Solutions 4

P4.1. Assume that K is an algebraically closed field. Identify affine space A’(IK) with the space
of (3 x 3)-matrices A = [a;;]. Let p: A (K) --+ A’ (K) be the rational map defined by

010 .
001|A .
000

i. Find equations for the smallest affine subvariety X containing the image of p.
ii. Show that X is the set of all nilpotent (3 x 3)-matrices.

A— A

Solution.
X1 X4 X7y
i. For the matrix A = |x, x5 xg|, the Cramer rule shows that
X3 X6 X9
. 1 X5X9 — XeX§ XeX7 — X4X9 X4X8 — X5X7
A= X3Xg — XpX9 X1X9 — X3X7 XpX7 — X1X
det(A) |¥3¥8 — XaXo X1Xo = X3X7 XpX7 —XiXg|

X2Xe — X3X5 X3X4 — X1Xe X1X5 — X2X4

010 _ )
so A — A{oo 1}A1 is a rational map.
000

We apply the rational implicitization theorem in Macaulay2 [M2]. We create the
polynomial ring and the generic matrix A.

Macaulay2, version 1.24.11

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,
Isomorphism, LLLBases, MinimalPrimes, OnlinelLookup,
PackageCitations, Polyhedra, PrimaryDecomposition, ReesAlgebra,
Saturation, TangentCone, Truncations, Varieties

il : n = 3;
i2 : S =0QQ[z, x.1..x_(n"2), y_1..y_(n"2)];
i3 : A = genericMatrix(S, x_1, n, n)
03 = | x_1 x_4 x_7 |
| x22 x5 x_8 |
| x.3 x 6 x 9 |
3 3

03 : Matrix S <-- S

We next construct the adjugate of A and verify that A adj(A) = det(A) L.

i4 : adj = matrix table(n, n, (j,k) -> (-1)~(j+k) =
det submatrix(A, delete(k,{0,1,2}), delete(j,{0,1,2})))

o4

o4 :
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| -x_6x_8+x_5x_9 x_ 6Xx_7-x_4x_ 9 -x_5x 74+x_4x_8 |
| x3x_.8-x_2x_9 -x_3x_7+x_1x_ 9 x 2x_7-x_1x_8 |
| -X_3X_5+x_2x_6 X_3X_4-X_1x_6 -X_2X_4+x_1x_5 |

3 3

Matrix S <-- S
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i5 : assert(Axadj - det(A) x id_(S"3) == 0)

We construct the ‘graph’ ideal I for the rational parametrization and compute the
elimination ideal J.

i6 : N = matrix{{0,1,0},{0,0,1_S},{0,0,0}}
06 =] 0610 |

| © 01 |

| 600 |

06 : Matrix S <-- S
i7 : M = AxNxadj;

3 3
o7 : Matrix S <-- S

i8 : B = genericMatrix(S, y_1, n, n)

08 = |
I
I

1y 4y 7|
y- I
y- I
3

<K<K

wN
O 00

y_—
y—

w ow

08 : Matrix S <-- 'S

i9 : I = minors(1, det(A)*B-M) + ideal(1l-det(A)x*z);
09 : Ideal of S

i10 : J = eliminate(I, {z} | toList(x_1 .. x_(n"2)));
010 : Ideal of S

i1l : netList J_x

0ll = |y +y +y
1 5 9

The polynomials listed in 011 define the smallest affine variety X containing the image
of the rational map p.

ii. A (3 x 3)-matrix B is nilpotent if and only if its minimal polynomial p equal t*
for some nonnegative integer k. Since each irreducible factor of the characteristic
polynomial of B is also a factor of p, it follows that the characteristic polynomial of B
is +3. We conclude that the coefficients of the characteristic polynomial of a generic
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(3 x 3)-matrix define the affine variety X. We check that these polynomials generate
the ideal | as follows.

112 : J' = ideal substitute(contract(matrix{{z"2,z,1}}, det(z-B)), {z => 0_S});
012 : Ideal of S
i13 : assert(J’' == J)
114 : netlList J'_x
e R +
ol4=1]-y -y -y
1 5 9
yy +yy -VYy -yy +Yyy +yy
4 15 37 1 59

A L |:|

P4.2. For any polynomial f = a;x’ +a,_; x'~1 +--- + a9 € C[x] where a; # 0 and £ > 0, the
discriminant of f is defined to be

ii.
iii.
iv.

(_1)6(6—1)/2

disc(f) = Res(f, f';x).

ay

. The polynomial f € Clx] is separable if its has only simple roots. Show that f is

separable if and only if f is relatively prime to its derivative f’.

Prove that f has a multiple factor if and only if disc(f) = 0.

Does 6x* — 23x% + 32x2 — 19x + 4 have a multiple root in C?

Compute the discriminant of the quadratic polynomial f = ax? + bx + c¢. Explain how
your answer relates to the quadratic formula.

Solution.

i

ii.

MATH 413/813 : 2025

We first show that a complex number a4 is a simple root of f if and only if 4 is not a
root of its derivative f’. The number a is a root of f if and only if f = (x —a) ¢ where
¢ lies in Clx]. For the number a to be a simple root of f, it is necessary and sufficient
that g(a) # 0. Since f' = g+ (x —a)¢/, it follows that f'(a) = g(a).

When the polynomials f and f’ are relatively prime, there exists polynomials g and
hin C[x] such that g f + & f' = 1. For any root a of the polynomial f, it follows that
1 = g(a) f(a) + h(a) f'(a) = h(a) f'(a). Hence, we have f'(a) # 0 and a is a simple
root of f. Conversely, suppose that f and f’ have a common factor g in C[x] such that
deg(g) > 1. The Fundamental Theorem of Algebra guarantees that g has a complex
root a € C. It follows that a is a common root of f and f’ which means that a is not a
simple root of f.

From part i, we know that f has a multiple root if and only if f and f’ have a common
factor. The polynomials f and f’ have a common factor if and only if Res(f, f’;x) = 0.
Since a; # 0, we see that disc(f) = 0 if and only if Res(f, f’;x) = 0.
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iii. Given f = 6x* — 23x3 + 32x? — 19x + 4, we have

(6 —23 32 —-19 4 0 O
0 6 —-23 32 —-19 4 0

1 0 0 6 —-23 32 —-19 4
Res(f,f’;x)ZEdet 24 —69 64 —19 0 0 8
0

-1

disef) = I

ay 0 24 —69 64 —19 0
0 0 24 —69 64 —19
(0 0 0 24 —69 64 ]
(6 —23 32 —-19 4 0 0 |
0 6 -23 32 -19 4 0 . T
1 0 0 6 -23 32 —19 4
B B 1 -28 71 —60 16 O
——det|0 23 —64 57 —16 0 0 | =det|; 1= ‘o8 71 —e0 16
6 0 0 23 —64 57 —16 0
0 0 23 —64 57 —16
0 0 0 23 —64 57 —16 00 1 -5 7 _3
0 0 0 24 —69 64 —19]

145 -394 341 -92 0

0 145 -394 341 -92 8376 —17045 8678
=det| 1 0 —69 136 —68| =det| 331 —674 343 | =0.

0 0 51 104 53 51 —-104 53

0 1 -5 7 =3

Hence, f has a multiple root; one verifies that f = (2x —1)(3x — 4)(x — 1)2.

iv. We have
(_1)6(6—1)/2

disc(f) = . Res(f, f'; x)
(_1)[abc] llbc] llb c]
= 2a b 0| =(=1){2 b 0| =(=1) [0 —=b —2¢
a 0 2ab 02b 02z b

= (=1)((=b)(b) — (2a)(—2¢)) = b* — dac
Thus, disc(f) is the polynomial under the square root in the quadratic formula
X = A (—b=+ Vb? —4ac). When disc(f) = 0, the double root is —£. O

P4.3. Suppose that f = a, x" 4+ a,_1x" 1+ - +ag and § = by x™ + by X" + - + by.
Consider the polynomial in two variables
m—1m—1
f()gy) —8(x)f(y) _ Y oyt
-y =0 k=0
i. When m = 2, show that Res(f,g;x) = (—1) det [cjx].
ii. For any positive integer m, prove that Res(f, g; x) = (—1)"("=1/2 det [cik]-

p(x,y) =

Solution.  1i. Since
f)f(y) —g(x)f(y)
= (apx® + a1x + ag) (byy? + byy + bo) — (bax® + byx + by) (azy? + a1y + ag)
= (agby — a1bo)x%y + (—agby + arby)xy? + (azby — aghy) x>
+(—agby + agb)y? + (a1by — aghy)x + (—aybg + aghy )y
= (x —y) ((azby — a1b2)xy + (axby — agba)x + (a2bg — aghr)y + (a1bo — aghy)),

MATH 413/813 : 2025
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we deduce that

a ay; agp 0
0 ar aq1 Ao
by by byp O
0 by by by

= a2b0 — a1a2b0b1 + a0a2b1 + a1b0b2 — Zaoazbobz — a0a1b1b2 + a0b2

Res(f, g x) = det

. albo — 11()191 llzbo — llobz
- (_1) det azbo — aobz a2b1 — albz

ii. Since

f(x)g(y) —g(x)

m

Z a; by — a; b)) xy* = Z Z (ax bj — aj by) (x*y/ — 2yF)
0k j=0 k=j+1

m . .
Z (ax bj — a; by (X7 — y*))
k=j+1

m—

TME

||M§|

m k—j—1
Z: Y (axbj—ajbp)xly/ ( Yo iy 1) ,

j=0 k=i+1 i=0

we see that each ¢ is bihomogeneous of degree 1 in the variables a; and by. Hence, the
polynomials R = (—1)"("=1)/2 det [cjx] and Res(f, g; x) are bihomogeneous of degree
m in the variables 4; and by. The monomial a,, by appears only in the polynomials
Ckm—1—k for 0 < k < m — 1. Since the monomial a,, by appears once in each of the
antidiagonal entries of R and the sign of the permutation (m m—1 --- 3 2 1)
is (—1)"m=1)/2 the coefficient of a!’ bj' in both R and Res(f, g, x) is 1. It remains to
show that R vanishes whenever f and g have a common root. Given a common root A
of f and g, we have

0=9¢(Ay)
€0,0 €o,1 2 - Com-1 1
‘0 €1 €2 - Cm-1 Y,
=[1A A% A" | 0 1 2 o Com Y
Cm.fl,O Cm;l,l Cm.—l,z . Cm—i,m—l }/m_l
As the vectors of the form [1 y y? -+ y™ 1|7 span C", it follows that the vector
[1 A A2 - A" 1T lies in the kernel of the matrix [cj]T, so det [c;x] = 0. O

P4.4. A subset U of the polynomial ring S := Klxy, x, ..., xy,] is multiplicatively closed if any
product of elements of U is also in U (including the empty product 1).
i. Let U be a multiplicatively closed subset of S. When an ideal I in S is maximal with
respect to inclusion among all ideals not meeting U, show that I is prime.
ii. Let | be any proper ideal in S. Show that the radical ideal /] is the intersection of all
prime ideals containing J.

Solution. i. Suppose that the elements f and g in S are not in the ideal I. The maximality
of I implies that both I 4 (f) and I + (g) meet the subset U. Hence, there are elements r
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and s in S, and elements p and ¢ in I such that 7f + p and sg + g belong to U. Assuming
that fg € I, we would have (rf + p)(sg +1q) = rs(fg) + (rf)(q) + (sg +a)(p) € I.
However, this contradicts the hypothesis that I " U = @. Therefore, the membership
fg € Iimplies f € I or g € I, so the ideal I is prime.

ii. Let A denote the set of prime ideals in S containing the ideal J. Since prime ideals are
radical, we have ] C /] C v/P = P for all P € A and /] C (\pe4 P. For the converse
inclusion, consider an element f that does not belong to the radical 1/J. Part i implies
that the ideal I maximal among all ideals not meeting U := {f™ | m > 0} is prime.
Therefore, we have I € A, f € I, and f & Npey P. O

P4.5. i. Find the minimal Grobner basis for

\/(x5—2x4—|—2x2—x,x5 —x*—2x3 +2x2+x — 1) C Qx].
ii. Let ] = (xy, (x — y)x). Describe V(]) and show that /] = (x).
Solution.
i. The ideal (x° — 2x* +2x? — x, x° — x* — 2x3 + 2x? + x — 1) is generated by the greatest
common divisor of x° — 2x* +2x? — x and x° — x* — 2x3 4+ 2x? + x — 1, because Q|[x] is
a principal ideal domain. Since
=22t —x=( -t -2 2t —1) - (xt -2 +2x — 1)
ot 2 2 b —1=(x+FD)(x* 23 +2x - 1),
we see that (x> —2x*+2x2 —x, x> —x* =23+ 222+ x — 1) = (x* -2 +2x—1).
Asxt—2x34+2x — 1= (x +1)(x® = 3x2 +3x — 1) = (x +1)(x — 1)3, we see that

)
\/<x5—2x4+2x2—x,x5—x4—2x3+2x2+x—1> D {((x+1)(x—1)) = {(x*—1).

When g € /(x* — 2x3 4 2x — 1), it follows that ¢ € (x* — 2x% 4+ 2x — 1) for some
positive integer m, which means ¢" divisible by x* — 2x3 + 2x — 1. We deduce that g
is divisible by x> — 1 and /(x* —2x3 4+ 2x — 1) = (x> — 1). Since Q[x] has a unique
monomial order, the polynomial x> — 1 is the unique minimal Grébner basis for the
given ideal.

ii. The equation xy = 0 implies that x = 0 or y = 0. When x = 0, we have (x —y)x =0
which implies that V(x) C V(J). When y = 0, we have 0 = (x — y)x = x> which implies
that x = 0. Thus, we have V(x) = V(J). Since

J = (xy,x* —xy) = (%, xy) = () N (x%, ),
we have /] = (x) N {x,y) = (x). O
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