Solutions 07

1. For any field *K*, let K((x)) be ring of formal Laurent series with coefficients in *K*:

$$K((x)) := \left\{ \sum_{i=m}^{\infty} a_i x^i \mid a_i \in K, m \in \mathbb{Z} \right\}$$

where the ring operations are defined as in the ring of formal power series K[[x]]. Prove that the commutative ring K((x)) is isomorphic to the fields of fractions for the domain K[[x]].

Solution. It suffices to prove that every nonzero element f in the field of fractions $K[[x]]_{(0)}$ may be written uniquely as $f = x^m g$ where m is a integer and g in K[[x]] has order 0.

- (*existence*) Let f = p/q where p and q are nonzero elements in K[[x]]. It follows that $p = x^j u$ and $q = x^k v$ for some nonnegative integers j and k and some formal power series u and v having order 0. An element of K[[x]] is unit if and only it it has a nonzero constant term. Since the formal power series u and v are units, we have $f = x^{j-k}uv^{-1}$ where $j k \in \mathbb{Z}$ and uv^{-1} is a formal power series having a nonzero constant term.
- (*uniqueness*) Suppose that $f = x^m g$ and $f = x^n h$ for some integers m and n and some formal power series g and h having a nonzero constant term. It follows that $x^{m-n} = h g^{-1}$ is a formal power series of order 0, so m = n and g = h. \Box
- **2.** Let *R* be a commutative ring. Consider the *derivative operator* $D : R[x] \rightarrow R[x]$ defined, for any polynomial $f := a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ in R[x], by

$$D(f) := (n a_n) x^{n-1} + ((n-1) a_{n-1}) x^{n-2} + \dots + a_1.$$

i. Prove that the operator *D* is an *R*-linear map: for any *r* and *s* in the coefficient ring *R*, and any *f* and *g* in the polynomial ring R[x], we have

$$D(rf + sg) = rD(f) + sD(g).$$

ii. Prove that the operator *D* satisfies the Leibniz product rule: for any f and g in the polynomial ring R[x], we have

$$D(f g) = D(f)g + f D(g).$$

iii. Let *f* be a polynomial in R[x]. Assume that *z* in *R* is root of *f* having multiplicity *m* with $m \ge 1$. Prove that *z* is also a root of the derivative D(f) having multiplicity at least m - 1. Moreover, when the product $m 1_R$ is invertible in *R*, prove that *z* is a root of the derivative D(f) having multiplicity m - 1.

Solution.

i. For any *r* and *s* in *R* and any

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 and

$$g = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

in R[x], we have

$$\begin{split} D(f+g) &= D\big((r\,a_n + s\,b_n)x^n + (r\,a_{n-1} + s\,b_{n-1})\,x^{n-1} + \\ & \cdots + (r\,a_1 + s\,b_1)\,x + (r\,a_0 + s\,b_0)\big) \\ &= n\,(r\,a_n + s\,b_n)x^{n-1} + (n-1)\,(r\,a_{n-1} + s\,b_{n-1})\,x^{n-2} + \\ & \cdots + (r\,a_1 + s\,b_1) \\ &= r\big((n\,a_n)\,x^{n-1} + ((n-1)\,a_{n-1})\,x^{n-2} + \cdots + a_1)\big) \\ & + s\big((n\,b_n)\,x^{n-1} + ((n-1)\,b_{n-1})\,x^{n-1} + \cdots + b_1\big) \\ &= s\,D(f) + r\,D(g)\,, \end{split}$$

which proves that *D* is an *R*-linear map.

ii. As part *i* shows that *D* is *R*-linear, it suffices to prove that the Leibniz product rule holds for any monomial x^{k+n} where *k* and *n* are positive integers. By definition, we have $D(x^{k+n}) = (k + n)x^{k+n-1}$. We also have

$$D(x^{k}) x^{n} + x^{k} D(x^{n}) = k x^{k-1} x^{n} + x^{k} (n x^{n-1})$$

= $k x^{k+n-1} + n x^{k+n-1} = (k+n) x^{k+n-1}$,

so the Leibniz product rule holds.

iii. As *z* is a root of *f* having multiplicity *m*, there is a polynomial *g* in *R*[*x*] such that $f(x) = (x - z)^m g(x)$ and $ev_z(g) = g(z) \neq 0$. The Leibniz rule implies that

$$D(f(x)) = m(x-z)^{m-1}g(x) + (x-z)^m D(g(x))$$

= $(x-z)^{m-1} (mg(x) + (x-z)D(g))$

Hence, *z* is a root of the derivative D(f) having multiplicity at least m-1. When $m 1_R$ is invertible in *R*, we also have

$$\operatorname{ev}_{z}\left(m\,g(x) + (x-z)\,D(g(x))\right) = m\,\operatorname{ev}_{z}(g) + 0\,\operatorname{ev}_{z}(D(g))$$
$$= m\,\operatorname{ev}_{z}(g) \neq 0\,.$$

In this case, *z* is a root of D(f) having multiplicity m - 1.

3. Let $\omega := \frac{1}{2}(-1 + \sqrt{3}i)$ in \mathbb{C} be one of the complex roots of the polynomial $x^2 + x + 1$ in $\mathbb{C}[x]$. Prove that the commutative domain $\mathbb{Z}[\omega] := \{a + b\omega \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ is a Euclidean domain with the function $v : \mathbb{Z}[\omega] \to \mathbb{N}$ defined, for any $a + b\omega$ in $\mathbb{Z}[\omega]$, by $v(a + b\omega) = a^2 - ab + b^2$.

Solution. First, observe that $\omega + \overline{\omega} = -1$, $|\omega|^2 = \omega \overline{\omega} = 1$, and

$$|a + b\omega|^{2} = (a + b\omega)(a + b\overline{\omega})$$

= $a^{2} + ab(\omega + \overline{\omega}) + b^{2}|\omega|^{2} = a^{2} - ab + b^{2} = \nu(a + b\omega).$

The elements in the ring $\mathbb{Z}[\omega]$ lie on a lattice of unit-side triangles in the complex plane because $\omega^3 = 1$. For any z in $\mathbb{Z}[\omega]$, the ideal $\langle z \rangle$ forms a similar lattice. Writing $z = r e^{i\theta}$ where r and θ are real numbers satisfying $0 \leq r$ and $0 \leq \theta < 2\pi$, the lattice corresponding to the ideal $\langle z \rangle$ is obtained by rotating through the angle θ followed by stretching by the factor r = |z|. For any complex number w in

MATH 893 : 2024

 $\mathbb{Z}[\omega]$, there is at least one point of the lattice corresponding to the ideal $\langle z \rangle$ whose squared distance from *w* is at most $\frac{1}{3}|z|^2 = \frac{1}{3}r^2$; see Figure 1. Let *q z* be that a closed

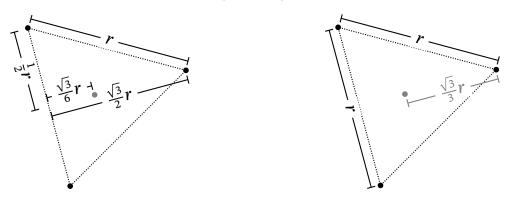


Figure 1. Nearest element in triangular lattice

point and set p := w - q z. Therefore, we obtain $|p|^2 \leq \frac{1}{3} |z|^2 < |z|^2$ as required. \Box

