Solutions 05

1. Let p be a prime number. Prove that a group of order 2p is either cyclic or dihedral.

Solution. From our classification of groups of small order, we know that a group
of order 4 is either the cyclic group Z/(4) or the dihedral group Z/(2) X Z/(2), so we
may assume that p is an odd prime.

Suppose that G is a group of order 2p. We first show that G is generated by
two elements. The number n, of Sylow p-subgroups satisfies 2 = 0 mod n, and
n, = 1 mod p, so we see that n, = 1. Hence, G has a unique Sylow p-subgroup K
and K is normal. Since |K| = p and p is prime, the subgroup K is cyclic. Choose an
element f in G such that K = (f). Let H be a Sylow 2-subgroup of G. Since |H| = 2,
we may choose an element g in G such that H = (g). The elements in K have order
1 or p and the elements in H have order 1 or 2, so we have H N K = {e}. It follows
that every element in the product KH has a unique expression as a product f'g/
where 0 < i< pandO < j < 2. Thus, we obtain G = KH = (f, g).

We analyse the relations among these generators of the group G. Our choice of
f and g yields the relations f? = e and g? = e. The normality of K implies that
there exists 0 < r < p such that gfg~! = f’. Using these relations, we obtain

f=gfg*=g(gfgHg=gfg"!
= (gfg-V(gfg V) (gfg) = (U - (fr)=fr"=fr.

r-times r-times

It follows that > = 1 mod p which means r is 1 or p — 1. We have two cases:

(r =1) We see that gfg~! = f and gf = fg. Hence, G is an abelian group and
G 2K x H = Z/{p) x Z/{2). Since gcd(2,p) = 1, we also have G = (fg) = Z/(2p).

(r = p—1) It follows that gfg~! = f~! and, for all positive integers m, we obtain

gfmg™' = (gfg(gfg V) (gfg ) =(HDHUD---(f)=f".

In particular, by choosing 0 < m < p such that 3m = 1 mod p, we have the
relation gf™g=! = f~™ = 2" = (f™)2, Let h = f™. Since p is a prime number,
we have K = (h) and

G:{gihj|O<i<2,0<j<p’g2:e’hp:e’hg:th}sz.

Therefore, G isomorphic to the cyclic group Z/(2p) or the dihedral group D,. [

2. Prove that there are no simple groups of order 80, 96, or 1000.

Solution. Suppose that G is a simple group of order 80 = 2* . 5. The number n;
of Sylow 5-subgroups satisfies both 16 = 0 mod n5 and n; = 1 mod 5. Because G
does not have a normal subgroup, we must have ns; # 1 which means that n5 = 16.
Hence, the number of elements of order 5is (16)(4) = 64. Similarly, the number n,
of Sylow 2-subgroups also satisfies 5 = 0 mod n, and n, = 1 mod 2. Since n, # 1,
we have n, = 5. The number of elements of order 2! with i > 1is (5)(15) = 75, but
75 + 64 > 80 is a contradiction. Therefore, there is no simple group of order 80.
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Suppose that G is a simple group of order 96 = 2*.3. Let P denote a Sylow
2-subgroup, so [G : P| = 3. Left multiplication of G on coset space G/P gives a
group homomorphism ¢: G — ©g/p = ©; and the kernel Ker(¢p) is a subgroup
of P. Since G is simple, we must have Ker(¢) = {e}, so the map ¢ is injective.
Hence, the First Isomorphism Theorem establishes that ¢(G) is a subgroup of ;.
However, the inequality |G| = 96 > 6 = |&;| provides a contradiction. Thus, we
conclude that there is no simple group of order 96.

Let G be a group of order 1000 = 23 - 53, The number ns of Sylow 5-subgroups
satisfies 8 = 0 mod ns; and ns = 1 mod 5. It follows that n; = 1 and the unique
Sylow 5-subgroup is normal. Therefore, there is no simple group of order 1000. [

3. LetC :=  Cli{oo} be the extended complex plane. Consider the functions f : C-C
and g: C — C defined by f(z) := z + 2 and g(z) := z/(2z + 1) respectively.
i. Prove that the functions f and g are bijections and, thereby, elements of the
symmetric group on the set C.

ii. Show that any nonzero power of f maps the interior of the unit circle |z| = 1 to
the exterior. Similarly, show that any nonzero power of g maps the exterior of
the unit circle to the punctured interior (a point is removed fro/r\n the interior).

iii. Demonstrate that the subgroup of the symmetric group on C generated by
functions f and g is free.

Solution.

i. Since f(z) -2 =2z = f(z +2)and
82 _ _®a ___ T= - g(2)
_ - 2z~ “ T — ’
1-28(z) 1-32% 2 41 °\1-2z

we see that f~1(z) = z — 2 and g7'(z) = z/(1 — 2z). Hence, the functions f
and g are bijections and, thereby, elements of the symmetric group on C.

ii. Since f"(z) = z + 2n for any integer n, the inequality |z| < 1 implies that, for
any nonzero integer n, we have

lf"(@)| =lz+2n|=2n-(-2)|=22|n|—|z| 2 2|n|-1>1.

Hence, any nonzero power of f maps the interior of the unit circle |z| = 1 to
the exterior. Observe that the function f fixes the point co.

For any integer n, induction shows that g"(z) = z/(2nz + 1). Moreover,
observe that g"(—1/2n) = oo and g"(c0) = 1/2n. For any nonzero integer n, the
inequality |z| > 1 yields 1/|z| < 1 and

|z 1
"(2)| = <
8" = 5 < T 2]

<1,

so any nonzero power of g maps the exterior of the unit circle to the punctured
interior. R

iii. Let G := (f, g) denote the subgroup of the symmetric group on the set C gen-
erated by the functions f and g and let F be the free group generated by two
elements. The universal mapping property for free groups gives a surjective
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group homomorphism ¢ : F — G. The kernel of ¢ contains all reduced words
in {f, g} which equal the identity map ida. However, part ii implies that no non-
trivial reduced word in {f, g} can equal the identity map. Therefore, the map
@ is injective and F = G. O
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