Solutions 07

1. For any field K, let $K(\lbrace x \rbrace)$ be ring of formal Laurent series with coefficients in K:

$$
K(\!(x)\!) := \left\{ \sum_{i=m}^{\infty} a_i x^i \; \middle| \; a_i \in K, m \in \mathbb{Z} \right\}
$$

where the ring operations are defined as in the ring of formal power series $K[[x]]$. Prove that the commutative ring $K(\alpha)$ is isomorphic to the fields of fractions for the domain $K[[x]]$.

Solution. It suffices to prove that every nonzero element f in the field of fractions $K[[x]]_{(0)}$ may be written uniquely as $f = x^m$ g where *m* is a integer and g in $K[[x]]$ has order 0.

- (*existence*) Let $f = p/q$ where p and q are nonzero elements in K[[x]]. It follows that $p = x^{j} u$ and $q = x^{k} v$ for some nonnegative integers j and k and some formal power series u and v having order 0. An element of $K[[x]]$ is unit if and only it it has a nonzero constant term. Since the formal power series u and v are units, we have $f = x^{j-k}uv^{-1}$ where $j - k \in \mathbb{Z}$ and uv^{-1} is a formal power series having a nonzero constant term.
- (*uniqueness*) Suppose that $f = x^m g$ and $f = x^n h$ for some integers m and n and some formal power series g and h having a nonzero constant term. It follows that $x^{m-n} = h g^{-1}$ is a formal power series of order 0, so $m = n$ and $g = h$. \Box
- 2. Let *R* be a commutative ring. Consider the *derivative operator* $D: R[x] \rightarrow R[x]$ defined, for any polynomial $f := a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ in $R[x]$, by

$$
D(f) := (n a_n) x^{n-1} + ((n - 1) a_{n-1}) x^{n-2} + \dots + a_1.
$$

i. Prove that the operator D is an R-linear map: for any r and s in the coefficient ring R, and any f and g in the polynomial ring $R[x]$, we have

$$
D(r f + s g) = r D(f) + s D(g).
$$

ii. Prove that the operator D satisfies the Leibniz product rule: for any f and g in the polynomial ring $R[x]$, we have

$$
D(f g) = D(f) g + f D(g).
$$

iii. Let f be a polynomial in $R[x]$. Assume that z in R is root of f having multiplicity *m* with $m \ge 1$. Prove that *z* is also a root of the derivative $D(f)$ having multiplicity at least $m - 1$. Moreover, when the product $m 1_R$ is invertible in R, prove that z is a root of the derivative $D(f)$ having multiplicity $m - 1$.

Solution.

i. For any r and s in R and any

$$
f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0
$$

and

$$
g = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0
$$

in $R[x]$, we have

$$
D(f+g) = D((ra_n + sb_n)x^n + (ra_{n-1} + sb_{n-1})x^{n-1} + ... + (ra_1 + sb_1)x + (ra_0 + sb_0))
$$

= $n (ra_n + sb_n)x^{n-1} + (n - 1)(ra_{n-1} + sb_{n-1})x^{n-2} + ... + (ra_1 + sb_1)$
= $r ((na_n)x^{n-1} + ((n - 1)a_{n-1})x^{n-2} + ... + a_1)) + s ((nb_n)x^{n-1} + ((n - 1)b_{n-1})x^{n-1} + ... + b_1)$
= $s D(f) + r D(g),$

which proves that D is an R -linear map.

 $ii.$ As part *i* shows that D is R -linear, it suffices to prove that the Leibniz prod– uct rule holds for any monomial x^{k+n} where k and n are positive integers. By definition, we have $D(x^{k+n}) = (k+n)x^{k+n-1}$. We also have

$$
D(x^{k}) x^{n} + x^{k} D(x^{n}) = k x^{k-1} x^{n} + x^{k} (n x^{n-1})
$$

= $k x^{k+n-1} + n x^{k+n-1} = (k + n) x^{k+n-1},$

so the Leibniz product rule holds.

iii. As *z* is a root of *f* having multiplicity *m*, there is a polynomial *g* in $R[x]$ such that $f(x) = (x - z)^m g(x)$ and $ev_z(g) = g(z) \neq 0$. The Leibniz rule implies that

$$
D(f(x)) = m(x - z)^{m-1} g(x) + (x - z)^m D(g(x))
$$

= $(x - z)^{m-1} (m g(x) + (x - z) D(g))$

Hence, z is a root of the derivative $D(f)$ having multiplicity at least $m-1$. When $m 1_R$ is invertible in R, we also have

$$
\text{ev}_z\big(m\,g(x) + (x - z)\,D(g(x))\big) = m\,\text{ev}_z(g) + 0\,\text{ev}_z(D(g)) \\
= m\,\text{ev}_z(g) \neq 0.
$$

In this case, z is a root of $D(f)$ having multiplicity $m - 1$.

3. Let $\omega := \frac{1}{2}$ $\frac{1}{2}(-1+\sqrt{3}i)$ in C be one of the complex roots of the polynomial $x^2 + x + 1$ in $\mathbb{C}[x]$. Prove that the commutative domain $\mathbb{Z}[\omega] := \{a + b\omega \mid a, b \in \mathbb{Z}\}\subset \mathbb{C}$ is a Euclidean domain with the function $\nu : \mathbb{Z}[\omega] \to \mathbb{N}$ defined, for any $\alpha + b \omega$ in $\mathbb{Z}[\omega]$, by $v(a + b \omega) = a^2 - a b + b^2$.

Solution. First, observe that $\omega + \overline{\omega} = -1$, $|\omega|^2 = \omega \overline{\omega} = 1$, and

$$
|a+b\omega|^2 = (a+b\omega)(a+b\overline{\omega})
$$

= a² + a b (\omega + \overline{\omega}) + b² |\omega|² = a² - a b + b² = v(a+b\omega).

The elements in the ring $\mathbb{Z}[\omega]$ lie on a lattice of unit-side triangles in the complex plane because $\omega^3 = 1$. For any z in $\mathbb{Z}[\omega]$, the ideal $\langle z \rangle$ forms a similar lattice. Writing $z = r e^{i\theta}$ where r and θ are real numbers satisfying $0 \le r$ and $0 \le \theta < 2\pi$, the lattice corresponding to the ideal $\langle z \rangle$ is obtained by rotating through the angle θ followed by stretching by the factor $r = |z|$. For any complex number w in

 $\mathbb{Z}[\omega]$, there is at least one point of the lattice corresponding to the ideal ⟨z⟩ whose squared distance from w is at most $\frac{1}{3}|z|^2 = \frac{1}{3}$ $\frac{1}{3}r^2$; see Figure 1. Let q z be that a closed

Figure 1. Nearest element in triangular lattice

point and set $p \coloneqq w - q\,z.$ Therefore, we obtain $\left|p\right|^2 \leqslant \frac{1}{3}$ $\frac{1}{3} |z|^2 < |z|^2$ as required. \Box

