
Solutions 09
1. i. Ⅾetermine all of the monic irreducible polynomials of degree 3 over 𝔽3.
ii. Prove that

𝔽3[𝑥]
⟨𝑥3 − 𝑥 − 1⟩ ≅

𝔽3[𝑥]
⟨𝑥3 − 𝑥2 + 𝑥 + 1⟩ .

Solution.
i. The seive of Eratosthenes gives

𝑥−1 𝑥 𝑥+1 𝑥2−𝑥−1 𝑥2−𝑥
𝑥2−𝑥+1 𝑥2−1 𝑥2 𝑥2+1 𝑥2+𝑥−1
𝑥2+𝑥 𝑥2+𝑥+1 𝑥3−𝑥2−𝑥−1 𝑥3−𝑥2−𝑥 𝑥3−𝑥2−𝑥+1

𝑥3−𝑥2−1 𝑥3−𝑥2 𝑥3−𝑥2+1 𝑥3−𝑥2+𝑥−1 𝑥3−𝑥2+𝑥
𝑥3−𝑥2+𝑥+1 𝑥3−𝑥−1 𝑥3−𝑥 𝑥3−𝑥+1 𝑥3−1

𝑥3 𝑥3+1 𝑥3+𝑥−1 𝑥3+𝑥 𝑥3+𝑥+1
𝑥3+𝑥2−𝑥−1 𝑥3+𝑥2−𝑥 𝑥3+𝑥2−𝑥+1 𝑥3+𝑥2−1 𝑥3+𝑥2
𝑥3+𝑥2+1 𝑥3+𝑥2+𝑥−1 𝑥3+𝑥2+𝑥 𝑥3+𝑥2+𝑥+1

so the 8monic irreducible polynomials of degree 3 in 𝔽3[𝑥] are
𝑥3 − 𝑥2 + 1 𝑥3 − 𝑥2 − 𝑥 − 1 𝑥3 − 𝑥 − 1 𝑥3 − 𝑥2 + 𝑥 + 1
𝑥3 − 𝑥 + 1 𝑥3 + 𝑥2 − 𝑥 + 1 𝑥3 + 𝑥2 − 1 𝑥3 + 𝑥2 + 𝑥 − 1 .

ii. Ⅽonsider the ring homomorphism

𝜑∶ 𝔽3[𝑥] →
𝔽3[𝑥]

⟨𝑥3 − 𝑥2 + 𝑥 + 1⟩
defined by 𝜑(𝑥)∶= 𝑥2 + 𝑥. Since we have

−(𝑥2 + 𝑥)2 = −𝑥4 − 2𝑥3 − 𝑥2 = −𝑥4 + 𝑥3 − 𝑥2
= −𝑥(𝑥3 − 𝑥2 + 𝑥 + 1) + 𝑥

(𝑥2 + 𝑥)2 + (𝑥2 + 𝑥) = 𝑥4 + 2𝑥3 + 2𝑥2 + 𝑥 = 𝑥4 − 𝑥3 − 𝑥2 + 𝑥
= 𝑥(𝑥3 − 𝑥2 + 𝑥 + 1) + 𝑥2

in 𝔽3[𝑥], we see that 𝜑(−𝑥2) = 𝑥 and 𝜑(𝑥2 + 𝑥) = 𝑥2. As the 27 polynomials in
the 𝔽3‑span of {1, 𝑥, 𝑥2} form a complete set of representatives for the cosets of
⟨𝑥3 − 𝑥2 + 𝑥 + 1⟩, we see that 𝜑 is surjective. Ⅿoreover, we have

(𝑥2 + 𝑥)3 − (𝑥2 + 𝑥) − 1 = 𝑥6 + 3𝑥5 + 3𝑥4 + 𝑥3 − 𝑥2 − 𝑥 − 1
= 𝑥6 + 𝑥3 − 𝑥2 − 𝑥 − 1
= 𝑥6 + 𝑥3 + 2𝑥2 − 𝑥 − 1
= (𝑥3 + 𝑥2 − 1)(𝑥3 − 𝑥2 + 𝑥 + 1)

in 𝔽3[𝑥], so ⟨𝑥3 − 𝑥 − 1⟩ ⊆ Ker(𝜑). Part i shows that the polynomial 𝑥3 − 𝑥 − 1
is irreducible in 𝔽3[𝑥] which implies that the ideal ⟨𝑥3 − 𝑥 − 1⟩ is maximal and
⟨𝑥3 − 𝑥 − 1⟩ = Ker(𝜑). Thus, the map 𝜑 induces a ring isomomorphism from
the quotient 𝔽3[𝑥]/⟨𝑥3 − 𝑥 − 1⟩ to 𝔽3[𝑥]/⟨𝑥3 − 𝑥2 + 𝑥 + 1⟩. □
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2. Factor 𝑥4 + 1 into irreducibles in 𝔽2[𝑥], 𝔽7[𝑥], 𝔽13[𝑥], 𝔽17[𝑥], andℚ[𝑥].
Solution. Ɪn 𝔽2[𝑥], we have (𝑥 + 1)4 = 𝑥4 + 4𝑥3 + 6𝑥2 + 4𝑥+ 1 = 𝑥4 + 1 and 𝑥+ 1 is
clearly irreducible in 𝔽2[𝑥].
Ɪn 𝔽7[𝑥], we have (𝑥2 + 3𝑥 + 1)(𝑥2 − 3𝑥 + 1) = 𝑥4 − 7𝑥2 + 1 = 𝑥4 + 1. Evaluating
these quadratic polynomials at each element of 𝔽7 gives

𝑥 0 1 2 3 4 5 6
𝑥2 + 3𝑥 + 1 1 5 4 5 1 6 6
𝑥2 − 3𝑥 + 1 1 6 6 1 5 4 5

As these quadratic polynomials have no roots in 𝔽7, they are irreducible in 𝔽7[𝑥].
Ɪn𝔽13[𝑥], we have (𝑥2−5)(𝑥2+5) = 𝑥4−25 = 𝑥4+1. Evaluating these quadratic
polynomials at each element of 𝔽13 gives

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12
𝑥2 − 5 8 9 12 4 11 7 5 5 7 1 4 12 9
𝑥2 + 5 5 6 9 1 8 4 2 2 4 8 1 9 6

As these quadratic polynomials have no roots in 𝔽13, we see that they are irre‑
ducible in 𝔽13[𝑥].
Ɪn 𝔽17[𝑥], we have
(𝑥 − 8)(𝑥 + 8)(𝑥 − 2)(𝑥 + 2) = (𝑥2 − 13)(𝑥2 − 4) = 𝑥4 − 17𝑥2 + 52 = 𝑥4 + 1 .

The linear polynomials are clearly irreducible in 𝔽17[𝑥].
The irreducible factorization of 𝑥4 + 1 in ℚ[𝑥] and ℤ[𝑥] are the equal. Since

𝑚4 > 0 for any nonzero integer𝑚, we see that 𝑥4 + 1 does not have a linear factor
in ℤ[𝑥]. Suppose there exists integers 𝑎, 𝑏, 𝑐, and 𝑑 such that

𝑥4 + 1 = (𝑥2 + 𝑎𝑥 + 𝑏)(𝑥2 + 𝑐𝑥 + 𝑑)
= 𝑥4 + (𝑎 + 𝑐)𝑥3 + (𝑏 + 𝑑 + 𝑎𝑐)𝑥2 + (𝑎𝑑 + 𝑏𝑐)𝑥 + 𝑏𝑑 .

Ɪt follows that 𝑎 + 𝑐 = 0, 𝑏 + 𝑑 + 𝑎𝑐 = 0, 𝑎𝑑 + 𝑏𝑐 = 0 and 𝑏𝑑 = 1. From these
equations, we obtain 𝑏 = 𝑑 = ±1, 𝑎 = −𝑐 and 𝑐2 = ±2which is impossible because
𝑐 ∈ ℤ. Thus, 𝑥4+1 has no quadratic factors inℤ[𝑥]. Since 𝑥4+1 has no factors in
ℤ[𝑥], we conclude that it is irreducible in 𝑥4 + 1. □
Remark. For every prime integer 𝑝, the polynomial 𝑥4 + 1 factors in 𝔽𝑝[𝑥], but it
is irreducible in ℤ[𝑥].

3. Ⅽonsider 𝑓∶= 𝑥𝑧 − 𝑦𝑤 in ℤ[𝑤,𝑥, 𝑦, 𝑧].
i. Prove that ⟨𝑓⟩ is a prime ideal in ℤ[𝑤,𝑥, 𝑦, 𝑧].
ii. Prove that ℤ[𝑤,𝑥, 𝑦, 𝑧]/⟨𝑓⟩ is not a unique factorization domain.
Solution.
i. Because the ring ℤ[𝑥, 𝑦, 𝑧,𝑤] is a unique factorization domain, it suffices to
show that the polynomial 𝑓 = 𝑥𝑧 − 𝑦𝑤 is irreducible. Suppose that

𝑤𝑧 − 𝑥𝑦 = 𝑔(𝑥, 𝑦, 𝑧,𝑤) ⋅ ℎ(𝑥, 𝑦, 𝑧,𝑤)
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for some 𝑔 and ℎ in ℤ[𝑤,𝑥, 𝑦, 𝑧] having positive degree. As 𝑓 is homogeneous
of degree 2, it follows that 𝑔 and ℎ are homogeneous of degree 1, so
𝑔 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 +𝐷𝑤 and ℎ = 𝐸𝑥 + 𝐹𝑦 +𝐺𝑧 +𝐻𝑤

for some integers 𝐴,𝐵,… ,𝐻. Hence, we obtain
𝑥𝑧 − 𝑦𝑤 = 𝑔(𝑥, 𝑦, 𝑧,𝑤) ⋅ ℎ(𝑥, 𝑦, 𝑧,𝑤)

= 𝐴𝐸𝑥2 + (𝐴𝐹 + 𝐵𝐸)𝑥𝑦 + (𝐴𝐺 +𝐶𝐸)𝑥𝑧 + (𝐴𝐻 +𝐷𝐸)𝑥𝑤
+ 𝐵𝐹𝑦2 + (𝐵𝐺 +𝐶𝐹)𝑦𝑧 + (𝐵𝐻 +𝐷𝐹)𝑦𝑤 +𝐶𝐺𝑧2
+ (𝐶𝐻 +𝐷𝐺)𝑧𝑤 +𝐻𝐷𝑤2 .

Since 𝐴𝐸 = 0 and 𝐴𝐺 + 𝐶𝐸 = 1 exactly one of 𝐴 and 𝐸 is zero. Ɪf 𝐴 = 0,
then the equation 0 = 𝐴𝐹 + 𝐵𝐸 = 𝐵𝐸 implies that 𝐵 = 0 and the equation
0 = 𝐴𝐻+𝐷𝐸 = 𝐷𝐸 implies that𝐷 = 0. However, thismeans−1 = 𝐵𝐻+𝐷𝐹 = 0
which is a contradiction. Ɪf 𝐸 = 0 then the equation 0 = 𝐴𝐹+𝐵𝐸 = 𝐴𝐹 implies
that 𝐹 = 0 and the equation 0 = 𝐴𝐻 +𝐷𝐸 = 𝐴𝐻 implies that𝐻 = 0. However,
this means −1 = 𝐵𝐻 + 𝐷𝐹 = 0 which is again a contradiction. Therefore, the
polynomial 𝑥𝑧 − 𝑦𝑤 is irreducible.

ii. First, we claim that the coset 𝑥 + ⟨𝑓⟩ in the quotient ring ℤ[𝑥, 𝑦, 𝑧,𝑤]/⟨𝑓⟩ is
irreducible. Suppose there exists polynomials 𝑔 and ℎ inℤ[𝑤,𝑥, 𝑦, 𝑧] such that
𝑥 + ⟨𝑓⟩ = (𝑔 + ⟨𝑓⟩)(ℎ + ⟨𝑓⟩). Hence, we have 𝑥 − 𝑔ℎ ∈ ⟨𝑓⟩. Ⅾecomposing the
polynomials 𝑔 and ℎ into homogeneous parts, we have

𝑔 =
𝑑
∑
𝑖=0

𝑔𝑖 and ℎ =
ℓ
∑
𝑗=0

ℎ𝑗 .

We may assume that, for any nonnegative integers 𝑖 and 𝑗, neither 𝑔𝑖 nor ℎ𝑗
belong to the principal ideal ⟨𝑓⟩. Since 𝑓 is homogeneous, it follows that each
homogeneous part of 𝑥−𝑔ℎ also belongs to the ideal ⟨𝑓⟩. Ɪf max(𝑑, ℓ) > 1, then
the top degree part of 𝑥 − 𝑔ℎ is 𝑔𝑑 ℎℓ ∈ ⟨𝑓⟩. Because the ideal ⟨𝑓⟩ is prime, we
have either 𝑔𝑑 ∈ ⟨𝑓⟩ or ℎℓ ∈ ⟨𝑓⟩ contradicting our assumptions. Thus, we see
that max(𝑑, ℓ) ⩽ 1. The degree 0 part of 𝑥 − 𝑔ℎ is 𝑔0 ℎ0. Since 𝑓 has degree 2,
the relation 𝑔0ℎ0 ∈ ⟨𝑓⟩ implies that either 𝑔0 = 0 or ℎ0 = 0. Without loss of
generality, we may assume 𝑔0 = 0. Hence, the degree 1 part of 𝑥 − 𝑔ℎ equals
𝑥−𝑔1 ℎ0. Because𝑥−𝑔1 ℎ0 ∈ ⟨𝑓⟩, we have𝑥−𝑔1 ℎ0 = 0 and 𝑔1 = ±𝑥 andℎ0 = ∓1.
Ⅼastly, degree 2 part of 𝑥 − 𝑔ℎ equals 𝑔1 ℎ1 = ±𝑥ℎ1 ∈ ⟨𝑓⟩ which implies that
ℎ1 = 0. We conclude that 𝑔 = ±𝑥 and ℎ = ∓1, so the image of 𝑥 in the quotient
ℤ[𝑥, 𝑦, 𝑧,𝑤]/⟨𝑓⟩ is irreducible.
By symmetry, the images of 𝑥, 𝑦, 𝑧, and 𝑤 in the quotient ℤ[𝑥, 𝑦, 𝑧,𝑤]/⟨𝑓⟩

are distinct and irreducible. Hence, the equation 𝑥𝑧 = 𝑦𝑤 in this quotient ring
gives two distinct factorizations of an element into irreducibles. □
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