Solutions 09

P9.1. i. Express the ring $\mathbb{Z}/\langle 720 \rangle$ as a product of three quotient rings.

ii. Exhibit elements e_1 , e_2 , and e_3 in $\mathbb{Z}/\langle 720 \rangle$ such that $e_1^2 = e_1$, $e_2^2 = e_2$, $e_3^2 = e_3$, $e_2 e_3 = 0$, $e_1 e_3 = 0$, $e_1 e_2 = 0$, and $[1]_{720} = e_1 + e_2 + e_3$.

Solution. Set $R := \mathbb{Z}/\langle 720 \rangle$.

i. Since

 $4(16) - 7(9) = 1 \equiv 1 \mod{720}$, $1(16) - 3(5) = 1 \equiv 1 \mod{720}$, and $-1(9) + 2(5) = 1 \equiv 1 \mod{720}$,

we see that $\langle [16]_{720} \rangle + \langle [9]_{720} \rangle = R$, $\langle [16]_{720} \rangle + \langle [5]_{720} \rangle = R$, and $\langle [9]_{720} \rangle + \langle [5]_{720} \rangle = R$. As $720 = (2^4)(3^2)(5)$, the least common multiple of $2^4 = 16$, $3^2 = 9$, and 5 equals 720, so $\langle [16]_{720} \rangle \langle [9]_{720} \rangle \langle [5]_{720} \rangle = \langle [16]_{720} \rangle \cap \langle [9]_{720} \rangle \cap \langle [5]_{720} \rangle = \langle [0]_{720} \rangle$. Hence, the Remainder Theorem shows that $\mathbb{Z}/\langle 720 \rangle$ is isomorphic to $\mathbb{Z}/\langle 16 \rangle \times \mathbb{Z}/\langle 9 \rangle \times \mathbb{Z}/\langle 5 \rangle$.

ii. Since

and

$$\begin{split} [225]_{720}^2 &= [50625]_{720} = [70(720) + 225]_{720} = [225]_{720} \\ [576]_{720}^2 &= [331776]_{720} = [460(720) + 576]_{720} = [576]_{720} \\ [640]_{720}^2 &= [409600]_{720} = [568(720) + 640]_{720} = [640]_{720} \\ [225]_{720} [576]_{720} &= [129600]_{720} = [180(720) + 0]_{720} = [0]_{720} \\ [225]_{720} [640]_{720} &= [144000]_{720} = [200(720) + 0]_{720} = [0]_{720} \\ [576]_{720} [640]_{720} &= [368640]_{720} = [512(720) + 0]_{720} = [0]_{720} \\ and [225]_{720} + [576]_{720} + [640]_{720} = [1441]_{720} = [2(720) + 1]_{720} = [1]_{720}, we see that the elements $e_1 := [225]_{720}, e_2 := [576]_{720}, and e_3 := [640]_{720} in \mathbb{Z}/\langle 720 \rangle$ have the$$

desired properties.

Remark. Observe that

 $\langle [16]_{720} \rangle = \langle [(31)(16)]_{720} \rangle = \langle [496]_{720} \rangle = \langle [1 - 225]_{720} \rangle,$ $\langle [9]_{720} \rangle = \langle [(9)(81)]_{720} \rangle = \langle [81]_{720} \rangle = \langle [(9)(9)]_{720} \rangle = \langle [1 - 640]_{720} \rangle ,$ and $\langle [5]_{720} \rangle = \langle [(29)(5)]_{720} \rangle = \langle [145]_{720} \rangle = \langle [1-576]_{720} \rangle.$

- P9.2. i. Let $\varphi: R \to S$ be a ring homomorphism between commutative rings. Assume that the subsets D in R and E in S are multiplicative and satisfy $\varphi(D) \subseteq E$. Prove that there exists a unique ring homomorphism $\hat{\varphi}: R[D^{-1}] \to S[E^{-1}]$ such that $\hat{\varphi}(r/1) = \varphi(r)/1$ for all r in R.
 - ii. Demonstrate that any automorphism of a domain admits a unique extension to its field of fractions.

Solution.

i. Let $\eta: R \to R[D^{-1}]$ and $\theta: S \to S[E^{-1}]$ be the canonical ring homomorphisms associated to rings of fractions. By definition, we have $\eta(r) = r/1$ for any r in R

and $\theta(s) = s/1$ for any $s \in S$. Hence, the claim is equivalent to proving that there exists a unique ring homomorphism $\hat{\varphi}: R[D^{-1}] \to S[E^{-1}]$ such that the diagram

commutes. Since $\varphi(D) \subseteq E$, it follows that, for any element *d* in *D*, its image $(\theta \varphi)(d) = \eta(\varphi(d)) = \varphi(d)/1$ is a unit in the ring $S[E^{-1}]$. Hence, the universal property of $R[D^{-1}]$, applied to the composite map $\theta \varphi \colon R \to S[E^{-1}]$, shows that there is a unique ring homomorphism $\hat{\varphi} \colon R[D^{-1}] \to S[E^{-1}]$ such that $\theta \varphi = \hat{\varphi} \eta$.

ii. Let *R* be a commutative domain. Setting $D := R \setminus \{0_R\}$, the ring $R[D^{-1}]$ is its field of fractions and $\eta: R \to R[D^{-1}]$ is the canonical ring homomorphism.

Suppose that $\varphi: R \to R$ is an automorphism of R. By definition, there exists a ring homomorphism $\psi: R \to R$ such that $\varphi \psi = \mathrm{id}_R$ and $\psi \varphi = \mathrm{id}_R$. Applying part i twice, there exists unique ring homomorphisms $\hat{\varphi}: R[D^{-1}] \to R[D^{-1}]$ and $\hat{\psi}: R[D^{-1}] \to R[D^{-1}]$ such that $\hat{\varphi} \eta = \eta \varphi$ and $\hat{\psi} \eta = \eta \psi$ or, equivalently, we have the following commutative diagrams:

$$\begin{array}{cccc} R & \stackrel{\varphi}{\longrightarrow} R & & R & \stackrel{\psi}{\longrightarrow} R \\ \eta & & & & & & \\ \eta & & & & & & \\ R[D^{-1}] & \stackrel{\widehat{\varphi}}{\longrightarrow} R[D^{-1}] & & & & & R[D^{-1}] & \stackrel{\widehat{\psi}}{\longrightarrow} D[R^{-1}] \end{array}$$

It follows that

 $\eta = \eta \text{ id}_R = \eta \varphi \psi = \widehat{\varphi} \eta \psi = \widehat{\varphi} \widehat{\psi} \eta \text{ and } \qquad \eta = \eta \text{ id}_R = \eta \psi \varphi = \widehat{\psi} \eta \varphi = \widehat{\psi} \widehat{\varphi} \eta.$

Using part **i** a third time, the identity map $\operatorname{id}_{R[D^{-1}]}: R[D^{-1}] \to R[D^{-1}]$ is the unique ring homomorphism such that $\eta \operatorname{id}_{R[D^{-1}]} = \operatorname{id}_R \eta = \eta$. Hence, we deduce that $\widehat{\varphi} \widehat{\psi} = \operatorname{id}_{R[D^{-1}]}$ and $\widehat{\psi} \widehat{\varphi} = \operatorname{id}_{R[D^{-1}]}$. In other words, the automorphism $\varphi: R \to R$ has the unique extension $\widehat{\varphi}: R[D^{-1}] \to R[D^{-1}]$.

P9.3. Describe all of the maximal ideals in the product ring $\mathbb{Z}/\langle 343 \rangle \times \mathbb{Z}/\langle 343 \rangle$.

Solution. Given the inclusion $\langle 343 \rangle = \langle 7^3 \rangle \subset \langle 7 \rangle$ of ideals in the ring \mathbb{Z} of integers, the Induced Map Lemma, applied to the identity map $\operatorname{id}_{\mathbb{Z}} \colon \mathbb{Z} \to \mathbb{Z}$, produces the ring homomorphism $\operatorname{id}_{\mathbb{Z}} \colon \mathbb{Z}/\langle 343 \rangle \to \mathbb{Z}/\langle 7 \rangle$. As $\mathbb{Z}/\langle 7 \rangle$ is a field, it has only two ideals: $\langle [0]_7 \rangle$ and $\langle [1]_7 \rangle$. Hence, the Correspondence Theorem establishes that there are only two ideals in $\mathbb{Z}/\langle 343 \rangle$ containing the ideal $\langle [7]_{343} \rangle$, namely $\langle [7]_{343} \rangle$ and $\langle [1]_{343} \rangle$. It follows that $\langle [7]_{343} \rangle$ is a maximal ideal in the ring $\mathbb{Z}/\langle 343 \rangle$. On the other hand, any integer *m* not divisible by 7 is coprime to 343, so the congruence class $[m]_{343}$ is a unit in the ring $\mathbb{Z}/\langle 343 \rangle$. We deduce that the only ideal with an element not contained in $\langle [7]_{343} \rangle$ is the ideal $\langle [1]_{343} \rangle = R$. Thus, the unique maximal ideal in the ring $\mathbb{Z}/\langle 343 \rangle$ is $\langle [7]_{343} \rangle$.

Since addition and multiplication are defined componentwise on a product of rings, we see that the ideals in the ring $\mathbb{Z}/\langle 343 \rangle \times \mathbb{Z}/\langle 343 \rangle$ are all of the form $I \times J$ where I and

J are ideals in the quotient ring $\mathbb{Z}/\langle 343 \rangle$. Hence, a maximal ideal has one factor that is a maximal ideal in $\mathbb{Z}/\langle 343 \rangle$ and another factor that is $\langle [1]_{343} \rangle = \mathbb{Z}/\langle 343 \rangle$. In particular, the two maximal ideals in the product ring $\mathbb{Z}/\langle 343 \rangle \times \mathbb{Z}/\langle 343 \rangle$ are $\langle [7]_{343} \rangle \times \langle [1]_{343} \rangle$ and $\langle [1]_{343} \rangle \times \langle [7]_{343} \rangle$.

Remark. Basically the same argument shows that, for any positive integer *m* and any positive prime integer *p*, the ring $\mathbb{Z}/\langle p^m \rangle$ has $\langle [p]_{p^m} \rangle$ as its unique maximal ideal.

Fix a positive integer *e*. For any positive integers m_1, m_2, \ldots, m_e , and any positive prime integers p_1, p_2, \ldots, p_e , the product ring

$$\prod_{j=1}^{e} \frac{\mathbb{Z}}{\left\langle p_{j}^{m_{j}} \right\rangle} = \frac{\mathbb{Z}}{\left\langle p_{1}^{m_{1}} \right\rangle} \times \frac{\mathbb{Z}}{\left\langle p_{2}^{m_{2}} \right\rangle} \times \cdots \times \frac{\mathbb{Z}}{\left\langle p_{3}^{m_{e}} \right\rangle}$$

has e distinct maximal ideals: namely, the ideal

$$\left(\prod_{i=1}^{j-1} \frac{\mathbb{Z}}{\langle p_i^{m_i} \rangle}\right) \times \left\langle [p_j]_{p_j^{m_j}} \right\rangle \times \left(\prod_{k=j}^{e} \frac{\mathbb{Z}}{\langle p_k^{m_k} \rangle}\right),$$

for all $1 \leq j \leq e$.

