Solutions 02

1. Let *X* be any set. The identity map $\operatorname{id}_X : X \to X$ is defined, for all *x* in *X*, by $x \mapsto x$ and the projection $\pi_1 : X \times X \to X$ is defined, for all *x* and *y* in *X*, by $(x, y) \mapsto x$. For any two maps $\varphi : X \to X$ and $\psi : X \to X$, the map $\varphi || \psi : X \to X \times X$ is defined, for all *x* in *X*, by $x \mapsto (\varphi(x), \psi(x))$ and the map $\varphi \times \psi : X \times X \to X \times X$ is defined, for all *x* and *y* in *X*, by $(x, y) \mapsto (\varphi(x), \psi(y))$. For the one-element set { \emptyset }, there exists a unique map $\eta : X \to {\{\emptyset\}}$ defined, for all *x* in *X*, by $\eta(x) = \emptyset$.

Suppose that the set *X* is nonempty and consider three maps $\beta : X \times X \to X$, $\varepsilon : \{\emptyset\} \to X$, and $\iota : X \to X$ satisfying the following three conditions:

 $\begin{array}{ll} (associativity) & \beta \circ (\beta \times \mathrm{id}_X) = \beta \circ (\mathrm{id}_X \times \beta) \\ (right \, identity) & \beta \circ (\mathrm{id}_X \times \varepsilon) = \mathrm{id}_X \circ \pi_1 \\ (right \, inverse) & \beta \circ (\mathrm{id}_X || \, \iota) = \varepsilon \circ \eta \end{array}$

Prove that the quadruple $(X, \beta, \varepsilon, \iota)$ defines a group.

Solution. The conditions assert that the diagrams

commute. For any elements *x* and *y* in *X*, define the binary operator $\star : X \times X \to X$ by $x \star y := \beta(x, y)$. The first condition implies that, for any elements *x*, *y*, and *z* in *X*, we have

$$(x \star y) \star z = \beta(x \star y, z) = \beta(\beta(x, y), z)$$

= $(\beta \circ (\beta \times id_X))(x, y, z)$
= $(\beta \circ (id_X \times \beta))(x, y, z)$
= $\beta(x, \beta(y, z)) = \beta(x, y \star z) = x \star (y \star z),$

which gives the associativity of this binary operator. Set $e := \varepsilon(\emptyset)$. The second condition implies that, for any *x* in *X*, we have

$$x \star e = \beta(x, \varepsilon(\emptyset)) = (\beta \circ (\mathrm{id}_X \times \varepsilon))(x, \emptyset) = (\mathrm{id}_X \circ \pi_1)(x, \emptyset) = \mathrm{id}_X(\pi_1(x, \emptyset)) = x,$$

which shows that the element e in X is a right identity for this associative binary operator. The third condition implies that, for any x in X, we have

$$x \star \iota(x) = (\beta \circ (\mathrm{id}_X || \iota))(x) = (\varepsilon \circ \eta)(x) = \varepsilon(\eta(x)) = \varepsilon(\emptyset) = e,$$

which proves that the element $\iota(x)$ in *X* is a right inverse for the element *x*. Using the right inverse $\iota^2(x)$ in *X* of the element $\iota(x)$ in *X*, we obtain

$$x = x \star e = x \star (\iota(x) \star \iota^2(x)) = (x \star \iota(x)) \star \iota^2(x) = e \star \iota^2(x).$$

For any *x* in *X*, it follows that $e \star x = e \star (e \star t^2(x)) = (e \star e) \star t^2(x) = e \star t^2(x) = x$, so the element *e* is a two-sided identity for this binary operator. Moreover, we see that $x = e \star t^2(x) = t^2(x)$, which demonstrates that $e = t(x) \star t^2(x) = t(x) \star x$.

MATH 893 : 2024

Hence, the element $x^{-1} := \iota(x)$ is a two-sided inverse of the element x. Therefore, the quadruple $(X, \beta, \varepsilon, \iota)$ defines a group.

- **2.** For any nonnegative integer *n*, the *sign function* sgn : $\mathfrak{S}_n \to \mu_2 := \{\pm 1\}$ is defined by sgn(σ) := $(-1)^{n-c}$ where the permutation σ is the product of *c* disjoint cycles.
 - *i*. For any permutation σ and any transposition $\overline{\omega}$, prove $sgn(\overline{\omega}\sigma) = -sgn(\sigma)$.
 - *ii.* For any permutations σ and τ , show that $sgn(\sigma \tau) = sgn(\sigma) sgn(\tau)$.
 - *iii.* When the permutation σ is the product of *m* transpositions, demonstrate that $sgn(\sigma) = (-1)^m$.

Solution.

i. Let $\varpi = (a \ b)$ and let $\sigma = \omega_1 \ \omega_2 \ \cdots \ \omega_c$ be the factorization of the permutation into disjoint cycles. When *a* and *b* both appear in one cycle ω_j where $1 \le j \le c$, we have

$$\varpi \,\omega_i = (a \ b)(a \ c_1 \ c_2 \ \cdots \ c_r \ b \ d_1 \ d_2 \ \cdots \ d_s) = (a \ c_1 \ c_2 \ \cdots \ c_r)(b \ d_1 \ d_2 \ \cdots \ d_s)$$

and $\varpi \sigma$ factors into c + 1 disjoint cycles. We deduce that

$$sgn(\varpi \sigma) = (-1)^{n-(c+1)} = (-1)(-1)^{n-c} = -sgn(\sigma).$$

On the other hand, when *a* and *b* appear in disjoint cycles of σ , there exists indices *i* and *j* such that $\omega_i = (a \ c_1 \ c_2 \ \cdots \ c_r)$ and $\omega_j = (b \ d_1 \ d_2 \ \cdots \ d_s)$. It follows that

$$\varpi \,\omega_i \,\omega_i = (a \ b)(a \ c_1 \ c_2 \ \cdots \ c_r)(b \ d_1 \ d_2 \ \cdots \ d_s) = (a \ c_1 \ c_2 \ \cdots \ c_r \ b \ d_1 \ d_2 \ \cdots \ d_s)$$

and $\varpi \sigma$ factors into c - 1 disjoint cycles. We deduce that

$$sgn(\varpi \sigma) = (-1)^{n-(c-1)} = (-1)(-1)^{n-c} = -sgn(\sigma).$$

ii. Let $\sigma = \varpi_1 \varpi_2 \cdots \varpi_m$ be a factorization of σ into transpositions. We proceed by induction on *m*. The base case m = 0 is vacuous. The case m = 1 is precisely part *i*. Using the part *i* twice and the induction hypothesis, we obtain

$$sgn(\sigma \tau) = sgn(\varpi_1 \varpi_2 \varpi_3 \cdots \varpi_m \tau) = -sgn(\varpi_2 \varpi_3 \cdots \varpi_m \tau) = -sgn(\varpi_2 \varpi_3 \cdots \varpi_m) sgn(\tau) = sgn(\varpi_1 \varpi_2 \varpi_3 \cdots \varpi_m) sgn(\tau) = sgn(\sigma) sgn(\tau).$$

iii. The factorization of a transposition ϖ_i in \mathfrak{S}_n into disjoint cycles consists of 1 cycle of length 2 and n - 2 cycles of length 1, so $\operatorname{sgn}(\varpi_i) = (-1)^{n-(n-1)} = -1$. Part *ii* implies that

$$\operatorname{sgn}(\sigma) = \operatorname{sgn}(\varpi_1 \, \varpi_2 \, \cdots \, \varpi_m) = \operatorname{sgn}(\varpi_1) \, \operatorname{sgn}(\varpi_2) \, \cdots \, \operatorname{sgn}(\varpi_m) = (-1)^m \, . \quad \Box$$

3. The *quaternion group* is the subgroup of $SL(2, \mathbb{C})$ generated by the eight matrices:

$$\mathbf{I} := \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{A} := \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \qquad \mathbf{B} := \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \qquad \mathbf{C} := \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, -\mathbf{I} := \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad -\mathbf{A} := \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}, \qquad -\mathbf{B} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \qquad -\mathbf{C} := \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}.$$

i. Determine the order of the quaternion group.

- *ii*. Find a minimal set of generators for the quaternion group.
- *iii.* Show that the quaternion group is not isomorphic to the dihedral group D_4 .

Solution.

i. All products in the quaternion group appear in Figure 1. It follows that this group has order 8.

\star	I	-I	Α	$-\mathbf{A}$	В	-B	С	- C
Ι	Ι	-I	Α	$-\mathbf{A}$	В	–B	С	-C
-I	– I	Ι	$-\mathbf{A}$	Α	$-\mathbf{B}$	В	-C	С
Α	Α	$-\mathbf{A}$	-I	Ι	С	$-\mathbf{C}$	В	$-\mathbf{B}$
$-\mathbf{A}$	$-\mathbf{A}$	Α	Ι	-I	$-\mathbf{C}$	С	$-\mathbf{B}$	В
В	В	$-\mathbf{B}$	$-\mathbf{C}$	С	-I	Ι	Α	$-\mathbf{A}$
$-\mathbf{B}$	–B	В	С	$-\mathbf{C}$	Ι	-I	$-\mathbf{A}$	Α
С	C	- C	В	$-\mathbf{B}$	$-\mathbf{A}$	Α	-I	Ι
$-\mathbf{C}$	- C	С	$-\mathbf{B}$	В	Α	$-\mathbf{A}$	Ι	-I

Figure 1. Multiplication table for the quaternion group

- *ii.* Since $\mathbf{A}^0 = \mathbf{I}$, $\mathbf{A}^1 = \mathbf{A}$, $\mathbf{A}^2 = -\mathbf{I}$, $\mathbf{A}^3 = -\mathbf{A}$, $\mathbf{B}^0 = \mathbf{I}$, $\mathbf{B}^1 = \mathbf{B}$, $\mathbf{B}^2 = -\mathbf{I}$, $\mathbf{B}^3 = -\mathbf{B}$, $\mathbf{A}\mathbf{B} = \mathbf{C}$, and $\mathbf{B}\mathbf{A} = -\mathbf{C}$, the two elements \mathbf{A} and \mathbf{B} generate the quaternion group. From Figure 1, we also see that the quaternion group is not cyclic.
- *iii.* By definition, the dihedral group D_4 is the automorphism group of a square. It is isomorphic to the subgroup of SL(2, \mathbb{R}) generated the matrices

$$\mathbf{T} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \text{and} \qquad \mathbf{R} := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

The cyclic subgroups of the quaternion group are

$$\begin{split} \langle \mathbf{I} \rangle &= \{\mathbf{I}\}, & \langle \mathbf{A} \rangle = \langle -\mathbf{A} \rangle = \{\mathbf{I}, \mathbf{A}, -\mathbf{I}, -\mathbf{A}\}, & \langle \mathbf{C} \rangle = \langle -\mathbf{C} \rangle = \{\mathbf{I}, \mathbf{C}, -\mathbf{I}, -\mathbf{C}\}, \\ \langle -\mathbf{I} \rangle &= \{\mathbf{I}, -\mathbf{I}\}, & \langle \mathbf{B} \rangle = \langle -\mathbf{B} \rangle = \{\mathbf{I}, \mathbf{B}, -\mathbf{I}, -\mathbf{B}\}, \end{split}$$

whereas the cyclic subgroups in D_4 are

$$\begin{split} &\langle \mathbf{R}^2 \rangle = \{\mathbf{I}\}, \qquad \langle \mathbf{T}^2 \rangle = \{\mathbf{I}, \mathbf{T}^2\}, \qquad \langle \mathbf{T}^2 \mathbf{R} \rangle = \{\mathbf{I}, \mathbf{T}^2 \mathbf{R}\}, \quad \langle \mathbf{T} \rangle = \langle \mathbf{T}^3 \rangle = \{\mathbf{I}, \mathbf{T}, \mathbf{T}^2, \mathbf{T}^3\}, \\ &\langle \mathbf{R} \rangle = \{\mathbf{I}, \mathbf{R}\}, \quad \langle \mathbf{T} \mathbf{R} \rangle = \{\mathbf{I}, \mathbf{T} \mathbf{R}\}, \quad \langle \mathbf{T}^3 \mathbf{R}^2 \rangle = \{\mathbf{I}, \mathbf{T}^3 \mathbf{R}\}. \end{split}$$

Since the quaternion group has 6 elements of order 4 and the dihedral group D_4 has 2 elements of order 4, they cannot be isomorphic. Alternatively, the quaternion group and the dihedral group D_4 have maximal cyclic subgroups of different orders, so they cannot be isomorphic.

