Solutions 04

1. Let G be a group. The commutator of the elements f and g in G is the element
[f,g] := f'g7'fgin G. The commutator subgroup G of G is the subgroup
generated by all commutators; GV := (f~1g~!fg| f,g € G).
i. Prove that GV is a normal subgroup and the quotient group G/G® is abelian.
ii. Let 7: G - G/GW be the canonical group homomorphism. For any abelian
group A, demonstrate that every group homomorphism ¢ : G — A factors as
¢ = WMo where M : G/GM - A/AD is the induced group homomorphism.
iii. Show that a subgroup H of G contains GV if and only if H is normal and G/H
is abelian.

Solution. Since [f,g]:= f~'g~!fg for any elements f and g in G, the elements f
and g commute if and only if we have [f, g] = e.
i. Since [f,g]™' = (f~'g71fg)! = g7 'f1gf = [g, f], each element of GW is
a product of commutators. For any element & in G and any element [ f, g] in
G, we have

hif,glh™' = hf~'g"' fgh™' = hf 'h~'hg~'h~'hfh~'hgh™!
= (hfh=)~H(hgh™)~'(hfh~))(hgh™") = [nfh~!, hgh™'],

so G is anormal subgroup of G. For any two cosets f G and h GV in G/GW,
it follows that

[f GV, hGD] = (f G~ (R CD)I(f GV)(hGW)
= fh1fh GO = [f, h] GV = GO |

so the quotient group G/G( is abelian.

ii. As A is any abelian group, we have AV = (e), so A/A() = A. Because the image
under the group homomorphism ¢ of a commutator in group G is a commuta-
tor in abelian group A, we see that (G®) = (e) = AD. The First Isomorphism
Theorem shows that the induced map ¢ : G/G® — A/AM = A, defined, for
any el(ement hin G, by pW(hGW) = @(h), is a group homomorphism and
¢ =pWom.

iii. Suppose that H is a subgroup of G containing the commutator subgroup G,
Since G/GW is abelian, the quotient group H/G is a normal subgroup of the
quotient G/G. The Correspondence Theorem establishes that H is a normal
subgroup of G. Hence, the Third Isomorphism Theorem demonstrates that
G/H =~ (G/GM)/(H/GWM), so we conclude that G/H is also abelian.

Conversely, suppose that H is normal subgroup of G and the quotient G/H
is abelian. For any elements f and g in G, we have (f H)(gH) = (gH)(f H),
which means fgH = gf Hand g7'f~!gf = [g, f] € H. Therefore, we deduce
that G C H. O
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2. Let (m) be the subgroup of integers Z generated by m and let [r] := r (m) denote
the left coset in the quotient group Z/(m) containing the integer r. Consider the
set (Z/(m))* := {r € Z/(m) | gcd(r,m) = 1}.

I

ii.

iil.

Demonstrate that multiplication of integers induces a group structure on the
set (Z/ (m))*.

The totient ¢(n) of a positive integer n is defined to be the number of positive
integers less than or equal to n that are coprime to n. When ged(r,m) = 1,
establish that (™) = 1 mod m.

For any prime number p and any integer r, prove that r? = r mod p.

Solution.

i

1.

1.

Since multiplication of integers is associative and commutative with 1 as the
identity, itinduces an associative commutative binary operation on Z/(m) with
1 := (m) as an identity. When gcd(r, m) = 1 and ged(#’,m) = 1, there exists
integers u, v, V', and v’ such that ru + mv = 1 and r'u’ + mv’ = 1. Hence,
we obtain rr'(uu’) + m(r'vu’ + v') = r'(ru + mo)u’ + mv’ = r'u’ + mv' = 1,
which implies that ged(rr’, m) = 1. Thus, multiplication of integers induces an
associative commutative binary operation on (Z/(m))>< with 1 has an identity.
Finally, the equation ru+mv = 1implies thatr¥u = 1in Z/(m), so each element
of (Z/(m))* has an inverse. Therefore, the set (Z/(m))* is a group with respect
to multiplication.

From the definition of the totient function, we see that the order of the group
(Z/(m))* is ¢(m). From the Lagrange Theorem, we deduce that 7™ = 1 for
all ¥ € (Z/(m))*. In other words, we have r#(™ = 1 mod m.

For any prime number p, we have ¢(p) = p — 1. When r = 0 mod p, it follows
that r? = r mod p. Otherwise, we have r # 0 mod p and gcd(r, p) = 1 because
p is prime. In this case, part ii yields rP~! = 1 mod p. Multiplying by r gives
r? = r mod p. U

3. The icosahedral group I consists of the rotational symmetries of a regular dodec-
ahedron. It acts transitively on the vertices, edges, and faces. Moreover, we have
|I| = 60.

L.
ii.
iil.

Determine the number of elements in I of each order.
Determine the cardinality of each conjugacy class in I.
Show that I is a simple group (i.e. it has no nontrivial normal subgroups).

Solution.

L.
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The icosahedral group I contains rotations by multiples of 277/5 about the cen-
tres of the faces, rotations by multiples of 277/3 about the vertices, and rota-
tions by 7 about the centres of the edges. Each of the 20 vertices has a sta-
bilizer of order 3. Since the opposite vertices have the same stabilizer, there
are 10 subgroup of order 3. Each subgroup of order 3 contains two elements
of order 3 and the intersection of any two of these subgroups consists of the
identity, so I contains (10)(2) = 20 elements of order 3. Similarly, the faces
have stabilizers of order 5, and there are six such stabilizers, giving (6)(4) = 24
elements of order 5. There are 15 stabilizers of edges and these stabilizers have
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order 2, so there are (15)(1) = 15 elements of order two. Finally the identity is

the unique element of order 1. Since 60 = 1 + 15 + 20 + 24, we have listed all

the elements of the group.

ii. As conjugate elements have the same order, we consider four cases:

e The identity is the unique element in its conjugacy class.

e Since the edges form a single I-orbit, the stabilizers of the edges are conju-
gate subgroups. It follows that the nontrivial elements in these subgroups
form one conjugacy class of cardinality 15.

e Consider a counterclockwise rotation x by 277/3 about a vertex v. Let v’ be
the opposite vertex and let x’ be the counterclockwise rotation by 27z/3 about
v'. Since the vertices form a single I-orbit, their stabilizers are conjugate sub-
groups, so x and x’ are conjugate. Moreover, the counterclockwise rotation
x about v is the same as the clockwise rotation by 277/3 about the opposite
vertex U'. Thus x? = x’, so x and x? are conjugate. Hence, all the elements
of order 3 are conjugate.

e By considering the opposite face, a similar argument establishes that the 12
rotations by 277/5 and —27/5 are conjugate. They are not conjugate to the
remaining 12 rotations by 477/5 and —47/5, because the order of a conjugacy
class divides the order of the group and 24 does not divide 60. Thus, there
are two conjugacy classes of elements of order 5.

Therefore, the class equation for I is 60 = 1 + 15 + 20 + 12 + 12.

iii. Since a normal subgroup contains all the conjugates of its elements, a normal
subgroup is a union of conjugacy classes. In particular, the order of a normal
subgroup is the sum of some of the terms on the right side of the class equa-
tion including the term 1. It follows that a nontrivial normal subgroup of I
must have order: 13, 16, 21, 25, 28, 33, 36, 40, 45, or 48. However, the Lagrange
Theorem implies that the order of normal subgroup divides the order of the
group. Therefore, the group I is simple. OJ
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