. If i, j ∈ {1, . . . , n}, define
the (i, j)th cofactor to be

Cij = (−1)i+j detA(̂ı, ̂).

The matrix Cof(A) is then the n× n matrix whose (i, j)th element is Cij. One then verifies
that

A(Cof(A))t = (detA)In.

The matrix (Cof(A))t we denote adj(A), and we note that if A is invertible, then

A−1 =
1

detA
adj(A). (A.2)

We call adj(A) the adjugate of A.
Let us next consider the linear equation Ax = b which we wish to solve for a given

b ∈ Rn and A ∈ Rn×n. We will only look at the easy case where A is invertible. If for
i ∈ {1, . . . , n}, A(b, i) denotes the matrix A but with the ith column replaced with b, then
Cramer’s Rule states that the ith component of the solution vector x is given by

xi =
detA(b, i)

detA
.

More general than a cofactor of A is the notion of a minor. A kth-order minor of A
is the determinant of a k × k matrix obtained from A by removing any collection of n − k
rows and n− k columns. The principal minors of A are the n determinants of the upper
left k × k blocks of A for k ∈ {1, . . . , n}.
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A.3.2 Some useful matrix lemmas

The following results will be useful to us, and the proofs are simple enough to give here.

A.1 Lemma If A is an invertible k × k matrix, B is a k × (n − k) matrix, C is a (n − k) × k
matrix, and D is an (n− k)× (n− k) matrix, then

det

[
A B
C D

]
= detA det(D −CA−1B).

Proof We observe that
[

Ik 0k,(n−k)

−CA−1 In−k

] [
A B
C D

]
=

[
A B

0(n−k),k D −CA−1B

]
.

The determinant of the leftmost matrix is 1, and since the determinant of an upper block
diagonal matrix is the determinant of the diagonal blocks, the determinant of the rightmost
matrix is detA det(D −CA−1B). From this the result follows. �

A.2 Lemma If A is an invertible k × k matrix, B is a k × (n − k) matrix, C is a (n − k) × k
matrix, and D is an (n− k)× (n− k) matrix, then

[
A B
C D

]−1

=

[
X Y
U V

]
,

where

X = A−1 +A−1B(D −CA−1B)−1CA−1

Y = −A−1B((D −CA−1B)−1

U = −(D −CA−1B)−1CA−1

V = (D −CA−1B)−1,

provided that the inverse exists.

Proof We perform row operations on
[
A B Ik 0
C D 0 In−k

]
.

Multiply the first k rows by A−1 to get
[
Ik A−1B A−1 0
C D 0 In−k

]
.

Now subtract from the second n− k rows the first k rows multiplied by C to get
[
Ik A−1B A−1 0
0 D −CA−1B −CA−1 In−k

]
.

Multiply the second n− k rows by (D −CA−1B)−1 times the first k rows to get
[
Ik A−1B A−1 0
0 In−k −(D −CA−1B)−1CA−1 (D −CA−1B)−1

]
.

Finally, subtract from the second n−k rows A−1B times the first k rows to yield the result.
�
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A.3 Lemma If A ∈ Rn×m and B ∈ Rm×n then In−AB is nonsingular provided that Im−BA
is nonsingular, and furthermore the relation

A(Im −BA)−1 = (In −AB)−1A,

holds in this case.

Proof We first show that det(In −AB) = det(Im −BA). First we note that the matrix
[
In A
B Im

]

is transformed to the matrix [
B Im
In A

]

by k row switches, for some suitable k. Now this last matrix can be transformed to
[
Im B
A In

]

by k column switches, for the same k as was used to make the row switches. Note that
each row and column switch changes the determinant by a factor of −1. Thus we have, also
employing Lemma A.1,

det(Im −BA) = det

[
In A
B Im

]
= det

[
Im B
A In

]
= det(In −AB),

as desired. This shows that In −AB is nonsingular if and only if Im −BA is nonsingular.
Now we make a simple computation,

A−ABA = A−ABA
=⇒ A(Im −BA) = (In −AB)A

=⇒ (In −AB)−1A = A(Im −BA)−1,

as desired. �

A.4 Lemma Let A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n. If A and A+BC are invertible then
Im +CA−1B is invertible and

(A+BC)−1 = A−1 −A−1B(Im +CA−1B)−1CA−1.

Proof We compute
(
A−1 −A−1B(Im +CA−1B)−1CA−1

)
(A+BC)

= In +A−1BC −A−1B(Im +CA−1B)−1C −A−1B(Im +CA−1B)−1CA−1BC

= In +A−1B
(
Im − (Im +CA−1B)−1 − (Im +CA−1B)−1CA−1B

)
C

= In +A−1B
(
Im − (Im +CA−1B)−1(Im +CA−1B

)
C

= In +A−1B
(
Im − Im

)
C

= In.

This gives the lemma by uniqueness of the inverse. �
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A.5 Lemma Let M ∈ Rn×n and let u,v ∈ Rn. If M and M + uvt are invertible we have

adj(M + uvt)u = (adjM)u

vtadj(M + uvt) = vt(adjM).

Proof Let us show the first equality, and the second follows in much the same manner.
Using Lemma A.4 we compute

(M + uvt)−1u =
adj(M + uvt)

det(M + uvt)
u

= M−1u−M
−1uvtM−1u

1 + vtMu

=
M−1u

1 + vtMu
.

We also have

M−1 =
adjM

detM

and, by Lemma A.3.

1 + vtM−1u = det(1 + vtM−1u)

= det(In +M−1uvt)

=
det(M + uvt)

detM
.

This then gives

M−1u

1 + vtMu
=

(adjM)u

detM

detM

det(M + uvt)
=

(adjM )u

det(M + uvt)
.

Thus

(M + uvt)−1u =
(adjM )u

det(M + uvt)
,

from which we deduce that adj(M + uvt)u = (adjM )u, as desired. �

A.3.3 Linear maps

Let U and V be vector spaces. A linear map from U to V is a map L : U → V satisfying
L(u1 + u2) = L(u1) + L(u2) for all u1, u2 ∈ U and L(a u) = aL(u) for all a ∈ R and u ∈ U .
If U = V then L is a linear transformation . A special type of linear map, one from the
vector space Rm to the vector space Rn, is defined by an n×m matrix A. If x ∈ Rm then
A(x) ∈ Rn is defined by its ith component being

n∑

j=1

Aijxj.

Typically we will write Ax for A(x).
Let L : U → V be a linear map between finite-dimensional vector spaces, and let

{u1, . . . , um} be a basis for U and {v1, . . . , vn} be a basis for V . For i ∈ {1, . . . ,m} we
may write

L(ui) = a1iv1 + · · ·+ anivn
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for some uniquely defined a1i, . . . , ani ∈ R. The nm numbers a`i, ` = 1, . . . , n, i = 1, . . . ,m
are called the components of L relative to the given bases.

If L : U → V is a linear map, we define subspaces

ker(L) = {u ∈ U | L(u) = 0} ⊂ U

image(L) = {L(u) | u ∈ U} ⊂ V

which we call the kernel and image of L, respectively. You may know these as “nullspace”
and “range.” The Rank-Nullity Theorem states that dim(ker(L)) + dim(image(L)) =
dim(U). A linear map L : U → V is injective if the equality L(u1) = L(u2) implies that
u1 = u2. L is surjective if for each v ∈ V there exists u ∈ U so that L(u) = v. If L is
both injective and surjective then it is bijective or invertible . If L is invertible then there
exists a linear map L−1 : V → U so that L ◦L−1 = idV and L−1 ◦L = idU , where id denotes
the identity map.

If A ∈ Rn×m and we write A using its columns as

A =
[
a1 · · · am

]
.

Thus each of the vectors a, . . . ,am are in Rn. We define the columnspace of A to be the
subspace of Rn given by span(a, . . . ,am). We observe that the columnspace and the image
of A, thought of as a linear map, coincide.

If L : V → V is a linear transformation, a subspace U ⊂ V is L-invariant if L(u) ∈ U
for every u ∈ U . Suppose that V is finite-dimensional and that U is an invariant subspace
for L and let {v1, . . . , vn} be a basis for Rn with the property that {v1, . . . , vk} is a basis for
U . Since U is L-invariant we must have

L(v1) = a11v1 + · · ·+ ak1vk
...

L(vk) = a1kv1 + · · ·+ akkvk

L(vk+1) = a1,k+1v1 + · · ·+ ak,k+1vk + ak+1,k+1vk+1 + · · ·+ an,k+1vn
...

L(vn) = a1nv1 + · · ·+ aknvk + ak+1,nvk+1 + · · ·+ annvn.

Thus the matrix representation for L in this basis has the form

[
A11 A12

0n−k,k A22

]
. (A.3)

A.4 Change of basis

One on occasion wishes to ascertain how the components of vectors and linear maps
change when one changes basis. We restrict our consideration to linear transformations. So
let V be a vector space with {v1, . . . , vn} and ṽ1, . . . , ṽn} two bases for V . Since these are
both bases, there exists an invertible n× n matrix T so that

vi =
n∑

j=1

tjiṽj, i = 1, . . . , n.
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T is called the change of basis matrix . For v ∈ V , let c1, . . . , cn and c̃1, . . . , c̃n be the
components of v in the respective bases {v1, . . . , vn} and ṽ1, . . . , ṽn}. One readily determines
that c̃ = Tc. Also, let L : V → V be a linear transformation and let aij, i, j = 1, . . . , n,
and ãij, i, j = 1, . . . , n, be the components of L in the respective bases {v1, . . . , vn} and
ṽ1, . . . , ṽn}. A simple computation using the definition of components shows that Ã =
TAT−1. We shall most frequently encounter the change of basis in the scenario when
V = Rn, {v1 = e1, . . . , vn = ẽn}, and {ṽ1 = x1, . . . , ṽn = xn}. Thus we are changing from
the standard basis for Rn to some nonstandard basis. In this case, the change of basis matrix
is simply defined by

T−1 =
[
x1 · · · xn

]
.

The transformation that sends A ∈ Rn×n to the matrix TAT−1 is called a similarity
transformation . One readily verifies both trace and determinant are unchanged under
similarity transformations. That is, for any invertible T ∈ Rn×n we have

tr(TAT−1) = tr(A), det(TAT−1) = det(A).

For this reason, the notion of trace and determinant can be applied to any linear transfor-
mation by simply defining them in an arbitrary basis.

A.5 Eigenvalues and eigenvectors

For a linear transformation L : V → V , if we have a pair (λ, v) ∈ R × (V \ {0}) which
satisfies L(v) = λ v then we say λ0 is an eigenvalue for L with eigenvector v. The
collection of all eigenvectors for λ, along with the zero vector, forms the eigenspace for λ.
The eigenspace is easily seen to be a subspace. When V is finite-dimensional, the matter of
computing eigenvalues and eigenvectors is most easily done in a basis {v1, . . . , vn} where L
is represented by its component matrix A ∈ Rn×n. Thus the problem is reduced to finding
(λ,x) ∈ R × (Rn \ {0}) satisfying Ax = λx. This implies that A − λIn must be singular.
Thus eigenvalues must be roots of the characteristic polynomial

PA(λ) = det(λIn −A).

Such roots may well be complex, and recall that a complex root of a real polynomial always
occurs along with its complex conjugate. We denote by

spec(A) = {λ ∈ C | λ is an eigenvalue for A},

which we call the spectrum of A. If λ is an eigenvalue of A, the algebraic multiplicity
of λ0, denoted ma(λ0), is the largest integer k for which we can write PA(λ) = (λ−λ0)kQ(λ)
for some polynomial Q(λ) satisfying Q(λ0) 6= 0. The geometric multiplicity of λ0 is
the maximum number of linearly independent eigenvectors possessed by λ0. Recall that
mg(λ0) ≤ ma(λ0). If we have a real matrix A, we will often talk about multiplicities
thinking of A as a complex matrix, since A may very well have complex eigenvalues. Note
that the above discussion of finding eigenvalues for L using its matrix of components in a
basis is obviously a basis independent operation.

Also recall the Cayley-Hamilton Theorem which says that a matrix satisfies its own
characteristic polynomial. That is to say, if

PA(λ) = λn + pn−1λ
n−1 + · · ·+ p1λ+ p0
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then
An + pn−1A

n−1 + · · ·+ p1A+ p0In = 0n.

You’ll also recall that spec(A) = spec(At), but that the eigenvectors of A and At will
generally differ.

A linear transformation L : V → V on a finite-dimensional vector space is diagonalis-
able if it possesses a basis of eigenvectors. One can easily check that if L is diagonalisable
then there exists a basis {v1, . . . , vn} for V in which the matrix of components for L is di-
agonal. Note that a matrix with complex eigenvalues can never be diagonalised if V is a
R-vector space.

A.6 Inner products

An inner product on a R-vector space V assigns to a pair of vectors v1, v2 ∈ V a
number 〈v1, v2〉 ∈ R, and the assignment satisfies

1. 〈v1, v2〉 = 〈v2, v1〉 (symmetry),

2. 〈a1 v1 + a2 v2, v〉 = a1〈v1, v〉+ a2〈v2, v〉 (bilinearity), and

3. 〈v, v〉 = 0 if and only if v = 0 (positive-definiteness).

On a C-vector space, we do things a little differently. If V is a C-vector space, a Hermitian
inner product is an assignment (v1, v2) 7→ 〈v1, v2〉 ∈ C with the assignment now satisfying

1. 〈v1, v2〉 = 〈v2, v1〉 (symmetry),

2. 〈a1 v1 + a2 v2, v〉 = ā1〈v1, v〉+ ā2〈v2, v〉 (bilinearity), and

3. 〈v, v〉 = 0 if and only if v = 0 (positive-definiteness).

Here z̄ denotes the complex conjugate of z ∈ C. On Rn there is the standard inner
product defined by

〈x,y〉 =
n∑

i=1

xiyi,

i.e., the “dot product.” For Cn the standard Hermitian inner product is defined by

〈x,y〉 =
n∑

i=1

x̄iyi.

Given R-inner product spaces U and V and a linear map L : U → V , we define the
adjoint of L as the linear map L∗ : V → U satisfying

〈L∗(v), u〉U = 〈v, L(u)〉V , u ∈ U, v ∈ V.

IfA ∈ Rn×m is thought of as a linear map between the R-vector spaces Rm and Rn with their
standard inner products, then the adjoint of A is simply the standard transpose: A∗ = At.
If A ∈ Cn×n is thought of as a linear map between the R-vector spaces Cm and Cn with their
standard Hermitian inner products, then the adjoint of A is the standard transpose with
each element of the matrix additional conjugated: A∗ = Āt. Given a linear map L : U → V
between inner product spaces (or Hermitian inner product spaces), a singular value for L
is an eigenvalue of L ◦L∗ : V → V .

A linear transformation L : V → V of a R-inner product space (resp. a C-Hermitian
inner product space) is symmetric (resp. Hermitian) if L = L∗. One easily deduces
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that the eigenvalues of a symmetric or Hermitian linear transformation are always real. If
V = Rn so that L is an n × n matrix, then symmetry of L is exactly the condition that L
be a symmetric matrix. In this case, there exists an orthogonal matrix R so that the matrix
RLRt is diagonal.

A linear transformation L : V → V of a R-inner product space (resp. a C-Hermitian inner
product space) is skew-symmetric (resp. skew-Hermitian) if L = −L∗. One readily
checks that any transformation L on a R-inner product space is a sum of its symmetric
part 1

2
(L+ L∗) and its skew-symmetric part 1

2
(L− L∗).

On an inner product space or a Hermitian inner product space V we also have defined
a norm which assigns to a vector v ∈ V a real number defined by ‖v‖ =

√
〈v, v〉. A norm

may be verified to satisfy the triangle inequality :

‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖.
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Exercises

EA.1 Let V = span((1, 2, 0, 0), (0, 1, 0, 1)) ⊂ R4. Construct a 4 × 4 matrix that leaves the
subspace V invariant.
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Appendix B

Ordinary differential equations

In this appendix we provide a very quick review of differential equations at the level
prerequisite to use this book. The objective, as in the other appendices, is not to provide a
complete overview, but to summarise the main points. The text itself covers various aspects
of differential equations theory beyond what we say here; indeed, it is possible to think
of control theory as a sub-discipline of differential equations, although I do not like to do
so. We deal with scalar equations in Section B.1, and with systems of equations, using the
matrix exponential, in Section B.2.
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B.1 Scalar ordinary differential equations

Let us consider a differential equation of the form

y(n)(t) + pn−1y
(n−1)(t) + · · ·+ p1y

(1)(t) + p0y(t) = u(t). (B.1)

Here y(i)(t) = diy(t)
dti

. and u(t) is a known function of t. In the text, we will establish various
methods for solving such equations for general functions u. Students are expected to be able
to solve simple examples of such equations with alacrity. Let us recall how this is typically
done.

First one obtains a solution, called a homogeneous solution and denoted here by yh,
to the equation

y
(n)
h (t) + pn−1y

(n−1)
h (t) + · · ·+ p1y

(1)
h (t) + p0yh(t) = 0.

To do this, one seeks solutions of the form eλt for λ ∈ C. Substitution into the homogeneous
equations then gives the polynomial

λn + pn−1λ
n−1 + · · ·+ p1λ+ p0 = 0.

This is the characteristic equation and it will have n roots, counting multiplicities. Thus
it will have roots λ1, . . . , λ`, with respective multiplicities k1, . . . , k`, with k1 + · · ·+ k` = n.
Corresponding to a root λa, one constructs ka linearly independent solutions if the root is
real, and 2ka linearly independent solutions if the root is complex (a complex root and its
conjugate yield the same 2ka solutions). These solutions are constructed as follows.
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B.1 Construction of solutions corresponding to a root Let λ ∈ C be a root of the characteristic
equation of multiplicity k.

1. If λ ∈ R then k linearly independent solutions are

y1(t) = eλt, y2(t) = teλt, . . . , yk(t) = tk−1eλt.

2. If λ 6∈ R write λ = σ + iω. Then 2k linearly independent solutions are

y1(t) = eσt sinωt, y2(t) = eσt cosωt, y3(t) = teσt sinωt, y4(t) = teσt cosωt, . . . ,

y2k−1(t) = tk−1eσt sinωt, y2k(t) = tk−1eσt cosωt.

These are the solutions corresponding to the root λ. •
Applying the construction to all roots of the characteristic equation yields n linearly indepen-
dent solutions y1(t), . . . , yn(t) to the homogeneous equation. Furthermore, every solution of
the homogeneous equation is a linear combination of these n linearly independent solutions.
Thus we take yh to be a general linear combination of the n linearly independent solutions,
with at the moment unspecified coefficients:

yh(t) = c1y1(t) + · · ·+ cnyn(t).

Next one determines what is called a particular solution , which we shall denote yp.
A particular solution is, by definition, any solution to the differential equation (B.1). Of
course, one cannot expect to arrive at such a solution in a useful way for arbitrary right-
hand side functions u. What we shall describe here is an essentially ad hoc procedure,
useful for certain types of functions u. This procedure typically goes under the name of the
method of undetermined coefficients . The idea is that one uses the fact that certain
types of functions of time—polynomial functions, trigonometric functions, and exponential
functions—have their form unchanged by the act of differentiation. Thus if one takes yp to
be of this form, then

y(n)
p (t) + pn−1y

(n−1)
p (t) + · · ·+ p1y

(1)
p (t) + p0yp(t) (B.2)

will also have the same form. Therefore, one hopes to be able to determine yp by “comparing”
u to the expression (B.2). This hope is founded, and leads to the following procedure.

B.2 Method of undetermined coefficients Suppose that u(t) = t`eσt(a1 sinωt + a2 cosωt). Let k
be the smallest integer with the property that tkytest(t) is a not solution to the homogeneous
equation, where ytest is any function of t of the form

ytest(t) = P (t)eσt(α1 sinωt+ α2 cosωt),

where α1 and α2 are arbitrary constants, and P is an arbitrary nonzero polynomial of degree
at most `. Often we will have k = 0. Then seek a particular solution of the form

yp(t) = tkQ(t)eσt(b1 sinωt+ b2 cosωt),

where Q is a polynomial of degree `. Substitute into (B.1) to determine b1, b2, and the
coefficients of Q. If u is a linear combination,

u(t) = µ1u1(t) + · · ·+ µmum(t),
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of terms of the form t`eσt(a1 sinωt + a2 cosωt), then the above procedure may be applied
separately to each term in the linear combination separately, yielding separate particular
solutions yp,1, . . . , yp,m. Then the particular solution is

yp(t) = µ1yp,1(t) + · · ·+ µmyp,m(t). •
Once one has a particular solution, the general solution is then simply the sum of the

homogeneous and particular solution:

y(t) = yh(t) + yp(t) = c1y1(t) + · · ·+ cnyn(t) + yp(t).

The constants c1, . . . , cn can be determined if we have an initial value problem where the
initial values y(0), y(1)(0), . . . , y(n−1)(0) are specified.

It is worth demonstrating the procedure to this point on a simple example.

B.3 Example We consider the differential equation

...
y(t) + 3ÿ(t) + 3ẏ + y(t) = te−t.

First let us find a solution to the homogeneous equation

...
yh(t) + 3ÿh(t) + 3ẏh + yh(t) = 0.

The characteristic equation is λ3 + 3λ2 + 3λ + 1 = 0, which has the single root λ = −1 of
multiplicity 3. Our recipe for the homogeneous solution then gives

yh(t) = c1e
−t + c2te

−t + c3t
2e−t.

Now let us obtain a particular solution. By the above procedure, we take

ytest = (β1t+ β0)e−t.

We calculate that ytest(t) and tytest identically solve the differential equation for any β1

and β0. Also, we compute that t2ytest(t) satisfies the homogeneous provided that β1 = 0.
In exasperation, we compute that the only way that t3ytest(t) will satisfy the homogeneous
equation if and only if β1 = β0 = 0. Thus we have k = 3, using the notation of our procedure
for obtaining particular solutions. Therefore, we seek a particular solution of the form

yp(t) = t3(q1t+ q0)e−t.

Substitution into the ode gives

(6q0 + 24q1t)e
−t = te−t,

from which we ascertain that q0 = 0 and q1 = 1
24

. Thus the particular solution is

yp(t) =
t4e−t

24
.

The general solution is then

y(t) = yh(t) + yp(t) = c1e
−t + c2te

−t + c3t
2e−t +

t4e−t

24
.

To determine the unknown constants c1, c2, and c3, we use the initial conditions. One may
determine that

c1 = y(0), c2 = y(0) + ẏ(0), c3 = 1
2
(y(0) + 2ẏ(0) + ÿ(0)). •
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B.2 Systems of ordinary differential equations

Next we look at first-order systems of ordinary differential equations:

ẋ(t) = Ax(t), (B.3)

where x ∈ Rn and A ∈ Rn×n. The possibility of an additional term on the right-hand side
of the form f(t) is interesting, but this is handled in the text. The solution to (B.3) is given
to us by the matrix exponential . For any n× n matrix A define

eA = In +A+
A2

2!
+ · · ·+ Ak

k!
+ · · ·

One may verify that this series converges for every A, and it is a straightforward calcu-
lation to verify that x(t) = eAtx0 is the solution to the differential equation (B.3) with
the initial condition x(0) = x0. Let us present a way to compute the matrix exponential.
Corresponding to the linear system (B.3) will be n linearly independent vector solutions
x1(t), . . . ,xn(t). If A is diagonalisable, it is relatively easy to compute these solutions, but
if A is not diagonalisable, there is a bit more work involved. Nonetheless, there is a recipe
for doing this, and we present it here. Note that this recipe will always work, and it can be
applied, even when A is diagonalisable—in this case it just simplifies.

First one computes the eigenvalues for A. There will be n of these in total, counting
algebraic multiplicities and complex conjugate pairs. One treats each eigenvalue separately.
For a real eigenvalue λ0 with algebraic multiplicity k = ma(λ0), one must compute k linearly
independent solutions. For a complex eigenvalue λ0 with algebraic multiplicity ` = ma(λ0),
one must compute 2` linearly independent solutions, since λ̄0 is also necessarily an eigenvalue
with algebraic multiplicity `.

We first look at how to deal with real eigenvalues. Let λ0 be one such object with
algebraic multiplicity k. It is a fact that the matrix (A− λ0In)k will have rank n− k, and
so will have a kernel of dimension k by the Rank-Nullity Theorem. Let u1, . . . ,uk be a basis
for ker((A − λ0In)k). We call each of these vectors a generalised eigenvector . If the
geometric multiplicity of λ0 is also k, then the generalised eigenvectors will simply be the
usual eigenvectors. If mg(λ0) < ma(λ0) then a generalised eigenvector may or may not be an
eigenvector. Corresponding to each generalised eigenvector ui, i = 1, . . . , k, we will define a
solution to (B.3) by

xi(t) = eλ0t exp((A− λ0In)t)ui. (B.4)

Note that because ui is a generalised eigenvector, the infinite series exp((A−λ0In)t)ui will
have only a finite number of terms—at most k in fact. Indeed we have

exp((A−λ0In)t)ui =
(
In+ t(A−λ0In) +

t2

2!
(A−λ0In)2 + · · ·+ tk−1

(k − 1)!
(A−λ0In)k−1

)
ui,

since the remaining terms in the series will be zero. In any case, it turns out that the k vector
functions x1(t), . . . ,xk(t) so constructed will be linearly independent solutions of (B.3). This
tells us how to manage the real case.

Let’s see how this goes in a few examples.

B.4 Examples
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1. We take a simple case where

A =

[
−7 4
−6 3

]
.

The characteristic polynomial for A is PA(λ) = λ2 + 4λ + 3 = (λ + 1)(λ + 3). Thus
the eigenvalues for A are λ1 = −1 and λ2 = −3. Since the eigenvalues are distinct, the
algebraic and geometric multiplicities will be equal, and the generalised eigenvectors will
simply be eigenvectors. An eigenvector for λ1 = −1 is u1 = (2, 3) and an eigenvector for
λ2 = −3 is u2 = (1, 1). Our recipe then gives two linearly independent solutions as

x1(t) = e−t
[
2
3

]
, x2(t) = e−3t

[
1
1

]
.

2. A more interesting case is the following:

A =



−2 1 0
0 −2 0
0 0 −1


 .

Since the matrix is upper triangular, the eigenvalues are the diagonal elements: λ1 = −2
and λ2 = −1. The algebraic multiplicity of λ1 is 2. However, we readily see that
dim(ker(A − λ1I3)) = 1 and so the geometric multiplicity is 1. So we need to compute
generalised eigenvectors in this case. We have

(A− λ1I3)2 =




0 0 0
0 0 0
0 0 1




and the generalised eigenvectors span the kernel of this matrix, and so we may take
u1 = (1, 0, 0) and u2 = (0, 1, 0) as generalised eigenvectors. Applying the formula (B.4)
gives

x1(t) = e−2t




1
0
0


+ te−2t




0 1 0
0 0 0
0 0 1






1
0
0




=



e−2t

0
0




and

x2(t) = e−2t




0
1
0


+ te−2t




0 1 0
0 0 0
0 0 1






0
1
0




=



te−2t

e−2t

0


 .

Finally we determine that u3 = (0, 0, 1) is an eigenvector corresponding to λ2 = −1, and
so this gives the solution

x3(t) =




0
0
e−t


 .

Thus we arrive at our three linearly independent solutions. •
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Now let us look at the complex case. Thus let λ0 be a complex eigenvalue (with nonzero
imaginary part) of algebraic multiplicity `. This means that λ̄0 will also be an eigenvalue of
algebraic multiplicity ` since A, and hence PA(λ), is real. Thus we need to find 2` linearly
independent solutions. We do this by following the exact same idea as in the real case,
except that we think of A as being a complex matrix for the moment. In this case it is still
true that the matrix (A−λ0In)` will have an `-dimensional kernel, and we can take vectors
u1, . . . ,u` as a basis for this kernel. Note, however, that since (A−λ0In)` is complex, these
vectors will also be complex. But the procedure is otherwise identical to the real case. One
then constructs ` complex vector functions

zj(t) = eλ0t exp((A− λ0In)t)uj. (B.5)

Each such complex vector function will be a sum of its real and imaginary parts: zj(t) =
xj(t) + iyj(t). It turns out that the 2` real vector functions x1(t), . . . ,x`(t),y1(t), . . . ,y`(t)
are linearly independent solutions to (B.3).

Let’s see how this works in some examples.

B.5 Examples

1. An example with complex roots is

A =



−1 1 0
−1 −1 0
0 0 −2


 .

The characteristic polynomial is PA(λ) = r3 + 4r2 + 6r + 4. One ascertains that the
eigenvalues are then λ1 = −1 + i, λ2 = λ̄1 = −1 − i, λ3 = −2. Let’s deal with the
complex root first. We have

A− λ1I3 =



−i 1 0
−1 −i 0
0 0 −1− i




from which we glean that an eigenvector is u1 = (−i, 1, 0). Using (B.5) the complex
solution is then

z1(t) = e(−1+i)t



−i
1
0


 .

Using Euler’s formula, eiθ = cos θ + i sin θ, we have

z1(t) = e−t



−i cos t+ sin t
cos t+ i sin t

0


 = e−t




sin t
cos t

0


+ ie−t



− cos t
sin t

0




thus giving

x1(t) = e−t




sin t
cos t

0


 , y1(t) = e−t



− cos t
sin t

0


 .

Corresponding to the real eigenvalue λ3 we readily determine that

x2 = e−2t




0
0
1
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is a corresponding solution. This gives three linearly independent real solutions x1(t),
y1(t), and x2(t).

2. Let us look at a complex root with nontrivial multiplicity. The smallest matrix to possess
such a feature will be one which is 4× 4, and about the simplest example for which the
geometric multiplicity is less than the algebraic multiplicity is

A =




0 1 1 0
−1 0 0 1
0 0 0 1
0 0 −1 0


 .

The eigenvalues are λ1 = i and λ2 = −i, both with algebraic multiplicity 2. One readily
determines that the kernel ofA−iI4 is one-dimensional, and so the geometric multiplicity
of these eigenvalues is just 1. Thus we need to compute complex generalised eigenvectors.
I have used Mathematica® for the computations below. We compute

(A− iI4)2 = 2




−1 −i −i 1
i −1 −1 −i
0 0 −1 −i
0 0 i −1




and one checks that u1 = (0, 0,−i, 1) and u2 = (−i, 1, 0, 0) are two linearly independent
generalised eigenvectors. We compute

(A− iI4)u1 =




−i
1
0
0


 , (A− iI4)u2 =




0
0
0
0


 .

We now determine the two linearly independent real solutions corresponding to u1. We
have

z1(t) = eit(u1 + t(A− iI4)u1)

= eit




0
0
−i
1


+ teit




−i
1
0
0




= (cos t+ i sin t)

(



0
0
0
1


+ i




0
0
−1
0


+ t




0
1
0
0


+ it




−1
0
0
0




)

=




t sin t
t cos t
sin t
cos t


+ i




−t cos t
t sin t
− cos t
sin t




=⇒ x1(t) =




t sin t
t cos t
sin t
cos t


 , y1(t) =




−t cos t
t sin t
− cos t
sin t


 .
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For u2 we have

z2(t) = eit(u2 + t(A− iI4)u2)

= eit




−i
1
0
0




= (cos t+ i sin t)

(



0
1
0
0


+ i




−1
0
0
0




)

=




sin t
cos t

0
0


+ i




− cos t
sin t

0
0




=⇒ x2(t) =




sin t
cos t

0
0


 , y2 =




− cos t
sin t

0
0


 .

Thus we have the four real linearly independent solutions x1(t), x2(t), y1(t), and y2(t). •
We still haven’t gotten to the matrix exponential yet, but all the hard work is done.

Using the above methodology we may in principle compute for any n × n matrix A, n
linearly independent solutions x1, . . . ,xn(t).1 If we assemble the resulting solutions into the
columns of a matrix X(t):

X(t) =
[
x1(t) · · · xn(t)

]
,

the resulting matrix is an example of a fundamental matrix. Generally, a fundamental
matrix is any n×nmatrix function of t whose columns form n linearly independent solutions
to (B.3). What we have done above is give a recipe for computing a fundamental matrix
(there are an infinite number of these). The following result connects the construction of a
fundamental matrix with the matrix exponential.

B.6 Theorem Given any fundamental matrix X(t) we have eAt = X(t)X−1(0).

Thus, once we have a fundamental matrix, the computation of the matrix exponential is
just algebra, although computing inverses of matrices of any size is a task best left to the
computer.

Let’s work this out for our four examples.

B.7 Examples

1. If

A =

[
−7 4
−6 3

]
.

1Note that the solutions x1, . . . ,xn are those obtained from both real and complex eigenvalues. Therefore,
the solutions denoted above as “yi(t)” for complex eigenvalues will be included in the n linearly independent
solutions, except now I am calling everything xj(t).
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then we have determined a fundamental matrix to be

X(t) =

[
2e−t e−3t

3e−2t e−3t

]
.

It is then an easy calculation to arrive at

eAt = X(t)X−1(0) =

[
3e−3t − 2e−t −2e−3t + 2e−t

3e−3t − 3e−t −2e−3t + 3e−t

]

2. When

A =



−2 1 0
0 −2 0
0 0 −1


 .

we had determined a fundamental matrix to be

X(t) =



e−2t te−2t 0

0 e−2t 0
0 0 e−t


 .

It so happens that in this example we lucked out and eAt = X(t) since X(0) = I3.

3. For

A =



−1 1 0
−1 −1 0
0 0 −2


 .

we had determined the fundamental matrix

X(t) =



e−t sin t −e−t cos t 0
e−t cos t e−t sin t 0

0 0 e−2t


 .

A straightforward computation yields

eAt = X(t)X−1(0) =



e−t cos t e−t sin t 0
−e−t sin t e−t cos t 0

0 0 e−2t


 .

4. Finally, we look at the 4× 4 example we worked out:

A =




0 1 1 0
−1 0 0 1
0 0 0 1
0 0 −1 0


 .

The fundamental matrix we obtained was

X(t) =




t sin t −t cos t sin t − cos t
t cos t t sin t cos t sin t
sin t − cos t 0 0
cos t sin t 0 0


 .

A little manipulation gives

eAt =




cos t sin t t cos t t sin t
− sin t cos t −t sin t t cos t

0 0 cos t sin t
0 0 − sin t cos t


 . •
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Now you know how to compute the matrix exponential. However, you can get Maple® to
do this. I use Mathematica® for such chores. But you are expected to know how in principle
to determine the matrix exponential. Most importantly, you should know precisely what it
is.
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Exercises

EB.1 Solve the initial value problem

τ ẋ(t) + x(t) = A1(t), x(0) = 0,

where τ > 0, and 1(t) is the unit step function :

1(t) =

{
1, t ≥ 0

0, otherwise.

Draw a graph of the solution.

EB.2 A mass moving in a gravitational field is governed by the differential equation mÿ(t) =
−mg. Solve this differential equation with initial conditions y(0) = y0 and ẏ(0) = v0.

EB.3 Obtain the general solution to the differential equation

ẍ(t) + 2ζω0ẋ(t) + ω2
0x(t) = A cosωt

for ω, ω0, ζ and A positive constants. You will have to deal with three cases depending
on the value of ζ.

EB.4 Compute by hand eAt for the following matrices:

(a) A =



−2 0 1
1 −2 0
0 0 −3


;

(b) A =

[
σ ω
−ω σ

]
for σ ∈ R and ω > 0.

EB.5 Use a computer package to determine eAt for the following matrices:

(a) A =




−2 3 1 0
−3 −2 0 1
0 0 −2 3
0 0 −3 −2


;

(b) A =




0 −1 1 0 0
0 0 0 2 0
1 0 0 0 0
0 1 0 0 1
0 0 0 0 0




.
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Appendix C

Polynomials and rational functions

We shall be frequently be encountering and manipulating polynomials, so it will be helpful
to have on hand some basic facts concerning such objects. That polynomials might be useful
to us can be seen by noting that we have already defined the characteristic polynomial which
will be very important to us in these notes.
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C.1 Polynomials

We denote by F[ξ] the set of polynomials in indeterminant ξ and with coefficients in F,
where F is either R or C. Thus a typical element of F[ξ] looks like

P (ξ) = akξ
k + ak−1ξ

k−1 + · · ·+ a1ξ + a0 (C.1)

where a0, . . . , ak ∈ F with ak 6= 0. We call k the degree of P which we denote by deg(P ).
You should not think of ξ as being an element of F, but rather as just being a placeholder.
If we wish to plug in values from F into P we shall generally say when we do this. Of course,
you can add and multiply polynomials in just the ways with which you are familiar.

A polynomial P of the form (C.1) is monic if ak = 1; that is, a monic polynomial is
one where the coefficient of the highest power of the indeterminant is +1. For example, the
characteristic polynomial is always a monic polynomial.1 Given two polynomials P1, P2 ∈
F[ξ] their least common multiple (LCM ) is the unique monic polynomial Q ∈ F[ξ] of
least degree with the property that Q = P1R1 and Q = P2R2 for some R1, R2 ∈ F[ξ].

C.1 Examples In each of these examples, the polynomials may be thought of as in either R[ξ] or
C[ξ].

1. If
P1(ξ) = ξ + 2, P2(ξ) = 2ξ − 3,

then the LCM of P1 and P2 is Q(ξ) = ξ2 − 1
2
ξ − 3

2
.

2. If
P1(ξ) = ξ2 + 2ξ + 1, P2(ξ) = ξ + 1,

then the LCM of P1 and P2 is Q(ξ) = ξ2 + 2ξ + 1. •
1This is why we defined PA(λ) by det(λIn −A) instead of by det(A− λIn).
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If P ∈ F[ξ] is given by

P (ξ) = akξ
k + ak−1ξ

k−1 + · · ·+ a1ξ + a0,

a root for P is a number α ∈ F with the property that

akα
k + ak−1α

k−1 + · · ·+ a1α + a0 = 0.

We denote the set of roots of P by spec(P ), mirroring our notation for eigenvalues for
matrices. If α is a root of P then there exists Q ∈ F[ξ] so that P (ξ) = (ξ−α)Q(ξ). If α is a
root of P and if m is the unique integer with the property that P (ξ) = (ξ − α)mQ(ξ) where
α is not a root of Q, then m is the multiplicty of the root. If F = C, a root α ∈ C is (1) in
the positive half-plane if Re(α) > 0, (2) in the negative half-plane if Re(α) < 0, and
(3) on the imaginary axis if Re(α) = 0. We denote the positive half-plane by C+ and the
negative half-plane by C−. We shall often also denote the imaginary axis by iR (meaning
{iω | ω ∈ R}). By C+ we mean the positive half-plane along with the imaginary axis, and
similarly be C− we mean the negative half-plane along with the imaginary axis.

The greatest common divisor (GCD) of two polynomials P1, P2 ∈ F[ξ] is the unique
monic polynomial T of greatest degree so that P1 = TQ1 and P2 = TQ2 for some Q1, Q2 ∈
F[ξ].

C.2 Examples In each of these examples, the polynomials may be thought of as in either R[ξ] or
C[ξ].

1. If
P1(ξ) = ξ2 + 1, P2(ξ) = 3ξ

then the GCD of P1 and P2 is T (ξ) = 1.

2. If
P1(ξ) = 3ξ2 + 6ξ + 3, P2(ξ) = 2ξ2 − 6ξ − 8,

then the GCD of P1 and P2 is T (ξ) = ξ + 1. •
If the GCD of polynomials P1 and P2 is T (ξ) = 1, then P1 and P2 are said to be coprime .
A polynomial P ∈ F[ξ] with deg(P ) > 0 is irreducible if there are no polynomials P1, P2 ∈
F[ξ], both with degree less than P , with the property that P = P1P2. Thus an irreducible
polynomial cannot be factored.

C.3 Examples

1. By the Fundamental Theorem of Algebra, the only irreducible monic polynomials in C[ξ]
are of the form P (ξ) = ξ + a for some a ∈ C.

2. As we know, there are polynomials of degree two in R[ξ] which are irreducible. For
example P (ξ) = ξ2 + 1 is irreducible in R[ξ], but not in C[ξ]. The irreducible monic
polynomials in R[ξ] are of the form

(a) P (ξ) = ξ + a for some a ∈ R or

(b) P (ξ) = ξ2 + bξ + c where b, c ∈ R satisfy b2 − 4c < 0.

One can easily show that an irreducible monic polynomial of degree 2 in R[ξ] must have
the form (ξ − σ)2 + ω2 for σ ∈ R and ω > 0 (see Exercise EC.1). •
The following result is related to the Euclidean algorithm for F[ξ] which, you will

recall, states that for any polynomials P,Q ∈ F[ξ] there exists polynomials F,R ∈ F[ξ] with
the properties
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1. P = FQ+R and

2. deg(D) < deg(Q).

That is to say, a polynomial can be written as a product of a given polynomial and a
remainder. With this in mind, we can prove the following result.

C.4 Lemma Let P1, P2, F ∈ F[ξ] be polynomials with P1 and P2 coprime. Then there exists
Q1, Q2 ∈ F[s] so that

(i) deg(Q1) < deg(P2) and

(ii) Q1P1 +Q2P2 = F .

Proof Since P1 and P2 are coprime it follows that there exists Q̃1, Q̃2 ∈ R[s] so that

Q̃1P1 + Q̃2P2 = 1.

Therefore we have
(Q̃1F )P1 + (Q̃2F )P2 = F,

from which it follows that for any G ∈ R[s] we have

(Q̃1F − P2G)P1 + (Q̃2F + P1G)P2 = F.

The Euclidean algorithm asserts that there exists a G,R ∈ F[ξ] so that

Q̃1F = GP2 +R

and deg(R) < deg(P2). That is to say, there exists G ∈ F[ξ] so that

deg(Q̃1F − P2G) < deg(P2).

Choosing this G and then defining Q1 = Q̃1F−P2G and Q2 = Q̃2F +P1G gives the result.�

C.2 Rational functions

We also wish to talk about objects which are quotients of polynomials. A rational
function over F with indeterminate ξ is a quotient of two elements of F[ξ]. Thus we
write a rational function over F as

R(ξ) =
N(ξ)

D(ξ)
, N,D ∈ F[ξ].

Thus

R(ξ) =
akξ

k + ak−1ξ
k−1 + · · ·+ a1ξ + a0

b`ξ` + b`−1ξ`−1 + · · ·+ b1ξ + b0

where a0, . . . , ak, b0, . . . , b` ∈ F, and not all the bi’s are zero. We denote the set of rational
functions over F with indeterminate ξ by F(ξ). One should take care not to unduly concern
oneself about things like whether the rational function blows up for certain values of ξ where
D(ξ) = 0. As a polynomial, the only polynomial which is zero is the zero polynomial. If
P ∈ F[ξ] is a non-zero polynomial, then the two rational functions

R1 =
PN

PD
, R2 =

N

D
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will in fact represent the same rational function. This is exactly the same thing we do when
we say that 1

3
and 2

6
are the same rational number. Note that for R ∈ F(ξ) there are unique

coprime monic polynomials N,D ∈ F[ξ] so that

R = a
N

D
(C.2)

for some a ∈ F.

C.5 Example Consider the rational function

R(ξ) =
2ξ2 − 2ξ − 12

3ξ2 − 15ξ + 18
.

We can write this as

R(ξ) = 2
3

ξ + 2

ξ − 2

which is the unique representation of the form (C.2). •
Given a rational function R ∈ F(ξ) with a ∈ F and N,D ∈ F[ξ] defined by (C.2), we call
(aN,D) the canonical fractional representative of R. We will be frequently in need of
this simple concept, so shall abbreviate if c.f.r.. A rational function R with c.f.r. (N,D) is
proper if deg(N) ≤ deg(D), and strictly proper if deg(N) < deg(D). A rational function
which is not proper is improper .

Let R ∈ F(ξ) which we write in its unique representation (C.2) for some coprime monic
polynomials N,D ∈ F[ξ]. A zero of R is defined to be a root of N and a pole of R is defined
to be a root of D. Note that in this way we get around the problem of the “function” R not
being defined at poles. Two rational functions R1, R2 ∈ F(ξ) are coprime if they have no
common zeros.

The final thing we do is provide a discussion of the so-called “partial fraction expansion.”
Recall that the idea here is to take a rational function and expand it as a sum of rational
functions whose denominators are powers of an irreducible polynomial. Thus, for example

ξ3 − 3ξ + 2

ξ3 − 5ξ2 + 3ξ + 9
=

1

1
+ 5

1

(ξ − 3)2
+

19

4

1

ξ − 3
+

1

4

1

ξ + 1
.

It is hard to come across an accurate description of how this is done, so let us provide one
here.

C.6 Theorem Let R ∈ F(ξ) and suppose that

R =
N

D

where N,D ∈ F[ξ] are coprime, and take D to be monic.
There exists

(i) m irreducible monic polynomials D1, . . . , Dm ∈ F[ξ],

(ii) positive integers j1, . . . , jm,

(iii) j1 + · · ·+ jm polynomials N1,1(x), . . . , N1,j1 , . . . , Nm,1, . . . , Nm,jm ∈ F[ξ], and

(iv) a polynomial Q ∈ F[ξ] of degree deg(N)−deg(D) (take Q = 0 if deg(N)−deg(D) < 0),

with the properties
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(v) D1, . . . , Dm are coprime (i.e., distinct),

(vi) deg(Ni,k) < deg(Di) for i = 1, . . . ,m and k = 1, . . . , ji,

(vii) Ni,k and Di are coprime for i = 1, . . . ,m and k = 1, . . . , ji, and

(viii) R =
m∑

i=1

ji∑

k=1

Ni,k

(Di)k
+Q.

Furthermore the objects described in (i)–(iv) are the unique such objects with the proper-
ties (v)–(viii).

The expression in part (viii) is called the partial fraction expansion of R. The proof of
this is straightforward, but requires some buildup, and we refer to [Lang 2005, Theorems 5.2
and 5.3].

It will turn out that we are primarily interested in the case when deg(N) ≤ deg(D), and
in this case Q will be a constant, possibly zero, when deg(N) = deg(D), and zero when
deg(N) < deg(D). For a rational function R ∈ C(ξ) which satisfies our degree condition,
Theorem C.6 tells us that we may write

R(ξ) =
m∑

i=1

jm∑

k=1

βi,k
(ξ − αi)k

+ β (C.3)

for some uniquely defined complex numbers β, αi, i = 1, . . . ,m, and βi,k, i = 1, . . . ,m,
k = 1, . . . , ji. For R ∈ R(ξ), things are a bit more complicated. We may write

R(ξ) =
r∑

i=1

ji∑

k=1

βi,k
(ξ − αi)k

+
m∑

i=1

`i∑

k=1

ai,kξ + bi,k(
(ξ − σi)2 + ω2

i

)k + b (C.4)

for real numbers αi, i = 1, . . . , r, βi,k, i = 1, . . . , r, k = 1, . . . , ji, ai,k, bi,k, i = 1, . . . ,m,
k = 1, . . . , `i, σi, ωi, i = 1, . . . , `, and b.

This sort of leaves open how we compute the constants in the partial fraction expansion
for R = N/D. We shall say here how to do it when R ∈ C(ξ). In this case α1, . . . , αm are
the poles of R, and ji is the multiplicity of the pole αi. That is, D(ξ) = (ξ−αi)jiQ(ξ) where
Q and (ξ − αi) are coprime. It turns out that

βi,ji =
1

(k − ji)!
dk−ji

dξk−ji

(
(ξ − α)kR(ξ)

)∣∣∣
ξ=αi

(C.5)

As usual, this is self-explanatory in examples.

C.7 Examples

1. First let us show that one cannot dispense with the constant term if the numerator and
denominator polynomials have the same degree. If we take

R(ξ) =
ξ + 1

ξ + 2

then its partial fraction expansion is

R(ξ) = 1− 1

ξ + 2
.
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2. We take

R(ξ) =
5ξ + 4

ξ2 + ξ − 2
.

The first thing to do is factor the denominator: ξ2 + ξ − 2 = (ξ − 1)(ξ + 2). Thus in the
parlance of (C.3) we have α1 = 1 and α2 = −2. These roots have multiplicity 1 and so
j1 = j2 = 1. By (C.5) we then have

β1,1 = (ξ − 1)
5ξ + 4

(ξ − 1)(ξ + 2)

∣∣∣
ξ=1

=
9

3
= 3

and

β2,1 = (ξ + 2)
5ξ + 4

(ξ − 1)(ξ + 2)

∣∣∣
ξ=−2

=
−6

−3
= 2.

Thus the partial fraction expansion is

R(ξ) =
3

ξ − 1
+

2

ξ + 2
.

3. We take

R(ξ) =
−3ξ2 + 5ξ + 2

ξ3 − 3ξ2 + ξ − 3
.

The roots of the denominator polynomial are α1 = 3, α2 = i, and α3 = −i. Since we have
complex roots, there will be different partial fraction expansions, depending on whether
we are thinking of R ∈ C(ξ) or R ∈ R(ξ). Let us take the complex case first. Using (C.5)
we have

β1,1 = (ξ − 3)
−3ξ2 + 5ξ + 2

(ξ + 3)(ξ − i)(ξ + i)

∣∣∣
ξ=3

= −1

β2,1 = (ξ − i) −3ξ2 + 5ξ + 2

(ξ + 3)(ξ − i)(ξ + i)

∣∣∣
ξ=i

= −1 + i
2

β3,1 = (ξ + i)
−3ξ2 + 5ξ + 2

(ξ + 3)(ξ − i)(ξ + i)

∣∣∣
ξ=−i

= −1− i
2
.

Thus the partial fraction expansion over C is

R(ξ) = − 1

ξ − 3
− 1− i

2

ξ − i −
1 + i

2

ξ + i
.

The partial fraction expansion over R turns out to be

R(ξ) = − 1

ξ − 3
− 2ξ + 1

ξ2 + 1
.

Thus, employing the symbols in (C.4) we have α1 = 3, σ1 = 0, and ω1 = 1. The easiest
way to determine this is to compute the complex partial fraction expansion, and then
recombine the complex conjugate pairs over a common denominator.

4. We take

R(ξ) =
2ξ2 + 1

ξ3 + 3ξ2 + 3ξ + 1
.
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The root of the denominator polynomial is −1 which has multiplicity 3. We use (C.5) to
get

β1,1 =
1

2

d2

dξ2

(
(ξ + 1)3 2ξ2 + 1

ξ3 + 3ξ2 + 3ξ + 1

)∣∣∣
ξ=−1

= 2

β1,2 =
d

dξ

(
(ξ + 1)3 2ξ2 + 1

ξ3 + 3ξ2 + 3ξ + 1

)∣∣∣
ξ=−1

= −4

β1,3 = (ξ + 1)3 2ξ2 + 1

ξ3 + 3ξ2 + 3ξ + 1

∣∣∣
ξ=−1

= 3.

Thus the partial fraction expansion is

R(ξ) =
2

ξ + 1
− 4

(ξ + 1)2
+

3

(ξ + 1)3
. •

Heavyside coverup?
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Exercises

EC.1 Let P (ξ) ∈ R[ξ] be monic, irreducible, and degree two. Show that there exists σ ∈ R
and ω > 0 so that P (ξ) = (ξ − σ)2 + ω2.

EC.2 Note that R[ξ] is naturally a subset of C[ξ]. If P (ξ) ∈ R[ξ], denote by P̄ (ξ) the same
polynomial, except thought of as being in C[ξ]. Show that polynomials P1(ξ), P2(ξ) ∈
R[ξ] are coprime if and only if P̄1(ξ), P̄2(ξ) are coprime.

EC.3 For
P (ξ) = ξn + pn−1ξ

n−1 + · · ·+ p1ξ + p0 ∈ F[ξ], F ∈ {R,C},
show that sum of the roots of P , counting multiplicities, is equal to −pn−1.

EC.4 Determine the c.f.r. of the following rational functions:

(a)
ξ + 1

3ξ2 + 6
;

(b)
−3ξ2 + 6ξ + 9

ξ3 + 5ξ2 + 7ξ + 3
;

(c)
2ξ + 2

(ξ + 1)3
;

(d)
2ξ2 + 4

3ξ3 + 9ξ2 + 3ξ + 9
.

EC.5 Determine the partial fraction expansion of the following rational functions (for func-
tions with complex poles, determine both the real and complex partial fraction ex-
pansions):

(a)
ξ2 − 1

ξ + 2
;

(b)
3ξ + 4

ξ2 + 3ξ + 2
;

(c)
2ξ2 − ξ + 1

2ξ3 + 18ξ2 + 48ξ + 32
;

(d)
ξ2 + 2

(ξ2 + 1)2
.

EC.6 Let R ∈ C(ξ). Show that R ∈ R(ξ) if and only if R(s) = R(s̄) for every s ∈ C which
is not a pole for R.
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Appendix D

Complex variable theory

We shall require some basic facts about functions of a complex variable. We assume the
reader to have some background in such matters. Certainly we anticipate that the reader is
fully functional in manipulating complex numbers. For more details on what we say here,
we refer to [Lang 2003]. An excellent introduction to those topics in complex variable theory
that are useful in control may be found, complete with all details, in Appendix A of [Seron,
Braslavsky, and Goodwin 1997].
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D.1 The complex plane and its subsets

The complex plane C is the set of ordered pairs (x, y) of complex numbers. We will
follow the usual convention of writing (x, y) = x+ iy where i =

√
−1. Note that we do not

use the symbol j for
√
−1. Only electrical engineers, and those under their influence, use

this crazy notation. Complex numbers of the form x + i0 for x ∈ R are real and complex
numbers of the form z = 0 + iy for y ∈ R are called imaginary . For z = x+ iy we denote
Re(z) = x and Im(z) = y as the real part and imaginary part , respectively, of z. We
will assume the reader knows how to add and multiply complex numbers:

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x2y1 + x1y2).

The complex conjugate of z = x + iy is the complex number z̄ = x − iy. By |x + iy| =√
x2 + y2 we denote the modulus of z. If z is real, then |z| is the usual absolute value.

By ]x + iy = atan2(x, y) we denote the argument of z. Here atan2: R2 → (−π, π] is the
intelligent arctangent that knows which quadrant one is in. This is illustrated in Figure D.1.

Let us make a few definitions concerning the nature of subsets of C. First we denote by
D(z, r) the open disk of radius r centered at z:

D(z, r) = {z′ ∈ C | |z′ − z| < r}.
The closed disk of radius r centered at z is denoted:

D̄(z, r) = {z′ ∈ C | |z′ − z| ≤ r}.
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Im

∡z ∈ ]− π
2 ,−π] ∡z ∈ ]0,−π

2 ]

∡z ∈ ]0, π
2 ]∡z ∈ ]π2 , π]

Figure D.1 The values for the argument of a complex number

Now we have the following.

D.1 Definition Let S ⊂ C.

(i) S is open if for any z ∈ S there exists an ε > 0 so that D(z, ε) ⊂ S.

(ii) S is closed if its complement, C \ S, is open.

(iii) A boundary point for S is a point s ∈ C so that for every ε > 0 there exists
s1, s2 ∈ D(s, ε) so that s1 ∈ S and s2 6∈ S.

(iv) S ⊂ C is connected any two points in S can be connected by a polygonal path
consisting of a finite number of line segments.

(v) D is simply connected if every closed curve in D can be continuously contracted to
a point.1.

(vi) S is a domain if it is open and connected.

(vii) S is a region if it is a domain together with a possibly empty subset of its boundary.

(viii) A region is closed if it contains all of its boundary points.

(ix) A region S is bounded if there exists R > 0 so that S ⊂ D(0, R). •

D.2 Functions

Let D ⊂ C be a domain. A function f : D → C is continuous at z0 if for every δ > 0
there exists ε > 0 so that |z − z0| < ε implies that |f(z)− f(z0)| < δ. If f is continuous at
every point in D then f is simply continuous . The function f is differentiable at z0 if
the limit

lim
z→z0

f(z)− f(z0)

z − z0

1This definition refers ahead to Section D.3 for the notion of a closed curve. We do not often use the idea
of simple connectivity, but it intuitively means “no holes.”
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exists and is independent of the manner in which the limit is taken.2 The limit when
it so exists is the derivative and denoted f ′(z0). If we write z = x + iy and f(z) =
u(x, y)+iv(x, y) for R-valued functions u and v, then it may be shown that f is differentiable
at z0 = x0 + iy0 if and only if (1) u and v are differentiable at (x0, y0) and (2) the Cauchy-
Riemann equations are satisfied at z0:

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

A function f : D → C on a domain D is analytic at z0 ∈ D if there exists ε > 0 so that
f is differentiable at every point in D(z0, ε). If R ⊂ D is a region, we say f is analytic in R
if it is analytic at each point in R. Note that this may necessitate differentiability of f at
points outside R.

Analytic functions may fail to be defined at isolated points. Let us be systematic about
characterising such points.

D.2 Definition Let f : D → C be analytic.

(i) A point z0 ∈ D is an isolated singularity for f if there exists ε > 0 so that f is
defined and analytic on D(z0, r) \ {z0} but is not defined on D(z0, r).

(ii) An isolated singularity z0 for f is removable if there exists an r > 0 and an analytic
function g : D(z0, r)→ C so that g(z) = f(z) for z 6= z0.

(iii) An isolated singularity z0 for f is a pole if

(a) limz→z0|f(z)| =∞ and

(b) there exists k > 0 so that the function g defined by g(z) = (z−z0)kf(z) is analytic
at z0. The smallest k ∈ Z for which this is true is called the order of the pole.

(iv) An isolated singularity z0 for f is essential if it is neither a pole nor a removable
singularity.

(v) A function f : D → C is meromorphic if it analytic except possibly at a finite set of
poles. •

Another important topic in the theory of complex functions is that of series expansions.
Let D be a domain. If f : D → C is analytic at z0 ∈ D then one can show that all derivatives
of f exist at z0. The Taylor series for f at z0 is then the series

f(z) =
∞∑

j=0

aj(z − z0)j.

where the coefficients are defined by

aj =
f (j)(z0)

j!
.

Analyticity of f guarantees pointwise convergence of the Taylor series in a closed disk of
positive radius. If z0 is an isolated singularity for f then the Taylor series is not a promising
approach to representing the function. However, one can instead use the Laurent series
given by

f(z) =
∞∑

j=0

aj(z − z0)j +
∞∑

j=1

bj
(z − z0)j

.

2Thus for any sequence {zk} converging to z0, the sequence
{ f(zk)−f(z0)

zk−z0
}

should converge, and should
converge to the same complex number.
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The matter of expressing the coefficients in terms of f obviously cannot be done by evalua-
tions of f and its derivatives at z0. However, there are formulas for the coefficients involving
contour integrals. So. . .

D.3 Integration

Much of what interests in complex variable theory centres around integration. In this
section we give a rapid overview of the essential facts.

A curve in C is a continuous map c : [a, b] → C. A closed curve in C is a curve
c : [a, b] → C for which c(a) = c(b). Thus a closed curve forms a loop with no intersections
(see Figure D.2). A curve c defined on [a, b] is simple if the restriction of c to (a, b) is

Re

Im

[ ]
a b

c
c

c(a) = c(b)

Figure D.2 A closed curve in C

injective. Thus for each t1, t2 ∈ (a, b) the points c(t1) and c(t2) are distinct. Sometimes
a simple closed curve is called a Jordan curve . The Jordan Curve Theorem then states
that a simple closed curve separates C into two domains, the interior and the exterior. This
also allows us to make sense of the orientation of a simple closed curve. We shall speak of
simple closed curves as having “clockwise orientation” or “counterclockwise orientation.” Let
us agree not to give these precise notation as the meaning will be obvious in any application
we encounter.

Sometimes we will wish for a curve to have more smoothness, and so speak of a differ-
entiable curve as one where the functions u, v : [a, b] → R defined by c(t) = u(t) + iv(t)
are differentiable. For short, we shall call a differentiable curve an arc. In such cases we
denote

c′(t) =
du

dt
+ i

dv

dt
.

The length of a differentiable curve c : [a, b]→ C is given by

∫ b

a

|c′(t)| dt.

A contour is a curve that is a concatenation of a finite collection of disjoint differentiable
curves.
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If c : [a, b]→ C is a curve then we define

∫ b

a

c(t) dt =

∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt,

where u and v are defined by c(t) = u(t)+iv(t). Now we let D be a domain in C, c : [a, b]→ D
be an arc, and f : D → C be a continuous function. We define

∫

c

f(z) dz =

∫ b

a

f(c(t))c′(t) dt. (D.1)

One may verify that this integral does not in fact depend on the parameterisation of c, and
so really only depends on the “shape” of the image of c in U ⊂ C. We shall typically denote
C = image(c) and write

∫
C

=
∫
c
. If c is a contour, then one may similarly define the integral

by defining it over each of the finite arcs comprising c. If F : D → C is differentiable with
continuous derivative f , then one verifies that

∫

c

f(z) dz = F (c(b))− F (c(a)),

for a contour c : [a, b]→ C.
The following theorem lies at the heart of much of complex analysis, and will be useful

for us here.

D.3 Theorem (Cauchy’s Integral Theorem) Let D ⊂ C be a simply connected domain, suppose
that f : D → C is analytic on the closure of D, and let C be a simple closed contour contained
in D. Then ∫

C

f(z) dz = 0.

D.4 Applications of Cauchy’s Integral Theorem

Cauchy’s Integral Theorem forms the basis for much that is special in the theory of
complex variables. We shall give a few of the applications that are of interest to us in this
book.

Let us begin by providing formulas for the coefficients in the Laurent expansion in terms
of contour integrals. The following result does the job.

D.4 Proposition Let f : D → C be analytic and let z0 ∈ D be an isolated singularity for f . Let
C0 and C1 be circular contours centred at z0 with C1 smaller than C0 (see Figure D.3). If

f(z) =
∞∑

j=−∞

cj(z − z0)j

is the Laurent series for f at z0 then we have

cj =
1

2πi

∫

C0

f(z)

(z − z0)j+1
dz, j = 0, 1, . . .

cj =
1

2πi

∫

C1

f(z)

(z − z0)j+1
dz, j = −1,−2, . . .
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Im

z0

C1

C0

Figure D.3 Contours for definition of Laurent series coefficients

The residue of an analytic function f at an isolated singularity z0 is the coefficient c−1

in the Laurent series for f at z0. We denote the residue by

Res
z=pj

f(z) =
1

2πi

∫

C

f(z) dz,

where C is some sufficiently small circular contour centred at z0. The Residue Theorem is
also important for us.

D.5 Theorem (Residue Theorem) Let D ⊂ C be a domain with C a simple, clockwise-oriented,
closed contour in D. Let f : D → C be meromorphic in the interior of C and analytic on
C. Denote the poles of f in the interior of C by p1, . . . , pk. Then

∫

C

f(s) ds = 2πi
k∑

j=1

Res
s=pj

f(s).

D.6 Theorem

Another useful result is the Poisson Integral Formula .

D.7 Theorem (Poisson Integral Formula) Let D ⊂ C be a domain containing the positive
complex plane C+ and let f : D → C be analytic in C+. Additionally, we will suppose that
if for R > 0 we define m(R) > 0 by

m(R) = sup
θ∈[−π

2
,π
2

]

|f(Reiθ)|, (D.2 )

then f has the property that

lim
R→∞

m(R)

R
= 0.
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If z0 = x0 + iy0 ∈ C+ then we have

f(z0) =
1

π

∫ ∞

−∞
f(iy)

x0

x2
0 + (x− x0)2

dy.

The Poisson Integral Formula has the following useful corollary, stated by Freudenberg
and Looze [1985].

D.8 Corollary Suppose that D is a domain containing C and that f : D → C is analytic and
nonzero in C, with the possible exception of zeros on the imaginary axis. Also, assume that
ln f satisfies the equality (D.2). Then for each z0 = x0 + iy0 ∈ C+ we have

ln|f(z0)| = 1

π

∫ ∞

−∞
ln|f(iy)| x0

x2
0 + (x− x0)2

dy.

Finally, we state a sort of stray result, but one that is standard in complex variable
theory, the Maximum Modulus Principle .

D.9 Theorem If f : D → C is an analytic function on a domain D, then |f | has no maximum
on D unless f is constant.

From this result it follows that if f is analytic in a closed bounded region R, then the
maximum value taken by |f | must occur on the boundary of R. analytic

continuation

D.5 Algebraic functions and Riemann surfaces

In our discussion in Section 11.4 we shall need some not quite elementary concepts from
the theory of complex variables. An algebraic function is a function f of a complex
variable z satisfying an equation of the form

an(z)f(z)n + · · ·+ a1(z)f(z) + a0(z) = 0

where a0, a1, . . . , an ∈ C[z]. If an is not the zero polynomial then n is the degree of the
algebraic function f . Upon reflection, one sees that there is a problem with making this
definition precise since an algebraic function will not have as many as n possible solutions
for each z ∈ C. Thus an algebraic function is multi-valued. Since this is not an entirely clear
notion, one should attempt to come up with a framework in which an algebraic function can
be defined in a precise manner. The way in which this is done is by asking that an algebraic
function take its values not in C, but in what is called a “Riemann surface.” A classical
introductory reference is [Springer 1957].

Let us not formally define a what we mean by a Riemann surface, but proceed by example.
We consider first the degree 1 case where f satisfies the equation

a1(z)f(z) + a0(z) = 0 =⇒ f(z) = −a0(z)

a1(z)
∈ C(z).

Thus degree 1 algebraic functions are simply rational functions. Let us examine some of
the properties of such functions that may be helpful in our examination of higher-order
Riemann surfaces. Suppose that f has poles at p1, . . . , pk ∈ C with respective multiplicities
m1, . . . ,mk. Write f using a complex partial fraction expansion:

f(z) = f0(z) + f1(z) + · · ·+ fn(z)
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where f0 ∈ C[z] and where

fj(z) =
c1,j

z − pj
+ · · ·+ cmj ,j

(z − pj)mj
, j = 1, . . . , k.

Now let R be a rational function in z and w; thus

R(z, w) =
ak(z)wk + · · ·+ a1(z)w + a0(z)

b`(z)w` + · · ·+ b1(z)w + b0(z)

for a0, a1, . . . , ak, b0, b1, . . . , b` ∈ C[z]. In the study of Riemann surfaces it is useful to examine
integrals of the type ∫ z

z0

R(ζ, f(ζ)) dζ. (D.3)

It is not clear why we should be interested in this, but let us look at this in the degree 1
case. In this case, since f(z) is itself a rational function, R(ζ, f(ζ)) is a rational function
in ζ, so has a partial fraction expansion. Using this, one may then explicitly evaluate the
integral (D.3) as being the sum of rational functions and logarithmic functions.
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Exercises

ED.1 Graphical calculation of residues from Truxal (page 27)
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Appendix E

Fourier and Laplace transforms

For the most part, our use of transforms will be rather pedestrian. However, some
of the technical material, especially in Chapter 15, requires that we actually know a little
more than is often classically covered. Thus this appendix is a broader, although not terribly
detailed, treatment of Fourier and Laplace transforms than may be required of students only
engaging in the more straightforward parts of the book. Some uses of the Fourier or Laplace
transforms benefit from a cursory knowledge of distributions. We begin our discussion with
a presentation of distributions along these lines.

Contents

E.1 Delta-functions and distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
E.1.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
E.1.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

E.2 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
E.3 The Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

E.3.1 Laplace transforms of various flavours . . . . . . . . . . . . . . . . . . . . . . . . 622
E.3.2 Properties of the Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . 625
E.3.3 Some useful Laplace transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

E.1 Delta-functions and distributions

When rigour is not a concern, a delta-function at 0 is a function δ(t) with the property
that ∫ ∞

−∞
δ(t) dt = 1,

∫ ∞

−∞
f(t)δ(t) dt = f(0)

for any function f of unspecified character. It is actually not difficult to show that the
existence of such a function is an impossibility. However, there is a way to rectify this in
such a way that all the improper manoeuvres typically done with delta-functions are legal.
The idea on making this precise is due to Schwartz [1950-1951].

E.1.1 Test functions

If f : R→ R is a function, the support of f , denoted supp(f), is the closure of the set

{x ∈ R | f(x) 6= 0}.

A test function on R is a function φ : R→ R with the properties that

1. φ is infinitely differentiable and
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2. supp(φ) is bounded.

The second condition normally is stated as φ having compact support . We see that a test
function vanishes except on some interval of finite length. Note that this precludes φ from
being analytic. This makes it somewhat non-obvious how to define test functions. However,
here is a common example of one such.

E.1 Example Let ε > 0 and define

φε(t) =

{
exp(− ε2

ε2−t2 ), |t| < ε

0, |t| ≥ ε.

One may verify that this function is indeed infinitely differentiable, and it clearly has compact
support. The function is plotted in Figure E.1. •

Figure E.1 The test function φε when ε = 0.5

Note that the set of test functions forms a vector space since the sum of two test functions
is also a test function, and any scalar multiple of a test function is also a test function. This
is then an infinite-dimensional vector space, and we denote it by T . Let us define the notion
of convergence in this vector space T . A sequence of test functions {φj}j∈N converges to
zero if

1. there exists an interval I of finite length so that supp(φj) ⊂ I for all j ∈ N and

2. for each k ∈ N0 = {0} ∪N, the sequence of functions {φ(k)
j }j∈N converges uniformly to

the zero function.

We then say that a sequence of test functions {φj}j∈N converges to a test function φ if
the sequence {φj − φ}j∈N converges to zero. A linear map L : T → R is continuous if
the sequence {L(φj)}j∈N of numbers converges for every convergent sequence {φj}j∈N of test
functions. If I ⊂ R is a closed interval of finite length, then TI denotes the subspace of T
consisting of those test functions φ for which supp(φ) ⊂ I.
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E.1.2 Distributions

Finally, with the above terminology in place, a distribution is a linear map L : T → R
having the property that the restriction of L to TI is continuous for each closed interval I
of finite length.

Let us consider some examples of distributions.

E.2 Example

1. Let f : R → R have the property that f is integrable over any interval of finite length.
Then associated to f is the distribution Lf defined by

Lf (φ) =

∫ ∞

−∞
f(t)φ(t) dt.

Thus integrable functions may themselves be thought of as distributions. That is to say,
distributions generalise functions.

2. Let us indicate that we may think of the delta-function as a distribution. Consider the
linear map δ : T → R defined by L(φ) = φ(0). If I ⊂ R is a closed interval of finite
length which does not contain 0 then the restriction of δ to TI is obviously continuous: it
is identically zero. Now let I be a closed finite-length interval containing 0. Let {φj}j∈N
be a sequence of test functions converging to a test function φ and so that φj ∈ TI for
j ∈ N. By definition of convergence in T , the sequence {φj(0)}j∈N converges to φ(0).
This shows that the sequence {δ(φj)}j∈N converges, so showing that δ is continuous on
TI as desired. Thus δ is indeed a distribution as we have defined it.

Note that the notion of a distribution suggests that we write δ(φ) for the value of δ
applied to a test function φ. However, custom dictates that we write

δ(φ) =

∫ ∞

−∞
δ(t)φ(t) dt = φ(0).

3. If L is a distribution, then one may verify that the linear mapping L̇ : T → R defined
by

L̇(φ) = −L(φ̇)

is itself a distribution. This is the derivative of L, indicating that one can always
differentiate a distribution. If f is a continuously differentiable function, then one may
verify that L̇f = Lḟ . Also, the derivative of the delta-function is defined by δ̇(φ) = −φ̇(0).

4. Let us combine 2 and 3 to show that δ(t) is the derivative of the unit step function 1(t).
By definition of the derivative we have, for every test function φ,

1̇(φ) = −1(φ̇) = −
∫ ∞

−∞
1(t)φ̇(t) dt = −

∫ ∞

0

φ̇(t) = −φ(t)
∣∣∞
0

= φ(0),

as desired. •
It turns out that many of the manipulations valid for functions are valid for distributions.

As we saw in Example 3 above, one can differentiate an arbitrary distribution in straight-
forward manner. Since distributions are generalisations of locally integrable functions, this
by implication means that it is possible to define the derivative, in the distributional sense,
of functions that are not differentiable! One says that a distribution has order k if k is the
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smallest integer for which L = f (k+1) for an integrable function f . Thus the order measures
how far away a distribution is from a being function. One may show that every distribution
has a finite order. For example, since δ is the derivative of the locally integrable function
t 7→ 1(t), δ has order 0. Likewise, δ̇ is order 1. If L is a distribution of order k and if f is at
least k-times continuously differentiable, then it is possible to define the product of L with
f to be the distribution fL given by (fL)(φ) = L(fφ).

E.3 Example To multiply δ by a function and get a distribution, f has to be at least continuous
since δ has order 0, In this case, if f is continuous, then (fδ)(φ) = f(0)φ(0) for φ ∈ T . •
If one can define the product fL for a function f and a distribution L, then the result can
be differentiated in the distributional sense. One can easily show that the derivative of this
product satisfies the usual product rule: d

dt
(fL) = ḟL + fL̇, provided that the product ḟL

makes sense as a distribution.

E.4 Example Let f : R → R be k-times continuously differentiable and define g(t) = 1(t)f(t).
This function may be differentiated n times in a distributional sense, and the derivatives are
computed using the product rule:

g(t) = 1(t)f(t)

g(1)(t) = f(0)δ(t) + 1(t)f (1)(t)

g(2)(t) = f(0)δ(1)(t) + ḟ(0)δ(t) + 1(t)f (2)(t)

...

g(n)(t) =
n∑

j=1

f (n−j)(0)δ(j−1)(t) + 1(t)f (n)(t).

This formula is very useful in Section 3.6.2 when discussing the solution of differential equa-
tions using the left causal Laplace transform. •

As we have seen, a distribution is generally not representable as a function. However,
what is true is that any distribution is a limit of a sequence of functions. This necessitates
saying what we mean by convergence of distributions. A sequence {Lj}j∈N of distributions
converges to a distribution L if for every φ ∈ T , the sequence of numbers {Lj(φ)}j∈N con-
verges to L(φ). What is then true is that every distribution is the limit of a sequence {fj}j∈N
of infinitely differentiable functions, with these functions being regarded as distributions.

E.5 Example One can show that δ = limj→∞ fj where

fj(t) =
j√
2π

exp
(
−n

2t2

2

)
.

In Figure E.2 we plot fj for a couple of values of j, and we can see the anticipated behaviour
of concentration of the function near 0. •

E.2 The Fourier transform

Before we begin talking about transforms, we need a few basic notions of integra-
tion. Some of this is discussed in more generality and detail in Section 5.3. A function
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Figure E.2 A sequence of functions converging to δ

f : (−∞,∞)→ C1 is L2-integrable if

(∫ ∞

−∞
|f(t)|2 dt

)1/2

<∞.

In this case, we denote by ‖f‖2 the quantity on the left-hand side of the inequality. In like
manner, a function f : (−∞,∞)→ C is L1-integrable if

∫ ∞

−∞
|f(t)| dt <∞.

In this case, we denote by ‖f‖1 the quantity on the left-hand side of the inequality. Finally,
a function f : (−∞,∞)→ C is L∞-integrable if |f(t)| <∞ for almost every t ∈ R. In this
case, we denote by ‖f‖∞ the least upper bound of |f(t)|, t ∈ R.

With these notions of integrability at hand, we may define the Fourier transform of
an L1-integrable function f : (−∞,∞)→ C as the function f̌ : (−∞,∞)→ C given by given
by

f̌(ω) =

∫ ∞

−∞
f(t)e−iωt dt.

Note that |f̌(ω)| ≤ ‖f‖1, so that f̌ is L∞-integrable. If we wish to emphasise that we are
transforming an L1-integrable function, we shall state that we are using the L1-Fourier
transform . It is also possible to take the Fourier transform of an L2-integrable function
f : (−∞,∞)→ C, and this is done as follows. For T > 0 define fT : (−∞,∞)→ C by

fT (t) =

{
f(t), |t| ≤ T

0, otherwise.

One may verify that fT is L1-integrable for any finite T , so that its L1-Fourier trans-
form, f̌T , exists. What’s more, it can be shown that there exists an L2-integrable function

1We deal in this appendix always with C-valued functions of t. In the majority of instances in the text,
the functions are R-valued. However, for the general presentation here, it is convenient to consider C-valued
functions.



622 E Fourier and Laplace transforms 2016/09/21

f̌ : (−∞,∞)→ C so that

lim
T→∞

∫ ∞

−∞
|f̌(ω)− f̌T (ω)| dt = 0.

Thus the functions f̌T converge in mean to the function f̌ which we call the L2-Fourier
transform of the L2-integrable function f . Note that the L2-Fourier transform has the
interesting property of mapping L2-integrable functions to L2-integrable functions. The
inverse of the L2-Fourier transform must therefore exist. Indeed, given an L2-integrable
function f̌ : R→ C, its inverse Fourier transform is given by the L2-integrable function
f : (−∞,∞)→ C defined by

f(t) =
1

2π

∫ ∞

−∞
f̌(ω)eiωt dω.

It will on occasion be convenient to use the notation F for the map that sends an L1-
integrable function to its Fourier transform. Thus F (f) = f̌ . We likewise denote the
inverse for the L2-Fourier transform by F−1.

For L2-integrable functions f and g, one can readily verify Parseval’s Theorem which
states that ∫ ∞

−∞
f̄(t)g(t) dt =

1

2π

∫ ∞

−∞

¯̌f(ω)ǧ(ω) dω.

In particular, it follows that ‖f‖2 = 1√
2π
‖f̌‖2. Also important to us is the notion of con-

volution . Given L1-integrable functions f and g, we define a new L1-integrable function,
denoted f ∗ g and called the convolution of f with g, defined by

(f ∗ g)(t) =

∫ ∞

−∞
f(t− τ)g(τ) dτ.

Convolution in the time-domain is equivalent to multiplication in the frequency domain:

(f ∗ g)̌ = f̌ ǧ.

We shall encounter convolution in various contexts using both Fourier and Laplace trans-
forms. It is important to realise just what kind of convolution with which one is dealing!

E.3 The Laplace transform

The Laplace transform is related to the Fourier transform in a sort of simple way. How-
ever, since the relationship can get a little complicated, we try to be clear about the notion
of the Laplace transform. Also, we will consider Laplace transforms of various sorts of func-
tions, so we must take care to distinguish these with proper notation. We remark that this
is not normally done in control texts, with the result that there are sometimes contradic-
tions present that apparently go unnoticed. A good introductory discussion of the Laplace
transform, minus any detailed discussion of distributions, can be found in [Schiff 1999]. The
distributional theory is carried out in detail by Zemanian [1965].

E.3.1 Laplace transforms of various flavours

Let us first establish some notation. Let f : (−∞,∞)→ C be an L1-integrable function.
If Re(s) = 0 then the integral ∫ ∞

−∞
f(t)e−st dt (E.1)
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exists; it is, of course, simply the Fourier transform. By continuity of the integral, if Re(s)
is sufficiently close to zero, the integral (E.1) exists. To define the Laplace transform, we
wish to ascertain a subset of C so that if s lies in this set, the integral (E.1) exists. In doing
so, we do not necessarily require that f itself be L1-integrable.

Let f have the property that the function f(t)e−ct is L1-integrable for some c ∈ R. That
is, for some c ∈ R we have ∫ ∞

−∞
|f(t)|e−ct dt <∞. (E.2)

For such functions, call the real number

σmin(f) = inf{c ∈ R | the inequality (E.2) is satisfied}

the minimum abscissa of absolute convergence . Similarly we define

σmax(f) = sup{c ∈ R | the inequality (E.2) is satisfied}.

We call σmax(f) the maximum abscissa of absolute convergence . We then define

Rc(f) = {s ∈ C | σmin(f) < Re(s) < σmax(f)}

which we call the region of absolute convergence . We define the two-sided Laplace
transform of f as L (f) : Rc(f)→ C defined by

L (f)(s) =

∫ ∞

−∞
f(t)e−st dt. (E.3)

For functions f : (−∞,∞) → C that have the property that f(t)e−ct is L2-integrable, the
inverse Laplace transform exists, and is defined by

L −1(L (f)) =
1

2πi

∫ σ+i∞

σ−i∞
L (f)(s)est,

where σ is any number satisfying σmin(f) < σ < σmax(f).
Most commonly we will be dealing with the Laplace transform of functions that are zero

for negative times. We will also want to be able to take Laplace transforms of distributions
involving delta-functions and derivatives of delta-functions at 0. In these cases, it matters
when performing an integral over [0,∞) whether we take the lower limit as 0+ or 0−. To
be precise, suppose that f0 : (−∞,∞)→ C possesses a two-sided Laplace transform and has
the property that f0(t) = 0 for t < 0. Now consider the distribution

f(t) = f0(t) +
k∑

j=0

cjδ
(j)(t). (E.4)

Thus f is a distribution that is a sum of a function which vanishes for negative times and a
finite sum of delta-functions and derivatives of delta-functions. One can consider taking the
Laplace transform of more general distributions, but we shall not need this level of generality,
and its use necessitates a significant diversion [see Zemanian 1965]. A distribution of the
form (E.4), and for which f0 vanishes for negative times and possesses a two-sided Laplace
transform, will be called simple . For simple distributions we define two kinds of Laplace
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transforms. The left causal Laplace transform for a simple distribution f as given
in (E.4) is the map L +

0−(f) : Rc(f0)→ C defined by

L +
0−(f)(s) = lim

ε↓0

∫ ∞

−ε
f(t)e−st ds =

∫ ∞

0−
f(t)e−st ds.

Note that the left causal transform includes the effect of the delta-functions. Indeed, if f
is k-times continuously differentiable we can simply evaluate the contributions of the delta-
functions and see that

L +
0−(f)(s) = L (f0) +

k∑

j=0

cjs
j.

In contrast to this, the right causal Laplace transform does not include the contri-
butions of the delta-functions. It is defined to be the map L +

0+(f) : Rc(f0) → C defined
by

L +
0+(f)(s) = lim

ε↓0

∫ ∞

ε

f(t)e−st ds =

∫ ∞

0+

f(t)e−st ds.

In this case, since the delta-functions do not contribute, we simply have L +
0+(f)(s) = L (f0).

Thus for genuine functions f (i.e., that do not involve distributions), we have

L (f) = L +
0−(f) = L +

0+(f),

provided that f(t) = 0 for t < 0. Note that for functions f vanishing for negative times we
always have σmax(f) =∞.

We will also have occasion to consider functions of time that are zero for positive times.
As above, let f be a simple distribution as given by (E.4), but now assume that f0(t) = 0
for t > 0. We shall of course assume that the two-sided Laplace transform of f0 still exists.
The left anticausal Laplace transform of f is the map L −

0−(f) : Rc(f0) → C defined
by

L −
0−(f)(s) =

∫ 0−

−∞
f(t)e−st ds.

Note that the left anticausal transform does not include the effect of the delta-functions.
Thus we may write L −

0−(f)(s) = L (f0). Proceeding in the natural manner the right
anticausal Laplace transform is defined to be the map L −

0+(f) : Rc(f0)→ C defined by

L −
0+(f)(s) =

∫ 0+

−∞
f(t)e−st ds.

This transform does include the effects of the delta-functions. If f is k-times continuously
differentiable we can simply evaluate the contributions of the delta-functions and see that

L −
0+(f)(s) = L (f0) +

k∑

j=0

cjs
j.

Thus for genuine functions f (i.e., that do not involve distributions), we have

L (f) = L −
0−(f) = L −

0+(f),

provided that f(t) = 0 for t > 0. For anticausal functions f we always have σmin(f) = −∞.
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E.6 Notation When there is no possibility of confusion, we shall denote the Laplace transform of
a function f by f̂ . If f is a simple distribution that is not a function, we shall always specify
which transform we use. However, if f is a function with no distributional component, the
various transforms are all equal, and there is no potential for confusion, unless one wants
to consider the Laplace transform of the derivative, cf. Theorem E.7. •

E.3.2 Properties of the Laplace transform

An important property of the Laplace transform is how it acts with respect to the deriva-
tive. This is a place where, as we see, the left and right transforms differ.

E.7 Theorem Let f : R→ R be causal and continuous on [0,∞) and suppose that ḟ is piecewise
continuous on [0,∞). If the Laplace transform of f exists then

L +
0+(ḟ)(s) = sL +

0+(f)(s)− f(0+)

and
L +

0−(ḟ)(s) = sL +
0+(f)(s) = sL +

0−(f)(s)

for s ∈ Rc(f).

Proof We use integration by parts to compute

L +
0+(ḟ)(s) = lim

ε→0+
R→∞

∫ R

ε

ḟ(t)e−st dt

= lim
ε→0+
R→∞

f(t)e−st
∣∣∣
R

ε
+ lim

ε→0+
R→∞

∫ R

ε

f(t)se−st dt.

Now, if s ∈ Rc(f) then it must be the case that limR→∞ f(R)e−sR = 0. Taking also the
limit as ε→ 0+ we see that

L +
0+(ḟ)(s) = sL +

0+(f)(s)− f(0+)

as stated.
For the second part of the theorem, define f̃ : R→ R by

f̃(x) =

{
f(x), x ≥ 0

f(0), x < 0.

Thus f is continuous on R and ḟ is piecewise continuous on R. We then have f(t) = 1(t)f̃(t)
where 1(t) is the unit step function, and so we obtain

ḟ(t) = 1̇(t)f̃(t) + 1(t) ˙̃f(t),



626 E Fourier and Laplace transforms 2016/09/21

where 1̇ is to be understood in the distribution sense, i.e., 1̇(t) = δ(t). We now compute

L +
0−(ḟ)(s) = lim

ε→0+
R→∞

∫ R

−ε
ḟ(t)e−st dt

= lim
ε→0+
R→∞

∫ R

−ε

(
δ(t)f̃(t) + 1(t) ˙̃f(t)

)
e−st dt

= f̃(0) + lim
ε→0+
R→∞

∫ R

−ε
1(t) ˙̃f(t)e−st dt

= f(0) + lim
ε→0+
R→∞

∫ R

−ε
f(t)e−st dt

= f(0) + sL +
0−(f)(s)− f(0) = sL +

0−(f)(s).

Here we use the fact that since f does not involve a delta-function at t = 0, we have
L +

0−(f)(s) = L +
0+(f)(s). �

We see that the right causal Laplace transform has the capacity to involve the value
of f at 0+. For this reason, it is useful to use this transform when solving initial value
problems, if that is your preferred way to do such things. However, for general control
theoretic discussions, the left causal Laplace transform is often the preferred tool since it
provides a simple relationship between the Laplace transform of a function and its derivative.
In any case, both shall appear at certain times in the text.

A repeated application of Theorem E.7 gives the following result.

E.8 Corollary Let f : R → R be causal and suppose that f, f (1), . . . , f (n−1) are continuous on
[0,∞) and that f (n) is piecewise continuous on [0,∞). Then

L +
0+(f)(s) = snL +

0+(f)(s)−
n−1∑

j=0

sjy(n−j−1)(0+)

and
L +

0−(f)(s) = snL +
0−(f)(s)

if s ∈ Rc(f).

The convolution also has the same useful properties for Laplace transforms as for Fourier
transforms. To be clear, suppose that the Laplace transforms of f, g : (−∞,∞) → C exist
and that Rc(f) ∩Rc(g) 6= ∅. If the convolution f ∗ g is defined, then its Laplace transform
is defined, and we further have

L (f ∗ g) = L (f)L (g);

thus the Laplace transform of the convolution is the product of the Laplace transforms, and
it is defined on the region Rc(f)∩Rc(g) ⊂ C. In the text, we shall consider the cases when
f and g are both zero for either positive or negative times. For example, if f is a causal
function then

(f ∗ g)(t) =

∫ ∞

0

f(τ)g(t− τ) dτ
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and if g is a causal function then

(f ∗ g)(t) =

∫ ∞

0

f(t− τ)g(τ) dτ.

Similar statements hold for anticausal functions.
The following result is often helpful.

E.9 Proposition Let f : R → R be a causal function, continuous on [0,∞), and suppose that ḟ
is piecewise continuous on [0,R). If the Laplace transform of f exists, then the following
statements hold:

(i) f(0+) = lims→∞ sL
+
0+(f)(s) (s real);

(ii) lim
t→∞

f(t) = lim
s→0

sL +
0+(f)(s) (s real), provided that the limit on the left exists.

Proof (i) By Theorem E.7 we have
∫ ∞

0+

ḟ(t)e−st dt = sL +
0+(f)(s)− f(0+).

If we take the limits as s → ∞ we may switch the limit and the integral since the integral
converges absolutely when s ≥ 0. This gives

0 = lim
s→∞

sL +
0+(f)(s)− f(0+)

from which our first assertion follows.
(ii) By Theorem E.7 we have

∫ ∞

0+

ḟ(t)e−st dt = sL +
0+(f)(s)− f(0+).

We take the limit as s → 0 of both sides, and move the limit inside the integral since the
integral is absolutely convergent in a neighbourhood of s = 0. This gives∫ ∞

0+

ḟ(t) dt = lim
s→0

sL +
0+f)(s)− f(0+)

=⇒ lim
t→∞

f(t)− f(0+) = lim
s→0

sL +
0+(f)(s)− f(0+)

from which the result follows, under the proviso that limt→∞ f(t) exists. �
The second assertion of the proposition is often called the Final Value Theorem , and it
does require the hypothesis that limt→∞ f(t) exist.

The following result is one of a similar nature, but involves the integral of the function of
time in terms of its Laplace transform. These results will be interesting for us in Section 8.3
when we discuss various aspects of controller performance.

E.10 Proposition Let f(t) have the property that its Laplace transform L +
0+(f)(s) is a strictly

proper rational function with the property that there exists α > 0 so that if s is a pole of
L +

0+(f)(s) then Re(s) ≤ −α. Then, for any s0 with Re(s0) > −α we have
∫ ∞

0

e−s0tf(t) dt = lim
s→s0

L +
0+(f)(s).

Proof Note that σmin(f) ≤ −α, and so if Re(s0) > −α, then s0 is in the domain of definition
of the transform. Therefore the integral∫ ∞

0

e−s0tf(t) dt

exists and is equal to L +
0+(f)(s0). �
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E.3.3 Some useful Laplace transforms

You will recall some standard Laplace transforms which we collect in Table E.1. Here

f(t) f̂(s) σmin(f)

f(t) + g(t) f̂(s) + ĝ(s) unknown

af(t) af̂(s) σmin(f)

ḟ(t) −f(0+) + sf̂(s) unknown

1(t)
1

s
0

Rb(t)
b

s2
0

f(t) f̂(s) σmin(f)

eat
1

s− a a

sinωt
ω

s2 + ω2
0

cosωt
s

s2 + ω2
0

Table E.1 Some common Laplace transforms (an “unknown”
means that is it not generally determinable in terms of σmin(f))

1(t) is the unit step function defined by

1(t) =

{
1, t ≥ 0

0, otherwise

and Rb(t) is the ramp function defined by

Rb(t) =

{
bt, t ≥ 0

0, otherwise.

We will also need some not so common Laplace transforms in order to make a conclusive
stability analysis using the impulse response. You can look up thatref

f(t) = tkeat sinωt

=⇒ f̂(s) =

( ∑

0≤2m≤k

(−1)m
(
k + 1

2m+ 1

)
ω2m+1(s− a)k−2m

)
k!

(
(s− a)2 + ω2

)k+1

and

f(t) = tkeat cosωt

=⇒ f̂(s) =

( ∑

0≤2m≤k+1

(−1)m
(
k + 1
2m

)
ω2m(s− a)k−2m+1

)
k!

(
(s− a)2 + ω2

)k+1

where, you recall, for integers k and ` with k ≥ ` we have

(
k
`

)
=

k!

`!(k − `)! .

These are pretty ugly expressions. Let’s observe some general features. The Laplace trans-
forms f̂(s) are polynomials where the degree of the numerator is strictly less than that of
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the denominator. As special cases of these formulas we have

f(t) = tkeat =⇒ f̂(s) =
k!

(s− a)k+1

f(t) = eat sinωt =⇒ f̂(s) =
ω

(s− a)2 + ω2

f(t) = eat cosωt =⇒ f̂(s) =
s− a

(s− a)2 + ω2

f(t) = t sinωt =⇒ f̂(s) =
2ωs

(s2 + ω2)2

f(t) = t cosωt =⇒ f̂(s) =
s2 − ω2

(s2 + ω2)2
.

We shan’t fiddle much with the definition of the inverse Laplace transform, but it will
be helpful to know a couple of them which cannot be obviously gleaned from Table E.1. We
have

f̂(s) =
1

(
(s− σ)2 + ω2

)k

=⇒ f(t) =
−eσt

4k−1ω2k

k∑

i=1

(
2k − i− 1
k − 1

)
(−2t)i−1 di

dti
cosωt

and

f̂(s) =
s

(
(s− σ)2 + ω2

)k

=⇒ f(t) =
eσt

4k−1ω2k

( k∑

i=1

(
2k − i− 1
k − 1

)
(−2t)i−1

(i− 1)!

di

dti
(
σ cosωt+ ω sinωt

)
−

2ω
k−1∑

i=1

(
2k − i− 2
k − 1

)
(−2t)i−1

(i− 1)!

di

dti
sinωt

)

The import of these ridiculous expressions is contained in the following, now self-evident,
statement.

E.11 Proposition The functions

1
(
(s− σ)2 + ω2

)k ,
s

(
(s− σ)2 + ω2

)k , σ, ω ∈ R, k ∈ N,

are in one-to-one correspondence with the Laplace transforms of functions which are linear
combinations of

t`eσt sinωt and t`eσt cosωt, σ, ω ∈ R, k ∈ N, ` = 0, . . . , k − 1. (E.5 )

Note that we have in this section established (without proof) a perfect correspondence
between functions which are rational in the Laplace transform variable s, and functions
of time of the form (E.5). That is to say, a strictly proper rational function in s is the
Laplace transform of a linear combination of functions like (E.5) and the Laplace transform
of a function like (E.5) is a rational function in s. This fact will be useful in our later
investigations of the behaviour of SISO linear systems.
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Exercises

EE.1 What are the abscissa of absolute convergence, σmin(f) and σmax, for the function
f(t) = 1(t)eat? How are the values of σmin(f) and σmax(f) reflected in the properties
of the Laplace transform for f?

EE.2 Show that σmin(f) = σ and σmax(f) = ∞ for functions f of the form f(t) =
1(t)t`eσt sinωt or f(t) = 1(t)t`eσt sinωt.

EE.3 Let f(t) = 1(t) sin t. Compute lims→0 sf̂(s) and determine whether limt→∞ f(t) =
lims→0 sf̂(s). Explain your conclusion in terms of Proposition E.9(ii).

EE.4 Show that the Laplace transform of eAt is (sIn −A)−1. What do you think are the
abscissa of absolute convergence?

EE.5 Let f and g be functions whose causal right Laplace transforms exist and whose
domains have a nonempty intersection. Prove that the inverse Laplace transform of
f̂(s)ĝ(s) is either of the expressions

∫ t

0

f(t− τ)g(τ) dτ,

∫ t

0

g(t− τ)f(τ) dτ.

EE.6 Fix T > 0 and a function g whose causal right Laplace transform exists and is ĝ.
Show that the causal right Laplace transform of the function f(t) = g(t − T ) is
f̂(s) = e−Tsĝ(s). The function f is called the time delay of g by T .

EE.7 Using the adjugate (see Section A.3.1), determine the inverse of the matrix sI3 −A
where s ∈ R and

A =




1 0 1
0 2 1
−1 1 −1


 .

You may suppose that s is such that det(sI3 −A) 6= 0.
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