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Abstract. We give a brief survey of the main results of [C04]
and [C11], devoted to the bimeromorphic structure of compact
Kähler manifolds X. Such manifolds are decomposed1 by means
of iterated fibrations into elementary components, which are orb-
ifold pairs with a canonical bundle either positive, negative, or
torsion. Towers of ‘torsion and negative’ components build how-
ever the new (unconditional) class of ‘special manifolds’, which
are the ones which are in a precise sense ‘opposite’ to manifolds
of general type. A single funtorial (unconditional) fibration (the
‘core map’) splits any X into its two components of ‘opposite’ ge-
ometry: ‘special’ (its fibres), and general type (its orbifold base).
This geometric splitting is conjectured to split X at hyperbolic and
hyperbolic levels as well, leading to natural generalisations (to ar-
bitrary smooth orbifolds (X,D)) of Lang’s conjectures, permitting
to qualitatively describe in algebro-geometric terms the distribu-
tion of rational curves, rational points and entire curves on them.

1. Introduction

In the sequel, X (resp. Y ) will denote a connected compact com-
plex Kähler manifold1 of complex dimension n (resp. p). We denote
by KX ,Ω

p
X the usual sheaves of holomorphic differentials. A fibration

f : X → Y will always denote a surjective meromorphic map with
connected fibres (on some/any resolution of f).

We introduce in §2 the class of ‘special’ varieties by means of Bo-
gomolov sheaves. This definition is short, but which does not allow a
geometric insight, only obtained by orbifold base considerations, given
in §3. Examples and conjectures are formulated. In §4 the conjec-
ture Corb

n,m, an orbifold variant of Iitaka’s Cn,m, is formulated. This is
proved when the base orbifold is of general type, following Viehweg’s
method. This is the technical core of the text. This result permits in
§5 to construct the ‘core map’ c, which is our basic result. In order to
decompose further any given X, we need to go further in the orbifold
geometry in §6, and to define for them canonical reduction maps J
(the Iitaka fibration) and r (a weak analog of the ‘rational quotient’),
which is conditional in Corb

n,m. The decomposition c = (Jr)n of the core

1Or, more generally, in the class C of compact complex analytic spaces bimero-
morphic to some compact Kähler manifold.
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map as the canonical iteration of such fibrations is then obtained. The
abundance conjecture optimally describes the (orbifold) fibres of the
fibrations J and r. The LMMP appears here as aiming the construc-
tion of the elementary steps of our decomosition. In §7 we state the
conjectures suggested by these decompositions. We refer to [C04] and
[C11] for details not given here. The only new result not contained
there is theorem 6.20.

2. Special Manifolds: Bogomolov sheaves

2.1. Castelnuovo-de Franchis and Bogomolov theorems.

Theorem 2.1. ([Bog]) Let L ⊂ Ωp
X be a rank-one coherent subsheaf

of Ωp
X . Then κ(X,L) ≤ p2 . Moreover, if equality holds, there exists a

fibration3 f : X → Y such that L = f ∗(KY ) over the generic point of
Y (ie: L and f ∗(KY ) have the same saturation in Ωp

X).

Remark 2.2.
1. A more precise description is given by Castelnuovo-De Franchis

theorem when p = 1: if Ω1
X has two linearly independent sections which

wedge to zero, they are lifted from two sections of Ω1
Y = KY for some

curve Y of genus g > 1.
2. Bogomolov theorem (and its proof) extends to the case of sheaves

of logarithmic differentials with poles on a normal crossing divisor, by
Deligne theorem of closedness of such differentials.

3. We shall characterise geometrically below the situations in which
κ(X,L) = p: the condition κ(Y ) = p is sufficient, but not necesary by
far, as shown by the following example.

4. Let E be an elliptic curve and C be a hyperelliptic curve with
involution i such that C ′ := C/ < i >∼= P1. Let τ be a translation
of order 2 on E, and let f : X := (C × E/ < (i, τ >) → C ′ be the
Moishezon-Iitaka fibration of X. It is easy to see that the saturation L
of f ∗(KC′) in Ω1

X has Kodaira dimension 1. As we shall see below, this
is due to the fact that f has sufficiently many multiple fibres (exactly
2(g(C) + 1) double fibres, actually).

2.2. Bogomolov sheaves, Special Manifolds.

Definition 2.3. Let L ⊂ Ωp
X be saturated, coherent and of rank one.

We say that it is a ‘Bogomolov sheaf ’ of X if κ(X,L) = p > 0.
We say that X is ‘special’ if it has no Bogomolov sheaf. A compact

complex analytic space is said to be ‘special’ if some (or any) of its
resolutions is ‘special’.

2κ(X,L) is defined in the usual way by considering, for m > 0, the meromorphic
map defined by the space of sections of Symm(Ωp

X) which take values in L⊗m at
the generic point of X.

3Unique up to bimeromorphic equivalence.
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Remark 2.4.
0. The sheaf L of example 2.2.4 above is a Bogomolov sheaf on X

(in fact, it is the only one).
1. If f : X → Y is a fibration on some Y of general type of dimension

p > 0, the saturation of f ∗(KY ) in Ωp
X is a Bogomolov sheaf of X, which

is thus non-special. In particular, if X is of general type with n > 0, it
is not ‘special’.

2. We thus see easily that if X is a projective curve of genus g ≥ 0,
then X is special if and only if g ≤ 1, that is: if and only if X is
rational or elliptic.

3. ‘Special’ manifolds thus generalize rational and elliptic curves.
We shall see in fact that they are, more precisely, the manifolds which
are ‘opposite’ to manifolds of general type in a precise sense. We shall
conjecture below that they are ‘opposite’ to manifolds of general type
also for hyperbolicity and arithmetic properties.

4. It is certainly possible to show the finiteness of the set of Bogo-
molov sheaves on a given X4 by adapting the proof of the theorem of
Kobayashi-Ochiai for dominant meromorphic maps f : X 99K Y , with
Y of general type.

2.3. Preservation of ‘specialness’.
1. Specialness is a birational property (by its very definition).
2. If X is ‘special’ and f : X → Z is a surjective meromorphic map

to a complex analytic space, then Z is ‘special’, too. (Obvious).
3. If X → X ′ is a finite étale cover, and if X ′ is ‘special’, then X

is ‘special’ too. We admit this (surprisingly) difficult result, which is
proved (see 5.4) using the partial solution 4.2 of the conjecture Corb

n,m

stated below.
4. If any two generic points of X can be joined by a chain of ‘special’

irreducible subvarieties, then X is ‘special’. This can be proved by
elementary means using the compactness of the components of the
Barlet-Chow scheme of X. A direct proof (see 5.6) is obtained using
the ‘core map’ defined below.

4’. In particular, if f : X → Y is a fibration with special fibres
containing a ‘special’ subvariety Z ⊂ X such that f(Z) = Y , then X
is ‘special’.

2.4. Examples of ‘special’ manifolds. We shall give here examples
of ‘special’ manifolds. Most proofs cannot be given now, because they
rest on theorem 4.2. A complete understanding of the class of ‘special’
manifolds can be gained only by the decomposition theorem ?? stated
below, which requires working in the orbifold category.

1. Rationally connected manifoldsX are ‘special’ (indeed, Symm(Ωp
X) =

0 for any p,m > 0. Hence κ(X,L) = 0 for any L ⊂ Ωp
X and any p > 0).

4And, more generally, for ‘smooth orbifolds’ defined below.
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2. Complex tori and Abelian varietiesX are ‘special’, since κ(X,L) ≤
0 for any p,m > 0, for any rank-one L ⊂ Ωp

X .
3. More generally, if c1(X) = 0, then X is ‘special’, since again

κ(X,L) ≤ 0 for any p,m > 0, for any rank-one L ⊂ Ωp
X , by either the

existence of Ricci-flat Kähler metrics and the parallelism of holomor-
phic covariant tensors, or Miyaoka’s generic semi-positivity theorem.

4. Still more generally, X is ‘special’ if κ(X) = 0.This is a conse-
quence of 4.2. In this case, we cannot prove that κ(X,L) ≤ 0 for any
L as above, although the abundance conjecture implies this.

5. For any pair (n, k), k ∈ {−∞, 0, 1, ..., (n−1)}, there exists ‘special’
projective manifolds X of dimension n with κ(X) = k, as well as non-
special manifolds with the same invariants (except for k = 0 of course).
The notion of specialness is thus not determined by κ(X), and certainly
not restricted to the cases κ(X) ≤ 0.

6. For surfaces, it is easy to characterise ‘specialness’ by the invari-
ants κ and either q̃ or π1. More precisely: a compact Kähler surface
X is ‘special’ if and only if κ(X) ≤ 1, and π1(X) is almost abelian
(or equivalently, if q(X ′) ≤ 1 for any finite étale cover X ′ of X). In
particular: ‘specialness’ is preserved by deformation, and also by dif-
feomorphisms. One conjectures that deformation preserves specialness
in higher dimensions too.

7. A compact Kähler manifold of algebraic dimension zero (or, equiv-
alently containing only a finite set of irreducible compact divisors) is
‘special’. More generally, the fibres of any algebraic reduction of a
compact Kähler manifold are ‘special’.

8. A quite different criterion for ‘specialness’ is derived from an
orbifold version of a fundamental result of Kobayashi-Ochiai: if h :
Cm → X is a (transcendental) non-degenerate meromorphic map, then
X is ‘special’. Here non-degenerate means that it is holomorphic of
rank n at some point z ∈ Cm. More general versions exist.

2.5. Conjectures about ‘special manifolds. ‘Special manifolds’ will
below appear as exactly ‘opposite’ to manifolds of general type, and the
structure results about them will naturally lead to formulate the fol-
lowing conjectures (which will be extended, strengthened and justified
in conjectures 5.8, 7.2, 7.5,7.7):

Conjecture 2.5. 1. If X is special, π1(X) is almost abelian. (True
when X is rationally connected and when c1(X) = 0)

2. X is special if and only if its Kobayashi pseudometric vanishes,
or equivalently if and only if any two points can be joined by an entire
holomorphic curve, or equivalently if and only if it contains a Zariski
dense entire curve h : C→ X.

3. Assume X is defined over a number field k ⊂ C. Then X is
special if and only if it is ‘potentially dense’ (ie: if X(k′) is Zariski
dense for some finite extension k′/k).
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4. ‘Specialness’ is closed under deformation and specialisation. In
other words: let Xs, s ∈ D the unit disc, be a smooth family of com-
pact Kähler manifolds. If one member Xs is ‘special’, all members are
‘special’ .

5. Let F : X → B be a fibration from X ∈ C onto a projective smooth
curbe B. Assume F is not bimeromorphically isotrivial 5. Then: X is
‘potentially dense’ over C(B)6 if and only if its general fibre Xb is
special.

Of course, conjectures 2.5.2 and 2.5.3 are inspired by Lang’s conjec-
tures in hyperbolicity and arithmetics, of which they are the versions
in the ‘opposite’ case.

3. Special Manifolds: Orbifold base

We will consider here a normal connected compact complex ana-
lytic space Z. An orbifold divisor is a finite linear combination D :=∑

j cj.Dj, where the D′js are pairwise distinct irreducible closed divisors

of Z, and cj ∈ [0, 1] ∩Q for any j.
To each coefficient cj is associated a multiplicity mj := (1− cj)−1 ∈

[1,+∞[∩Q ∪ {+∞}, or equivalently: cj = 1− 1
mj

. Thus we can write

also: D =
∑
{F⊂X}(1 −

1
mD(F )

).F , where F ranges over all irreducible

divisors or X, and mD(F ) := mj if F = Dj, while mD(F ) := 1 if F is
none of the D′js.

Such orbifold pairs (Z,D) interpolate between the compact case
where D = 0 and (Z, 0) = Z without orbifold structure, and the
open, or purely-logarithmic case where cj = 1,∀j, where (Z,D) =
Z − Supp(D).

When Z is smooth and the support Supp(D) := ∪Dj of D is of
normal crossings, we say that (Z,D) is smooth. When all multiplicities
mj are integral or +∞, we say that the orbifold pair (Z,D) is integral,
and may be thought of a virtual ramified cover of Z ramifying at order
mj over each of the D′js.

When D is integral, so is Df,D. In particular, Df := Df,D=0 is
integral.

There are (at least) 3 main reasons, apparently independent, to in-
troduce this notion:

1. Moduli spaces (Deligne-Mumford ‘stacks’).
2. LMMP, in order to use inductive arguments on the dimension, by

restriction to ‘centers of log-canonical singularities’.
3. Orbifold base of fibrations, which is the main subject of the

present survey.

5That is: the generic fibres of F are not pairwise bimeromorphic.
6That is: Z(C ′) ⊂ X ′ = X×BB

′ is Zariski-dense in X ′ for some finite (ramified)
cover u : B′ → B, where Z(B′) is the union of the images of all sections s′ : B′ → X ′

of F ′ := F × u : X ′ → B′.
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3.1. Orbifold base of a fibration.

Definition 3.1. Let f : X → Z be a holomorphic fibration. Assume
that an orbifold divisor D is given on X. We shall define an orbifold
base (Z,Df,D) of (f,D) as follows, by assigning to each irreducible
Weil divisor E ⊂ Z a multiplicity7 m(f,D)(E) := infk{tk.mD(Fk)},
where: f ∗(E) =

∑
k tk.Fk + R, where R is an f -exceptional divisor of

X with f(R) ( E, while the F ′ks range over all irreducible divisors of
X surjectively mapped by f to E.

Remark 3.2. The geometric meaning of (Z,Df ) is that it is a virtual
ramified cover of Z which eliminates by base-change the multiple fibres
of f in codimension one8 over Z. Moreover (on suitable bimeromorphic
models), if f : X → Z and g : Z → W are two fibrations, then
Dgf = Dg,Df

. This justifies the above formula for mf,D(E).

3.2. Orbifold canonical bundle. Let (Z,D) be an orbifold pair. As-
sume that KZ + D is Q-Cartier (this is the case if (Z,D) is smooth,
for example). This will then be said to be the canonical bundle of
(Z,D), and the canonical dimension κ(Z,D) of (Z,D) will be defined,
as usual, as being κ(Z,KZ +D). We say that (Z,D) is of general type
if κ(Z,D) = dim(Z).

If we have a holomorphic fibration f : (X,D) → Z such that KZ +
Df,D is Q-Cartier, we can define thus define κ(Z,Df,D). This will
however not be a bimeromorphic invariant of (X,D), f in general.

More precisely: if g : (X ′, D′) → (X,D) is a bimeromorphic map
from X ′ to X such that g∗(D

′) = D, it is easy to see that Dfg,D′ = Df .
But if we have a bimeromorphic map h : Z ′ → Z and a factorisation
f = hf ′ for some holomorphic fibration f ′ : (X,D)→ Z ′, we have also:
Df,D = h∗(Df ′,D). We thus only get: κ(Z ′, Df ′,D) ≤ κ(Z,Df,D), and
simple examples show that strict inequality may occur.

3.3. Bimeromorphic equivalence of fibrations. We shall say that
f : X → Z and f ′ : X ′ → Z ′ are bimeromorphically equivalent if there
exists bimeromorphic meromorphic maps u : X ′ → X and v : Z ′ → Z
such that fu = vf ′ : X ′ → Z. By suitable modifications of X ′ and
Z ′, we can and shall assume that u, v, f, f ′ are holomorphic, and that
KZ +Df and KZ′ +Df ′ are Q-Cartier. We write: f ′ ∼ f

We shall then define κ(f) := inf{f ′∼f}κ(Z ′, Df ′) ∈ {−∞, 0, ...., dim(Z)}.
This is independent on the bimeromorphic model of f which is cho-

sen, and is thus defined for any meromorphic fibration f : X → Z, with
X,Z arbitrarily singular (provided X has a Kähler smooth model).

7Note that the integers tk are well-defined, even if X is only assumed to be
normal.

8This is actually true only for the ‘classical’ orbifold base D∗f :=
∑

E(1 −
1

m∗
f (E) ).E, with m∗(f)(E) := gcdk{tk}, which we shall however not consider here, for

reasons given below (see Remark 3.8).
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Definition 3.3. We say that f is of general type if κ(f) = dim(Z).

Fibrations of general type enjoy a certain regularity:

Proposition 3.4. Let f : X → Z be a meromorphic fibration of gen-
eral type. It is ‘almost holomorphic’ 9 if X is smooth.

We now describe fibrations f : X → Z such that κ(f) = κ(Z,Df ).

3.4. Neat models.

Definition 3.5. The holomorphic fibration f : X → Z will be said to
be ‘neat’ if X and Z are smooth, and if there exists a bimeromorphic
holomorphic map u : X → X0, with X0 smooth, such that any irre-
ducible divisor E ⊂ X which is f -exceptional 10 is also u-exceptional.

By Raynaud’s flattening and Hironaka desingularisation theorems,
any f has a bimeromorphic model which is ‘neat’ (first flatten f by
modifying Z, then desingularise).

Theorem 3.6. Let f : X → Z be ‘neat’. Then κ(f) = κ(Z,Df ).

Idea of proof: Let p := dim(Z), and L ⊂ Ωp
X be the satura-

tion of f ∗(KZ). Notice that κ(X,L) is a bimeromorphic invariant of
f . Then, for any m > 0 sufficiently divisible (by the lowest com-
mon multiple of the multiplicities of the components of Df , precisely),
f ∗(m.(KZ+Df )) ⊂ Symm(Ωp

X) has the same saturation as L⊗m. More-
over, because the f -exceptional divisors of X are also u-exceptional,
Hartog’s theorem implies that any section of f ∗(m.(KZ +Df )) defined
ouside the union of these divisors extends holomorphically to X. Since
the support of [L⊗m/f ∗(m.(KZ + Df ))] does not contain f−1(G) for
any irreducible divisor G ⊂ Z, we see that the sections of L⊗m and of
f ∗(m.(KZ +Df )) coincide for any sufficiently divisible m �

We obtain the following crucial:

Corollary 3.7. In the notations of theorem 3.6, let Lf ⊂ Ωp
X be the

saturation of f ∗(KZ). Then:
1. The correspondance between f and Lf induces a bijection between

Bogomolov sheaves on X and fibrations of general type up to bimero-
morphic equivalence on X.

2. X is special if and only if it admits no fibration of general type.

We can thus say that X is ‘special’ precisely if it does not admit a
neat fibration ‘onto an orbifold of general type’.

Remark 3.8. This correspondance between Bogomolov sheaves and fi-
brations of general type needs the use of the infimum (as opposed to the
gcd) in the multiplicities defining the orbifold base of a fibration (see

9Which means that its indeterminacy locus does not meet its generic fibre.
10This means that f(E) has codimension at least 2 in Z.
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definition 3.1). This is why ‘classical’ multiplicities are not considered
here.

The following property is elementary:

Proposition 3.9. Let f : X → Y and g : X → Z be fibrations.
Assume that the ‘general’ 11 fibres of f are ‘special’, and that g is of
general type. There then exists a factorisation h : Y → Z such that
g = h ◦ f .

4. The Orbifold version of Cn,m Conjecture

Conjecture 4.1. Let (X,D) be smooth, and f : X → Z be a ‘neat’
fibration. Then κ(X,D) ≥ κ(Xz, Dz) + κ(Z,Df,D), where (Xz, Dz) is
the generic (smooth) orbifold fibre of f : (X,D)→ Z.

This conjecture coincides with Iitaka’s Cn,m conjecture when D = 0,
if one ignores the strengthening term Df,D. We call Conjecture 4.1 the
‘Corb

n,m-conjecture’.

The main technical result of the present text is the solution of Corb
n,m

for fibrations of general type:

Theorem 4.2. If (X,D) is smooth and f : X → Z is a ‘neat’ fibration
of general type, then: κ(X,D) ≥ κ(Xz, Dz) + dim(Z).

The proof of this important result is an orbifold adaptation of Viehweg’s
proof of Cn,m when Z is of general type. An immediate but important
consequence12 is:

Corollary 4.3. If κ(X) = 0, then X is ‘special’.

A second basic application is the core map, which we now expose.

5. The Core Fibration

Theorem 5.1. Let X be a compact Kähler manifold. There exists a
unique13 almost holomorphic fibration cX : X → C(X), called the ‘core
map’ such that:

1. Its ‘general’ fibre is special.
2. Its orbifold base (C(X), DcX ) := (C,Dc) is of general type.

Remark 5.2. 1. There are two extreme cases: X is ‘special’ (resp. of
general type) if and only if C(X) is a point (resp. X = C(X)). 2. The
proof shows that if dim(C(X)) := p ≥ 0, there is a unique saturated
rank-one subsheaf L ⊂ Ωp

X with κ(X,L) = p. One has thus L = LcX .

11That is: those not mapped to a countable union of proper Zariski-closed subsets
of Y .

12We give only the stement for D = 0, although it holds, with its proof, in
general.

13Up to bimeromorphic equivalence.
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Idea of proof: Let p ≥ 0 be maximum such that there exist L ⊂ Ωp
X

saturated, of rank one, with κ(X,L) = p, and let f : X → Z be the
associated fibration. It is thus almost holomorphic (by 3.4), and its orb-
ifold base (on a ‘neat’ model) is of general type. We need to prove that
its general fibres are ‘special’. We may assume that X is not ‘special’
and proceed by induction on n := dim(X). Assume that the general
fibre Xz of f is not ‘special’. We can thus, using the compactness of the
components of the Barlet-Chow scheme of X construct a relative ‘core
map’ cf : X → Y , together with a factorisation F : Y → Z such that
F ◦ cf = f : X → Z, and over the ‘general’ z ∈ Z, we get by restriction
to Xz, the ‘core map’ cz : Xz → Yz of Xz. Let now (Y,Dcf ) be the
orbifold base of cf . For z ∈ Z general, (Yz, Dcf |Xz) = (Yz, Dcf )|Yz is of
general type. From theorem 4.2 we see that (Y,Dcf ) is of general type,
contradicting the definition of p = dim(Z), since dim(Y ) > dim(Z).
We chose c = f . The uniqueness of c follows from proposition 3.9 �

Remark 5.3. If X is defined over the field K ⊂ C, so is cX , by an
easy Galoisian argument and the uniqueness of cX .

We give some additional properties of the ‘core map’ using its unique-
ness:

Corollary 5.4. Let u : X ′ → X be a finite étale cover, let cX : X → C
be the core map of X, and c′ : X ′ → C ′ the Stein factorisation of
cX ◦ u : X ′ → C, with cu : C ′ → C finite (ramified in general). Then
c′ is the core map of X ′.

In particular: if X is ‘special’, so is X ′.

Idea of proof: We can assume that u is Galoisian, of group G. The
family of fibres of cX′ : X ′ → CX′ is G-invariant and there exists a
factorisation f : X → (CX′/G). which is of general type since so is
cX′ (just consider the saturation of f ∗(K(CX′/G)) in Ω∗X , and its inverse
image in Ω∗X′ . Use the fact that u is étale.). Since the fibres of cX′

are ‘special’, so are their images by u, the fibres of f . Thus f = cX as
claimed �

From proposition 3.9 we get immediately:

Corollary 5.5. Let X be smooth, and cX : X → C its core map.
Let f : X → Z be a fibration. If f is of general type (resp. if its
general fibres are special), there exists a factorisation: h : C → Z
(resp. h : Z → X) such that f = h ◦ cX (resp. cX = h ◦ f).

Another elementary consequence is the following.

Corollary 5.6. Let X be smooth. Assume that there exists a nompty
open (analytic) subset U of X any two points of which can be joined by
a chain of ‘special’ subvarieties 14 of X. Then X is ‘special’.

14That is: irreducible compact analytic subsets.
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Remark 5.7. The smoothness assumption is essential, here (consider
the cone over a general type manifold). On the other hand, a ‘special’
manifold may contain no proper ‘special’ subvariety, except for points
(consider a ‘simple’ abelian variety).

5.1. Conjectures about the core. Using the ‘core’, we may now for-
mulate conjectures about all manifolds X ∈ C, not only for ‘special’
ones as in 2.5. Indeed, the ‘core’ splits X geometrically into its two
‘opposite’ parts: ‘special’ (the fibres), and ‘general type’ (the orbifold
base). We conjecture that it also splits X arithmetically and ‘hyper-
bolically’, following Lang’s conjectures relating geometry, arithmetics
and hyperbolicity.

Let c : X → C be the ‘core’ of some X ∈ C (on some ‘neat’ model).
Let (C,D) be its orbifold base: it is of general type.

We shall associate in §7 to (C,D) a Kobayashi pseudometric d(C,D)

and a set (C,D)(k) ⊂ C of k-rational points (C,D)(k) if X (and so
(C,D)) is defined over a number field k ⊂ C.

These definitions are functorial, so that dX ≤ c∗(d(C,D)) and c(X(k)) ⊂
(C,D)(k).

Even without these precise definitions (given in §7), the conjectures
below give a qualitative description of dX and X(kk).

Conjecture 5.8. 1. Let dX be the Kobayashi pseudo-metric of X.
Then dX = c∗(d(C,D)), and there exists a proper closed algebraic subset
W ⊂ C such that d(C,D) is a metric on C −W .

2. Assume that X is defined over the number field k ⊂ C. Then
(C,D)(k) ∩ (C −W ) is finite, c(X(k)) ⊂ (C,D)(k). Moreover, there
exists a finite extension k′/k such that X(k′)∩ (c−1(C−W ) is Zariski-
dense in c−1[(C,D)(k) ∩ (C −W )].

Remark 5.9. These conjectures strengthen the combination of conjec-
tures 2.5.(2,3) together with versions for orbifolds of general type of
Lang’s conjectures in hyperbolicity (d(C,D) is a metric on C −W ) and
arithmetics (C,D)(k) is finite outside W ). One may conjecture that
W is the union of all ‘suborbifolds’ of (C,D) which are not of general
type.

We give a generalisation of conjecture 2.5.(4) as well:

Conjecture 5.10. The dimension of the core is invariant under de-
formation and specialisation. In other words: let Xs, s ∈ D the unit
disc, be a smooth family of compact Kähler manifolds. The dimension
dim(C(Xs)) is then independent of s ∈ D.

6. The decomposition c = (Jr)n of the core

We shall show, conditionally in Corb
n,m, that the core fibration can be

written as the n− th iterate of the composition J ◦ r of two canonically
defined fibrations: J and r, respectively the Moishezon-Iitaka fibration
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and a weak version of the ‘rational quotient’ of [C92] (and called the
MRC-fibration in [KMM]).

This decomposition cannot take place in the bimeromorphic category
of varieties without orbifold structure. We thus consider orbifold pairs,
and define some of their geometric invariants as well as bimeromorphic
maps between them. These notions are delicate and still not defined
in complete generality. For these reasons, we shall restrict to smooth
orbifold pairs (X,D) and to the situations needed for the present ex-
position.

6.1. Kodaira dimension of an orbifold fibration. We need to ex-
tend the definitions and results of §3.3 to the case where X is equipped
with an orbifold divisor D. The proofs of the relevant results are en-
tirely the same.

We shall denote by f : (X,D)→ Z the data consisting of a fibration
f : X → Z, together with an orbifold divisor D on X. We have
already defined the orbifold base (Z,Df,D) and its canonical dimension
κ(Z,Df,D) in §3.3.

Definition 6.1. Let u : X ′ → X be a bimeromorphic map, and let D′

and D be orbifold divisors on X ′ and X respectively such that u∗(D
′) =

D. We shall say that u : (X ′, D′)→ (X,D) is ‘weakly bimeromorphic’
(or a ‘weak modification’ if KX′ + D′ ≥ u∗(KX + D). We then have:
κ(X ′, D′) = κ(X,D)15 .

In this situation, we shall say that the fibrations f : X → Z and
f ′ : X ′ → Z ′ are ‘bimeromorphically equivalent’ if there exists a bimero-
morphic meromorphic map v : Z ′ → Z such that fu = vf ′ : X ′ → Z.
By suitable modifications of (X ′, D′) and Z ′, we can and shall assume
that u, v, f, f ′ are holomorphic, and that KZ + Df,D and KZ′ + Df ′,D′

are Q-Cartier. We write: (f ′, D′) ∼ (f,D).

We shall then define:

κ(f,D) := inf{(f ′,D′)∼(f,D)}{κ(Z ′, Df ′,D′)} ∈ {−∞, 0, ...., dim(Z)}.
This is independent on the bimeromorphic model of f which is cho-

sen, and is thus defined for any meromorphic fibration f : (X,D)→ Z,
withX,Z arbitrarily singular (providedX has a Kähler smooth model).

Theorem 3.6 holds in this more general situation as well:

Theorem 6.2. Let (X,D) be smooth, and let f : X → Z be a ‘neat’
fibration. Then κ(f,D) = κ(Z,Df,D).

6.2. The orbifold canonical fibration J. Let (X,D) be smooth,
and assume that κ(X,D) ≥ 0. There then exists as usual a ‘canonical
fibration’ J = JX,D : (X,D) → J(X,D), which we may assume to be

15More precisely: the m-th plurigenera of (X ′, D′) and (X,D) coincide for m
sufficiently divisible.
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‘neat’, given (on some weakly bimeromorphic model) by the sections
of some multiple of KX +D. We have, if J is neat:

dim(Z) = κ(X,D) ≥ κ(f,D) = κ(Z,Df,D) ≥ −∞.

6.3. The ‘k-rational quotient’ r.

Definition 6.3. Let (X,D) be smooth. We define:
dim(X) ≥ κ+(X,D) := max{f :X→Z}{κ(Z,Df,D)} ≥ −∞.

The basic example is:

Theorem 6.4. Let (X,D) be birationally Fano, smooth. Then:

κ+(X,D) = −∞.

Proof: We refer to lemma 6.20 for the proof and the relevant defini-
tion, just mentioning that (X,D) is ‘birationally Fano’ if −(KX + D)
is ample on X) �

Remark 6.5. If X is rationally connected and D = 0, then κ+(X) =
−∞, and conjecturally, the converse is true as well. More generally,
if rX : X → R(X) is the rational quotient (with rationally connected
fibres and non-uniruled base by [GHS]), one conjectures that κ(R(X) ≥
0, and rX is (up to bimeromorphic equivalence) characterised by these
two properties.

Using Corb
n,m, we shall extend this construction to the orbifold situa-

tion.

Proposition 6.6. Assume Corb
n,m. Let (X,D) be smooth. There exists

a unique16 fibration r := rX,D : (X,D)→ R := R(X,D) such that:
1. Its general orbifold fibres have κ+ = −∞.
2. κ(r,D) ≥ 0.
Moreover, r is almost holomorphic. It is called the ‘k-rational quo-

tient’ of (X,D)17.

Idea of proof: If κ+(X,D) = −∞, we take R to be a point. If
κ(X,D) ≥ 0, we take R = X. It is then easy to see that (X,D) is
not covered by a family of suborbifolds (becoming smooth on a suit-
able weak modification of (X,D)) with κ = −∞. Assume now that
κ(X,D) = −∞, but that there exists some fibration f : (X,D) → Z
with dim(Z) > 0 and κ(f,D) ≥ 0. Choose dim(Z) to be maximum
with this property. We may assume that f is ‘neat’. We then claim
that κ+(Xz, Dz) = −∞. Otherwise, using induction on dimension and
the compactness of the Barlet-Chow space, we can construct a relative
‘k-rational quotient’ rf : X → Y and ρ : Y → Z such that ρ ◦ rf = f ,
and the restriction rf,z : (Xz, Dz) → Yz of rf to Xz is the ‘k-rational
quotient’ of (Xz, Dz). We have: dim(Y ) > dim(Z) by assumption, and

16Up to bimeromorphic equivalence.
17The term will find its justification in corollary 6.19 below.
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κ(Yz, Drf,z ,Dz = Drf ,D|Yz)) ≥ 0. Because we may assume that both rf
and ρ are neat, we deduce from Corb

n,m that:

κ(Y,Drf ,D) ≥ κ(Yz, Drf ,D|Yz) + κ(Z,Df,D) ≥ 0,

contradicting the maximality of dim(Z)
The uniqueness of r follows from the following elementary lemma

6.7. �

Lemma 6.7. Let f : (X,D) toZ be a ‘neat’ fibration with orbifold base
(Z,DZ) such that κ(Z,DZ) ≥ 0. Let g : (XD) → Y be a holomorphic
fibration with κ(Xy, Dy) = −∞ for y ∈ Y general. There exists a
factorisation h : Y → Z such that hg = f .

Remark 6.8. From their constructions, we see that J and r are pre-
served by ‘weak modifications’ u : (X ′, D′)→ (X,D) as defined in 6.1.

6.4. Special orbifolds.

Definition 6.9. Let (X,D) be a smooth orbifold. We say that (X,D)
is ‘special’ if κ(f,D) < dim(Z) for any fibration f : (X,D) → Z with
dim(Z) > 0. Orbifold ‘specialness’ is preserved by ‘weak modifications’.

Remark 6.10. There is an alternative definition of orbifold specialness
in terms of D-Bogomolov sheaves on X, similar to definition 2.3 and
theorem 3.6. We shall not give them here, and refer to [C11] for details.
The same arguments as when D = 0 show the existence of a ‘core
fibration’ cX,D : (X,D)→ C(X,D) for any smooth orbifold (X,D).

One gets immediately from theorem 4.2, as in the proof of corollary
4.3:

Theorem 6.11. Let (X,D) be smooth. Then (X,D) is ‘special’ if
either κ(X,D) = 0, or if κ+(X,D) = −∞.

The following result is elementary.

Proposition 6.12. Let f : (X,D)→ Z be a ‘neat’ holomorphic fibra-
tion such that its ‘general’ orbifold fibre (Xz, Dz) and its orbifold base
(Z,Df,D) are special. Then (X,D) is ‘special’.

Remark 6.13. This is (another) justification of the consideration of
orbifold pairs: it is not true that X is special if it has a fibration f :
X → Z with base Z and fibres Xz special (see example 2.2.4).

Corollary 6.14. Assume Corb
n,m. Let (X,D) be smooth.

1. Define r : (X,D) → R its ‘k-rational quotient’ on some ‘neat’
model. Then κ(R,Dr,D := DR) ≥ 0, and so J : (R,DR)→ J(R,DR) is
well-defined (on some neat model again). Making a weak modification
of (X,D), we may thus assume that J ◦ r : (X,D) → J(R,DR) is
well-defined and ‘neat’. Moreover (from proposition 6.12), its orbifold
fibres are special.
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2. Thus (J ◦ r)k is a uniquely and well-defined fibration, for any
k ≥ 0. Its orbifold fibres are special (from 6.12 and induction)

3. J(R,DR) = X if and only if (X,D) is of general type.

Idea of proof: For claim 3. only, since 1,2 follow directly from
6.12: If J(R,DR) = X, we have R = X, (X,D) = (R,DR) and so
κ(X,D) ≥ 0, and next: J(R,DR) = R, which means that κ(X,D) =
κ(R,DR) = dim(J) = dim(R) = dim(X) �

6.5. The decomposition c = (J ◦ r)n of the core.

Theorem 6.15. Assume Corb
n,m. Let (X,D) be a smooth orbifold, and

c = (X,D) → C(X,D) be its ‘core fibration’. Then c = (J ◦ r)n, with
n := dim(X).

Proof: The orbifold fibres of (J ◦r)n are special, by 6.14. Let (Jr)n :
(X,D) → Zn. We just need to show that (Z,D(Jr)n,D) is of general
type, since c is characterised by these two properties. This follows
from 6.12.3, and the equality: (Jr)n+1 = (Jr)n, since the dimension dk
of the image Zk of (Jr)k : (X,D)→ Zk decreases with k, and stabilizes
precisely when the orbifold base is of general type �

Corollary 6.16. Assume Corb
n,m. Let X be a connected compact Kähler

manifold. Then X is ‘special’ if and only if (Jr)n is the constant map
(in other words: X is ‘special’ if and only if X is a tower of fibrations
with orbifold fibres having either κ = 0, or κ+ = −∞).

6.6. Interpreting κ = 0 and κ+ = −∞ using Abundance.
Recall (see [KM]) that an orbifold pair (Z,D) is log-canonical (l.c for

short) if KZ +D is Q-Cartier, and if there exists a weakly bimeromor-
phic map u : (X,DX) → (Z,D) (in the sense of definition 6.1 above)
with (X,D) smooth. Note that KX +DX is pseudo-effective (pseff for
short) if and only if so is KZ +D.

Recall the central:

Conjecture 6.17. (“Abundance conjecture”) Let (Z,D) be a l.c orb-
ifold pair in C. If KZ+D is pseff, there exists a composition of divisorial
contractions and log-flips g : (Z,D) → (Z ′, D′) with D′ := g∗(D) and
(Z ′, D′) l.c such that KZ′ +D′ is semi-ample.

We abbreviate this by saying that KX+D is ‘birationally semi-ample’
(and ‘birationally torsion’ if κ(X,D) = 0).

Let ψ : Z ′ → W be the fibration given by KZ′ +D′.
In this situation, we can make a ‘weak modification u : (X ′, D′) →

(X,D) and a modification v : W ′ → W in such a way that ψ′ :=
v−1 ◦ ψ ◦ u−1 : X ′ → W ′ is holomorphic, and ‘neat’, with (W ′, Dψ′,D′)
smooth. We shall call it a ‘neat birationally K-semi-ample fibration’.

One has also (in particular):
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Theorem 6.18. ([BCHM]) Let (Z,D) be l.c projective. If KZ + D is
not pseff, there exists a composition of divisorial contractions and log-
flips g : (Z,D) → (Z ′, D′) with D′ := g∗(D), and a (‘Fano’-) fibration
ϕ : (Z ′, D′) → W such that: (Z ′, D′) is l.c, −(KZ′ + D′) is ϕ-ample
and dim(W ) < dim(Z).

We abbreviate this by saying that ϕ : (X,D) → W is a ‘bira-
tionally Fano fibration’. It is birationally a projective morphism, hence
a Moishezon morphism, and X is Moishezon if so is W .

In this situation, we can make a ‘weak modification u : (X ′, D′) →
(X,D) and a modification v : W ′ → W in such a way that ϕ′ :=
v−1 ◦ ϕ ◦ u−1 : X ′ → W ′ is holomorphic, and ‘neat’, with (W ′, Dϕ′,D′)
smooth. We shall call it a ‘neat birationally Fano fibration’.

Corollary 6.19. Assume the Abundance conjecture 6.17.
Let (X,D) be a smooth orbifold pair in C.
1. If κ(X,D) ≥ 0, then KX + D is ‘birationally semi-ample’ (and

‘birationally torsion’ if κ(X,D) = 0).
2. κ+(X,D) = −∞ if and only if there exists a finite sequence

of ‘birationally Fano fibrations’ ϕi : (Xi, Di) → (Xi+1, Di+1) (i =
0, 1, ..., k ≤ (n− 1)) such that (X0, D0) = (X,D), and Xk is one point.

In this case X is Moishezon (and projective if Kähler).
2. The core map of (X,D) is (after a ‘weak modification’ of (X,D))

a composition of ‘neat birationally K-semi-ample’ and of ‘neat bira-
tionally Fano’ fibrations.

Proof: Assertions 1 and 2 are clear, from assertions 1 and 2, together
with theorem 6.15. We show assertion 2. Assume first that κ+(X,D) =
−∞, so that KX + D is not pseff. There thus exists a non-trivial
‘neat birationally Fano fibration’ ϕ′ : (X ′, D′) → W ′ (after a ‘weak
modification’ of (X,D) ). And we have κ(W ′, Dϕ′,D′) = −∞. By
induction on dim(X), we may iterate to get the conclusion.

Assume conversely that we have such a sequence of ‘neat birationally
Fano fibrations’. By induction on the number of terms, and using
proposition 6.7, the claim follows from the next theorem 6.20 �

Theorem 6.20. Let (X,D) be birationally Fano, and smooth. Then:

κ+(X,D) = −∞.

Proof: Let g : (X,D) → (Z ′, D′) be a sequence of divisorial con-
tractions and flips, with (Z ′, D′) Fano and l.c. Assume there exists a
‘neat’ fibration f : (X,D) → Y with κ(Y,Df,D) ≥ 0 and dim(Y ) =
p > 0. We thus get18 a non-zero section of H0(X,Sm(Ωp

X(D))) for
some large and divisible integer m > 0. If C ⊂ Z ′ is however a generic
Mehta-Ramanathan curve on Z ′ for some (any) polarization H, then:
H0(C, Sm(Ωp

X(D))|C) = 0, by [CP], theorem 3.1.(2), which implies the

18We refer to [CP] and [C11] for the definition of the sheaves Sm(Ωp
X(D)).
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vanishing of H0(X,Sm(Ωp
X(D))), and contradicts the existence of f

with the asserted properties. �

6.7. Lifting properties using the c = (Jr)n decomposition.
We wish to reduce the verification of certain properties P related

to hyperbolicity, arithmetics, topology ,... which are conjectured for
special manifolds to the classes of orbifold pairs with either κ = 0, or
κ+ = −∞. The following is an immediate deduction from theorem
6.15.

Corollary 6.21. Assume Corb
n,m. Let P be a property of smooth orbifolds

(X,D).
Assume the following properties:
1. P is satisfied if either κ(X,D) = 0, or κ+(X,D) = −∞.
2. P is preserved under weak modifications of smooth orbifolds.
3. P is satisfied by (X,D) if there is a ‘neat’ fibration f : (X,D)→

Z, and if P is satisfied both by the general orbifold fibre and the base
orbifold of f .

Then: P is satisfied by any ‘special’ smooth (X,D).
Assume moreover that:
4. P is not satisfied by any smooth orbifold of general type and

positive dimension.
5. P is satisfied by (Z,Df,D) if it is by (X,D) and there exists a neat

fibration f : (X,D)→ Z.
Then P is satisfied by (X,D) if and only if (X,D) is special.

We shall give in the next sections some examples of properties P
conjecturally stable under the above operations.

Remark 6.22. Using Abundance, we can even replace in condition 1
of corollary 6.21 κ = 0 and κ+ = −∞ for smooth orbifolds by: KZ +D
torsion and −(KZ + D) ample, but for l.c orbifold pairs, instead of
smooth ones. The definition of the properties P we are interested in
below is however far from obvious in this larger class of singular orbifold
pairs.

7. Conjectures for smooth orbifolds

We formulated conjectures 2.5 and 5.8 concerning the qualitative
geometry (π1, deformations) as well as hyperbolicity and arithmetics
of compact Kähler manifolds. The (conditional) decomposition c =
(J ◦ r)n of the core shows that their solution should be reduced to
formulate and establishing them for smooth orbifolds with either κ = 0,
or with κ+ = −∞. This will be done next.

The definitions are however much more delicate in this orbifold con-
text. In particular, the ‘classical’ version also appears naturally, and
leads to a different version. The two versions behave functorially, but
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(probably) differently. They lead to two versions of ‘specialness’ and
‘core’. We chose the ‘non-classical’ version because it is the one which
is compatible with the definition by means of Bogomolov sheaves. But
the ‘classical’ version leads to stronger conjectures in the case of orb-
ifolds with κ = 0 or κ+ = −∞, which are the ones we state in these
two cases.

Here are some other conjectures.
Let (X,D) be an integral smooth orbifold pair in C. Most invariants

of varieties and manifolds can be defined in a natural way for such
pairs. Let us mention (see below, we refer to [C11] for more details):

1. The fundamental group π1(X,D).
2. The Kobayashi pseudo-metric d(X,D), and the notion of (orbifold)

entire curve h : C→ (X,D).
3. The notion of D-rational curve.
4. If (X,D) is defined over (say) a number field k, the notion of

D-integral point (over (k, S), once a model over Spec(Ok,S) has been
chosen, together with a finite set of places S of Ok).

5. The function field version of the preceding arithmetic notion.
In the following subsections, we shall give the relevant definitions.

For this, we write: D :=
∑

j(1−
1
mj

).Dj with mj > 0 either integers or

+∞, and Supp(D) := ∪jDj. Recall that D is ‘finite’ if so are all the
m′js.

7.1. Fundamental group.

Definition 7.1. For (X,D) as above, it is defined as the quotient of
π1(X − Supp(D) − S)19 divided by the normal subgroup generated by
the classes γmj , if γj is a small loop around Dj .

Conjecture 7.2. π1(X,D) is almost abelian if (X,D) is special, and
finite if (X,D) is Fano and if D is ‘finite’.20

This conjecture is known in a certain number of significant cases
when D is ‘finite’. For example, if D = 0, it is known if X is either
rationally connected, or with c1(X) = 0 ([Y]). It is also known that
the image of a linear representation of π1(X)) is almost abelian if X
is special ([C04]), and that π1(X) is almost abelian if X ∈ C is special
with dim(X) ≤ 3 ([CC]).

Finally, if f : (X,D)→ Z is ‘neat’, and π1(X, z,Dz) and π1(Z,D
∗
f,D)

(its ‘classical’ orbifold base21) are almost abelian, then so is π1(X,D)

19S is the union of the singular sets of X and Supp(D) if we do not assume
(X,D) to be smooth, but just l.c

20This should also hold respectively for l.c and klt ‘integral’ pairs, in particular
when KX +D is torsion and anti-ample respectively.

21The statement remains true, but is weaker with the ‘non-classical’ orbifold
base.
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([?]). In other words, the property 6.21.3 is true for the property P :=
‘π1(X,D) is almost abelian’.

A related question is the structure of the Albanese map aX : X →
AlbX for special manifolds. It is known ([C04]) that it is surjective with
connected fibres, which extends theorems of Ueno (when a(X) = 0) and
Kawamata (when κ(X) = 0). Moreover, the fibres of aX are special
([CC14]).

7.2. Orbicurves, Kobayashi pseudometrics. We shall give a defi-
nition which will be used for orbifold curves (either rational, entire or
discs) and corresponding respectively to C = P1,C,D the unit disc.

Definition 7.3. A ‘D-orbicurve’ is a holomorphic map h : C → X
from a connected smooth complex analytic curve C such that, for any
j, h∗(Dj) ≥ mj.h

−1(Dj) 6= C (ie: if the order of contact of h(C) with
Dj is at least mj at each intersection point, and if h(C) ( Supp(D)).
We denote by Hol(C, (X,D)) the set of such orbicurves with given C.

The orbicurve h : C → X is ‘classical’ if, moreover, the order of con-
tact of h(C) with each Dj is divisible by mj at each intersection point.
We denote with Hol∗(C, (X,D) ⊂ hol(C, (X,D) the set of ‘classical’
orbicurves with given C (because when D = Supp(D) (ie: when all
mj = +∞ for evey j), the D-orbicurves h are the ones whose images
avoid Supp(D).

A D-orbicurve h : C → X is a D-rational curve (resp. a D-entire
curve, a D-disc) when C = P1 (resp. C = C, resp. c = D)). Observe
that the classical and non-classical notions coincide in the two extreme
cases where D = 0 and when D = Supp(D).

We say that (X,D) is C-connected (resp. that (X,D) is classi-
cally C-connected) if any two generic points of X are joined by some
C-orbicurve (resp. by some classical C-orbicurve). When C = P1

(resp. C = C), we say that (X,D) is rationally connected (resp. C-
connected), and that (X,D) is ‘classically’ rationally connected when
we deal with the ‘classical’ D-rational curves, and is ‘classically’ C-
connected when C = C.

Let PD be the Poincaré metric on D. The Kobayashi pseudometric
d(X,D) on X is the smallest pseudometric δ on X such that δ ≥ h∗(PD)
for any h ∈ Hol(D, (X,D)). The ‘classical’ version, denoted d∗(X,D), is

defined similarly, replacing Hol(D, (X,D)) by Hol∗(D, (X,D)). Obvi-
ously: d(X,D) ≤ d∗(X,D).

Functoriality: let f : (X,D) → Z be a fibration with smooth orb-
ifold base (Z,DZ): it induces a natural map f∗ : Hol(C, (X,D)) →
Hol(C, (Z,DZ)) for every C22. Thus: d(X,D) ≥ f ∗(d(Z,DZ)) (the Kobayashi

22Strictly speaking, this true only if f is an orbifold morphism, which is realised
if the multiplicities on the f -exceptional divors is sufficiently great (or divisible in
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pseudometric decreases). We have the same property for the classical
notion, but applied to the classical orbifold base (Z,D∗Z).

7.3. Rational Curves.

Conjecture 7.4. κ+(X,D) = −∞ if and only if (X,D) is classically
rationally connected.23

It is easy to see that κ+(X,D) = −∞ if (X,D) is rationally con-
nected (see [C11]). The other direction is considerably deeper. The
only known particular case is that X is rationally connected if it is
Fano. It is also known ([K-McK]) that (X,D) is uniruled (ie: X is cov-
ered by D-rational curves if (X,D) is Fano). Even in dimension 2, it is
not known whether smooth integral Fano orbifolds (X,D) are covered
by classical D-rational cuves (see [C10], §7 for a detailed discussion).
An example where the question is open is (P2, D) where D consists of
4 lines in general position with multiplicities 2, 3, 7, 41.

7.4. Hyperbolicity.

Conjecture 7.5. 0. If κ(X,D) = 0, then d∗(X,D) ≡ 0 on X.

Moreover, (X,D) is special if and only if the following (conjecturally)
equivalent properties are satisfied:

1. d(X,D) ≡ 0 on X.
2. Any two points of X are connected by a chain of D-entire curves.
3. Any two points of X are connected by a D-entire curve.24

4. There exists a Zariski-dense D-entire curve on X.
In general, let c : (X,D)→ C be a ‘neat’ model of the ‘core fibration’,

and (C,DC) its orbifold base. Then:
5. d(X,D) = c∗(d(C,DC)).
6. d(C,DC) is a non-degenerate metric on some Zariski-dense open

subset of C.

The statement 6 in the preceding conjecture is an orbifold version
of Lang’s conjecture. It also extends the qualitative version of Vojta’s
conjecture. Notice also that conjecture 7.4 implies that d∗(X,D) ≡ 0 if

κ+(X,D) = 0.

the ‘classical’ case). We shall ignore this point here, which in general should not
affect the qualitative aspect of the conjectures stated below

23If one does not assume that D is integral the condition κ+(X,D) = −∞
may be conjectured to be equivalent to (X,D) being weakly rationally connected,
meaning that generic pairs of points of X are connected by rational curves G such
that (KX +D).G < 0.

24Such a curve may be seen as the analogue of a D-rational curve with ample
normal bundle (relative to TX(D)) in conjecture 7.4.
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7.5. Function fields. Let F : (X,D)→ C be a fibration onto a con-
nected smooth projective curve B. Let C(B) be the field of meromor-
phic functions on B. We still write D :=

∑
(1− 1

mj
).Dj, with mj > 0

either integers or +∞ and F (Dj) = B for every j.
Let u : B′ → B be a finite (possibly ramified) cover. A C′-rational

point of (X,D) is an orbicurve s : B′ → X such that F ◦ s′ = u. The
‘classical’ C′-rational points are defined by considering classical orbi-
curves instead. The corresponding sets are denoted by: (X,D)(C(B′)))
(resp. (X,D)∗(C(B′)).

We say that (X,D) is ‘potentially dense’ (resp. ‘classically poten-
tially dense’) over C(B) if (X,D)(C(B′)) (resp. if (X,D)∗(C(B′)) has
a Zariski-dense image in X for some B′.

We have the same functoriality properties for sets of rational points
under fibrations as in the case of D-curves (or D∗-curves).

We say that (X,D) is ‘special’ (resp. of general type) over C(B) if
so is its generic fibre (Xb, Db).

Conjecture 7.6. 0. If κ(Xb, Db) = 0, or if κ+(Xb, Db) = −∞, then
(X,D) is classically potentially dense over C(B).

1. If (X,D) is ‘special’ over K := C(B), then (X,D) is potentially
dense over K.

2. If (X,D) is potentially dense over K and not bimeromorphically
isotrivial25, then X is special over K.

3. If (X,D) is of general type over K, then (X,D) is not potentially
dense over K.

7.6. Arithmetic. We consider here a smooth projective orbifold (X,D)
defined over a number field k, and consider a model of (X,D) over Ok,S
if S is a finite set of places of k. We define for each x ∈ X(Ok,S), not
in Supp(D)(Ok,S), and each j and v ∈ Spec(Ok,S) the arithmetic inter-
section number of x with Dj at v as being the largest integer t = tx,Dj ,v

such that any local equation defining Dj at x vanishes at order t modulo
v.

Such an x is a D-integral point of X(Ok,S) if tx,Dj ,v ≥ mj for each j
and each x ∈ Dj. It is a ‘classical’ integral point if tx,Dj ,v is divisible
by mj for each j. The set of such points are denoted (X,D)(Ok,S) and
(X,D)∗(Ok,S) respectively. We thus have:

(X,D)∗(Ok,S) ⊂ (X,D)(Ok,S) ⊂ X(Ok,S).

Again, the classical and non-classical notions coincide when D = 0
and when D = Supp(D). We have the same functoriality properties as
for orbicurves above. We have the analogs of the conjectures above.

25We say that (X,D) is bimeromorphically isotrivial if, possibly after some finite
base change, there exists a modification µ : (X ′, D′) → (X,D) with µ∗(D

′) = D
and a trivialisation (X ′, D′) = (F,DF )×B over B.
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Conjecture 7.7. 0. If κ(X,D) = 0, or if κ+(X,D) = −∞, (X,D)∗(Ok′,S′)
is Zariski dense for some finite extension k′/k, with S ′ the inverse im-
age of S.

1. (X,D) is special if and only if (X,D)(Ok′,S′) is Zariski dense for
some finite extension k′/k, with S ′ the inverse image of S.

2. If (X,D) is of general type, (X,D)(Ok,S) is not Zariski dense.

Remark 7.8. The following simplest example shows the difference be-
ween the classical and non-classical versions. Let X = P1, and let
D := (1 − 1

p
).{0} + (1 − 1

q
).{∞} + (1 − 1

r
).{1}, for positive integers

p, q, r with 1
p

+ 1
q

+ 1
r
< 1. The corresponding orbifold (P1, D) is thus of

general type, defined over k = Q.
It is easy to check that (P1, D)∗(Q) consists of the x = u

v
∈ Q such

that ±u = ap,±v = bq, ap = bq + cr for some triple of integers a, b, c.
On the other hand, (P1, D)(Q) consists of the x = u

v
∈ Q such

that ±u is ‘p-full’, ±v is ‘q-full’, and ±u − ±v = w is ‘r-full’, where
a positive integer w is said to be ‘r-full’ if each prime appears in its
decomposition as a product of primes with exponent either 0, or at least
r.

It is now known by [DG] that (P1, D)∗(Q) is finite. This is shown
using Falting’s solution of Mordell’s conjecture, and an orbifold-étale
cover which preserves rational points after Chevalley-Weil’s theorem.

It is however unknown whether (P1, D)(Q) is finite (as conjectured
in 7.7). This however follows immediately from the abc-conjecture (as
noticed by P. Colmez).
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