Solutions 2

P2.1. Consider the monomial ideals [ := (%1, z%2,..., ") and | := (¥, x"2,..., ") in the
polynomial ring S := K[x1, X2, ..., Xs].
i. For any monomial =¥ in S, prove that the ideal (J: %) := {f € S | fa¥ € ]} is
generated by the monomials "/ / ged(x", ™) for all 1 < j < m.
ii. Prove that intersection ] N I is generated by monomials lem(x%, %) forall 1 <j < m
and all 1 <i </

Solution.
i. Since the monomial «* "/ / ged(x", x") is clearly divisible by x"/, we have

i
—— 5wy | 1 ST S C(J:z"v
<gcd(m”ﬁ,ww) J m> C (J:2%)
On the other hand, given f € (J: ™), we have f " € | and each term in the product
fx® is a multiply of "/ for some 1 < j < m. Unique factorization implies that each
term in f is a multiply of ¥/ ged(z?, ") for some 1 < j < m. Thus, we deduce that

Y <i<m)D(]:a®
W 1<j<m) D (]J:x®).

ii. Since the monomial lem(x"%, %) is divisible by both z% and x%, it lies in J N I.
Conversely, suppose f € ] N 1. Because f € ], each term in f is a multiply of "/ for
some 1 < j < m. Similarly, we have f € [ and each term in f is a multiply of *i for
some 1 < i < /. Hence, the definition of the least common multiple implies that each
term in f is a multiply of lem(x%, %) for some 1 < j<mandsomel <i </l It
follows that <lcm(:1:”f,:v“i) ‘ 1<j<m1<i< l> =JNnL O

P2.2. Demonstrate that the following properties uniquely determine the monomial orders >1¢y
and >grevlex among all monomial orders > on the polynomial ring S := Kx, x2, ..., ]
satisfying x1 > xp > -+ - > xy.

i. For any polynomial f in S such that LT}, (f) € K[x;, xj41,...,%,] for some 1 <i < n,
we have f € K[x;, Xj11,..., %]

ii. The monomial order > eyiex refines the partial order given by total degree and, for
any homogeneous f € S such that LTgrevlex( f) € (xi,xix1,...,xn) forsome 1 <i < n,
we have f € (x;, Xj11,...,%Xn).

Solution.

i. By definition, we have " >, " if and only if there is an index i € {1,2,...,n} such
that uy = vy, up = vy, ..., u;_1 = v;_1, and u; > v;. Set % := LM (f) and let ¥ be
any other monomial appearing in a polynomial f. The relation * € K[x;, Xj11,. .., Xs]
implies that uy = --- = u;_1 = 0. Since " >, ", it follows that v; = --- =v;_1 =0
and v € K[x;, x;1,..., %]

Conversely, suppose that > is a monomial order on S such that the relation
LT~ (f) € K[x;, xj41,...,%y] for some 1 < i < n implies that f € K[x;, xj11,...,Xx].
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Consider monomials " and «” in S such that * > . By setting " := ged(z*, z),
we have 2% = % 2% and z? = 2% ¥ where min(u;-, v;) =0 forall 1 <j< n. Since
> is a monomial order, it follows that % > x'. Let i be the largest integer such that
wh=uh = =u_, =0.If f = % — ¥, then the hypothesis on > implies that
vy = vy =--- =vl_; = 0. Our choice of the index i and the equation min(u},v}) =0
imply that 1} > 0 = v] whence " >, . Since * and x” are arbitrary monomials,
we conclude that > equals >1ey.

ii. By definition, we have % >geviex ¥ if and only if either deg(z*) > deg(z”) or
deg(z*) = deg(x”) and there exists an index i € {1,2,...,n} such that u, = vy,
Up—1 = 0p_1, .-, Uit1 = Uiy1, and u; < v;. Set £ := LMgreyiex(f) and let z¥ be any
other monomial of the same total degree appearing in a polynomial f. The relation
" € (X;, Xit1, ..., Xn) implies that u; + w1 + -+ +uy > 0. Since T >qreviex TV, We
have v; +vjp 1+ -+ v > uj+ Ui+ +u, >0and ¥ € (x;, Xj11,...,Xn).

Conversely, suppose that > is a monomial order on S which refines total degree
and, for any homogeneous polynomial f in S, the relation LT~ (f) € (x;, Xj11,...,%Xn)
implies that f € (xj,xj:1,...,%,). Consider monomials * and «" in the ring S
such that z* > v and deg(x") = deg(x"). Setting x™ := gcd(z", x"), we have
¥ = z¥ % and ¥ = ¥ x¥ where min(u;.,v;-) =0foralll <j<n As>is
a monomial order, we see that x% > zV. Let i be the smallest integer such that
Uy =up 1 =---=uj 4 =01If f= x% — ¥, then the hypothesis on > implies that

vy + 05+ -+ 0, > 0. Our choice of the index i and the equation min(u/, v}) = 0 imply
that 1} > 0 = v} whence x* > greviex - Since * and " are arbitrary monomials, we
conclude that > equals >greyiex- ]

P2.3. Let M be an (m x n)-matrix with nonnegative real entries and let r1, 7, ..., 7, denote
the rows of M. Assume that Ker(M) NZ" = {0}. Define a binary relation >y on the
monomials in the polynomial ring S := K|xq, xp, ..., X,] as follows:

x* > x? if there is an positive integer i (at most m) such that u -r; > v -r; and
u'rjzv-rjforalllgjgi—l.

i. Show that >y is a monomial order on the polynomial ring S.

111
ii. When M := h é 8] , show that >y equals >greyiex ON Klx, vy, z].

iii. For the (n x n)-identity matrix I, show that >, equals >.

Solution.
i. We check the three defining properties of a monomial order.

(total order) Suppose that w and v are distinct vectors in IN”. Since we know that
Ker(M) N Z" = {0}, there exists a positive integer i such that (u — v) - r; = 0 for
all1<j<i—1,and (u—v)-7r; # 0. When (u —v) - r; > 0, we have % > x”
and otherwise ¥ >p a*. Therefore, the binary relation >y is a total order on IN".
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(multiplicative) Suppose that % >\ V. By definition, there exists a positive integer
isuchthatu -r; =wv-r;foralll1 <j<i—1andu-r; > v-7;. Since " " = ™
and ¥ x¥ = """, it follows that (w +u)-7rj = (w+v)-rjforall 1 <j<i—1
and (w +u) - r; > (w + v) - ; which implies that ® % >y ™ .

(artinian) Let ey, ey, ..., e, be the standard basis of Z", so Xj = x% forall1 <j < n.
Since we have Ker(M) N Z" = {0}, there exists a positive integer i (for each ey)
such that e -7 = 0forall 1 < j <i—1and e - r; # 0. Because M has nonnegative
entries, we have e - r; > 0. Therefore, we see that x, >y 1 forall 1 <k < n.

ii. We have

( U1+ up+uz > 01 +0+ 03
or{ U1+ uy+us = v1+0+ 03

Uy t+up > 0U1+0
xulyuzzug, >M xvlyvzzv3 — 1 2 1 2

Up+uy+uz = 01+02+703
or ui+uy = v+
L up > 0

Uy + Uy + U3z > V1 + 02+ 03
Or{u1+u2+u3 = v +0y+ 03
us < 03
up +up+u3
or Uus

U1+ 02+ U3
U3
\ U < 0y

Uy, Uy U V1 ,,09 0
S XYPZ Soreviex XY 22

iii. We have

x" >1 2" & there exist i such that u; = v forall 1 <j<i—1and u; > v;
S ¥ >t

g

P2.4. Let IF, be a finite field with 2 elements and consider the ideal I in IF,[x, y, z| consisting of
all polynomials that vanish at every point in A>(IF,).
i. Show that (x* —x,y* —y,z> —z) C .

ii. For any coefficients ag, a1, . ..,a7 in [F,, show that the polynomial
fi=aoxyz+ayxy+axz+azyz+asx+asy+agz+ay

belongs to the ideal I if and only if we have ag =a; = --- = a7 = 0.
iii. Show that I = (x* — x,y* —y,2> — z).

Solution.

i. Since the univariate polynomial > — t = t(t — 1) has both 0 and 1 as roots for any
t € {x,y,z}, it follows that (x> — x,y*> —y,z> —z) C L.
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ii.

iii.

When ag = a1 = - - - = a7y = 0, the polynomial f is the zero polynomial which vanishes
at every point. Now, suppose that f vanishes at every point in A3(FF,). It follows that
£(0,0,0) =a7 =0, f(1,0,0) =a4 =0, f(0,1,0) = a5 =0, and f(0,0,1) = a6 = 0. We
deduce that f(1,1,0) =a; =0, f(1,0,1) =a, =0, and f(0,1,1) = a3 = 0. Finally, we
have f(1,1,1) = ap = 0.

Fix a monomial order > on IF,[x, y,z] and consider a polynomial g in I. The division
algorithm implies that there exists polynomials hy,hy, hs € IF,[x,y,z] and scalars
ag, a1, -..,ay € IF, such that

¥ — x) + hz(yz —y)+ h3(22 —2z) + apxyz + a1xy + axz + azyz + asx + asy + agz + ay

Since part i yields g — hy(x* — x) — ho(y?® — y) — h3(z®> — z) € I, part ii establishes
that a9 = a; = -+ = a; = 0. We conclude that ¢ € (x> —x,y* —y,z*> — z) and
[={(x*>—xy>—y,z*>—2z). O

P2.5. A ring R satisfies the artinian if any descending sequence of ideals in R stabilizes. In
other words, for any descending sequence Iy O I1 D I, O --- of ideals in R, there exists a
nonnegative integer m such that I,, = I,;11 = Ly40 = -+ -.

i

ii.
iii.

For any positive integer 1, show that the quotient rings Z/(n) and K|x]/(x") are
artinian.

Show that rings Z and K|x| are not artinian.

Show that every prime ideal in an artinian ring is maximal.

Solution.

i

ii.

iii.
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Since Z/(n) has only n distinct elements, every descending chain of ideals can have
at most n distinct ideals, so must stabilize.

Regarding the quotient K[x]/(x") as K-vector space, the monomials 1, x, ..., x" 1
form a basis, so dimg K[x]/(x") = n. Moreover, every ideal in K[x]/(x") is also a
K-vector subspace. It follows that every descending chain of ideals can have at most
n + 1 distinct ideals.

Since (2) D (22) D (2%) D --- and (x) D (x?) D (x*) D --- are infinite descending
chains of distinct ideals in Z and K[x] respectively, neither ring is artinian.

Let I be a prime ideal in an artinian ring R. Since [ is prime, the quotient ring R/ I
is a domain. A descending chain of ideals in the quotient ring R/I pulls back to a
descending chain of ideals in R. Since R is artinian, this the chain in R stabilizes which
implies that the chain in R/ I also stabilizes. In other words, the quotient ring R/ is
also artinian.

Let f be a nonzero element in the quotient ring R/I. Since R/I is artinian, it
follows that (f™) = (f™*1) for some positive integer m, so f" = g f™*! for some
g € R/I. Since R/I is a domain and f # 0, we may cancel f™ from both sides of this
equation to obtain g f = 1g. It follows that f is a unit. Therefore, R/ is a field and I
is a maximal ideal. O
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