Solutions 5

P5.1. Let K be a field.
i. For any univariate polynomial f := a, x™ + a1 x" '+ - - +a; x + ag of degree m
in the ring K[x], define its homogenization in the ring K[x, y] to be

fMr=apxX™ +ay X" Ty 4+ agxy™  Fagy™.

Prove that the polynomial f has a root in the field K if and only if there exists a point
(b,c) in A2(K) such that (b,c) # (0,0) and f"(b,c) = 0.

ii. Assume that the field K is not algebraically closed. Exhibit a bivariate polynomial / in
the ring K[x, y] such that the affine subvariety V(h) in A?(K) is just the origin (0,0).

iii. Assume that the field K is not algebraically closed. For any positive integer n,
demonstrate that there exists a polynomial f in the ring K[x1, x2, ..., x,] such that the
affine subvariety V(f) in A*(K) is the origin (0,0, ...,0).

iv. Assume that the field K is not algebraically closed. Prove that any affine subvariety
X =V(g1,82 --.,8) in A’(K) can be defined by a single equation.

Solution.

i. Suppose that an element b in the field K is a root of the polynomial f. It follows
that 0 = f(b) = f"(b,1) and (b,1) € A%(K). Conversely, suppose that the point
(b,c) in A%(K) satisfies (b,c) # (0,0) and f"(b,c) = 0. When ¢ = 0, we would have
f1(b,0) = a, b™ = 0. Since deg(f) = m, it follows that a,, # 0 and we deduce that
b = 0. Hence, we must have ¢ # 0. It follows that

Oth(b,c) :ambm+am71bm_1c‘|‘"'+a1bcm_1—|—gocm

e (on (8" s (o () ) e (2).

Therefore, the element b/c in the field K is a root of the polynomial f.

ii. As the field K is not algebraically closed, there exists a polynomial f in K][x] having
positive degree and no root in K. For the homogeneous bivariate polynomial / := f7,
part i implies that the origin is the only solution of & = 0 in A%(K).

iii. We proceed by induction on n. When n = 1, the hypothesis that the field K is not
algebraically closed establishes the claim. When n = 2, the assertion follows from
part ii. Suppose that the claim holds for some positive integer n: there exists a
polynomial g in the ring K[x1, x, ..., x,] such that the only solution of ¢ = 0 in A"(K)
is the origin. By part ii, there also exists a polynomial / in the ring K[x,1,y] such
that the only solution of & = 0 is the origin in A?(K). Thus, the composite polynomial
flxr, 22,00, x041) = h(xpy1, §(x1, %2, ..., X)) in K[x1, X, ..., x,41] equals zero if and
only if x,, 1 = 0 and g(x1,x7...,x,) = 0, which is is equivalent to

x1:x2:"':xn:xn+1:0

completing the induction.
iv. Part iii shows that there is a polynomial f in K[y, 2, . . ., ] such that the only solution
to f = 0in A'(K) is the origin. The composite polynomial & := f(g1,%2,...,8r) in
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Klx1, x2,...,x,] vanishes if and only if we have g1 = g» = - - - = g = 0. We conclude
that X = V(g1,92,..., %) = V(h). O

P5.2. For any ideal I in the ring S := KJx1, xp, ..., x,] and any polynomial f in S, the saturation
of I with respect to f is the set

(I:f*):= {g € S | there exists a positive integer m such that f" ¢ € I} .

i. Prove that (I: f*) is an ideal in the ring S.
ii. Prove that there is an ascending chain of ideals (I: f) C (I: f2) C (I
iii. For any positive integer ¢, prove that we have the equality (I: f*)
only if we have the equality (I: f*) = (I: f*1).

Y C
= (I: f") if and

Solution.
i. Suppose that the polynomials g1 and g» belong to (I: f*). By definition, there exists
positive integers m1 and mjy such that f™ ¢; € I and f"2 ¢, € I. Consider polynomials
hi and hy in S. Setting m := max(my, my), we have

fr(h1g1+haga) =hy f7""™M (fMg1) +ha f2 (f™ g2) €1

sohy1g1+hygo € (I: f°). We deduce that (I: f*) is an ideal in S.

ii. Let £ be a positive integer and suppose that ¢ € (I: f*). By definition, we have f ¢ € I.
As I is an ideal, it follows that f(f‘g) = f**1 ¢ € I. Since g € (I: f*!), we conclude
that (I: f*) C (I: f*1).

iii. For any positive integer ¢, the definiton of saturation and part ii establish the inclusions
(1:£) C (1:) and (1: 1) C (I f41),

Suppose that (I: f©) C (I: f') and consider an element g in S. It follows that
the existence a positive integer m such that f" ¢ € I implies that f* ¢ € I. Hence, the
relation f*+1 ¢ € I implies that f* ¢ € I which demonstrates that (I: f/*1) C (I: f").

Conversely, suppose that (I: f**1) C (I: f) and consider an element g in S. Tt
follows that the relation f/*1¢ € I implies that f‘¢ € I. Assume that there exists a
positive integer m such that f ¢ € I. When m < £, we have f'g = ff="(f"g) € I.
When m > £, we have f/*1(fm"~~1¢) = f" ¢ € I and the assumption implies that
Fi(fm—t=1¢) = fm~1lg € I. Repeating this process, we obtain f’¢ € I. We conclude
that (I: f*) C (I: f%). O

P5.3. The ideals I and | in the ring S := K[x1, X2, ..., x,| are comaximal if | + ] = S.

i. Over an algebraically closed field, show that the ideals I and | are comaximal if and
only if we have V(I) N V(]) = @. Without the algebraically closed hypothesis, show
that this can be false.

ii. When the ideals I and | are comaximal, show that [ | = 1N ].
iii. When the ideals I and | are comaximal, show that, for all positive integers i and j, the
ideals I' and ]/ are comaximal.

Solution.
i. Suppose that I + ] = (1). We have V(I)NV(]) = V(I+]) = V(1) = @. For the
converse, suppose that @ = V(I) N V(]) = V(I +]). When K is an algebraically
closed field, the Weak Nullstellensatz implies that I + ] = (1). When the field K is
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ii.

iii.

not algebraically closed, there exists a polynomial f in the ring K|[x1] having positive
degree and no root in K. We see that (f) + (f) = (f) # (1), but V(f) N V(f) = @.
We always have I ] C I N ]. Suppose that I and | are comaximal. It follows that there
exists elements f €  and ¢ € [ such that f +¢g=1. Foranyh € INJ, wehave h € |
and h € J. It follows that h = h(f +g) =hf+hgel]Jand I] O IN]. We conclude
that I ] = I N ] whenever I and | are comaximal.

Suppose that I and | are comaximal. There exists elements f € I and ¢ € | such that
f + g = 1. For any positive integers i and j, the binomial theorem gives

i1 .
_ i+j-1 _ 7= 1N ke itj-1-k
1=(f+g) k_ZO ( . ) fg :

Since the first i summands (those index by 0 < k < i) are divisible by g/ € J/ and the
last j summands (those index by i < k < i+ j— 1) are divisible by f' € I', it follows

that 1 = (f + ¢)""/~1 € I' + Ji. Therefore, the ideals I' and ]/ are comaximal. 4
i. Consider the affine subvariety X := V(xy — yz — y, x> — y*> — z?) in A3. Show that X is
a union of three irreducible components. Describe them and find their prime ideals.
ii. Show that the set of real points on the irreducible complex surface
V(x?y — xz> +yz?) C A
is connected but is not equidimensional; it is the union of a closed curve and a closed
surface in the induced Euclidean topology.
Solution.

i

ii.

The equation 0 = xy —yz —y = y(x —z — 1) implies that y = 0 or x —z = 1. When
y = 0, the equation 0 = x> — y?> — z? implies that 0 = x> — 2% = (x +z)(x — z) so
x+z=0o0rx—z=0. Wheny # 0, we have x —z =1 and

O=x*—y* -2 =(x—2)(x+2) P =x+z—y* =2z+1—y*.
It follows that
Vixy—yz—y, x> —y*—22) =V(x —z,y) UV(x+zy)UV(x —z — 1,y> =2z — 1)..

Since each of these components is clearly rational, we see that they are irreducible.
Therefore, the affine subvariety X = V(xy — yz —y, x> — y*> — z?) is the union of three
irreducible curves: the x = z diagonal line in the xz-plane, the x = —z antidiagonal
line in the xz-plane, and a parabola lying in the x — z = 1 plane.

We observe that x*y — xz? + yz2 = (x> + z2)y — xz%. Over the real numbers, the
equation x% + z? = 0 implies that x = z = 0. In this situation, any y € R satisfies
(x? 4+ z%)y — xz?, so the y-axis contained the set of real points of V(x%y — xz? + yz2).
When x? + z2 # 0, the surface has the rational parametrization p: A%\ {(0,0)} — A3

defined by
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Hence, the real points of the variety V(x?y — xz? + yz?) are the union of the y-axis and
surface p(A2\ {(0,0)}). Since we have
. st?
lim ———— =
(s,6)—(0,0) $2 + 12

the origin lies in Zariski closure of the surface. Therefore, the set of real points on
affine subvariety V(x?y — xz? 4+ yz?) in A?(R) is connected, but is the union of two
proper closed subsets in the induced Euclidean topology. U

4

i. Let I be a monomial ideal in the ring S := K[x1, X2, ..., X,|. Suppose that the monomial
x* is a minimal generator of the ideal I and satisfies x* = x"1 x¥2 for some relative
prime monomials x¥! and x”2. Show I = (I + (x¥1)) N (I + (x™2)).

ii. Using part i, find an irredundant primary decomposition of the monomial ideal

(x*y?, x%yz, xy?z, x°2%, xyz2, y?2?) .

Solution.
i. Since I is a monomial ideal, it is enough to show that (I + (x"1)) N (I + (x*2)) and
I contain the same monomials. A monomial x* belongs to (I + (x”) ) if and only if
x® € I or x¥i dividies x". Because x¥2 and x"2 are relatively prime, we have

eI+ ™)) N(I+(x™)) & x¥elorx™=x""2dividesx" <& a%el.

ii. Repeated applications of part i give

(x*y?, x%yz, xy z,x°2%, xyz%, y*2%)

= (x%, x? yz xy?z, x*22, xyzz,yzzz> N (y?, x* yz xy?z, x*z%, xyz*, y*z*)

(x? xy z, xyzz,y222> N (v, x*yz, x*22, xyz?)
= (x?, xy z, xyz Y3 N <x2,xyzz, xyz?,2%) N (y?, x*yz, X2, xyz?) N (y?, x%yz, 2%, xyz?)
= (2% xyz N (x xy’z, Zz) N (% Y% xyz?) N (KPyz, 7, 2%)
= (2200 (2 ) 0 20, 2) 002,52 0 (292 ) 0 (2,2, 2)
< %, y%,2%) N <y,y 2%) N (z,y%,2°)
= (x,y%) N («,y) N (%, y%,2%) N (x,2) N (2%, 2) Ny, 2°) 0 (7, 2)
For any monomial ideal | generated by pure powers of a subset of the variables,
every zerodivisor in the quotient ring S/] is nilpotent, so the ideal | is primary.
Hence, (x,y*) and (x?,y) are both (x,y)-primary ideals, (x,z*) and (x?,z) are both
(x,z)-primary ideals, and (y,z*) and (y? z) are both (y, z)-primary ideals. Thus, the
irredundant irreducible decomposition is

(2, Pyz xyz 22y, 22 = (g ) 0 9 ) 0 (o, 2) 0, 2)
= (x,y)2 N (222 N (1,270 (1,2)° O
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