Solutions 05

P5.1. Solve the system of linear equations AX = B where

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

and the entries are

i. in \mathbb{Q} , ii. in $\mathbb{Z}/\langle 2 \rangle$,

iii. in $\mathbb{Z}/\langle 3 \rangle$, or iv. in $\mathbb{Z}/\langle 7 \rangle$.

Solution.

i. Finding the reduced row echelon form of the augmented matrix

 $\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \\ 0 & -2 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & -3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & 2/3 \\ 0 & 0 & 1 & -4/3 \end{bmatrix},$

we see that the unique rational solution is $\mathbf{X} = \frac{1}{3}\begin{bmatrix} 1 & 2 & -4 \end{bmatrix}^T$. ii. Finding the reduced row echelon form of the augmented matrix

[1		1	0	1]		[1	1	0	1]		Γ1	0	1	1]		Γ1	0	0	1]	
1	(0	1	1	\sim	0	1	1	0	~	0	1	1	0	\sim	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	1	0	0	,
[1		1	1	1		0	0	1	0		0	0	1	0		0	0	1	0	

we see that the unique solution with entries in $\mathbb{Z}/\langle 2 \rangle$ is $\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. iii. Finding the reduced row echelon form of the augmented matrix

 $\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 2 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix},$

we see that there is no solution with entries in $\mathbb{Z}/\langle 3 \rangle$. iv. Finding the reduced row echelon form of the augmented matrix

[1	1	0	1		[1	1	0	1]		[1	0	1	6]		[1	0	0	5]	
1	0	1	6	~	0	6	1	5	~	0	1	6	2	~	0	1	0	3	,
$\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}$	6	6	1		0	5	6	0		0	0	4	4		0	0	1	1	

we see that the unique solution with entries in $\mathbb{Z}/\langle 7 \rangle$ is $\mathbf{X} = \begin{bmatrix} 5 & 3 & 1 \end{bmatrix}^T$.

Remark. Since $3\equiv 1 \mod 2$, it follows that $3^{-1}\begin{bmatrix} 1 & 2 & -4 \end{bmatrix}^{\mathsf{T}} \equiv \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \mod 2$. Similarly, we have $(3)(5) \equiv 15 \equiv 1 \mod 7$, so $3^{-1}\begin{bmatrix} 1 & 2 & -4 \end{bmatrix}^{\mathsf{T}} \equiv \begin{bmatrix} 5 & 10 & -20 \end{bmatrix}^{\mathsf{T}} \equiv \begin{bmatrix} 5 & 3 & 1 \end{bmatrix}^{\mathsf{T}} \mod 7$.

P5.2. Demonstrate that the equation $x^6 + y^{12} = 703$ has no integer solutions.

Solution. If the given equation had integer solutions, then it would also have solutions modulo 7. Reducing modulo 7 gives $x^6 + y^{12} \equiv 3 \mod 7$. Fermat's Little Theorem implies that

 $x^{6} \equiv \begin{cases} 0 \mod 7 & \text{if } x \equiv 0 \mod 7, \\ 1 \mod 7 & \text{if } x \equiv 0 \mod 7, \end{cases}$

and

$$y^{12} = (y^6)^2 \equiv \begin{cases} 0 \mod 7 & \text{if } y \equiv 0 \mod 7, \\ 1 \mod 7 & \text{if } y \equiv 0 \mod 7. \end{cases}$$

It follows that

$$x^{6} + y^{12} \equiv \begin{cases} 0 \mod 7 & \text{if } x \equiv 0 \mod 7 \text{ and } y \equiv 0 \mod 7, \\ 1 \mod 7 & \text{if } x \equiv 0 \mod 7 \text{ and } y \equiv 0 \mod 7, \\ 1 \mod 7 & \text{if } x \equiv 0 \mod 7 \text{ and } y \equiv 0 \mod 7, \\ 2 \mod 7 & \text{if } x \equiv 0 \mod 7 \text{ and } y \equiv 0 \mod 7. \end{cases}$$

We deduce that $x^6 + y^{12} \equiv 3 \mod 7$. Since the congruence has no solutions, the original equation has no integer solutions.

P5.3. Determine whether the set $\mathbb{R} \cup \{\infty\}$ with addition and multiplication defined, for all x and y in $\mathbb{R} \cup \{\infty\}$, by $x \boxplus y := \min(x, y)$ and $x \boxtimes y := x + y$, forms a commutative ring. If it is not, then list all of the defining properties that do hold and all those that fail to hold.

Solution. The triple ($\mathbb{R} \cup \{\infty\}, \bigoplus, \boxtimes$) is not a commutative ring. The associativity of addition, commutativity of addition, the existence of an additive identity, the associativity of multiplication, the existence of a multiplicative identity, distributivity, and commutativity of multiplication hold: for any *x*, *y*, and *z* in $\mathbb{R} \cup \{\infty\}$, we have

$$(x \boxplus y) \boxplus z = \min(\min(x, y), z) = \min(x, y, z) = \min(x, \min(x, y)) = x \boxplus (y \boxplus z)$$

$$x \boxplus y = \min(x, y) = \min(y, x) = y \boxplus x$$

$$x \boxplus \infty = \min(x, \infty) = x$$

$$(x \boxtimes y) \boxtimes z = (x + y) + z = x + (y + z) = x \boxtimes (y \boxtimes z)$$

$$x \boxtimes 0 = x + 0 = x$$

$$x \boxtimes (y \boxplus z) = x + \min(y, z) = \min(x + y, x + z) = (x \boxtimes y) \boxplus (x \boxtimes z)$$

$$x \boxtimes y = x + y = y + x = y \boxtimes x$$

The element ∞ is the additive identity and the element 0 is the multiplicative identity. However, the existence of an additive inverse does not hold: for any x and y in $\mathbb{R} \cup \{\infty\}$, we have

 $x \boxplus y = \infty \quad \Leftrightarrow \quad \min(x, y) = \infty \quad \Leftrightarrow \quad x = y = \infty$. In other words, only ∞ has an additive inverse.

Remark. This algebraic structure is called the min-plus algebra or the tropical semiring.

 \square