Solutions 03

P3.1. Define a binary relation on the set R of real numbers: for any real numbers x and y,
we write x ~ y if there exists an integer k such that x — y =2k .
i. Verify that this is an equivalence relation.
ii. Describe a system of distinct representatives (also known as a transversal) for this
equivalence relation.
iii. Is addition well-defined on the quotient set R /~?

iv. Is multiplication well-defined on the quotient set R /~?

Solution.
i. Let x, y, and z be real numbers.
(reflexivity) For any real number x, we have x —x = 0 = 2(0) 7, so x ~ X.
(symmetry) Suppose that x ~ y. By definition, there exist an integer k such that
x—y=2km. Itfollows thaty — x =2(—-k)m,soy ~ x.
(transitivity) Suppose that x ~ y and y ~ z. There are integers k and ¢ such that
x—y=2kmand y — z = 2¢x. It follows that
xX—z=x-y)+(y—-2z)=2kn+2¢n=2(k+8mn,
SO X ~ Z.
Since the relation is reflexive, symmetric, and transitive, we conclude that itis an
equivalence relation.
ii. We claim that the real numbers x satisfying the inequalities 0 < x < 27 form a
system of distinct representatives for the equivalence relation.
We first show that every equivalence class is represented by a real number in
this half-open interval [0, 2 77). By definition, the floor function x — |x| sends a
real number x to the greatest integer less than or equal to x;

|x]:=max{me Z|m < x}.
Given a real number Y, set k := | y/(27)|. It follows that k € Z and

k<%<k+1 o 2kr<y<2(k+D)m o 0<y-2km<2r.

Since y ~ (y — 2k ), the real number y — 2 k 7t represents the equivalence class
of y and belongs to the half-open interval [0, 2 77).

It remains to demonstrate that no two equivalence classes for real numbers in
the half-open interval [0, 2 77) coincide. Consider real numbers x and y such that
0<x<27m0<y<2mand [x] = [y]. The inequalities give 0 < |x —y| < 2 7.
The equality implies that there is an integer k such that |[x — y| = 2 k 7. It follows
that0 <2kn =|x —y| < 2m,so k =0. We conclude that [x — y| =0and x = y.

iii. We claim that addition of real numbers is independent on the choosen represen-
tatives in the equivalence classes. Let w, X, y, and z be real numbers such that
w ~ x and y ~ z. By definition, there exists integers jand k suchthatw—x =2 jrx
and y — z = 2k 7. It follows that

w+y)—-(x+2)=(w-x)+(y-2)=2jrn+2kn=2(j+k)x.
Since w + y ~ x + z, addition on the quotient R /~ is well-defined.
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iv. We demonstrate that multiplication of real numbers depends on the choice of
representatives in the equivalence classes. For instance, we have 0 ~ 2 77, but

vis T\ mw T
From part ii, we see that 0 and 772/4 are not equivalent. Thus, multiplication on
the quotient R /~ is not well-defined. O

Remark. The quotient R /~ may be identified with the unit circle {z € C | |z| = 1}.
Since the trigonometric functions are independent of the choice of representative, the
equivalence class 6 € R/N corresponds to cos(0) + vV —1 sin(6) € C.

The absolute value function |+| : Z — N is defined, for any integer m, by
m| = {m %f m2=0,
-m ifm<O0.
i. Let n be a nonnegative integer. For any integer m, prove that —n < m < nif and
only if |m| < n.
ii. For any integers m and n, show that ||n| — |m|| < [n + m| < |n| + |m]|.

Solution.

i. We consider two cases.

(nonnegative) Suppose that m > 0. It follows that [m| = m. For any nonnegative
integer n, we have m < n if and only if |m| < n. Since —n < 0 and m > 0, we
also have —n < m.

(negative) Suppose that m < 0. It follows that [m| = —m. For any nonnegative
integer n, we have —n < m if and only if —m < n which is equivalent to |m| < n.
Since n > 0 and m < 0, we also have m < n.

ii. We start by proving the second inequality. By part i, we have — |n| < n < |n| and
—|m| £ m < |m|. Addition gives —(|n| + |m|) < n + m < |n| + |m|. Using part i
again, we obtain |n + m| < |n| + |m|.

The first inequality is a special case of the second. Specifically, we have

Im| = |(n+ m) + (—n)| < |m + n| + |n|, which yields — |n + m| < |n| — |m|. We

also have |n| = [(n + m) + (—m)| < |n + m| + |m|, which gives |n| — |m| < |n + m|.

Hence, part i establishes that ||n| — |m|| < |[n + m|. O

Let k, m, and n be integers. Verify that ged(k, ged(m, n)) = ged(ged(k, m), n).

Solution. Let d := gecd(k, ged(m, n)) and e := ged(ged(k, m), n). We first claim that
d divides e. The definition of d implies that d divides k and d divides gcd(m, n), so
d divides k, m, and n. It follows that d divides gcd(k, m) and d divides n, whence d
divides e := ged(ged(k, m), n).

We next claim that e divides d. The definition of e implies that e divides gcd(k, m)
and e divides n, so e divides k, m, and n. It follows that e divides k and e divides
ged(m, n), whence e divides d := ged(k, ged(m, n)).

Finally, because d divides e and e divides d, there exists integers i and j such that
e = id and d = je. We deduce that e = (ij)e and e(1 —ij) = 0, so either e = 0 or
i = j = %x1. Since d and e are nonnegative integers, we conclude thatd = e. O
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