Solutions 02

1. Let X be any set. The identity map $id_X : X \to X$ is defined, for all x in X, by $x \mapsto x$ and the projection π_1 : $X \times X \to X$ is defined, for all x and y in X, by $(x, y) \mapsto x$. For any two maps $\varphi: X \to X$ and $\psi: X \to X$, the map $\varphi || \psi: X \to X \times X$ is defined, for all x in X, by $x \mapsto (\varphi(x), \psi(x))$ and the map $\varphi \times \psi : X \times X \to X \times X$ is defined, for all x and y in X, by $(x, y) \mapsto (\varphi(x), \psi(y))$. For the one-element set { \emptyset }, there exists a unique map $\eta: X \to \{\emptyset\}$ defined, for all x in X, by $\eta(x) = \emptyset$.

Suppose that the set X is nonempty and consider three maps $\beta: X \times X \to X$, ε : { \emptyset } → X, and ι : $X \to X$ satisfying the following three conditions:

 $(associativity)$ $\beta \circ (\beta \times id_X) = \beta \circ (id_X \times \beta)$ $(right identity)$ $\beta \circ (id_X \times \varepsilon) = id_X \circ \pi_1$ $(right inverse)$ $\beta \circ (id_X || t) = \varepsilon \circ \eta$

Prove that the quadruple $(X, \beta, \varepsilon, \iota)$ defines a group.

Solution. The conditions assert that the diagrams

commute. For any elements x and y in X, define the binary operator $\star : X \times X \to X$ by $x \star y := \beta(x, y)$. The first condition implies that, for any elements x, y, and z in X , we have

$$
(x \star y) \star z = \beta(x \star y, z) = \beta(\beta(x, y), z)
$$

= (\beta \circ (\beta \times id_X))(x, y, z)
= (\beta \circ (id_X \times \beta))(x, y, z)
= \beta(x, \beta(y, z)) = \beta(x, y \star z) = x \star (y \star z),

which gives the associativity of this binary operator. Set $e := \varepsilon(\emptyset)$. The second condition implies that, for any x in X , we have

$$
x \star e = \beta(x, \varepsilon(\emptyset)) = (\beta \circ (\mathrm{id}_X \times \varepsilon))(x, \emptyset) = (\mathrm{id}_X \circ \pi_1)(x, \emptyset) = \mathrm{id}_X(\pi_1(x, \emptyset)) = x,
$$

which shows that the element e in X is a right identity for this associative binary operator. The third condition implies that, for any x in X , we have

$$
x \star \iota(x) = (\beta \circ (\mathrm{id}_X || \iota))(x) = (\varepsilon \circ \eta)(x) = \varepsilon(\eta(x)) = \varepsilon(\emptyset) = e,
$$

which proves that the element $\iota(x)$ in X is a right inverse for the element x. Using the right inverse $\iota^2(x)$ in X of the element $\iota(x)$ in X , we obtain

$$
x = x \star e = x \star (t(x) \star t^2(x)) = (x \star t(x)) \star t^2(x) = e \star t^2(x).
$$

For any x in X, it follows that $e \star x = e \star (e \star t^2(x)) = (e \star e) \star t^2(x) = e \star t^2(x) = x$, so the element e is a two-sided identity for this binary operator. Moreover, we see that $x = e \star \iota^2(x) = \iota^2(x)$, which demonstrates that $e = \iota(x) \star \iota^2(x) = \iota(x) \star x$.

MATH 893 : 2024 **page 1 of 3**

Hence, the element $x^{-1} := \iota(x)$ is a two-sided inverse of the element x. Therefore, the quadruple $(X, \beta, \varepsilon, \iota)$ defines a group.

- 2. For any nonnegative integer *n*, the **sign function** sgn: $\mathfrak{S}_n \rightarrow \mu_2 := {\pm 1}$ is defined by sgn(σ):= $(-1)^{n-c}$ where the permutation σ is the product of c disjoint cycles.
	- *i.* For any permutation σ and any transposition $\bar{\varpi}$, prove sgn($\bar{\varpi}$ σ) = $-\text{sgn}(\sigma)$.
	- *ii.* For any permutations σ and τ , show that sgn($\sigma \tau$) = sgn(σ) sgn(τ).
	- *iii.* When the permutation σ is the product of *m* transpositions, demonstrate that $sgn(\sigma) = (-1)^m$.

Solution.

i. Let $\varpi = (a \ b)$ and let $\sigma = \omega_1 \omega_2 \cdots \omega_c$ be the factorization of the permutation into disjoint cycles. When a and b both appear in one cycle ω_i where $1 \leq i \leq c$, we have

$$
\varpi \,\omega_j = (a \; b)(a \; c_1 \; c_2 \; \cdots \; c_r \; b \; d_1 \; d_2 \; \cdots \; d_s) = (a \; c_1 \; c_2 \; \cdots \; c_r)(b \; d_1 \; d_2 \; \cdots \; d_s)
$$

and $\varpi \sigma$ factors into $c + 1$ disjoint cycles. We deduce that

$$
sgn(\varpi \sigma) = (-1)^{n-(c+1)} = (-1)(-1)^{n-c} = -sgn(\sigma).
$$

On the other hand, when α and β appear in disjoint cycles of σ , there exists indices i and j such that ω_i = $(a \ c_1 \ c_2 \ \cdots \ c_r)$ and ω_j = $(b \ d_1 \ d_2 \ \cdots \ d_s)$. It follows that

$$
\varpi \omega_i \omega_j = (a b)(a c_1 c_2 \cdots c_r)(b d_1 d_2 \cdots d_s) = (a c_1 c_2 \cdots c_r b d_1 d_2 \cdots d_s)
$$

and $\varpi \sigma$ factors into $c - 1$ disjoint cycles. We deduce that

$$
sgn(\varpi \sigma) = (-1)^{n-(c-1)} = (-1)(-1)^{n-c} = -sgn(\sigma).
$$

ii. Let $\sigma = \varpi_1 \varpi_2 \cdots \varpi_m$ be a factorization of σ into transpositions. We proceed by induction on *m*. The base case $m = 0$ is vacuous. The case $m = 1$ is precisely part *i*. Using the part *i* twice and the induction hypothesis, we obtain

$$
sgn(\sigma \tau) = sgn(\varpi_1 \varpi_2 \varpi_3 \cdots \varpi_m \tau)
$$

= $- sgn(\varpi_2 \varpi_3 \cdots \varpi_m \tau)$
= $- sgn(\varpi_2 \varpi_3 \cdots \varpi_m) sgn(\tau)$
= $sgn(\varpi_1 \varpi_2 \varpi_3 \cdots \varpi_m) sgn(\tau) = sgn(\sigma) sgn(\tau).$

iii. The factorization of a transposition ϖ_i in \mathfrak{S}_n into disjoint cycles consists of 1 cycle of length 2 and $n-2$ cycles of length 1, so sgn $(\varpi_i) = (-1)^{n-(n-1)} = -1$. Part *ii* implies that

$$
sgn(\sigma) = sgn(\varpi_1 \varpi_2 \cdots \varpi_m) = sgn(\varpi_1) sgn(\varpi_2) \cdots sgn(\varpi_m) = (-1)^m.
$$

3. The **quaternion group** is the subgroup of $SL(2,\mathbb{C})$ generated by the eight matrices:

$$
\mathbf{I} := \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{A} := \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \qquad \mathbf{B} := \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \qquad \mathbf{C} := \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix},
$$

$$
-\mathbf{I} := \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad -\mathbf{A} := \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}, \qquad -\mathbf{B} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \qquad -\mathbf{C} := \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}.
$$

i. Determine the order of the quaternion group.

- *ii.* Find a minimal set of generators for the quaternion group.
- *iii.* Show that the quaternion group is not isomorphic to the dihedral group D_4 .

Solution.

i. All products in the quaternion group appear in Figure 1. It follows that this group has order 8.

Figure 1. Multiplication table for the quaternion group

- *ii.* Since $A^0 = I$, $A^1 = A$, $A^2 = -I$, $A^3 = -A$, $B^0 = I$, $B^1 = B$, $B^2 = -I$, $B^3 = -B$, $AB = C$, and $BA = -C$, the two elements A and B generate the quaternion group. From Figure 1, we also see that the quaternion group is not cyclic.
- *iii.* By definition, the dihedral group D_4 is the automorphism group of a square. It is isomorphic to the subgroup of $SL(2, \mathbb{R})$ generated the matrices

$$
\mathbf{T} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{R} := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
$$

The cyclic subgroups of the quaternion group are

$$
\langle I \rangle = \{I\}, \qquad \langle A \rangle = \langle -A \rangle = \{I, A, -I, -A\}, \qquad \langle C \rangle = \langle -C \rangle = \{I, C, -I, -C\},
$$

$$
\langle -I \rangle = \{I, -I\}, \qquad \langle B \rangle = \langle -B \rangle = \{I, B, -I, -B\},
$$

whereas the cyclic subgroups in D_4 are

$$
\langle \mathbf{R}^2 \rangle = \{ \mathbf{I} \}, \qquad \langle \mathbf{T}^2 \rangle = \{ \mathbf{I}, \mathbf{T}^2 \}, \qquad \langle \mathbf{T}^2 \mathbf{R} \rangle = \{ \mathbf{I}, \mathbf{T}^2 \mathbf{R} \}, \qquad \langle \mathbf{T} \rangle = \langle \mathbf{T}^3 \rangle = \{ \mathbf{I}, \mathbf{T}, \mathbf{T}^2, \mathbf{T}^3 \},
$$

$$
\langle \mathbf{R} \rangle = \{ \mathbf{I}, \mathbf{R} \}, \qquad \langle \mathbf{T} \mathbf{R} \rangle = \{ \mathbf{I}, \mathbf{T} \mathbf{R} \}, \qquad \langle \mathbf{T}^3 \mathbf{R}^2 \rangle = \{ \mathbf{I}, \mathbf{T}^3 \mathbf{R} \}.
$$

Since the quaternion group has 6 elements of order 4 and the dihedral group D_4 has 2 elements of order 4, they cannot be isomorphic. Alternatively, the quaternion group and the dihedral group D_4 have maximal cyclic subgroups of different orders, so they cannot be isomorphic. $□$

