
Solutions 04
1. Let 𝐺 be a group. The commutator of the elements 𝑓 and 𝑔 in 𝐺 is the element
[𝑓, 𝑔] ∶= 𝑓−1𝑔−1𝑓𝑔 in 𝐺. The commutator subgroup 𝐺(1) of 𝐺 is the subgroup
generated by all commutators; 𝐺(1)∶= ⟨𝑓−1𝑔−1𝑓𝑔 || 𝑓, 𝑔 ∈ 𝐺⟩.

i. Prove that 𝐺(1) is a normal subgroup and the quotient group 𝐺/𝐺(1) is abelian.
ii. Let 𝜋∶ 𝐺 → 𝐺/𝐺(1) be the canonical group homomorphism. For any abelian

group 𝐴, demonstrate that every group homomorphism 𝜑∶ 𝐺 → 𝐴 factors as
𝜑 = 𝜑(1) ∘𝜋 where𝜑(1)∶ 𝐺/𝐺(1) → 𝐴/𝐴(1) is the induced group homomorphism.

iii. Show that a subgroup 𝐻 of 𝐺 contains 𝐺(1) if and only if 𝐻 is normal and 𝐺/𝐻
is abelian.

Solution. Since [𝑓, 𝑔] ∶= 𝑓−1𝑔−1𝑓𝑔 for any elements 𝑓 and 𝑔 in 𝐺, the elements 𝑓
and 𝑔 commute if and only if we have [𝑓, 𝑔] = 𝑒.

i. Since [𝑓, 𝑔]−1 = (𝑓−1𝑔−1𝑓𝑔)−1 = 𝑔−1𝑓−1𝑔𝑓 = [𝑔,𝑓], each element of 𝐺(1) is
a product of commutators. For any element ℎ in 𝐺 and any element [𝑓, 𝑔] in
𝐺(1), we have

ℎ[𝑓, 𝑔]ℎ−1 = ℎ𝑓−1𝑔−1𝑓𝑔ℎ−1 = ℎ𝑓−1ℎ−1ℎ𝑔−1ℎ−1ℎ𝑓ℎ−1ℎ𝑔ℎ−1
= (ℎ𝑓ℎ−1)−1(ℎ𝑔ℎ−1)−1(ℎ𝑓ℎ−1)(ℎ𝑔ℎ−1) = [ℎ𝑓ℎ−1, ℎ𝑔ℎ−1] ,

so𝐺(1) is a normal subgroup of𝐺. For any two cosets𝑓𝐺(1) andℎ𝐺(1) in𝐺/𝐺(1),
it follows that

[𝑓𝐺(1), ℎ𝐺(1)] = (𝑓𝐺(1))−1(ℎ𝐺(1))−1(𝑓𝐺(1))(ℎ𝐺(1))
= 𝑓−1ℎ−1𝑓ℎ𝐺(1) = [𝑓, ℎ]𝐺(1) = 𝐺(1) ,

so the quotient group 𝐺/𝐺(1) is abelian.
ii. As𝐴 is any abelian group, we have𝐴(1) = ⟨𝑒⟩, so𝐴/𝐴(1) = 𝐴. Because the image

under the group homomorphism 𝜑 of a commutator in group 𝐺 is a commuta‑
tor in abelian group𝐴, we see that𝜑(𝐺(1)) = ⟨𝑒⟩ = 𝐴(1). The First Isomorphism
Theorem shows that the induced map 𝜑(1)∶ 𝐺/𝐺(1) → 𝐴/𝐴(1) = 𝐴, defined, for
any element ℎ in 𝐺, by 𝜑(1)(ℎ𝐺(1)) = 𝜑(ℎ), is a group homomorphism and
𝜑 = 𝜑(1) ∘ 𝜋.

iii. Suppose that 𝐻 is a subgroup of 𝐺 containing the commutator subgroup 𝐺(1).
Since 𝐺/𝐺(1) is abelian, the quotient group 𝐻/𝐺(1) is a normal subgroup of the
quotient𝐺/𝐺(1). The Correspondence Theorem establishes that𝐻 is a normal
subgroup of 𝐺. Hence, the Third Isomorphism Theorem demonstrates that
𝐺/𝐻 ≅ (𝐺/𝐺(1))/(𝐻/𝐺(1)), so we conclude that 𝐺/𝐻 is also abelian.

Conversely, suppose that𝐻 is normal subgroup of𝐺 and the quotient𝐺/𝐻
is abelian. For any elements 𝑓 and 𝑔 in 𝐺, we have (𝑓𝐻)(𝑔𝐻) = (𝑔𝐻)(𝑓𝐻),
which means 𝑓𝑔𝐻 = 𝑔𝑓𝐻 and 𝑔−1𝑓−1𝑔𝑓 = [𝑔, 𝑓] ∈ 𝐻. Therefore, we deduce
that 𝐺(1) ⊆ 𝐻. □
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2. Let ⟨𝑚⟩ be the subgroup of integers ℤ generated by 𝑚 and let [𝑟] ∶= 𝑟 ⟨𝑚⟩ denote
the left coset in the quotient group ℤ/⟨𝑚⟩ containing the integer 𝑟. Consider the
set (ℤ/⟨𝑚⟩)×∶= {𝑟 ∈ ℤ/⟨𝑚⟩ || gcd(𝑟,𝑚) = 1}.

i. Demonstrate that multiplication of integers induces a group structure on the
set (ℤ/ ⟨𝑚⟩)×.

ii. The totient 𝜙(𝑛) of a positive integer 𝑛 is defined to be the number of positive
integers less than or equal to 𝑛 that are coprime to 𝑛. When gcd(𝑟,𝑚) = 1,
establish that 𝑟𝜙(𝑚) ≡ 1 mod 𝑚.

iii. For any prime number 𝑝 and any integer 𝑟, prove that 𝑟𝑝 ≡ 𝑟 mod 𝑝.

Solution.
i. Since multiplication of integers is associative and commutative with 1 as the

identity, it induces an associative commutative binary operation onℤ/⟨𝑚⟩with
1 ≔ ⟨𝑚⟩ as an identity. When gcd(𝑟,𝑚) = 1 and gcd(𝑟′,𝑚) = 1, there exists
integers 𝑢, 𝑣, 𝑣′, and 𝑣′ such that 𝑟𝑢 + 𝑚𝑣 = 1 and 𝑟′𝑢′ + 𝑚𝑣′ = 1. Hence,
we obtain 𝑟𝑟′(𝑢𝑢′) + 𝑚(𝑟′𝑣𝑢′ + 𝑣′) = 𝑟′(𝑟𝑢 + 𝑚𝑣)𝑢′ +𝑚𝑣′ = 𝑟′𝑢′ +𝑚𝑣′ = 1,
which implies that gcd(𝑟𝑟′,𝑚) = 1. Thus, multiplication of integers induces an
associative commutative binary operation on (ℤ/⟨𝑚⟩)× with 1 has an identity.
Finally, the equation 𝑟𝑢+𝑚𝑣 = 1 implies that 𝑟 𝑢 = 1 inℤ/⟨𝑚⟩, so each element
of (ℤ/⟨𝑚⟩)× has an inverse. Therefore, the set (ℤ/⟨𝑚⟩)× is a group with respect
to multiplication.

ii. From the definition of the totient function, we see that the order of the group
(ℤ/⟨𝑚⟩)× is 𝜙(𝑚). From the Lagrange Theorem, we deduce that 𝑟𝜙(𝑚) = 1 for
all 𝑟 ∈ (ℤ/⟨𝑚⟩)×. In other words, we have 𝑟𝜙(𝑚) ≡ 1 mod 𝑚.

iii. For any prime number 𝑝, we have 𝜙(𝑝) = 𝑝 − 1. When 𝑟 ≡ 0 mod 𝑝, it follows
that 𝑟𝑝 ≡ 𝑟 mod 𝑝. Otherwise, we have 𝑟 ≢ 0 mod 𝑝 and gcd(𝑟, 𝑝) = 1 because
𝑝 is prime. In this case, part ii yields 𝑟𝑝−1 ≡ 1 mod 𝑝. Multiplying by 𝑟 gives
𝑟𝑝 ≡ 𝑟 mod 𝑝. □

3. The icosahedral group 𝐼 consists of the rotational symmetries of a regular dodec‑
ahedron. It acts transitively on the vertices, edges, and faces. Moreover, we have
|𝐼| = 60.

i. Determine the number of elements in 𝐼 of each order.
ii. Determine the cardinality of each conjugacy class in 𝐼.

iii. Show that 𝐼 is a simple group (i.e. it has no nontrivial normal subgroups).

Solution.
i. The icosahedral group 𝐼 contains rotations by multiples of 2𝜋/5 about the cen‑

tres of the faces, rotations by multiples of 2𝜋/3 about the vertices, and rota‑
tions by 𝜋 about the centres of the edges. Each of the 20 vertices has a sta‑
bilizer of order 3. Since the opposite vertices have the same stabilizer, there
are 10 subgroup of order 3. Each subgroup of order 3 contains two elements
of order 3 and the intersection of any two of these subgroups consists of the
identity, so 𝐼 contains (10)(2) = 20 elements of order 3. Similarly, the faces
have stabilizers of order 5, and there are six such stabilizers, giving (6)(4) = 24
elements of order 5. There are 15 stabilizers of edges and these stabilizers have
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order 2, so there are (15)(1) = 15 elements of order two. Finally the identity is
the unique element of order 1. Since 60 = 1 + 15 + 20 + 24, we have listed all
the elements of the group.

ii. As conjugate elements have the same order, we consider four cases:
⦁ The identity is the unique element in its conjugacy class.
⦁ Since the edges form a single 𝐼‑orbit, the stabilizers of the edges are conju‑

gate subgroups. It follows that the nontrivial elements in these subgroups
form one conjugacy class of cardinality 15.

⦁ Consider a counterclockwise rotation 𝑥 by 2𝜋/3 about a vertex 𝑣. Let 𝑣′ be
the opposite vertex and let𝑥′ be the counterclockwise rotation by 2𝜋/3 about
𝑣′. Since the vertices form a single 𝐼‑orbit, their stabilizers are conjugate sub‑
groups, so 𝑥 and 𝑥′ are conjugate. Moreover, the counterclockwise rotation
𝑥 about 𝑣 is the same as the clockwise rotation by 2𝜋/3 about the opposite
vertex 𝑣′. Thus 𝑥2 = 𝑥′, so 𝑥 and 𝑥2 are conjugate. Hence, all the elements
of order 3 are conjugate.

⦁ By considering the opposite face, a similar argument establishes that the 12
rotations by 2𝜋/5 and −2𝜋/5 are conjugate. They are not conjugate to the
remaining 12 rotations by 4𝜋/5 and −4𝜋/5, because the order of a conjugacy
class divides the order of the group and 24 does not divide 60. Thus, there
are two conjugacy classes of elements of order 5.

Therefore, the class equation for 𝐼 is 60 = 1 + 15 + 20 + 12 + 12.
iii. Since a normal subgroup contains all the conjugates of its elements, a normal

subgroup is a union of conjugacy classes. In particular, the order of a normal
subgroup is the sum of some of the terms on the right side of the class equa‑
tion including the term 1. It follows that a nontrivial normal subgroup of 𝐼
must have order: 13, 16, 21, 25, 28, 33, 36, 40, 45, or 48. However, the Lagrange
Theorem implies that the order of normal subgroup divides the order of the
group. Therefore, the group 𝐼 is simple. □
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