Solutions 11

P11.1. Consider the subring Z[y/—17] := {a + by/—17 | a, b € Z} of the complex numbers.

i. Show that the norm function N: Z[\/ —17] — /Z defined, for any integers a and b,
by N(a + b+y/—17) = a® + 17 b? is compatible with multiplication: the norm of a
product is equal to the product of the norms of the factors.

ii. Confirm that 3 + 4/—17 is an irreducible element in Z[/—17].
iii. Verify that the ideal (3 + 1/—17) is not prime in Z[+/—17].

Solution.
i. For any integers a, b, ¢, and d, we have

N((a+b\/—_17)(c+d\/—_17)) = N((ac— 17bd)+(ad+bc)\/—_17>
=(ac—-17bd)*+17(ad + bc)?
=a’c*—34abcd +289b*d?> +17a*>d? + 34abcd + 17 b?* ¢?
=a*(c*+17d?) + 17b*(c* + 17d?)
= (a® +17b%)(c® + 17d?) = N(a + by/=17) N(c + d+/-17),

so the norm function N: Z[y/—17| = Z is compatible with multiplication.

ii. Consider integers a, b, ¢, and d such that (a + by/—17)(c + d/—17) = 3 + /-17.

Applying the norm function to both sides and using part i, we obtain
N(a+b+/-17) N(c +dV/-17) = N(3 +/-17) = 9+ 17(1) = 26.

Hence, we deduce that N(a+b+/—17) = a>+17 b? is either 1, 2, 13, or 26. As either
2 nor 13 are perfect squares in Z, the equations a®? + 17b?> = 2and a®> + 17b%* = 13
have no integer solutions. By interchanging factors if necessary, we may assume
that N(a + by/—17) = a® + 17b? = 1, which means a = +1 and b = 0. Since one
of the factors is a unit, we conclude that 3 + 1/ —17 is irreducible.

iii. Since (a + by/=17)(2++/=5) = (3a—17b) + (a + 3b)\/—17 and
(3= V-17)(3 +/-17) = (32 + 17(1?)) = 26,

we deduce that (3 +y/—17) N Z = (26). Hence, the product (3)(13) belongs to the
ideal (3 + 1/—17), but 3 and 13 do not. Thus, the ideal (3 + y/—17) is not prime. [J

P11.2. Let R be a unique factorization domain.
i. Consider an element f in R such that f = q, q, --- qx Where each q; is irreducible
in R. For any g in R that divides f, prove that g = uq;, q,, --- q;, for some unit u in

R and some subset {iy, i, ...,i,} € {1,2,...,k}.

ii. Consider elements g and 4 in R. Since R is a unique factorization domain, there
exists units v and w in R, irreducible elements p;, p,, ... , P, in R, and nonnegative
integers m,, my,, ..., M,, Ny, N>, ..., N, such that

m m m n n n
g=Up1 P2’ Pe” and h=wp;" p;* - pe* -
Demonstrate that ged(g, h) = pinmm) pmin(mz.nz) | pmin(me.ne)
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Solution.
i. As g divides f, there exists an element h in R such that f = gh. Since R is a
unique factorization domain, there exists units v and w in R, irreducible elements

P1>D2s --- > Pe In R, and nonnegative integers m,, m,, ..., M,, Ny, N, ..., N, such that
m m m n n n
§=Vpy Py’ Pe and h=wpy' py* - P -
In particular, we have v w p" "™ pi2*"™ ... pg*"™ = gh = f = q,q,- - qx. The
uniqueness of factorizations shows that, for any index j satisfying 1 < j < e, there
exists a unit ¢; in R and an index i; € {1,2,...,k} such that p; = 7 qi;- Setting
{i, iy} = {ij | mj>0and1< j<eland u = v ¢ --- ¢y, it follows that
g =uq; q;, *** qi,- The product of units is a units so u € R*.
ii. Since
_ my—min(my,ny) __my—min(m,,n,) Me—min(Mme,ne) min(my,n;) __min(m,,n,) min(me,ne)
g_(vpll 11p22 22"'pee ee)(pl 11p2 22"'pe ee)
h = (w p?l_mln(ml’nl) pgz—mln(mz,nz) . pZe—mln(me,ne))(p;mn(ml,nl) p;mn(mz,nz) . plenm(me,ne))
the element pMin(mem) pmin(ma.ny) | pymin(mene) qivides both g and h. Suppose thatd
divides g and h. Applying part i, there exists a unit u in R and nonnegative integers
i1,15...,0, such that i; < min(m;,n;) foralll < j < eandd = upy p?---pg. It
follows that
pinin(ml,nl) prznin(mz,nz) pznin(me,ne)
— (u—l prlnin(ml’nl)_il plznin(mz,"z)—iz . pzniﬂ(me,”e)—ie)(u pil pi22 . pie) ,

so d divides pmintmm) pmin(mz.nz) | pmin(mene) yye conclude that

ng(g, ]’l) — plinin(ml,m) plz‘nin(n’u,nz) . pmin(me,ne) . .

e

P11.3. Let K be a field and consider the subring
Ri={ap+a;x+a,x*+--- +agx% € K[x] | a; = 0}.
Observe that RX = (K[x])* = K*.
i. Verify that every nonzero nonunit in R is a product of irreducible elements.
ii. Confirm that x? is irreducible in R but the principal ideal (x?) is not prime.

Solution.

i. Suppose that there exists at least one nonzero nonunit in R that is not a product
of irreducible elements. By the well-ordering of the nonnegative integers, there
would exist an element f in R that has minimal degree among all nonzero nonunits
in R that are not a product of irreducible elements. The element f would not being
irreducible implies that there would exist nonzero nonunits g and A in R such that
f = gh. If both g and h were products of irreducible elements, then f would
also be. Thus, we may assume that the element g is not a product of irreducible
elements. The nonzero elements of degree 0 in R are units, so deg(h) > 1. Since
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deg(f) = deg(g)+deg(h), we obtain deg(g) < deg(f) which contradicts the choice
of f. Therefore, every nonzero nonunit in R is a product of irreducible elements.

ii. By definition, the subring R contains no polynomials of degree 1. Since degree of a

productis the sum of the degrees of the factors, it follows that product of elements

in R equal to x? has a factor of degree 0. As any nonzero element of degree 0 is a
unit in R, we see that x2 is an irreducible element.

The polynomial (x3)?> = x® = (x?)3 belongs to the principal ideal (x?) in R.

However, the factor x> does not belong to (x?) because the subring R contains no

polynomials of degree 1. Therefore, the principal ideal (x?) is not prime. OJ
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