Solutions 11

P11.1. Consider the subring $\mathbb{Z}[\sqrt{-17}] := \{a + b\sqrt{-17} \mid a, b \in \mathbb{Z}\}$ of the complex numbers.

- i. Show that the norm function N: $\mathbb{Z}[\sqrt{-17}] \to \mathbb{Z}$ defined, for any integers *a* and *b*, by N($a + b\sqrt{-17}$) = $a^2 + 17b^2$ is compatible with multiplication: the norm of a product is equal to the product of the norms of the factors.
- ii. Confirm that $3 + \sqrt{-17}$ is an irreducible element in $\mathbb{Z}[\sqrt{-17}]$.
- iii. Verify that the ideal $(3 + \sqrt{-17})$ is not prime in $\mathbb{Z}[\sqrt{-17}]$.

Solution.

i. For any integers a, b, c, and d, we have $N((a + b\sqrt{-17})(c + d\sqrt{-17})) = N((ac - 17bd) + (ad + bc)\sqrt{-17})$ $= (ac - 17bd)^{2} + 17(ad + bc)^{2}$ $= a^{2}c^{2} - 34abcd + 289b^{2}d^{2} + 17a^{2}d^{2} + 34abcd + 17b^{2}c^{2}$ $= a^{2}(c^{2} + 17d^{2}) + 17b^{2}(c^{2} + 17d^{2})$ $= (a^{2} + 17b^{2})(c^{2} + 17d^{2}) = N(a + b\sqrt{-17})N(c + d\sqrt{-17}),$

so the norm function N: $\mathbb{Z}[\sqrt{-17}] \to \mathbb{Z}$ is compatible with multiplication.

ii. Consider integers *a*, *b*, *c*, and *d* such that $(a + b\sqrt{-17})(c + d\sqrt{-17}) = 3 + \sqrt{-17}$. Applying the norm function to both sides and using part **i**, we obtain

 $N(a + b\sqrt{-17}) N(c + d\sqrt{-17}) = N(3 + \sqrt{-17}) = 9 + 17(1) = 26.$

Hence, we deduce that $N(a + b\sqrt{-17}) = a^2 + 17b^2$ is either 1, 2, 13, or 26. As either 2 nor 13 are perfect squares in \mathbb{Z} , the equations $a^2 + 17b^2 = 2$ and $a^2 + 17b^2 = 13$ have no integer solutions. By interchanging factors if necessary, we may assume that $N(a + b\sqrt{-17}) = a^2 + 17b^2 = 1$, which means $a = \pm 1$ and b = 0. Since one of the factors is a unit, we conclude that $3 + \sqrt{-17}$ is irreducible.

iii. Since
$$(a + b\sqrt{-17})(2 + \sqrt{-5}) = (3a - 17b) + (a + 3b)\sqrt{-17}$$
 and
 $(3 - \sqrt{-17})(3 + \sqrt{-17}) = (3^2 + 17(1^2)) = 26$,

we deduce that $\langle 3 + \sqrt{-17} \rangle \cap \mathbb{Z} = \langle 26 \rangle$. Hence, the product (3)(13) belongs to the ideal $\langle 3 + \sqrt{-17} \rangle$, but 3 and 13 do not. Thus, the ideal $\langle 3 + \sqrt{-17} \rangle$ is not prime. \Box

P11.2. Let *R* be a unique factorization domain.

- **i.** Consider an element *f* in *R* such that $f = q_1 q_2 \cdots q_k$ where each q_i is irreducible in *R*. For any *g* in *R* that divides *f*, prove that $g = u q_{i_1} q_{i_2} \cdots q_{i_\ell}$ for some unit *u* in *R* and some subset $\{i_1, i_2, \dots, i_\ell\} \subseteq \{1, 2, \dots, k\}$.
- **ii.** Consider elements g and h in R. Since R is a unique factorization domain, there exists units v and w in R, irreducible elements p_1, p_2, \ldots, p_e in R, and nonnegative integers $m_1, m_2, \ldots, m_e, n_1, n_2, \ldots, n_e$ such that

$$g = v p_1^{m_1} p_2^{m_2} \cdots p_e^{m_e}$$
 and $h = w p_1^{n_1} p_2^{n_2} \cdots p_e^{n_e}$.

Demonstrate that $gcd(g, h) = p_1^{\min(m_1, n_1)} p_2^{\min(m_2, n_2)} \cdots p_e^{\min(m_e, n_e)}$.

Solution.

i. As *g* divides *f*, there exists an element *h* in *R* such that f = gh. Since *R* is a unique factorization domain, there exists units *v* and *w* in *R*, irreducible elements p_1, p_2, \ldots, p_e in *R*, and nonnegative integers $m_1, m_2, \ldots, m_e, n_1, n_2, \ldots, n_e$ such that

$$g = v p_1^{m_1} p_2^{m_2} \cdots p_e^{m_e}$$
 and $h = w p_1^{n_1} p_2^{n_2} \cdots p_e^{n_e}$

In particular, we have $v w p_1^{m_1+n_1} p_2^{m_2+n_2} \cdots p_e^{m_e+n_e} = gh = f = q_1 q_2 \cdots q_k$. The uniqueness of factorizations shows that, for any index *j* satisfying $1 \le j \le e$, there exists a unit c_j in *R* and an index $i_j \in \{1, 2, \dots, k\}$ such that $p_j = c_j q_{i_j}$. Setting $\{i_1, i_2, \dots, i_\ell\} = \{i_j \mid m_j > 0 \text{ and } 1 \le j \le e\}$ and $u := v c_{i_1} c_{i_2} \cdots c_{i_\ell}$, it follows that $g = u q_{i_1} q_{i_2} \cdots q_{i_\ell}$. The product of units is a units so $u \in R^{\times}$.

ii. Since

$$g = (v p_1^{m_1 - \min(m_1, n_1)} p_2^{m_2 - \min(m_2, n_2)} \cdots p_e^{m_e - \min(m_e, n_e)}) (p_1^{\min(m_1, n_1)} p_2^{\min(m_2, n_2)} \cdots p_e^{\min(m_e, n_e)}) h = (w p_1^{n_1 - \min(m_1, n_1)} p_2^{n_2 - \min(m_2, n_2)} \cdots p_e^{n_e - \min(m_e, n_e)}) (p_1^{\min(m_1, n_1)} p_2^{\min(m_2, n_2)} \cdots p_e^{\min(m_e, n_e)})$$

the element $p_1^{\min(m_1,n_1)} p_2^{\min(m_2,n_2)} \cdots p_e^{\min(m_e,n_e)}$ divides both g and h. Suppose that d divides g and h. Applying part \mathbf{i} , there exists a unit u in R and nonnegative integers i_1, i_2, \ldots, i_e such that $i_j \leq \min(m_j, n_j)$ for all $1 \leq j \leq e$ and $d = u p_1^{i_1} p_2^{i_2} \cdots p_e^{i_e}$. It follows that

$$p_1^{\min(m_1,n_1)} p_2^{\min(m_2,n_2)} \cdots p_e^{\min(m_e,n_e)} = (u^{-1} p_1^{\min(m_1,n_1)-i_1} p_2^{\min(m_2,n_2)-i_2} \cdots p_e^{\min(m_e,n_e)-i_e}) (u p_1^{i_1} p_2^{i_2} \cdots p_e^{i_e}),$$

so *d* divides
$$p_1^{\min(m_1,n_1)} p_2^{\min(m_2,n_2)} \cdots p_e^{\min(m_e,n_e)}$$
. We conclude that
 $gcd(g,h) = p_1^{\min(m_1,n_1)} p_2^{\min(m_2,n_2)} \cdots p_e^{\min(m_e,n_e)}$.

P11.3. Let *K* be a field and consider the subring

$$R := \{a_0 + a_1 x + a_2 x^2 + \dots + a_d x^d \in K[x] \mid a_1 = 0\}.$$

Observe that $R^{\times} = (K[x])^{\times} = K^{\times}$.

- i. Verify that every nonzero nonunit in *R* is a product of irreducible elements.
- **ii.** Confirm that x^2 is irreducible in *R* but the principal ideal $\langle x^2 \rangle$ is not prime.

Solution.

i. Suppose that there exists at least one nonzero nonunit in R that is not a product of irreducible elements. By the well-ordering of the nonnegative integers, there would exist an element f in R that has minimal degree among all nonzero nonunits in R that are not a product of irreducible elements. The element f would not being irreducible implies that there would exist nonzero nonunits g and h in R such that f = gh. If both g and h were products of irreducible elements, then f would also be. Thus, we may assume that the element g is not a product of irreducible elements. The nonzero elements of degree 0 in R are units, so deg(h) > 1. Since

 $\deg(f) = \deg(g) + \deg(h)$, we obtain $\deg(g) < \deg(f)$ which contradicts the choice of f. Therefore, every nonzero nonunit in R is a product of irreducible elements.

ii. By definition, the subring *R* contains no polynomials of degree 1. Since degree of a product is the sum of the degrees of the factors, it follows that product of elements in *R* equal to x^2 has a factor of degree 0. As any nonzero element of degree 0 is a unit in *R*, we see that x^2 is an irreducible element.

The polynomial $(x^3)^2 = x^6 = (x^2)^3$ belongs to the principal ideal $\langle x^2 \rangle$ in *R*. However, the factor x^3 does not belong to $\langle x^2 \rangle$ because the subring *R* contains no polynomials of degree 1. Therefore, the principal ideal $\langle x^2 \rangle$ is not prime.

