
Solutions 02
1. Let 𝑋 be any set. The identity map id𝑋∶ 𝑋 → 𝑋 is defined, for all 𝑥 in 𝑋, by 𝑥 ↦ 𝑥

and the projection 𝜋1∶ 𝑋 × 𝑋 → 𝑋 is defined, for all 𝑥 and 𝑦 in 𝑋, by (𝑥, 𝑦) ↦ 𝑥.
For any two maps 𝜑∶ 𝑋 → 𝑋 and 𝜓∶ 𝑋 → 𝑋, the map 𝜑 || 𝜓∶ 𝑋 → 𝑋 ×𝑋 is defined,
for all 𝑥 in 𝑋, by 𝑥 ↦ (𝜑(𝑥),𝜓(𝑥)) and the map 𝜑 × 𝜓∶ 𝑋 × 𝑋 → 𝑋 × 𝑋 is defined,
for all 𝑥 and 𝑦 in 𝑋, by (𝑥, 𝑦) ↦ (𝜑(𝑥),𝜓(𝑦)). For the one‑element set {∅}, there
exists a unique map 𝜂∶ 𝑋 → {∅} defined, for all 𝑥 in 𝑋, by 𝜂(𝑥) = ∅.

Suppose that the set 𝑋 is nonempty and consider three maps 𝛽∶ 𝑋 × 𝑋 → 𝑋,
𝜀∶ {∅} → 𝑋, and 𝜄∶ 𝑋 → 𝑋 satisfying the following three conditions:

(associativity) 𝛽 ∘ (𝛽 × id𝑋) = 𝛽 ∘ (id𝑋 ×𝛽)
(right identity) 𝛽 ∘ (id𝑋 × 𝜀) = id𝑋 ∘𝜋1
(right inverse) 𝛽 ∘ (id𝑋 || 𝜄) = 𝜀 ∘ 𝜂

Prove that the quadruple (𝑋, 𝛽, 𝜀, 𝜄) defines a group.

Solution. The conditions assert that the diagrams
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commute. For any elements𝑥 and 𝑦 in𝑋, define the binary operator⋆∶ 𝑋×𝑋 → 𝑋
by 𝑥 ⋆ 𝑦 ∶= 𝛽(𝑥, 𝑦). The first condition implies that, for any elements 𝑥, 𝑦, and 𝑧
in 𝑋, we have

(𝑥 ⋆ 𝑦) ⋆ 𝑧 = 𝛽(𝑥 ⋆ 𝑦, 𝑧) = 𝛽(𝛽(𝑥, 𝑦), 𝑧)
= (𝛽 ∘ (𝛽 × id𝑋))(𝑥, 𝑦, 𝑧)
= (𝛽 ∘ (id𝑋 ×𝛽))(𝑥, 𝑦, 𝑧)
= 𝛽(𝑥, 𝛽(𝑦, 𝑧)) = 𝛽(𝑥, 𝑦 ⋆ 𝑧) = 𝑥 ⋆ (𝑦 ⋆ 𝑧) ,

which gives the associativity of this binary operator. Set 𝑒 ∶= 𝜀(∅). The second
condition implies that, for any 𝑥 in 𝑋, we have
𝑥 ⋆ 𝑒 = 𝛽(𝑥, 𝜀(∅)) = (𝛽 ∘ (id𝑋 × 𝜀))(𝑥,∅) = (id𝑋 ∘𝜋1)(𝑥,∅) = id𝑋(𝜋1(𝑥,∅)) = 𝑥 ,
which shows that the element 𝑒 in 𝑋 is a right identity for this associative binary
operator. The third condition implies that, for any 𝑥 in 𝑋, we have

𝑥 ⋆ 𝜄(𝑥) = (𝛽 ∘ (id𝑋 || 𝜄))(𝑥) = (𝜀 ∘ 𝜂)(𝑥) = 𝜀(𝜂(𝑥)) = 𝜀(∅) = 𝑒 ,
which proves that the element 𝜄(𝑥) in 𝑋 is a right inverse for the element 𝑥. Using
the right inverse 𝜄2(𝑥) in 𝑋 of the element 𝜄(𝑥) in 𝑋, we obtain

𝑥 = 𝑥 ⋆ 𝑒 = 𝑥 ⋆ (𝜄(𝑥) ⋆ 𝜄2(𝑥)) = (𝑥 ⋆ 𝜄(𝑥)) ⋆ 𝜄2(𝑥) = 𝑒 ⋆ 𝜄2(𝑥) .
For any 𝑥 in 𝑋, it follows that 𝑒⋆𝑥 = 𝑒⋆ (𝑒⋆ 𝜄2(𝑥)) = (𝑒⋆ 𝑒)⋆ 𝜄2(𝑥) = 𝑒⋆ 𝜄2(𝑥) = 𝑥,
so the element 𝑒 is a two‑sided identity for this binary operator. Moreover, we see
that 𝑥 = 𝑒 ⋆ 𝜄2(𝑥) = 𝜄2(𝑥), which demonstrates that 𝑒 = 𝜄(𝑥) ⋆ 𝜄2(𝑥) = 𝜄(𝑥) ⋆ 𝑥.
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Hence, the element 𝑥−1∶= 𝜄(𝑥) is a two‑sided inverse of the element 𝑥. Therefore,
the quadruple (𝑋, 𝛽, 𝜀, 𝜄) defines a group. □

2. For any nonnegative integer 𝑛, the sign function sgn∶ 𝔖𝑛 → 𝜇2 ∶= {±1} is defined
by sgn(𝜎)∶= (−1)𝑛−𝑐 where the permutation 𝜎 is the product of 𝑐 disjoint cycles.

i. For any permutation 𝜎 and any transposition 𝜛, prove sgn(𝜛𝜎) = − sgn(𝜎).
ii. For any permutations 𝜎 and 𝜏, show that sgn(𝜎 𝜏) = sgn(𝜎) sgn(𝜏).

iii. When the permutation 𝜎 is the product of 𝑚 transpositions, demonstrate that
sgn(𝜎) = (−1)𝑚.

Solution.
i. Let 𝜛 = (𝑎 𝑏) and let 𝜎 = 𝜔1 𝜔2 ⋯ 𝜔𝑐 be the factorization of the permutation

into disjoint cycles. When 𝑎 and 𝑏 both appear in one cycle 𝜔𝑗 where 1 ⩽ 𝑗 ⩽ 𝑐,
we have
𝜛𝜔𝑗 = (𝑎 𝑏)(𝑎 𝑐1 𝑐2 ⋯ 𝑐𝑟 𝑏 𝑑1 𝑑2 ⋯ 𝑑𝑠) = (𝑎 𝑐1 𝑐2 ⋯ 𝑐𝑟)(𝑏 𝑑1 𝑑2 ⋯ 𝑑𝑠)
and 𝜛𝜎 factors into 𝑐 + 1 disjoint cycles. We deduce that

sgn(𝜛𝜎) = (−1)𝑛−(𝑐+1) = (−1)(−1)𝑛−𝑐 = − sgn(𝜎) .
On the other hand, when 𝑎 and 𝑏 appear in disjoint cycles of 𝜎, there exists
indices 𝑖 and 𝑗 such that 𝜔𝑖 = (𝑎 𝑐1 𝑐2 ⋯ 𝑐𝑟) and 𝜔𝑗 = (𝑏 𝑑1 𝑑2 ⋯ 𝑑𝑠). It
follows that
𝜛𝜔𝑖𝜔𝑗 = (𝑎 𝑏)(𝑎 𝑐1 𝑐2 ⋯ 𝑐𝑟)(𝑏 𝑑1 𝑑2 ⋯ 𝑑𝑠) = (𝑎 𝑐1 𝑐2 ⋯ 𝑐𝑟 𝑏 𝑑1 𝑑2 ⋯ 𝑑𝑠)

and 𝜛𝜎 factors into 𝑐 − 1 disjoint cycles. We deduce that
sgn(𝜛𝜎) = (−1)𝑛−(𝑐−1) = (−1)(−1)𝑛−𝑐 = − sgn(𝜎) .

ii. Let𝜎 = 𝜛1𝜛2 ⋯𝜛𝑚 be a factorization of𝜎 into transpositions. We proceed by
induction on 𝑚. The base case 𝑚 = 0 is vacuous. The case 𝑚 = 1 is precisely
part i. Using the part i twice and the induction hypothesis, we obtain

sgn(𝜎 𝜏) = sgn(𝜛1𝜛2𝜛3 ⋯ 𝜛𝑚 𝜏)
= − sgn(𝜛2𝜛3 ⋯𝜛𝑚 𝜏)
= − sgn(𝜛2𝜛3 ⋯𝜛𝑚) sgn(𝜏)
= sgn(𝜛1𝜛2𝜛3 ⋯𝜛𝑚) sgn(𝜏) = sgn(𝜎) sgn(𝜏) .

iii. The factorization of a transposition 𝜛𝑖 in 𝔖𝑛 into disjoint cycles consists of 1
cycle of length 2 and 𝑛 − 2 cycles of length 1, so sgn(𝜛𝑖) = (−1)𝑛−(𝑛−1) = −1.
Part ii implies that
sgn(𝜎) = sgn(𝜛1𝜛2 ⋯ 𝜛𝑚) = sgn(𝜛1) sgn(𝜛2) ⋯ sgn(𝜛𝑚) = (−1)𝑚 . □

3. The quaternion group is the subgroup of SL(2,ℂ) generated by the eight matrices:

I∶= [1 0
0 1] , A∶= [ i 0

0 −i] , B∶= [ 0 1
−1 0] , C∶= [0 i

i 0] ,

−I∶= [−1 0
0 −1] , −A∶= [−i 0

0 i ] , −B∶= [0 −1
1 0 ] , −C∶= [ 0 −i

−i 0 ] .

i. Determine the order of the quaternion group.
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ii. Find a minimal set of generators for the quaternion group.
iii. Show that the quaternion group is not isomorphic to the dihedral group 𝐷4.

Solution.
i. All products in the quaternion group appear in Figure 1. It follows that this

group has order 8.

⋆ I −I A −A B −B C −C
I I −I A −A B −B C −C
−I −I I −A A −B B −C C
A A −A −I I C −C B −B
−A −A A I −I −C C −B B
B B −B −C C −I I A −A
−B −B B C −C I −I −A A
C C −C B −B −A A −I I
−C −C C −B B A −A I −I

Figure 1. Multiplication table for the quaternion group

ii. Since A0 = I, A1 = A, A2 = −I, A3 = −A, B0 = I, B1 = B, B2 = −I, B3 = −B,
A B = C, and B A = −C, the two elements A and B generate the quaternion
group. From Figure 1, we also see that the quaternion group is not cyclic.

iii. By definition, the dihedral group 𝐷4 is the automorphism group of a square. It
is isomorphic to the subgroup of SL(2,ℝ) generated the matrices

T∶= [0 −1
1 0 ] and R∶= [1 0

0 −1] .

The cyclic subgroups of the quaternion group are
⟨I⟩ = {I} , ⟨A⟩ = ⟨−A⟩ = {I,A,−I,−A} , ⟨C⟩ = ⟨−C⟩ = {I,C,−I,−C} ,

⟨−I⟩ = {I,−I} , ⟨B⟩ = ⟨−B⟩ = {I,B,−I,−B} ,
whereas the cyclic subgroups in 𝐷4 are

⟨R2⟩ = {I} , ⟨T2⟩ = {I,T2} , ⟨T2R⟩ = {I,T2R} , ⟨T⟩ = ⟨T3⟩ = {I,T,T2,T3} ,
⟨R⟩ = {I,R} , ⟨TR⟩ = {I,TR} , ⟨T3R2⟩ = {I,T3R} .

Since the quaternion group has 6 elements of order 4 and the dihedral group
𝐷4 has 2 elements of order 4, they cannot be isomorphic. Alternatively, the
quaternion group and the dihedral group𝐷4 have maximal cyclic subgroups of
different orders, so they cannot be isomorphic. □
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