
Solutions 4

P4.1. Assume that K is an algebraically closed field. Identify affine space A9(K) with the space
of (3 × 3)-matrices A = [aj,k]. Let ρ : A9(K) 99K A9(K) be the rational map defined by

A 7→ A

[
0 1 0
0 0 1
0 0 0

]
A−1 .

i. Find equations for the smallest affine subvariety X containing the image of ρ.
ii. Show that X is the set of all nilpotent (3 × 3)-matrices.

Solution.

i. For the matrix A =

[
x1 x4 x7
x2 x5 x8
x3 x6 x9

]
, the Cramer rule shows that

A−1 =
1

det(A)

x5x9 − x6x8 x6x7 − x4x9 x4x8 − x5x7
x3x8 − x2x9 x1x9 − x3x7 x2x7 − x1x8
x2x6 − x3x5 x3x4 − x1x6 x1x5 − x2x4

 ,

so A 7→ A
[

0 1 0
0 0 1
0 0 0

]
A−1 is a rational map.

We apply the rational implicitization theorem in Macaulay2 [M2]. We create the
polynomial ring and the generic matrix A.

Macaulay2, version 1.24.11
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

Isomorphism, LLLBases, MinimalPrimes, OnlineLookup,
PackageCitations, Polyhedra, PrimaryDecomposition, ReesAlgebra,
Saturation, TangentCone, Truncations, Varieties

i1 : n = 3;

i2 : S = QQ[z, x_1..x_(n^2), y_1..y_(n^2)];

i3 : A = genericMatrix(S, x_1, n, n)

o3 = | x_1 x_4 x_7 |
| x_2 x_5 x_8 |
| x_3 x_6 x_9 |

3 3
o3 : Matrix S <-- S

We next construct the adjugate of A and verify that A adj(A) = det(A) I.

i4 : adj = matrix table(n, n, (j,k) -> (-1)^(j+k) *
det submatrix(A, delete(k,{0,1,2}), delete(j,{0,1,2})))

o4 = | -x_6x_8+x_5x_9 x_6x_7-x_4x_9 -x_5x_7+x_4x_8 |
| x_3x_8-x_2x_9 -x_3x_7+x_1x_9 x_2x_7-x_1x_8 |
| -x_3x_5+x_2x_6 x_3x_4-x_1x_6 -x_2x_4+x_1x_5 |

3 3
o4 : Matrix S <-- S
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i5 : assert(A*adj - det(A) * id_(S^3) == 0)

We construct the ‘graph’ ideal I for the rational parametrization and compute the
elimination ideal J.

i6 : N = matrix{{0,1,0},{0,0,1_S},{0,0,0}}

o6 = | 0 1 0 |
| 0 0 1 |
| 0 0 0 |

3 3
o6 : Matrix S <-- S

i7 : M = A*N*adj;

3 3
o7 : Matrix S <-- S

i8 : B = genericMatrix(S, y_1, n, n)

o8 = | y_1 y_4 y_7 |
| y_2 y_5 y_8 |
| y_3 y_6 y_9 |

3 3
o8 : Matrix S <-- S

i9 : I = minors(1, det(A)*B-M) + ideal(1-det(A)*z);

o9 : Ideal of S

i10 : J = eliminate(I, {z} | toList(x_1 .. x_(n^2)));

o10 : Ideal of S

i11 : netList J_*

+---------------------------------------------------------+
o11 = |y + y + y |

| 1 5 9 |
+---------------------------------------------------------+
| 2 2 |
|y y + y + y y + y y + y y + y |
| 2 4 5 3 7 6 8 5 9 9 |
+---------------------------------------------------------+
| 3|
|y y y - y y y - y y y - y y y - y y y - 2y y y - y |
| 3 5 7 2 6 7 3 4 8 5 6 8 3 7 9 6 8 9 9|
+---------------------------------------------------------+

The polynomials listed in o11 define the smallest affine variety X containing the image
of the rational map ρ.

ii. A (3 × 3)-matrix B is nilpotent if and only if its minimal polynomial p equal tk

for some nonnegative integer k. Since each irreducible factor of the characteristic
polynomial of B is also a factor of p, it follows that the characteristic polynomial of B
is t3. We conclude that the coefficients of the characteristic polynomial of a generic
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(3 × 3)-matrix define the affine variety X. We check that these polynomials generate
the ideal J as follows.

i12 : J’ = ideal substitute(contract(matrix{{z^2,z,1}}, det(z-B)), {z => 0_S});

o12 : Ideal of S

i13 : assert(J’ == J)

i14 : netList J’_*

+---------------------------------------------------+
o14 = |- y - y - y |

| 1 5 9 |
+---------------------------------------------------+
|- y y + y y - y y - y y + y y + y y |
| 2 4 1 5 3 7 6 8 1 9 5 9 |
+---------------------------------------------------+
|y y y - y y y - y y y + y y y + y y y - y y y |
| 3 5 7 2 6 7 3 4 8 1 6 8 2 4 9 1 5 9|
+---------------------------------------------------+ □

P4.2. For any polynomial f = aℓ xℓ + aℓ−1 xℓ−1 + · · ·+ a0 ∈ C[x] where aℓ ̸= 0 and ℓ > 0, the
discriminant of f is defined to be

disc( f ) =
(−1)ℓ(ℓ−1)/2

aℓ
Res( f , f ′; x) .

i. The polynomial f ∈ C[x] is separable if its has only simple roots. Show that f is
separable if and only if f is relatively prime to its derivative f ′.

ii. Prove that f has a multiple factor if and only if disc( f ) = 0.
iii. Does 6x4 − 23x3 + 32x2 − 19x + 4 have a multiple root in C?
iv. Compute the discriminant of the quadratic polynomial f = ax2 + bx + c. Explain how

your answer relates to the quadratic formula.

Solution.
i. We first show that a complex number a is a simple root of f if and only if a is not a

root of its derivative f ′. The number a is a root of f if and only if f = (x − a) g where
g lies in C[x]. For the number a to be a simple root of f , it is necessary and sufficient
that g(a) ̸= 0. Since f ′ = g + (x − a)g′, it follows that f ′(a) = g(a).

When the polynomials f and f ′ are relatively prime, there exists polynomials g and
h in C[x] such that g f + h f ′ = 1. For any root a of the polynomial f , it follows that
1 = g(a) f (a) + h(a) f ′(a) = h(a) f ′(a). Hence, we have f ′(a) ̸= 0 and a is a simple
root of f . Conversely, suppose that f and f ′ have a common factor g in C[x] such that
deg(g) ⩾ 1. The Fundamental Theorem of Algebra guarantees that g has a complex
root a ∈ C. It follows that a is a common root of f and f ′ which means that a is not a
simple root of f .

ii. From part i, we know that f has a multiple root if and only if f and f ′ have a common
factor. The polynomials f and f ′ have a common factor if and only if Res( f , f ′; x) = 0.
Since aℓ ̸= 0, we see that disc( f ) = 0 if and only if Res( f , f ′; x) = 0.
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iii. Given f = 6x4 − 23x3 + 32x2 − 19x + 4, we have

disc( f ) =
(−1)ℓ(ℓ−1)/2

aℓ
Res( f , f ′; x) =

1
6

det


6 −23 32 −19 4 0 0
0 6 −23 32 −19 4 0
0 0 6 −23 32 −19 4

24 −69 64 −19 0 0 0
0 24 −69 64 −19 0 0
0 0 24 −69 64 −19 0
0 0 0 24 −69 64 −19



=
1
6

det


6 −23 32 −19 4 0 0
0 6 −23 32 −19 4 0
0 0 6 −23 32 −19 4
0 23 −64 57 −16 0 0
0 0 23 −64 57 −16 0
0 0 0 23 −64 57 −16
0 0 0 24 −69 64 −19

 = det


6 −23 32 −19 4 0
0 6 −23 32 −19 4
1 −28 71 −60 16 0
0 1 −28 71 −60 16
0 0 23 −64 57 −16
0 0 1 −5 7 −3



= det


145 −394 341 −92 0
0 145 −394 341 −92
1 0 −69 136 −68
0 0 51 −104 53
0 1 −5 7 −3

 = det

[
8376 −17045 8678
331 −674 343
51 −104 53

]
= 0 .

Hence, f has a multiple root; one verifies that f = (2x − 1)(3x − 4)(x − 1)2.

iv. We have

disc( f ) =
(−1)ℓ(ℓ−1)/2

aℓ
Res( f , f ′; x)

=
(−1)

a

[
a b c

2a b 0
0 2a b

]
= (−1)

[
1 b c
2 b 0
0 2a b

]
= (−1)

[
1 b c
0 −b −2c
0 2a b

]
= (−1)

(
(−b)(b)− (2a)(−2c)

)
= b2 − 4ac

Thus, disc( f ) is the polynomial under the square root in the quadratic formula
x = 1

2a
(
−b ±

√
b2 − 4ac

)
. When disc( f ) = 0, the double root is − b

2a . □

P4.3. Suppose that f = am xm + am−1 xm−1 + · · · + a0 and g = bm xm + bm−1 xm−1 + · · · + b0.
Consider the polynomial in two variables

φ(x, y) =
f (x)g(y)− g(x) f (y)

x − y
=

m−1

∑
j=0

m−1

∑
k=0

cj,k xjyk .

i. When m = 2, show that Res( f , g; x) = (−1)det
[
cj,k
]
.

ii. For any positive integer m, prove that Res( f , g; x) = (−1)m(m−1)/2 det
[
cj,k
]
.

Solution. i. Since
f (x) f (y)− g(x) f (y)

= (a2x2 + a1x + a0)(b2y2 + b1y + b0)− (b2x2 + b1x + b0)(a2y2 + a1y + a0)

= (a2b1 − a1b2)x2y + (−a2b1 + a1b2)xy2 + (a2b0 − a0b2)x2

+(−a2b0 + a0b2)y2 + (a1b0 − a0b1)x + (−a1b0 + a0b1)y

= (x − y)
(
(a2b1 − a1b2)xy + (a2b0 − a0b2)x + (a2b0 − a0b2)y + (a1b0 − a0b1)

)
,
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we deduce that

Res( f , g; x) = det


a2 a1 a0 0
0 a2 a1 a0
b2 b1 b0 0
0 b2 b1 b0


= a2

2b2
0 − a1a2b0b1 + a0a2b2

1 + a2
1b0b2 − 2a0a2b0b2 − a0a1b1b2 + a2

0b2
2

= (−1)det
[

a1b0 − a0b1 a2b0 − a0b2
a2b0 − a0b2 a2b1 − a1b2

]
.

ii. Since

f (x) g(y)− g(x) f (y) =
m

∑
j=0

m

∑
k=0

(aj bk − ak bj)xjyk =
m−1

∑
j=0

m

∑
k=j+1

(ak bj − aj bk)(xkyj − xjyk)

=
m−1

∑
j=0

m

∑
k=j+1

(ak bj − aj bk)xjyj(xk−j − yk−j)

= (x − y)
m−1

∑
j=0

m

∑
k=i+1

(ak bj − aj bk)xjyj

(
k−j−1

∑
i=0

xiyk−j−1−i

)
,

we see that each cj,k is bihomogeneous of degree 1 in the variables aj and bk. Hence, the
polynomials R = (−1)m(m−1)/2 det

[
cj,k
]

and Res( f , g; x) are bihomogeneous of degree
m in the variables aj and bk. The monomial am b0 appears only in the polynomials
ck,m−1−k for 0 ⩽ k ⩽ m − 1. Since the monomial am b0 appears once in each of the
antidiagonal entries of R and the sign of the permutation

(
m m − 1 · · · 3 2 1

)
is (−1)m(m−1)/2, the coefficient of am

m bm
0 in both R and Res( f , g, x) is 1. It remains to

show that R vanishes whenever f and g have a common root. Given a common root λ

of f and g, we have

0 = φ(λ, y)

=
[
1 λ λ2 · · · λm−1

]


c0,0 c0,1 c0,2 · · · c0,m−1
c1,0 c1,1 c1,2 · · · c1,m−1
c2,0 c2,1 c2,2 · · · c2,m−1

...
...

... . . . ...
cm−1,0 cm−1,1 cm−1,2 · · · cm−1,m−1




1
y
y2

...
ym−1


As the vectors of the form

[
1 y y2 · · · ym−1]T span Cm, it follows that the vector[

1 λ λ2 · · · λm−1]T lies in the kernel of the matrix
[
cj,k
]

T, so det
[
cj,k
]
= 0. □

P4.4. A subset U of the polynomial ring S := K[x1, x2, . . . , xn] is multiplicatively closed if any
product of elements of U is also in U (including the empty product 1).

i. Let U be a multiplicatively closed subset of S. When an ideal I in S is maximal with
respect to inclusion among all ideals not meeting U, show that I is prime.

ii. Let J be any proper ideal in S. Show that the radical ideal
√

J is the intersection of all
prime ideals containing J.

Solution. i. Suppose that the elements f and g in S are not in the ideal I. The maximality
of I implies that both I + ⟨ f ⟩ and I + ⟨g⟩ meet the subset U. Hence, there are elements r
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and s in S, and elements p and q in I such that r f + p and sg+ q belong to U. Assuming
that f g ∈ I, we would have (r f + p)(sg + q) = rs( f g) + (r f )(q) + (sg + q)(p) ∈ I.
However, this contradicts the hypothesis that I ∩ U = ∅. Therefore, the membership
f g ∈ I implies f ∈ I or g ∈ I, so the ideal I is prime.

ii. Let A denote the set of prime ideals in S containing the ideal J. Since prime ideals are
radical, we have J ⊆

√
J ⊆

√
P = P for all P ∈ A and

√
J ⊆ ⋂

P∈A P. For the converse
inclusion, consider an element f that does not belong to the radical

√
J. Part i implies

that the ideal I maximal among all ideals not meeting U :=
{

f m
∣∣ m ⩾ 0

}
is prime.

Therefore, we have I ∈ A, f ̸∈ I, and f ̸∈ ⋂P∈A P. □

P4.5. i. Find the minimal Gröbner basis for√
⟨x5 − 2x4 + 2x2 − x, x5 − x4 − 2x3 + 2x2 + x − 1⟩ ⊂ Q[x] .

ii. Let J = ⟨xy, (x − y)x⟩. Describe V(J) and show that
√

J = ⟨x⟩.

Solution.
i. The ideal

〈
x5 − 2x4 + 2x2 − x, x5 − x4 − 2x3 + 2x2 + x − 1

〉
is generated by the greatest

common divisor of x5 − 2x4 + 2x2 − x and x5 − x4 − 2x3 + 2x2 + x − 1, because Q[x] is
a principal ideal domain. Since

x5 − 2x4 + 2x2 − x = (x5 − x4 − 2x3 + 2x2 + x − 1)− (x4 − 2x3 + 2x − 1)
x5 − x4 − 2x3 + 2x2 + x − 1 = (x + 1)(x4 − 2x3 + 2x − 1) ,

we see that
〈

x5 − 2x4 + 2x2 − x, x5 − x4 − 2x3 + 2x2 + x − 1
〉

=
〈

x4 − 2x3 + 2x − 1
〉
.

As x4 − 2x3 + 2x − 1 = (x + 1)(x3 − 3x2 + 3x − 1) = (x + 1)(x − 1)3, we see that√
⟨x5 − 2x4 + 2x2 − x, x5 − x4 − 2x3 + 2x2 + x − 1⟩ ⊇

〈
(x + 1)(x − 1)

〉
= ⟨x2 − 1⟩ .

When g ∈
√
⟨x4 − 2x3 + 2x − 1⟩, it follows that gm ∈

〈
x4 − 2x3 + 2x − 1

〉
for some

positive integer m, which means gm divisible by x4 − 2x3 + 2x − 1. We deduce that g
is divisible by x2 − 1 and

√
⟨x4 − 2x3 + 2x − 1⟩ =

〈
x2 − 1

〉
. Since Q[x] has a unique

monomial order, the polynomial x2 − 1 is the unique minimal Gröbner basis for the
given ideal.

ii. The equation xy = 0 implies that x = 0 or y = 0. When x = 0, we have (x − y)x = 0
which implies that V(x) ⊆ V(J). When y = 0, we have 0 = (x − y)x = x2 which implies
that x = 0. Thus, we have V(x) = V(J). Since

J = ⟨xy, x2 − xy⟩ = ⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, y⟩ ,

we have
√

J = ⟨x⟩ ∩ ⟨x, y⟩ = ⟨x⟩. □
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