
Solutions 06
P6.1. i. Let 𝔽3∶= ℤ/⟨3⟩ be the field with 3 elements. Consider the commutative ring

𝔽3[i]∶= {𝑎 + 𝑏 i || 𝑎, 𝑏 ∈ 𝔽3 and i2 ≡−1 ≡ 2 mod 3} .
Verify that 𝔽3[i] is a field.

ii. Let 𝔽5∶= ℤ/⟨5⟩ be the field with 5 elements. Consider the commutative ring

𝔽5[i]∶= {𝑎 + 𝑏 i || 𝑎, 𝑏 ∈ 𝔽5 and i2 ≡−1 ≡ 4 mod 5} .
Confirm that 𝔽5[i] is not a domain.

Solution.
i. The 9 elements in 𝔽3[i] are 0, i, 2 i, 1, 1 + i, 1 + 2i, 2, 2 + i, 2 + 2 i. Since

(i)(2 i) = 2(i2) = 2(2) = 4 = 1 1(1) = 1
(1 + i)(2 + i) = (2 + 2) + (2 + 1) i = 1 2(2) = 4 = 1

(1 + 2 i)(2 + 2 i) = (2 + 4(2)) + (4 + 2) i = 1 ,
we see that every nonzero ring element has a multiplicative inverse. Hence, the
commutative ring 𝔽3[i] is a field.

ii. Among the 25 elements in 𝔽5[i], we observe that
(1+2 i)(1+3 i) = (1+6(4))+(2+3) i = 0 (1+2 i)(2+i) = (2+2(4))+(4+1) i = 0
(1+2 i)(3+4 i) = (3+8(4))+(6+4) i = 0 (1+2 i)(4+2 i) = (4+4(4))+(8+2) i = 0

(2+i)(3+i) = (6+(4))+(3+2) i = 0 (2+i)(2+4 i) = (4+4(4))+(2+8) i = 0
(2+i)(4+3 i) = (8+3(4))+(4+6) i = 0 (1+3 i)(2+4 i) = (2+12(4))+(6+4) i = 0
(1+3 i)(3+i) = (3+3(4))+(9+1) i = 0 (1+3 i)(4+3 i) = (4+9(4))+(12+3) i = 0

(4+2 i)(4+3 i) = (16+6(4))+(8+12) i = 0 (2+4 i)(3+4 i) = (6+16(4))+(12+8) i = 0
(2+4 i)(4+2 i) = (8+8(4))+(16+4) i = 0 (3+i)(3+4 i) = (9+4(4))+(3+12) i = 0
(3+i)(4+2 i) = (12+2(4))+(4+6) i = 0 (3+4 i)(4+3 i) = (12+12(4))+(16+9) i = 0 .

Since the commutative ring 𝔽5[i] contains zero divisors, it is not a domain. □

P6.2. i. Let 𝑅∶= ℤ/⟨6⟩. For the polynomials

𝑔 = 𝑥5 + 3𝑥3 + 5𝑥2 + 2𝑥 + 1 and 𝑓 = 2𝑥2 + 4𝑥+ 1
in 𝑅[𝑥], find a quotient and remainder for division of 24 𝑔 by 𝑓.

ii. Let 𝐾 be a field. Consider elements 𝑓 and 𝑔 in the polynomial ring 𝐾[𝑥] such that
deg(𝑔) > 0. Confirm that there exist unique polynomials ℎ0, ℎ1, … , ℎ𝑑 in the ring
𝐾[𝑥] such that 𝑓 = ℎ0 + ℎ1 𝑔 + ℎ2 𝑔2 + ℎ3 𝑔3 +⋯+ ℎ𝑑 𝑔𝑑 where deg(ℎ𝑗) < deg(𝑔)
or ℎ𝑗 = 0 for all 0 ⩽ 𝑗 ⩽ 𝑑.
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Solution.
i. Since deg(𝑔) − deg(𝑓) + 1 = 4, we divide 24 𝑔 = 4𝑥5 + 2𝑥2 + 2𝑥 + 4 by 𝑓. Long

division gives

2𝑥3+2𝑥2+ 𝑥+1
2𝑥2 + 4𝑥+ 1 4𝑥5+0𝑥4+0𝑥3+2𝑥2+2𝑥+4

4𝑥5+2𝑥4+2𝑥3
4𝑥2+4𝑥3+2𝑥2
4𝑥4+2𝑥3+2𝑥2

2𝑥3+0𝑥2+2𝑥
2𝑥2+4𝑥2+1𝑥

2𝑥2+1𝑥+4
2𝑥2+4𝑥+1

3𝑥+3

so (24 𝑔) // 𝑓 = 2𝑥3 + 2𝑥2 + 𝑥+ 1 and (24 𝑔) % 𝑓 = 3𝑥 + 3.

Remark. Since 2 is a zero divisor in 𝑅 = ℤ/ ⟨6⟩, neither the quotient nor the
remainder are unique:

24 𝑔 = (2𝑥3 + 2𝑥2 + 4𝑥+ 4)𝑓 + 0
= (2𝑥3 + 2𝑥2 + 4𝑥+ 1)𝑓 + 3
= (2𝑥3 + 2𝑥2 + 𝑥+ 4)𝑓 + 3𝑥 .

ii. Let 𝑚∶= deg(𝑓) and 𝑛∶= deg(𝑔). Since 𝐾 is a field, the leading coefficient of any
polynomial is invertible and thereby not a zero divisor. Division with remainder
implies that there exists unique polynomials 𝑞0 and ℎ0 in the ring 𝐾[𝑥] such that
𝑓 = 𝑞0 𝑔 + ℎ0 and deg(ℎ0) < deg(𝑔) or ℎ0 = 0. Iterating the division with remain‑
der, we see that, for all 𝑗 > 0, there are unique polynomials 𝑞𝑗 and ℎ𝑗 in 𝐾[𝑥] such
that 𝑞𝑗−1 = 𝑞𝑗 𝑔 + ℎ𝑗 and deg(ℎ𝑗) < deg(𝑔) or ℎ𝑗 = 0. Set 𝑑 ∶= 𝑚 // 𝑛. Because
deg(𝑞𝑗−1) = deg(𝑞𝑗) + deg(𝑔) and deg(𝑓) = deg(𝑞0) + deg(𝑔), we observe that
deg(𝑞𝑗) = 𝑚 − (𝑗 + 1)𝑛 for all 0 ⩽ 𝑗 < 𝑑. Hence, this iterative process stabilizes
after 𝑑 steps: we have 𝑞𝑑−1 = ℎ𝑑, 𝑞𝑑 = 0, and 0 = ℎ𝑑+1 = ℎ𝑑+2 = ℎ𝑑+3 = ⋯ . It
follows that

𝑓 = ℎ0 + 𝑞0 𝑔
= ℎ0 + (ℎ1 + 𝑞1 𝑔) 𝑔 = ℎ0 + ℎ1 𝑔 + 𝑞1 𝑔2
= ℎ0 + ℎ1 𝑔 + (ℎ2 + 𝑞2 𝑔) 𝑔2 = ℎ0 + ℎ1 𝑔 + ℎ2 𝑔2 + 𝑞2 𝑔3
⋮
= ℎ0 + ℎ1 𝑔 + ℎ2 𝑔2 +⋯+ 𝑞𝑑−1 𝑔𝑑 = ℎ0 + ℎ1 𝑔 + ℎ2 𝑔2 +⋯+ℎ𝑑 𝑔𝑑 . □

P6.3. Let𝑅 be a commutative ring. The derivative operator 𝐷∶𝑅[𝑥]→𝑅[𝑥] is defined, for any
polynomial 𝑓 = 𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎1 𝑥 + 𝑎0 in 𝑅[𝑥], by

𝐷(𝑓) = (𝑚𝑎𝑚) 𝑥𝑚−1 + ((𝑚− 1)𝑎𝑚−1) 𝑥𝑚−2 +⋯+ 𝑎1 .
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i. Prove that the operator 𝐷 is an 𝑅‑linear map: for any elements 𝑟 and 𝑠 in the
coefficient ring 𝑅 and any polynomials 𝑓 and 𝑔 in the ring 𝑅[𝑥], we have 𝐷(𝑟𝑓 +
𝑠𝑔) = 𝑟𝐷(𝑓) + 𝑠𝐷(𝑔).

ii. Prove that the operator 𝐷 satisfies the Leibniz product rule: for any polynomials
𝑓 and 𝑔 in the ring 𝑅[𝑥], we have 𝐷(𝑓𝑔) = 𝐷(𝑓) 𝑔 + 𝑓𝐷(𝑔).

iii. Let 𝑓 be a polynomial in 𝑅[𝑥] and let 𝑏 ∈ 𝑅 be root of 𝑓 having multiplicity 𝑘 with
𝑘 ⩾ 1. Prove that 𝑏 is also a root of the derivative 𝐷(𝑓) having multiplicity at least
𝑘 − 1. Moreover, when the product 𝑘1𝑅 is invertible in 𝑅, prove that 𝑏 is a root of
the derivative 𝐷(𝑓) having multiplicity 𝑘 − 1.

Solution.
i. For any elements 𝑟 and 𝑠 in 𝑅 and any polynomials

𝑓 = 𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎1 𝑥 + 𝑎0 and
𝑔 = 𝑏𝑚 𝑥𝑚 + 𝑏𝑛−1 𝑥𝑚−1 +⋯+ 𝑏1 𝑥 + 𝑏0

in 𝑅[𝑥], we have
𝐷(𝑟𝑓 + 𝑠𝑔)

= 𝐷((𝑟 𝑎𝑚 + 𝑠𝑏𝑚)𝑥𝑚 + (𝑟 𝑎𝑚−1 + 𝑠𝑏𝑚−1) 𝑥𝑚−1 +⋯+ (𝑟 𝑎1 + 𝑠𝑏1) 𝑥 + (𝑟 𝑎0 + 𝑠𝑏0))
= 𝑚(𝑟 𝑎𝑚 + 𝑠𝑏𝑚)𝑥𝑚−1 + (𝑚− 1) (𝑟 𝑎𝑚−1 + 𝑠𝑏𝑚−1) 𝑥𝑚−2 +⋯+ (𝑟 𝑎1 + 𝑠𝑏1)
= 𝑟 ((𝑚𝑎𝑚) 𝑥𝑚−1 + ((𝑚− 1)𝑎𝑚−1) 𝑥𝑚−2 +⋯+ 𝑎1))

+ 𝑠 ((𝑚𝑏𝑚) 𝑥𝑚−1 + ((𝑚− 1)𝑏𝑛−1) 𝑥𝑚−1 +⋯+ 𝑏1)
= 𝑠𝐷(𝑓) + 𝑟𝐷(𝑔) ,

which proves that 𝐷 is an 𝑅‑linear map.
ii. Since part i shows that 𝐷 is 𝑅‑linear, it suffices to prove that the Leibniz prod‑

uct rule holds for any monomial 𝑥𝑚+𝑛 where 𝑚 and 𝑛 are positive integers. By
definition, we have 𝐷(𝑥𝑚+𝑛) = (𝑚+ 𝑛)𝑥𝑚+𝑛−1. Since we also have

𝐷(𝑥𝑚) 𝑥𝑛 + 𝑥𝑚𝐷(𝑥𝑛) = 𝑚𝑥𝑚−1 𝑥𝑛 + 𝑥𝑚(𝑛𝑥𝑛−1)
= 𝑚𝑥𝑚+𝑛−1 + 𝑛𝑥𝑚+𝑛−1 = (𝑚+ 𝑛)𝑥𝑚+𝑛−1 ,

we see that the Leibniz product rule holds.
iii. Since 𝑏 is a root of𝑓 having multiplicity 𝑘, there exists a polynomial 𝑔 in𝑅[𝑥] such

that 𝑓 = (𝑥 − 𝑏)𝑘 𝑔 and ev𝑏(𝑔) = 𝑔(𝑏) ≠ 0. The Leibniz rule implies that
𝐷(𝑓) = 𝑘(𝑥 − 𝑏)𝑘−1 𝑔 + (𝑥 − 𝑏)𝑘𝐷(𝑔) = (𝑥 − 𝑏)𝑘−1 (𝑘 𝑔 + (𝑥 − 𝑏)𝐷(𝑔))
It follows that 𝑏 is a root of the derivative 𝐷(𝑓) having multiplicity at least 𝑘 − 1.
When the product 𝑘1𝑅 is invertible in 𝑅, we also have

ev𝑏(𝑘 𝑔 + (𝑥 − 𝑏)𝐷(𝑔)) = 𝑘 ev𝑏(𝑔) + 0 ev𝑏(𝐷(𝑔)) = 𝑘 ev𝑏(𝑔) ≠ 0 .
In this case, 𝑏 is a root of the derivative 𝐷(𝑓) having multiplicity 𝑘 − 1. □
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