Solutions 03

1. Let *H* and *K* be two subgroups of a group *G*. For any element g in *G*, the set

 $H g K := \{ f \in G \mid f = h g k \text{ for some } h \in H, k \in K \}$

is called a *double coset*.

- *i*. Prove that the double cosets partition *G*.
- *ii.* Do all double cosets have the same cardinality?
- *iii*. When G has finite order, must the cardinality of a double coset divide |G|?

Solution.

- *i*. We claim that the following is an equivalence relation on G: for any elements f and g in the group G, set $f \cong g$ if f = hgk for some element h in H and some element *k* in *K*.
- (*reflexive*) Consider an element g in G. Since the identity element $e \in G$ belongs to both *H* and *K*, we have g = e g e and $g \approx g$.
- *(symmetric)* When $f \cong g$, there exists an element *h* in *H* and an element *k* in *K* such that f = h g k. Since *H* and *K* are subgroups, we have $h^{-1} \in H$ and $k^{-1} \in K$. It follows that $g = h^{-1} f k^{-1}$ and $g \cong f$.
- (transitive) Suppose that $f \cong g$ and $g \cong g'$. By definition, there exists elements h and h' in H and elements k and k' in K such that f = hgk and g = h'g'k'. Hence, we obtain f = (hh')g'(k'k). Since H and K are subgroups, it follows that $hh' \in H$ and $k'k \in K$. Thus, we deduce that $f \simeq g'$.

Since the double cosets are the equivalence classes, they partition the underlying set of *G*.

ii. Double cosets need not have the same cardinality. For example, consider the group \mathfrak{S}_3 and the subgroups $H = K := \{id_3, (21)\}$. The double cosets are

$$H \text{ id}_3 H = \{\text{id}_3, (2 1)\} = H (2 1) H$$
$$H(3 1)H = \{(3 1), (3 2), (3 1 2), (3 2 1)\}$$
$$= H (3 2) H = H (3 1 2) H = H (3 2 1) H.$$

- *iii.* The example in part *iii* satisfies $|\mathfrak{S}_3| = 6$ and $|H(3\,1)H| = 4$. Therefore, the cardinality of a double coset does not have to divide the order of the group. \Box
- **2.** Let *G* be a group and let Aut(G) be its automorphism group. For any element g in *G*, consider the map $\gamma_g : G \to G$ defined, for any element *f* in *G*, by $\gamma_g(f) := gfg^{-1}$. *i*. For any element *g* in *G*, show that γ_g is an automorphism.

 - *ii.* Prove that the map $\Gamma: G \to \operatorname{Aut}(G)$ defined, for any g in G, by $\Gamma(g) := \gamma_g$ is a group homomorphism.
 - *iii*. Show that $\text{Ker}(\Gamma) = Z(G)$.
 - *iv.* Prove that the image $Im(\Gamma)$ is a normal subgroup of Aut(G).

Solution.

i. For any elements f and f' in the group G, we have

$$\gamma_g(ff') = g(ff')g^{-1} = (gfg^{-1})(gf'g^{-1}) = \gamma_g(f)\gamma_g(f'),$$

so the map γ_g is a group homomorphism. For any elements f, g, and h in G, we also have

(‡)
$$(\gamma_g \circ \gamma_h)(f) = \gamma_g(hfh^{-1}) = g(hfh^{-1})g^{-1} = (gh)(f)(gh)^{-1} = \gamma_{gh}(f).$$

We deduce that $\gamma_g \circ \gamma_{g^{-1}} = \gamma_e = \mathrm{id}_G = \gamma_{g^{-1}} \circ \gamma_g$, so the map γ_g is an automorphism. *ii.* The equation (‡) implies that $\Gamma(gh) = \gamma_{gh} = \gamma_g \circ \gamma_h = \Gamma(g) \Gamma(h)$, so the map Γ is a group homomorphism.

iii. From the sequence of equivalences

$$\begin{array}{lll} g \in Z(G) & \Leftrightarrow & gfg^{-1} = f & \text{for any element } f \text{ in } G \\ \Leftrightarrow & \gamma_g(f) = f & \text{for any element } f \text{ in } G \\ \Leftrightarrow & \gamma_g = \text{id}_G \\ \Leftrightarrow & \Gamma(g) = e_{\text{Aut}(G)}, \end{array}$$

we deduce that $\text{Ker}(\Gamma) = Z(G)$.

iv. Fix an element *g* in the group *G*, so that the automorphism $\Gamma(g) = \gamma_g$ is in Im(Γ). When φ is an element in Aut(*G*), it follows that, for any element *f* in *G*, we have

$$(\varphi \circ \gamma_g \circ \varphi^{-1})(f) = \varphi(g \varphi^{-1}(f) g^{-1}) = \varphi(g) f \varphi(g)^{-1} = \gamma_{\varphi(g)}(f).$$

We deduce that $\varphi \circ \gamma_g \circ \varphi^{-1} = \gamma_{\varphi(g)} = \Gamma(\varphi(g)) \in \text{Im}(\Gamma)$, so the image Im(Γ) is a normal subgroup of Aut(G).

- **3.** Fix a nonnegative integer *n*. Two permutations σ and τ in the symmetric group \mathfrak{S}_n have the *same cycle structure* if, for any nonnegative integer *k*, their factorizations into disjoint cycles have the same number of cycles of length *k*. The *cycle type* of a permutation is the list λ of cycles lengths from its factorization into disjoint cycles arranged in nonincreasing order.
 - *i*. For any permutations σ and τ in \mathfrak{S}_n , prove that the conjugate permutation $\sigma \tau \sigma^{-1}$ has the same cycle structure as τ and may be obtained by applying σ to the entries in the cycles of τ .
 - *ii.* Prove that permutations are conjugate if and only if they have the same cycle type.

Solution.

- *i*. Let ϖ the permutation in \mathfrak{S}_n with the same cycle structure as τ obtained by applying σ to the entries in the cycles of τ . We consider two cases.
 - Suppose that $\tau(i) = i$ for some $i \in [n]$. The permutation ϖ fixes the element $\sigma(i) \in [n]$ because $\sigma(i)$ lies in a cycle of length 1. Since

$$(\sigma \tau \sigma^{-1})(\sigma(i)) = (\sigma \tau)(i) = \sigma(i) = \varpi(\sigma(i)),$$

the permutation $\sigma \tau \sigma^{-1}$ also fixes $\sigma(i)$.

MATH 893 : 2024

• Suppose that $\tau(i) = j \neq i$ for some $i \in [n]$. The definition of φ implies that $\varpi(\sigma(i)) = \sigma(j)$. On the other hand, we also have

$$(\sigma \tau \sigma^{-1})(\sigma(i)) = (\sigma \tau)(i) = \sigma(j) = \varpi(\sigma(i)).$$

Since the permutations ϖ and $\sigma \tau \sigma^{-1}$ agree on every $i \in [n]$, we conclude that $\varpi = \sigma \tau \sigma^{-1}$.

ii. Part *i* shows that conjugate permutations have the same cycle type. For the converse, suppose that permutations ϖ and τ have the same cycle type. We need to produce a permutation σ in \mathfrak{S}_n such that $\varpi = \sigma \tau \sigma^{-1}$. To define the permutation σ , place the factorization of τ into disjoint cycles over that of ϖ so that the cycles of the same length correspond. Let σ be the function sending the top row to the bottom. For example, when $\tau := (3 \ 1 \ 2)(5 \ 4)(6)$ and $\varpi := (3 \ 1)(4)(6 \ 2 \ 5)$, we have the array

$$\begin{pmatrix} 3 & 1 & 2 & 5 & 4 & 6 \\ 6 & 2 & 5 & 3 & 1 & 4 \end{pmatrix} \equiv \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 6 & 1 & 3 & 4 \end{pmatrix}$$

so $\sigma = (6 \ 4 \ 1 \ 2 \ 5 \ 3)$. Observe that the permutation σ is not uniquely determined by this procedure—it implicitly depends on the choice of bijection between the cycles of the same lengths in τ and ϖ . Nevertheless, part *i* establishes that $\varpi = \sigma \tau \sigma^{-1}$, so the permutations ϖ and τ are conjugate.

