
Solutions 11
P11.1. Ⅽonsider the subring ℤ[√−17]∶= {𝑎 + 𝑏√−17 || 𝑎, 𝑏 ∈ ℤ} of the complex numbers.

i. Show that the norm function N∶ℤ[√−17] → ℤ defined, for any integers 𝑎 and 𝑏,
by N(𝑎 + 𝑏√−17) = 𝑎2 + 17𝑏2 is compatible with multiplication: the norm of a
product is equal to the product of the norms of the factors.

ii. Ⅽonfirm that 3 + √−17 is an irreducible element in ℤ[√−17].
iii. Ⅴerify that the ideal ⟨3 + √−17⟩ is not prime in ℤ[√−17].
Solution.
i. For any integers 𝑎, 𝑏, 𝑐, and 𝑑, we have

N((𝑎 + 𝑏√−17)(𝑐 + 𝑑√−17)) = N((𝑎 𝑐 − 17𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)√−17)
= (𝑎 𝑐 − 17𝑏𝑑)2 + 17 (𝑎𝑑 + 𝑏𝑐)2
= 𝑎2 𝑐2 − 34𝑎𝑏 𝑐𝑑 + 289𝑏2 𝑑2 + 17𝑎2 𝑑2 + 34𝑎𝑏 𝑐𝑑 + 17𝑏2 𝑐2
= 𝑎2 (𝑐2 + 17𝑑2) + 17𝑏2 (𝑐2 + 17𝑑2)
= (𝑎2 + 17𝑏2)(𝑐2 + 17𝑑2) = N(𝑎 + 𝑏√−17) N(𝑐 + 𝑑√−17) ,

so the norm function N∶ℤ[√−17] → ℤ is compatible with multiplication.
ii. Ⅽonsider integers 𝑎, 𝑏, 𝑐, and 𝑑 such that (𝑎 + 𝑏√−17)(𝑐 + 𝑑√−17) = 3 + √−17.
Applying the norm function to both sides and using part i, we obtain
N(𝑎 + 𝑏√−17) N(𝑐 + 𝑑√−17) = N(3 + √−17) = 9 + 17(1) = 26 .

Hence, we deduce that N(𝑎+𝑏√−17) = 𝑎2+17𝑏2 is either 1, 2, 13, or 26. As either
2 nor 13 are perfect squares inℤ, the equations 𝑎2+17𝑏2 = 2 and 𝑎2+17𝑏2 = 13
have no integer solutions. By interchanging factors if necessary, we may assume
that N(𝑎 + 𝑏√−17) = 𝑎2 + 17𝑏2 = 1, which means 𝑎 = ±1 and 𝑏 = 0. Since one
of the factors is a unit, we conclude that 3 + √−17 is irreducible.

iii. Since (𝑎 + 𝑏√−17)(2 + √−5) = (3𝑎 − 17𝑏) + (𝑎 + 3𝑏)√−17 and
(3 − √−17)(3 + √−17) = (32 + 17(12)) = 26 ,

we deduce that ⟨3 + √−17⟩ ∩ℤ = ⟨26⟩. Hence, the product (3)(13) belongs to the
ideal ⟨3 + √−17⟩, but 3 and 13 do not. Thus, the ideal ⟨3 + √−17⟩ is not prime. □

P11.2. Ⅼet 𝑅 be a unique factorization domain.
i. Ⅽonsider an element 𝑓 in 𝑅 such that 𝑓 = 𝑞1 𝑞2⋯𝑞𝑘 where each 𝑞𝑖 is irreducible
in 𝑅. For any 𝑔 in 𝑅 that divides 𝑓, prove that 𝑔 = 𝑢𝑞𝑖1 𝑞𝑖2 ⋯𝑞𝑖ℓ for some unit 𝑢 in
𝑅 and some subset {𝑖1, 𝑖2,… , 𝑖ℓ} ⊆ {1, 2,… ,𝑘}.

ii. Ⅽonsider elements 𝑔 and ℎ in 𝑅. Since 𝑅 is a unique factorization domain, there
exists units 𝑣 and𝑤 in 𝑅, irreducible elements 𝑝1, 𝑝2,… , 𝑝𝑒 in 𝑅, and nonnegative
integers𝑚1,𝑚2,… ,𝑚𝑒, 𝑛1, 𝑛2,… ,𝑛𝑒 such that
𝑔 = 𝑣𝑝𝑚1

1 𝑝𝑚2
2 ⋯𝑝𝑚𝑒

𝑒 and ℎ = 𝑤𝑝𝑛11 𝑝𝑛22 ⋯𝑝𝑛𝑒𝑒 .

Ⅾemonstrate that gcd(𝑔, ℎ) = 𝑝min(𝑚1,𝑛1)
1 𝑝min(𝑚2,𝑛2)

2 ⋯𝑝min(𝑚𝑒,𝑛𝑒)
𝑒 .
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Solution.
i. As 𝑔 divides 𝑓, there exists an element ℎ in 𝑅 such that 𝑓 = 𝑔ℎ. Since 𝑅 is a
unique factorization domain, there exists units 𝑣 and𝑤 in 𝑅, irreducible elements
𝑝1, 𝑝2,… , 𝑝𝑒 in 𝑅, and nonnegative integers𝑚1,𝑚2,… ,𝑚𝑒, 𝑛1, 𝑛2,… ,𝑛𝑒 such that

𝑔 = 𝑣𝑝𝑚1
1 𝑝𝑚2

2 ⋯𝑝𝑚𝑒
𝑒 and ℎ = 𝑤𝑝𝑛11 𝑝𝑛22 ⋯𝑝𝑛𝑒𝑒 .

Ɪn particular, we have 𝑣𝑤𝑝𝑚1+𝑛1
1 𝑝𝑚2+𝑛2

2 ⋯𝑝𝑚𝑒+𝑛𝑒𝑒 = 𝑔ℎ = 𝑓 = 𝑞1 𝑞2⋯𝑞𝑘. The
uniqueness of factorizations shows that, for any index 𝑗 satisfying 1 ⩽ 𝑗 ⩽ 𝑒, there
exists a unit 𝑐𝑗 in 𝑅 and an index 𝑖𝑗 ∈ {1, 2,… ,𝑘} such that 𝑝𝑗 = 𝑐𝑗 𝑞𝑖𝑗 . Setting
{𝑖1, 𝑖2,… , 𝑖ℓ} = {𝑖𝑗 || 𝑚𝑗 > 0 and 1 ⩽ 𝑗 ⩽ 𝑒} and 𝑢 ∶= 𝑣𝑐𝑖1 𝑐𝑖2 ⋯𝑐𝑖ℓ , it follows that
𝑔 = 𝑢𝑞𝑖1 𝑞𝑖2 ⋯𝑞𝑖ℓ . The product of units is a units so 𝑢 ∈ 𝑅×.

ii. Since

𝑔 = (𝑣𝑝𝑚1−min(𝑚1,𝑛1)
1 𝑝𝑚2−min(𝑚2,𝑛2)

2 ⋯𝑝𝑚𝑒−min(𝑚𝑒,𝑛𝑒)
𝑒 )(𝑝min(𝑚1,𝑛1)

1 𝑝min(𝑚2,𝑛2)
2 ⋯𝑝min(𝑚𝑒,𝑛𝑒)

𝑒 )
ℎ = (𝑤𝑝𝑛1−min(𝑚1,𝑛1)

1 𝑝𝑛2−min(𝑚2,𝑛2)
2 ⋯𝑝𝑛𝑒−min(𝑚𝑒,𝑛𝑒)

𝑒 )(𝑝min(𝑚1,𝑛1)
1 𝑝min(𝑚2,𝑛2)

2 ⋯𝑝min(𝑚𝑒,𝑛𝑒)
𝑒 )

the element𝑝min(𝑚1,𝑛1)
1 𝑝min(𝑚2,𝑛2)

2 ⋯𝑝min(𝑚𝑒,𝑛𝑒)
𝑒 divides both 𝑔 andℎ. Suppose that𝑑

divides 𝑔 and ℎ. Applying part i, there exists a unit 𝑢 in𝑅 and nonnegative integers
𝑖1, 𝑖2,… , 𝑖𝑒 such that 𝑖𝑗 ⩽ min(𝑚𝑗, 𝑛𝑗) for all 1 ⩽ 𝑗 ⩽ 𝑒 and 𝑑 = 𝑢𝑝𝑖11 𝑝

𝑖2
2 ⋯𝑝𝑖𝑒𝑒 . Ɪt

follows that

𝑝min(𝑚1,𝑛1)
1 𝑝min(𝑚2,𝑛2)

2 ⋯𝑝min(𝑚𝑒,𝑛𝑒)
𝑒

= (𝑢−1 𝑝min(𝑚1,𝑛1)−𝑖1
1 𝑝min(𝑚2,𝑛2)−𝑖2

2 ⋯𝑝min(𝑚𝑒,𝑛𝑒)−𝑖𝑒
𝑒 )(𝑢𝑝𝑖11 𝑝

𝑖2
2 ⋯𝑝𝑖𝑒𝑒 ) ,

so 𝑑 divides 𝑝min(𝑚1,𝑛1)
1 𝑝min(𝑚2,𝑛2)

2 ⋯𝑝min(𝑚𝑒,𝑛𝑒)
𝑒 . We conclude that

gcd(𝑔, ℎ) = 𝑝min(𝑚1,𝑛1)
1 𝑝min(𝑚2,𝑛2)

2 ⋯𝑝min(𝑚𝑒,𝑛𝑒)
𝑒 . □

P11.3. Ⅼet 𝐾 be a field and consider the subring
𝑅∶= {𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥2 +⋯+ 𝑎𝑑 𝑥𝑑 ∈ 𝐾[𝑥] || 𝑎1 = 0} .

Observe that 𝑅× = (𝐾[𝑥])× = 𝐾×.
i. Ⅴerify that every nonzero nonunit in 𝑅 is a product of irreducible elements.
ii. Ⅽonfirm that 𝑥2 is irreducible in 𝑅 but the principal ideal ⟨𝑥2⟩ is not prime.

Solution.
i. Suppose that there exists at least one nonzero nonunit in 𝑅 that is not a product
of irreducible elements. By the well‑ordering of the nonnegative integers, there
would exist an element𝑓 in𝑅 that hasminimal degree amongall nonzerononunits
in𝑅 that are not a product of irreducible elements. The element𝑓would not being
irreducible implies that there would exist nonzero nonunits 𝑔 and ℎ in 𝑅 such that
𝑓 = 𝑔ℎ. Ɪf both 𝑔 and ℎ were products of irreducible elements, then 𝑓 would
also be. Thus, we may assume that the element 𝑔 is not a product of irreducible
elements. The nonzero elements of degree 0 in 𝑅 are units, so deg(ℎ) > 1. Since
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deg(𝑓) = deg(𝑔)+deg(ℎ), weobtain deg(𝑔) < deg(𝑓)which contradicts the choice
of 𝑓. Therefore, every nonzero nonunit in 𝑅 is a product of irreducible elements.

ii. By definition, the subring𝑅 contains no polynomials of degree 1. Since degree of a
product is the sumof the degrees of the factors, it follows that product of elements
in 𝑅 equal to 𝑥2 has a factor of degree 0. As any nonzero element of degree 0 is a
unit in 𝑅, we see that 𝑥2 is an irreducible element.

The polynomial (𝑥3)2 = 𝑥6 = (𝑥2)3 belongs to the principal ideal ⟨𝑥2⟩ in 𝑅.
However, the factor 𝑥3 does not belong to ⟨𝑥2⟩ because the subring 𝑅 contains no
polynomials of degree 1. Therefore, the principal ideal ⟨𝑥2⟩ is not prime. □
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