Solutions 08

1. Euclid proves that there are infinitely many prime integers in the following way: if
P1,D2s - » Pk are prime numbers, then any prime factor of the integer 1+ p, p, --- px
must be different from p; forall 1 < i < k.

i. Adapt this argument to demonstrate that, for any field K, there are infinitely
many monic irreducible polynomials in K[x].
ii. Explain why the argument fails for the formal power series ring K[[x]] over a
field K.
iii. Adapt this argument to show that the set of prime integers of the form 4n — 1
is infinite.

Solution.

i. Consider a nonempty finite set {f}, f5, ..., fx} of monic irreducible polynomials
in K[x]. Since the principal ideal domain K[x] is a unique factorization do-
main, the polynomial 1 + f; f, --- fi, which is not a unit, is a product of a unit
and monic irreducible polynomials. Any monic irreducible factor is necessar-
ily distinct from all the f;, because otherwise it would divide 1. No finite set of
monic irreducible polynomials contains all monic irreducible polynomials, so
the set of monic irreducible polynomials in K[x] is infinite.

ii. This style of argument fails in formal power series ring K[[x]]; given irreducible
formal power series fi, f5, ..., fx in K[[x]], the formal power series 1+ f; f, --- fx
is typically a unit, so not divisible by any irreducible elements.

iii. By considering remainders upon division by 4, we see that every prime integer,
except for 2, has the form 4n + 1 for some nonnegative integer n. Suppose that
there are only finitely many primes numbers py, p,, ..., px of the form 4n — 1.
The number m := 4(p, p, --- px) — 1 is a product of prime numbers. Because
the product of two primes having the form 4n + 1 also has the form 4n + 1,
the odd number m must be divisible by at least one prime of the form 4n — 1.
This prime factor of m is necessarily distinct from p,, p,, ..., Pk, as otherwise it
would divide —1. We conclude that the set of prime integers of the form 4n —1
is infinite. O

2. Let R be a principal ideal domain and let K be its field of fractions.
i. Suppose R = Z. Write r = 7/24 € Q in the form r = a/8 + b/3.
ii. Consider g := pq in R where p and q are relatively prime. Prove that every
fraction f/g € K can be written in the form

f_a, b

g& 49 D
for some a and b in R.

iii. Let k be a positive integer and let g := p{" p5” --- p, * be the factorization of
the element g in R into irreducible elements py, p,, ..., px such that the relation
p; = up; for some unit u in R implies that i = j. Prove that every fraction
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r = f/g € K can be written in the form
k
h;
r = —_—
;1 D"
for some h;inR forall1 <i<k.
Solution.
i. Since (—1)(8) + (3)(3) = 1, we have

_ 7 _TMEH®+G)B] =7 2t
24 24 378"

ii. As ged(p,q) = 1, there exists u and v in R such that pu + qu = 1. Hence, we
have

pof o floutqu) _ fu  fo
g Pq qQ P
iii. We proceed by induction on k. The base case (k = 1) is trivially true. For the
inductive step, set p := p{" and q := py?p3” --- pp *. By hypothesis, we have
ged(p,q) = 1, so there exists u and v in R such that pu + qu = 1. Hence, we

obtain
_f _flou+tqu) _ fu fv_ fu fo
Fr=—-—="—/—————==—+"—== m1+ m, _ms my *
g pq q p b1 P>"P3" - D
The induction hypothesis establishes that
k
fu = i
A S A=)
for some h; in R. Setting h, := fu, we obtainr = Y h;/p;" as required. O

i=1

3. Let R be a unique factorization domain such that the sum of two principal ideals
in R is again a principal ideal. Prove that R is a principal ideal domain.

Solution. We first prove that every finitely-generated ideal in R is principal. We
proceed by induction on the number n of generators for an ideal. When n < 1,
the ideal is trivially principal. Assume that any ideal in R generated by less than n
generators is principal. Consider an ideal I generated by the elements g;, g5, ..., 8x
in R. The induction hypothesis implies that there exists an element /,,_; in R such
that (g1, 82, > 8n-1) = (Mp_1), SO I = (hyp_1,8n) = (Ny_1) + (8n)- Since the sum of
two principal ideals in R is again principal, there is an element 4, in R such that

(hyp) = (hp_1) +(8n) = (81,825 > 8n—1) + (8n) = (€1, 825> &) =1

which completes the induction.
We next show that every ideal in R is finitely generated. Suppose that an ideal
in R is not finitely generated. Hence, there exists an infinite increasing chain

(fo) € (fo, J1) C{fos f1, J2) C{fo> J15 S2r f3) C -

of ideals in R. Since every finitely-generated ideal in R is principal, we obtain an
infinite increasing chain (g,) C (g;) C (g,) C (g3) C --- of principal ideals such that
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(gj) = (fo» f1s ,fj> The proper containment (g;) C (g;,;) means that g; is equal
to the product of g;,; and a nonzero nonunit in R. As R is a unique factorization
domain, there exists a unit # in R and irreducible elements q;, q5, ..., q,; in R such
that g, = uq; q, - q,,- It follows that there are only finitely many nonunits in R
that divide g,; at most the number of proper subsets of {q;, 9, ..., 4,,} Which equals
2™ — 1. In other words, we cannot have an infinite increasing chain of principal
ideals in R containing (g,). We conclude that every ideal in R is finitely generated
and, therefore, principal. O
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