
Solutions 03
P3.1. Ⅾefine a binary relation on the set ℝ of real numbers: for any real numbers 𝑥 and 𝑦,

we write 𝑥 ∼ 𝑦 if there exists an integer 𝑘 such that 𝑥 − 𝑦 = 2𝑘𝜋.
i. Ⅴerify that this is an equivalence relation.
ii. Ⅾescribe a system of distinct representatives (also known as a transversal) for this
equivalence relation.

iii. Ɪs addition well‑defined on the quotient set ℝ/∼?
iv. Ɪs multiplication well‑defined on the quotient set ℝ/∼?

Solution.
i. Ⅼet 𝑥, 𝑦, and 𝑧 be real numbers.
(reflexivity) For any real number 𝑥, we have 𝑥 − 𝑥 = 0 = 2 (0)𝜋, so 𝑥 ∼ 𝑥.
(symmetry) Suppose that 𝑥 ∼ 𝑦. By definition, there exist an integer 𝑘 such that
𝑥 − 𝑦 = 2𝑘𝜋. Ɪt follows that 𝑦 − 𝑥 = 2 (−𝑘)𝜋, so 𝑦 ∼ 𝑥.
(transitivity) Suppose that 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧. There are integers 𝑘 and ℓ such that
𝑥 − 𝑦 = 2𝑘𝜋 and 𝑦 − 𝑧 = 2ℓ𝜋. Ɪt follows that

𝑥 − 𝑧 = (𝑥 − 𝑦) + (𝑦 − 𝑧) = 2𝑘𝜋 + 2ℓ𝜋 = 2 (𝑘 + ℓ)𝜋 ,
so 𝑥 ∼ 𝑧.
Since the relation is reflexive, symmetric, and transitive, we conclude that it is an
equivalence relation.

ii. We claim that the real numbers 𝑥 satisfying the inequalities 0 ⩽ 𝑥 < 2𝜋 form a
system of distinct representatives for the equivalence relation.
We first show that every equivalence class is represented by a real number in

this half‑open interval [0, 2𝜋). By definition, the floor function 𝑥 ↦ ⌊𝑥⌋ sends a
real number 𝑥 to the greatest integer less than or equal to 𝑥;

⌊𝑥⌋∶=max {𝑚 ∈ ℤ | 𝑚 ⩽ 𝑥} .
Given a real number 𝑦, set 𝑘∶= ⌊𝑦/(2𝜋)⌋. Ɪt follows that 𝑘 ∈ ℤ and
𝑘 ⩽ 𝑦

2𝜋 < 𝑘 + 1 ⇔ 2𝑘𝜋 ⩽ 𝑦 < 2 (𝑘 + 1)𝜋 ⇔ 0 ⩽ 𝑦 − 2𝑘𝜋 < 2𝜋 .

Since 𝑦 ∼ (𝑦 − 2𝑘𝜋), the real number 𝑦 − 2𝑘𝜋 represents the equivalence class
of 𝑦 and belongs to the half‑open interval [0, 2𝜋).
Ɪt remains to demonstrate that no two equivalence classes for real numbers in

the half‑open interval [0, 2𝜋) coincide. Ⅽonsider real numbers 𝑥 and 𝑦 such that
0 ⩽ 𝑥 < 2𝜋, 0 ⩽ 𝑦 < 2𝜋, and [𝑥] = [𝑦]. The inequalities give 0 ⩽ |𝑥 − 𝑦| < 2𝜋.
The equality implies that there is an integer 𝑘 such that |𝑥 − 𝑦| = 2𝑘𝜋. Ɪt follows
that 0 ⩽ 2𝑘𝜋 = |𝑥 − 𝑦| < 2𝜋, so 𝑘 = 0. We conclude that |𝑥 − 𝑦| = 0 and 𝑥 = 𝑦.

iii. We claim that addition of real numbers is independent on the choosen represen‑
tatives in the equivalence classes. Ⅼet 𝑤, 𝑥, 𝑦, and 𝑧 be real numbers such that
𝑤∼𝑥 and 𝑦∼𝑧. By definition, there exists integers 𝑗 and 𝑘 such that𝑤−𝑥 = 2 𝑗 𝜋
and 𝑦 − 𝑧 = 2𝑘𝜋. Ɪt follows that
(𝑤 + 𝑦) − (𝑥 + 𝑧) = (𝑤 − 𝑥) + (𝑦 − 𝑧) = 2 𝑗 𝜋 + 2𝑘𝜋 = 2 (𝑗 + 𝑘)𝜋 .

Since𝑤+ 𝑦 ∼ 𝑥 + 𝑧, addition on the quotient ℝ/∼ is well‑defined.
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iv. We demonstrate that multiplication of real numbers depends on the choice of
representatives in the equivalence classes. For instance, we have 0 ∼ 2𝜋, but
(0) (𝜋8 ) = 0 and 0 < (2𝜋) (𝜋8 ) =

𝜋2

4 = (𝜋4 ) (𝜋) < 𝜋
From part ii, we see that 0 and 𝜋2/4 are not equivalent. Thus, multiplication on
the quotient ℝ/∼ is not well‑defined. □

Remark. The quotient ℝ/∼ may be identified with the unit circle {𝑧 ∈ ℂ || |𝑧| = 1}.
Since the trigonometric functions are independent of the choice of representative, the
equivalence class 𝜃 ∈ ℝ/∼ corresponds to cos(𝜃) + √−1 sin(𝜃) ∈ ℂ.

P3.2. The absolute value function |•|∶ℤ → ℕ is defined, for any integer𝑚, by

|𝑚|∶= {𝑚 if𝑚 ⩾ 0,
−𝑚 if𝑚 < 0.

i. Ⅼet 𝑛 be a nonnegative integer. For any integer𝑚, prove that −𝑛 ⩽ 𝑚 ⩽ 𝑛 if and
only if |𝑚| ⩽ 𝑛.

ii. For any integers𝑚 and 𝑛, show that |||𝑛| − |𝑚||| ⩽ |𝑛 +𝑚| ⩽ |𝑛| + |𝑚|.
Solution.
i. We consider two cases.
(nonnegative) Suppose that 𝑚 ⩾ 0. Ɪt follows that |𝑚| = 𝑚. For any nonnegative
integer 𝑛, we have 𝑚 ⩽ 𝑛 if and only if |𝑚| ⩽ 𝑛. Since −𝑛 ⩽ 0 and 𝑚 ⩾ 0, we
also have −𝑛 ⩽ 𝑚.
(negative) Suppose that 𝑚 < 0. Ɪt follows that |𝑚| = −𝑚. For any nonnegative
integer 𝑛, we have −𝑛 ⩽ 𝑚 if and only if −𝑚 ⩽ 𝑛 which is equivalent to |𝑚| ⩽ 𝑛.
Since 𝑛 ⩾ 0 and𝑚 < 0, we also have𝑚 ⩽ 𝑛.

ii. We start by proving the second inequality. By part i, we have − |𝑛| ⩽ 𝑛 ⩽ |𝑛| and
− |𝑚| ⩽ 𝑚 ⩽ |𝑚|. Addition gives −(|𝑛| + |𝑚|) ⩽ 𝑛 + 𝑚 ⩽ |𝑛| + |𝑚|. Using part i
again, we obtain |𝑛 +𝑚| ⩽ |𝑛| + |𝑚|.

The first inequality is a special case of the second. Specifically, we have
|𝑚| = ||(𝑛 +𝑚) + (−𝑛)|| ⩽ |𝑚 + 𝑛| + |𝑛|, which yields − |𝑛 +𝑚| ⩽ |𝑛| − |𝑚|. We
also have |𝑛| = ||(𝑛 +𝑚) + (−𝑚)|| ⩽ |𝑛 +𝑚| + |𝑚|, which gives |𝑛| − |𝑚| ⩽ |𝑛 +𝑚|.
Hence, part i establishes that |||𝑛| − |𝑚||| ⩽ |𝑛 +𝑚|. □

P3.3. Ⅼet 𝑘,𝑚, and 𝑛 be integers. Ⅴerify that gcd(𝑘,gcd(𝑚,𝑛)) = gcd(gcd(𝑘,𝑚), 𝑛).
Solution. Ⅼet 𝑑 ∶= gcd(𝑘,gcd(𝑚,𝑛)) and 𝑒 ∶= gcd(gcd(𝑘,𝑚), 𝑛). We first claim that
𝑑 divides 𝑒. The definition of 𝑑 implies that 𝑑 divides 𝑘 and 𝑑 divides gcd(𝑚,𝑛), so
𝑑 divides 𝑘, 𝑚, and 𝑛. Ɪt follows that 𝑑 divides gcd(𝑘,𝑚) and 𝑑 divides 𝑛, whence 𝑑
divides 𝑒∶= gcd(gcd(𝑘,𝑚), 𝑛).
We next claim that 𝑒 divides 𝑑. The definition of 𝑒 implies that 𝑒 divides gcd(𝑘,𝑚)
and 𝑒 divides 𝑛, so 𝑒 divides 𝑘, 𝑚, and 𝑛. Ɪt follows that 𝑒 divides 𝑘 and 𝑒 divides
gcd(𝑚,𝑛), whence 𝑒 divides 𝑑∶= gcd(𝑘,gcd(𝑚,𝑛)).
Finally, because 𝑑 divides 𝑒 and 𝑒 divides 𝑑, there exists integers 𝑖 and 𝑗 such that

𝑒 = 𝑖𝑑 and 𝑑 = 𝑗𝑒. We deduce that 𝑒 = (𝑖𝑗)𝑒 and 𝑒(1 − 𝑖𝑗) = 0, so either 𝑒 = 0 or
𝑖 = 𝑗 = ±1. Since 𝑑 and 𝑒 are nonnegative integers, we conclude that 𝑑 = 𝑒. □
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