Solutions 12

- **P12.1.** Euclid proves that there are infinitely many prime integers in the following way: if $p_1, p_2, ..., p_k$ are positive prime integers, then any prime factor of $1 + p_1 p_2 \cdots p_k$ must be different from p_j for any $1 \le j \le k$.
 - i. Adapt this argument to show that the set of prime integers of the form 4n 1 is infinite.
 - ii. Adapt this argument to show that, for any field \mathbb{K} , there are infinitely many monic irreducible polynomials in $\mathbb{K}[x]$.

Solution.

- i. By considering their remainder upon division by 4, we see that every positive prime integer, except for 2, has the form $4n \pm 1$ for some nonnegative integer *n*. Suppose that there are only finitely many primes $p_1, p_2, ..., p_k$ of the form 4n 1. The integer $m := 4(p_1 p_2 \cdots p_k) 1$ is a product of positive prime integers. Since the product of two primes of the form 4n + 1 also has the form 4n + 1, the odd number *m* must be divisible by at least one prime of the form 4n 1. This prime factor of *m* is necessarily distinct from all p_j , because otherwise it would divide -1. Therefore, the set of prime integers of the form 4n 1 is infinite.
- **ii.** Consider a nonempty finite set $\{f_1, f_2, ..., f_k\}$ of monic irreducible polynomials in $\mathbb{K}[x]$. Since the principal ideal domain $\mathbb{K}[x]$ is also a unique factorization domain, the polynomial $1 + f_1 f_2 \cdots f_k$, which is not a unit, is a product of a unit and monic irreducible polynomials. Any monic irreducible factor is necessarily distinct from all the f_j , because otherwise it would divide 1. No finite set of monic irreducible polynomials includes all the monic irreducible polynomials, so we conclude that the set of monic irreducible polynomials in $\mathbb{K}[x]$ is infinite.
- **P12.2.** i. Let $f := a_3 x^3 + a_2 x^2 + a_1 x + a_0$ be a polynomial in $\mathbb{Z}[x]$ having degree 3. Assume that $a_0, a_1 + a_2$, and a_3 are all odd. Prove that f is irreducible in $\mathbb{Q}[x]$.
 - ii. Prove that the polynomial $g := x^5 + 6x^4 12x^3 + 9x^2 3x + k$ in $\mathbb{Q}[x]$ is irreducible for infinitely many integers k.
 - **iii.** Prove that $h := x^5 + x^4 + x 1$ is irreducible in $\mathbb{Q}[x]$ using the Eisenstein criterion.

Solution.

- i. Since $a_1 + a_2$ is odd, one of these coefficients is even and the other is odd. As a_0 and a_3 are odd, the image of f in $\mathbb{F}_2[x]$ is either $x^3 + x^2 + 1$ or $x^2 + x + 1$. Our illustration of sieve methods for polynomials established that both of these polynomials are irreducible in $\mathbb{F}_2[x]$. It follows that f is also irreducible in $\mathbb{Q}[x]$.
- ii. Observe that 3 does not divide 1, but 3 does divide 6, -12, 9, and -3. Hence, the Eisenstein criterion implies that the polynomial g is irreducible in $\mathbb{Q}[x]$ whenever 3 divides k and 9 does not divide k. It follows that g is irreducible if k = 9n + 3 or k = 9n + 6 for some integer n. In particular, the polynomial g is irreducible in $\mathbb{Q}[x]$ for infinitely many integers k.
- iii. Consider the ring isomorphism $\varphi : \mathbb{Q}[x] \to \mathbb{Q}[x]$ defined by $\varphi(x) = x 1$. It follows that the polynomial *h* is irreducible in $\mathbb{Q}[x]$ if and only if the polynomial $\varphi(h)$ is

irreducible in $\mathbb{Q}[x]$. Since

$$\varphi(h) = (x-1)^5 + (x-1)^4 + (x-1) - 1$$

= $(x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1) + (x^4 - 4x^3 + 6x^2 - 4x + 1) + x - 2$
= $x^5 - 4x^4 + 6x^3 - 4x^2 + 2x - 2$

we see that 2 does not divide 1, 2 does divide -4, 6, 4, 2, and -2, and 4 does not divide -2. Thus, the Eisenstein criterion establishes that the polynomial $\varphi(h)$ is irreducible in $\mathbb{Q}[x]$.

- **P12.3.** Let *R* be a principal ideal domain and let *K* be its field of fractions.
 - i. Suppose $R = \mathbb{Z}$. Write the rational number $r = \frac{7}{24}$ in the form $r = \frac{b}{3} + \frac{a}{8}$ for some integers *a* and *b*.
 - ii. Let $g := pq \in R$ where p and q are coprime. Prove that every fraction $f/g \in K$ can written in the form $f \quad u \quad v$

$$\frac{J}{g} = \frac{u}{q} + \frac{v}{p}$$

for some elements u and v in R.

iii. Let $g := p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m} \in R$ be the factorization of g into irreducible elements p_j , for all $1 \leq j \leq m$, such that the relation $p_j = u p_k$ for some unit $u \in R$ implies that j = k. Prove that every fraction $f/g \in K$ can be written in the form

$$\frac{f}{g} = \sum_{j=1}^{k} \frac{h_j}{p_j^{e_j}}$$

for some elements $h_1, h_2, ..., h_m$ in R.

Solution.

i Since (-1)(8) + (3)(3) = 1, we have

$$r = \frac{7}{24} = \frac{7((-1)(8) + (3)(3))}{24} = \frac{-7}{3} + \frac{21}{8}$$

ii Since gcd(p,q) = 1, there exists elements *s* and *t* in *R* such that sp+tq = 1. Hence we obtain

$$\frac{f}{g} = \frac{f(s\,p+t\,q)}{p\,q} = \frac{f\,s}{q} + \frac{f\,t}{p}\,.$$

iii We proceed by induction on m. For the base case, when m = 1, the assertion is trivial. For the induction step, set $p := p_1^{e_1}$ and $q := p_2^{e_2} p_3^{e_3} \cdots p_m^{e_m}$. By hypothesis, we have gcd(p,q) = 1, so there exists elements s and t in R such that sp + tq = 1. It follows that

$$\frac{f}{g} = \frac{f(s\,p+t\,q)}{p\,q} = \frac{f\,s}{q} + \frac{f\,t}{p} = \frac{f\,s}{p_1^{e_1}} + \frac{f\,t}{p_2^{e_2}\,p_3^{e_3}\cdots p_m^{e_m}}$$

The induction hypothesis establishes that

$$\frac{f t}{p_2^{e_2} p_3^{e_3} \cdots p_m^{e_m}} = \sum_{j=2}^m \frac{h_j}{p_j^{e_j}}$$

for some elements $h_2, h_3, ..., h_m$ in *R*. Setting $h_1 := f s$ gives $f/g = \sum_{j=1}^m h_j / p_j^{e_j}$. \Box

