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3.2 Stirling Duality

Stirling subset numbers and Stirling cycle numbers are, from the
correct perspective, two sides of the same coin. To see this duality,
we declare that the addition formulas for both kinds of Stirling
numbers are valid for all nonnegative integers n and k. Stipulating
that{g} = [3] = O for all negative integers n leads to a unique
solution for these recurrences. Informally, knowing the Stirling
numbers at two of the three pairs (n — 1,k — 1), (n — 1, k), and
(n, k) allows one to recursively solve for the third. Formalizing this

Figure 3.6: Visualizing the
procedure links the two kinds of Stirling numbers. informal recursion

Theorem 3.2.1 (Negation). For all integers n and k, we have
=[]
-n| k|

Inductive proof. For all integers n and k, we have

ny_[n]_( ifn=0 01_[0]_f1 ifk=0
07 ]10] |0 otherwise’ k| 7 |lk] |0 otherwise *
so the base cases of this double induction hold. Whenever m and

J are nonnegative integers satisfying m + j < n + k, assume that
{ -J }= [’]"] and [__’J”] = {;.}. The addition formulas [3.0.3, 3.1.4] for

—-m
Stirling numbers and the induction hypotheses give
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Similarly, whenever m, j € N satisfy m + j < n + k, assume that

()= [7;"]- This time, the addition formulas for Stirling numbers
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which completes the induction steps. O

Remark 3.2.2. For all nonnegative integers n and k except for
(n, k) = (0, 0), strengthening the induction step to shows that

—n —n
Uet=o=15%")
As an upshot, this duality ensures that the identities for Stirling

numbers are twinned. For instance, the analogues of the Upper
Sum identity [2.0.8] are the following pair.
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3 0 0 0 0 0 o 1 3 1 0 O
4| 0 0 0 0 0 o 1 7 6 1 O0
5 0 0 0 0 0 0O 1 15 25 10 1

Proposition 3.2.3 (Upper sum). For any nonnegative integer n and
any integer k, we have
N [m+1] _ n\f(j . n+1]_ nl(j
0 {k+1}‘j§<1>{k}’ W [k+1]‘j§2[1](k>'

Double-counting proof for (i). How many partitions of the set [n + 1]

have k + 1 blocks?

Answer 1: Applying the definition of Stirling subset numbers, we
see that there are {1} partitions of the set [n + 1] with k + 1
blocks.

Answer 2: Focus on the blocks that do not contain the element
n + 1. For some 0 < j < n, there are (;‘) ways to choose the
elements that are not contained in the same block as n + 1. This

chosen j-subset of [n] can be partitioned into k blocks in {; }

ways. Hence, there are 3}, (M) {1} ways to partition the set
[n + 1] into k + 1 blocks. O

Double-counting proof for (ii). How many permutations of the set

[n + 1] have exactly k + 1 cycles?

Answer I: The definition of Stirling cycle numbers implies that
there are [ ;1] ] permutations of the set [n + 1] with k + 1 cycles.

Answer 2: Focus on the cycles that do not contain n + 1. For all
k < j < n, there are [} | permutations of [n] with j cycles and
there are (} ) ways to select k of these cycles. We claim that a
cycle containing n + 1 corresponds to the complementary j — k
cycles. More precisely, the product of cycles (C;)(C;) --- (Cj_x)
maps to the singlecycle(n +1 C; C, --- Cj_i). Conversely,
givenacycle(n+1 a; a, --- a,)forsome0 < m < n,let
Jj — k denote the length of the longest increasing subsequence

, , . (543)(726)(81)<=(95437
a; < Qp, <@y <o <@, where 1 < i, < i3 <--- < ij_x. When (7152)8364) (7152
there are more than one such sequence choose the first in the B2GEDEHETN-(93251

lexicographic order. Hence, the given cycle maps to

(a, a - ai2—1)(ai2 Ai,41 - ai3—1)"'(aij_k Qi p+1 o Ap) -

By construction, the maps compose to the identity thereby
establishing the claim. Thus, the number of permutations of
the set [n + 1] with k + 1 cycles is Zjez [;‘] (). O
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Exercises

Problem 3.2.4.
(i) For all nonnegative integers n and all integers k, demon-
strate that [ | > {}}.
(ii) For all nonnegative integers n, determine for which integers
k the equality [ ;] = {}} holds.

Problem 3.2.5. For all nonnegative integers m and n, prove the
following identities via a double-counting argument.

0) {5} = Ty (] On + 1%

@) [731] = Zieo [m] "=

Problem 3.2.6. For all nonnegative integers m and n, prove the
following identities via a double-counting argument.

(i) {m+nrlz+1} — Z:l:o k{n;k}.
(ii) [m+n111+1] — kazo (l’l + k) [nzk]-

Problem 3.2.7. For any nonnegative integer n and any integer k,
the Lah number [ZJ is the number of partitions of the set [n] into k
nonempty lists; also see Problem 3.0.9.
(i) For any nonnegative integers n, use a double-counting argu-
ment to prove that

x=> [ZJXE.

kez

(ii) Combine identities to deduce that || =3, [7] {1}

3.3 Eulerian Numbers

Besides counting cycles, there are other prominent numerical
statistics on permutations. In this subsection, we examine two.

Definition 3.3.1. Let n be a nonnegative integer. For a permuta-
tion o of the set [n], an index j satisfying 1 < j < n — 1 is an ascent
when o(j) < o(j + 1) and it is a descent when o(j) > o(j + 1).

Definition 3.3.2. For any nonnegative integer n and any integer
k, the Eulerian number (ﬁ) is the number of permutations of the
set [n] with k ascents. The angle brackets suggest “less than” and
“greater than” signs.

Some special values are easy to determine.

« Forallk < 0orall k > n, we have (}) = 0 because the number of
ascents is nonnegative and at most n — 1.

« For any nonnegative integer n, we have () = 1because the
unique permutation with no ascentsisn (n—1) --- 3 2 1.

« For any positive integer n, we have (,;) = 1 because the unique
permutation with n — 1 ascentsis1 2 3 --- n.
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Figure 3.7: The permutations of
the set [4] partitioned by the
number of ascents

From Table 3.7, we see that (8) =1,
<?> = 11’<‘z‘> = 11,and<‘3‘> =1.
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In contrast with Stirling numbers, the Eulerian numbers have
a natural symmetry; compare this relation with the symmetry
identity [2.0.5] for binomial coefficients.

Proposition 3.3.3 (Symmetry). For any nonnegative integer n and

any integer k, we have 1234 & 4321
1243 o 3421
<n+1>=<n+1>. 1324 o 4231
k n—k 1342 & 2431
1423 o 3241
1432 o 2341
Bijective proof. 2134 & 4312
. . . 2143 & 3412
Set 1: Consider all of the permutations of the set [n + 1] with k 2314 < 4132
ascents. The definition of the Eulerian numbers implies that 2413 & 3142
. ol 3124 o 4213
this set has cardinality ("} ). 3214 o 4123
Set 2: Consider the permutations of the set [n + 1] withn — k Figure 3.8: Eulerian symmetry on
ascents. The definition of the Eulerian numbers implies that permutations of the set [4]
this set has cardinality (//*; ).
Correspondence: The permutation o(1) o(2) -+ o(n + 1) of the
set [n + 1] has k ascents and n — k descents if and only if the
permutation o(n + 1) o(n) --- o(1) of the set[n + 1] has
n — k ascents and k descents. Hence, the involution defined
by reversing the one-line notation defines a bijection between
permutations with k ascents and those with n — k ascents. O
Once more, we have a two-term recurrence.
Proposition 3.3.4 (Addition). For any nonnegative integer n and any
integer k, we have n|(g) (1) (2) (3) (3) (5) (&)
‘1 0f1 0 0 0 0 0 O
n _ n n 111 0 0 0 0 0 O
<k+1>_(n_k)<k>+(k+2)<k+1>' 201 1. 0 0 0 0 ©
3)1 4 1. 0 0 0 O
; . 401 1111 1 0 0 0
Double-counting proof. Among the permutations of the set [n + 1], s|1 26 66 26 1 0 0
how many have k + 1 ascents? 6| 1 57 302302 57 1 O

Answer 1: The definition of Eulerian numbers implies that the
number of permutations of [n + 1] with k + 1 ascents is (1} ).

Answer 1: Focus on the largest element n + 1. Each permutation
7(1) 7(2) --- t(n) of the set [n] leads to n + 1 permutations of
the set [n + 1] by inserting n + 1 in all possible ways. Suppose

that n + 1 is inserted into position j to obtain the permutation

Figure 3.9: Matrix of Eulerian
numbers

o=11) 2) - (j—-1) n+1 z(j) - t(n).

When j = nor 7(j — 1) > 7(j), the number of ascents in ¢ is one
more than in 7, so there are ((n — k — 1) + 1)(}) permutations
of [n + 1] with k + 1 ascents having this form. When j = 1

or 7(j — 1) < 7(j), the number of ascents in o is the same

as the number in 7, so there are (k + 2) (, ;) permutations of

[n + 1] with k + 1 ascents having this form. Thus, there are

(n —k)(%) + (k + 2)(,},) permutations of the set [n + 1] with
k + 1 ascents. O
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The Eulerian version of the binomial theorem [2.1.6] may be
viewed as a change of basis for univariate polynomials.

Theorem 3.3.5 (Worpitzky). For any nonnegative integer n, we have
X = n> (x + k) _
,;Z< k n

Double-counting proof. It suffices to verify the identity when x is a

sufficient large integer. How many integer n-tuples (a;, a,, ..., a,)

where 1 < aj<x for all1 £ j < n are there?

Answer 1: Each entry a; may be chosen independently from the x
possibilities, so there are x" well-formed n-tuples.

Answer 2: Rearrange the n-tuple so that a,q) > as) 2+ 2 Ag(n)
and, for all 1 < j < n, ag(j) = ag(j4+1) implies that o(j) < o(j + 1).
The permutation o := g(1) o(2) --- o(n)of the set[n]is
uniquely determined by an n-tuple (a,, a,, ..., a,). It suffices to
prove that each permutation having k ascentsandn — 1 — k
descents arises from exactly (x::k ) n-tuples. If the permutation
o has a descent at the index j, then we have o(j) > o(j + 1) and
Ao(j) > Ag(j+1)- For example, any (a,, a,, ..., ay) giving rise to the
permutation5 8 3 2 4 6 7 9 1 must satisfy

X20A5203>03>0,204206207 209 >0 21,

because this permutation has descents at the indices 2, 3, and 8.
This chain of inequalities is equivalent to

X+52as+5>a3+4>a;+4>a,+4>a,+3>a4+2>a,+1>a9>0a, 21,

and the definition of the binomial coefficient implies that there
are (*3”) choices for the subset
{a;,aq,a; + 1,06+ 2,04 +3,a, +4,a5; +4,a5 + 4,a5 + 5} C [x + 5].

Generalizing this argument, we see that each permutation with
k ascents will be obtained from (*}*) n-tuples. O

Inductive proof. Whenn = 0,wehave x’ = 1 = <g>(xa'k), so the
base case holds. For some nonnegative integer n, assume that
= n> (x + k>.
IEZ < k n
Using the induction hypothesis, the absorption identity 2.1.3
(twice), the addition formula 2.0.6 for binomial coefficients, and
the addition formula 3.3.4 for Eulerian numbers gives

i =x[(1)(2)

kez

l;z<z> [(x+k+1)<x:;k)—(k+1)<x;k>]

SB[ e (2 s (32

kez

xn+1
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Exercises

Problem 3.3.6. An excedance of a permutation o of the set [n] is
index j such that g(j) > j. For all nonnegative integers n and k,
give a bijective proof that the number of permutations of the set
[n] with k excedances coincides with the number of permutations
of the set [n] with k descents.

Problem 3.3.7. For any nonnegative integer n, a Stirling permuta-
tion is a permutation of the multiset M,, := {12, 22, ..., n?} such that,
for each element j appearing in the permutation, the elements

. . . ) 112233,112332,

between the two copies of j are larger than j. For any nonnegative 113322,133122,

integers n and any integer k, the Eulerian number of the second i’ ; ; ; g % } g g ; 3 i

kind, denoted (i )), counts the number of Stirling permutations of 133221.331221,

. 221133,221331,

the multiset M,, that have k ascents. 523311.233211,
(i) For any nonnegative integer n, prove by induction that the 332211.

number of Stirling permutations of M,,,; is (2n + 1)!!.

(ii) For all nonnegative integers n and k, verify the additive for-
mula for Eulerian number of the second kind via double-
counting:

Figure 3.10: The 15 Stirling
permutations of M;

From Table 3. 10 we see that (3)) = 1,
(2hennfipeanry). T

(iii) For all integer n and k satisfying 0 < n, k < 5, compute the
matrix whose (n, k)-entry is (i ).






4
Combinatorial Models

We feature some of the most common combinatorial gadgets.
Although integer partitions, trees, and lattice paths link combina-
torics to representation theory, computer science, and probability
theory, we confine our exploration to their enumerative aspects.

4.0 Integer Partitions

Despite the semantic overload, the word ‘partition’ has a second
mathematical meaning.

Definition 4.0.1. A partition of an integer n is an integer sequence
A:=(4,4,..,4j,..) such that 1] := ZJ.GN Aj = nand
M2z 242 20.

We do not distinguish between sequences that differ only the
number of trailing zeros. For example, we identify the sequences
3,3,2,1,0,0,..),(3,3,2,1,0,0,0), and (3, 3,2, 1) as partitions of 9.
The nonzero terms A; are the parts of 1 and the number of parts
of 1is its length. When the partition A has m; parts equal to j, we
may write A = (..., j™,...,2"™2,1™) so0 (4,4,2,2,2,1) = (42,23,1).

Definition 4.0.2. For any nonnegative integer n and any integer k,
let pi(n) be the number of partitions of the integer n with k parts.
The partition function p(n) counts the total number of partitions
of the nonnegative integer n, so p(n) = 3, _, pr(n).

Some special values are easy to determine.

« For any nonnegative integer n, we have p,(n) = 1 because (1")
is the unique partition with n parts. Notice that p,(0) = p(0) =
1 corresponds to the empty partition.

« For all k > n, we have p,(n) = 0 because each part is a nonnega-
tive integer.

« For any positive integer n, we have p,(n) = 0 because every
partition of a positive integer has at least one part.

« For all integers n such that n > 2, we have p,,_;(n) = 1 because

n-2. . . s .

n=2+ ijl 1 is the unique partition with n — 1 parts.

« For any positive integer n, we have p,;(n) = 1 because (n) is the
unique partition of n with one part.

« For any positive integer n, we have p,(n) = |n/2] because the
integer partitions with two parts are (n — j, j) where 1 < j < n/2.

Copyright © 2021 by Gregory G. Smith
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The notation A - n means that A is an
integer partition of n.

There 7 partitions of the integer 5:

(1,1,1,1, 1), 2,1,1, 1),
(2, 2,1), (3,1,1),
(3,2), 4,1),
).

Hence, we have p(5) = 7, p5s(5) = 1,
pa(5) = 1, p3(5) = 2, p2(5) = 2,
p1(5) = 1,and py(5) = 0.
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The function p,(n) satisfies a two-term recurrence which devi-
ates slightly from our established pattern.

Proposition 4.0.3 (Addition). For any nonnegative integer n and any
integer k, we have p;.;(n + 1) = px(n) + pry1(n — k).

Double-counting proof. How many (X1, X,, ..., Xx41) € NK*1 satisfy

n+1l1=Xx1+X+ - +Xandx; 2 X, 22Xy 212

Answer I: By definition, the number of partitions of the integer
n + 1 with k + 1 parts is py,(n + 1).

Answer 2: Focus on X . If x;,; = 1, then there are p;(n) tuples.
When x;,; > 1, there is a bijection between the (k + 1)-tuples
(X1, X2, ., Xi41) € NK satisfyingboth n + 1 = x; + X, + -+ + Xp4q
and x; > X, > - > Xx > 1,and the (31, Y, .., Yiq1) € NEH1
satisfyingn —k =y, + Y, + -+ yepand y; 2y, 2 - 2 Y 2 1
defined by yii=x;—1 foralll £ j < k + 1. Hence, there
are p,_;(n — k) solutions in this second case. We conclude
that the total number of (x;, X5, ..., X;41) € NK*1satisfying
n+l=x;+x+ - +Xandx; =X, 2 -+ = Xpyq = 1is
pi(n) + P (n — k). U
Combining the addition formula for the restricted partition

function with the boundary cases above, we may compute the
matrix whose (1, k)-entry is p,(n); see Table 4.1.

n|po(n) p1(n) p2(n) ps(n) ps(n) ps(n) pe(n) p;(n) ps(n) | p(n)
o 1 0 0 0 0 0 0 0 0 1
1{ O 1 0 0 0 0 0 0 0 1
2 0 1 1 0 0 0 0 0 0 2
3] O 1 1 1 0 0 0 0 0 3
4, 0 1 2 1 1 0 0 0 0 5
5] 0 1 2 2 1 1 0 0 0 7
6/ O 1 3 3 2 1 1 0 0 11
7! 0 1 3 4 3 2 1 1 0 15
8 O 1 4 5 5 3 2 1 1 22

Collections of integer partitions subject to various restrictions
have interesting characterizations.

Problem 4.0.4. For any nonnegative integer n, demonstrate that
the number of partitions of the integer n into distinct parts equals
the number of partitions of the integer n with odd parts.

Bijective Proof.

Set 1. Consider the set of partitions of n with odd parts.

Set 2: Consider the set of partitions of n into distinct parts.

Correspondence: To exhibit the required bijections, the key idea is
that every positive integer can be express uniquely as a product
of an odd positive integer and a power of 2. A partition of the
integer n with odd parts maps to a partition of the integer n
with distinct parts by replacing the multiplicity of each odd

Copyright © 2021 by Gregory G. Smith

Table 4.1: Matrix of partition
numbers
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part with its binary expansion. Conversely, a partition of the
integer n into distinct parts maps to a partition with odd parts
by expressing each part as a product of a power of 2 and an odd
positive integer, and then consolidating the odd integers. For
example, we have

(73,52%,3) < (14,10,7,3) and
(9°,5'2,32,1%) « (40,36,20,9,6,2,1)

because

34 = (3)(7) + (2)(5) + (1)(3)

= (2°+2)(7) + (21)(5) + (2°)(3)
= 2H(7) + 2H(5) + 22)(7) + (2°)(3)
=14+10+7+3,

114 = (5)(9) + (12)(5) + (2)(3) + (3)(1)
=2%°4+2)9) + 22+ 2>)(B) + 2H(B) + (2° +2H)(1)
= (2°)(5) + (22)(9) + 22)(5) + (29)(9) + (21)(3) + (2")(1) + (2°)(1)
=404+364+20+9+6+2+1.

These maps compose, in either order, to the identity map.
Given the bijections, we see that the number of partitions of the
integer n into distinct parts equals the number of partitions of the
integer n with odd parts. O

Exercises

Problem 4.0.5. For all m, n € N, show that

Z Pj(n) =pr(n+m).

j=0

Problem 4.0.6. Let q,(n) denote the number of partitions of the
integer n € Ninto k distinct parts. For all m,n € N, show that

qm(n + (%)) = pn(n).

Problem 4.0.7. Let p(n) denote the number of partitions of the in-
teger n. Express the number of partitions of n with no part equal
to 1 as a linear combination of values p(k) for some k € N.

4.1 Trees and Catalan Numbers

Among the myriad of combinatorial interpretations for Catalan
numbers, Richard Stanley singles out a few as being the most fun-
damental. We highlight two these fundamental interpretations
related to special graphs. A tree is a graph in which any two ver-
tices are connected by a unique path, or equivalently a connected
acyclic graph. A rooted tree is a tree in which one vertex has been
designated as the root.
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