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Abstract. We discuss the Cauchy-Schwarz inequality, first in the

mathematical setting, and then in physics formulated as Heisenberg’s

uncertainty principle in quantum mechanics and then in statistics man-

ifesting as the Cramér-Rao inequality.

1. Cauchy-Schwarz inequality in mathematics

Perhaps the most ubiquitous of inequalities in mathematics is the Cauchy-

Schwarz inequality. First discovered by Cauchy in the year 1821, it states

that if a1, ..., an and b1, ..., bn are arbitrary real numbers, then∣∣∣∑n

j=1
ajbj

∣∣∣ ≤ (∑n

j=1
|aj |2

)1/2 (∑n

j=1
|bj |2

)1/2
, (1.1)

with equality arising if and only if there is a λ ∈ R such that aj = λbj for

j = 1, 2, ..., n.

There are several immediate proofs of this. Indeed, we have∑n

j=1
a2j
∑n

k=1
b2k −

(∑n

j=1
ajbj

)2
=
∑n

j,k=1
a2jb

2
k −

∑n

j,k=1
ajbjakbk

=
∑n

j=1

∑
k≥j

(ajbk − akbj)2 ≥ 0. (1.2)

From this, we see that equality arises if and only if ajbk = akbj for all

j, k, which is tantamount to the assertion

(a1, ..., an) = λ(b1, ..., bn), (1.3)

for some λ ∈ R .

Another “proof at a glance” begins with the self-evident inequality

2ajbj ≤ a2j + b2j , 1 ≤ j ≤ n,
and noting the homogeneity of the left hand side, gets for any λ 6= 0,

2ajbj ≤ λ2a2j + λ−2b2j , 1 ≤ j ≤ n.
Summing over j we get
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j=1
2ajbj ≤ λ2

∑n

j=1
a2j + λ−2

∑n

j=1
b2j .

Choosing
λ2 =

(∑n

j=1
b2j

)1/2 (∑n

j=1
a2j

)−1/2
so as to minimize the right hand side leads immediately to the Cauchy-

Schwarz inequality.

The result is easily extended to complex numbers ai, bi by observing

that ∣∣∣∑n

j=1
ajbj

∣∣∣ ≤∑n

j=1
|aj ||bj | (1.4)

and then applying (1.1) to the latter sum so as to deduce∣∣∣∑n

j=1
ajbj

∣∣∣ ≤ (∑n

j=1
|aj |2

)1/2 (∑n

j=1
|bj |2

)1/2
.

It is not difficult to see that again, equality can arise if and only if (1.3)

holds, because (1.4) is a consequence of the triangle inequality in which the

case of equality is easily identified.

The corresponding inequality for integrals, namely∣∣∣∣∫ b

a
f(x)g(x)dx

∣∣∣∣ ≤ (∫ b

a
|f(x)|2dx

)1/2(∫ b

a
|g(x)|2dx

)1/2

(1.5)

seems to have been first stated by Buniakowsky in 1859 and later (inde-

pendently) by Schwarz in 1885 and for this reason, we sometimes refer to

this as the Cauchy-Buniakowsky-Schwarz inequality (see page 16 of [6]). It

is easy to deduce (1.5) from (1.1) by using Riemann sums and the limiting

process. It is also easy to see that (1.5) extends to improper integrals. We

leave the details to the student.

All these inequalities are special cases of a more general theorem:

Theorem 1. If V is an inner product space over R or C, then
|(v, w)| ≤ ||v||||w||

for all v, w ∈ V with equality if and only if v is a scalar multiple of w.

Proof. We may suppose that w 6= 0, for otherwise, the result is clear.

We decompose v into its components parallel and perpendicular to w by

writing: v = λw + (v − λw) for some scalar λ. For v − λw to be

perpendicular to w, we need 0 = (v − λw,w) = (v, w) − λ||w||2, that

is, λ = (v, w)/||w||2. Now, (v − λw, v − λw) ≥ 0 for any λ so that

||v||2−λ(v, w)−λ(w, v)+ |λ|2||w||2 ≥ 0. With our choice of λ in particular,

we deduce

||v||2 − 2
|(v, w)|2

||w||2
+
|(v, w)|2

||w||4
||w||2 ≥ 0.
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In other words, |(v, w)| ≤ ||v||||w||. Clearly, equality can occur if and only

if v = λw for some λ. This completes the proof. �

Inequalities (1.1) and (1.5) are now special cases of this more general

inequality using the appropriate inner product spaces such as L2[a, b].

2. A principle of duality

At the center of sieve theory and the large sieve inequality in particular,

lies a fundamental principle of duality which is essentially the Cauchy-

Schwarz inequality. We record this below.

Theorem 2. Let cij, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, be mn complex numbers.

Let λ be a non-negative real number. Then, the inequality∑m

i=1

∣∣∣∑n

j=1
cijaj

∣∣∣2 ≤ λ∑n

j=1
|aj |2

holds for all complex numbers a1, ..., an if and only if the inequality∑n

j=1

∣∣∣∑m

i=1
cijbi

∣∣∣2 ≤ λ∑m

i=1
|bi|2

holds for all complex numbers b1, ..., bm.

Proof. Let C be the m × n matrix (cij) and a = (a1, ..., an)tr and b =

(b1, ..., bm)tr be column vectors in Cn and Cm respectively. The first in-

equality of the theorem can then be written as (Ca, Ca) ≤ λ(a,a), and

the second one as (btrC,btrC) ≤ λ(b,b). Suppose the first inequality

holds and let b ∈ Cm. Then, by the Cauchy-Schwarz inequality, we have

for all a ∈ Cn,

(btrCa,btrCa) ≤ ||b||2||Ca||2 ≤ λ||b||2||a||2

by our assumption. Now set a=C
tr
b to deduce ||btrC||4 ≤ λ||b||2||btrC||2

which gives the result. The converse is similarly deduced. �

The principle of duality can be used to deduce what is called the large

sieve inequality which plays a fundamental role in analytic number theory.

The reader can find further details in the monograph [1] as well as [3].

3. The Heisenberg uncertainty principle

The celebrated Heisenberg uncertainty principle, which is a corner stone

of quantum mechanics, is an immediate consequence of the Cauchy-Schwarz

inequality once we understand the dictionary that translates the concepts

of physics into mathematical language. Indeed, from a mathematical stand-

point, Heisenberg’s uncertainty principle states that a function F and its

Fourier transform F̂ cannot both have compact support. To prove this, it

is convenient to introduce the following class of functions.
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We define the Schwartz space (after Laurent Schwartz and no relation

to the Schwarz of the Cauchy-Schwarz inequality) S to be the space of

infinitely differentiable functions F : R → C such that |xkF (`)(x)| → 0

as |x| → ∞, for all non-negative integers k and `.

We recall the definition of the Fourier transform ψ̂ of a function ψ ∈ S:

ψ̂(x) :=

∫ ∞
−∞

ψ(t)e−2πitxdt, x ∈ R.

It is easily verified that ψ̂ is also in S.

Theorem 3 (Heisenberg’s uncertainty principle). Let ψ be a Schwartz

function satisfying ||ψ||2 = 1. Then,(∫ ∞
−∞

x2|ψ(x)|2dx
)(∫ ∞

−∞
x2|ψ̂(x)|2dx

)
≥ 1

16π2
,

with equality if and only if ψ(x)=Ae−Bx
2
for some B > 0 and |A|2 =

√
2B
π .

Proof. Writing

1 =

∫ ∞
−∞
|ψ(x)|2dx =

∫ ∞
−∞

ψ(x)ψ(x)dx,

we integrate by parts to get that this is

= xψ(x)ψ(x)
∣∣∣∞
−∞
−
∫ ∞
−∞

x
d

dx

(
ψ(x)ψ(x)

)
dx.

Because ψ ∈ S, the first term equals zero giving us

1=−
∫ ∞
−∞

x{ψ(x)ψ′(x)+ψ′(x)ψ(x)}dx, and hence 1≤ 2

∫ ∞
−∞
|xψ(x)ψ′(x)|dx.

Applying the Cauchy-Schwarz inequality, we get

1 ≤ 2

(∫ ∞
−∞

x2|ψ(x)|2dx
)1/2(∫ ∞

−∞
|ψ′(x)|2dx

)1/2

.

By the Fourier inversion theorem,

ψ(x) =

∫ ∞
−∞

ψ̂(t)e2πitxdt, so that ψ′(x) =

∫ ∞
−∞

(2πit)ψ̂(t)e2πitxdt,

the differentiation under the integral sign being justified by the virtues of

the elements of the Schwartz class S. In other words, ψ′(−x) is the Fourier

transform of (2πit)ψ̂(t). By Parseval’s formula, we deduce that the L2-

norm of ψ′ is equal to
∫∞
−∞ 4π2t2|ψ̂(t)|2dt. Thus,

1 ≤ 4π

(∫ ∞
−∞

x2|ψ(x)|2dx
)1/2(∫ ∞

−∞
x2|ψ̂(x)|2dx

)1/2

,

from which the main inequality emerges. For the final part of the theorem,

we note that in our application of the Cauchy-Schwarz inequality, equality
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can occur if and only if ψ′(x) = λxψ(x), for some scalar λ. This is an or-

dinary differential equation which is easily solved. We find ψ(x) = Ae−Bx
2

for certain constants A and B > 0 because ψ belongs to S. The fact that

the L2-norm of ψ equals 1 gives us the final claim. �

An immediate consequence of the uncertainty principle is that ψ and ψ̂

cannot both be concentrated in a small neighborhood of the origin. Indeed,

suppose ψ is supported in [−M,M ] and ψ̂ is supported in [−N,N ]. Then,

M2N2 ≥ 1/4π2. So, M and N cannot both be arbitrarily small. A manifes-

tation of the uncertainty principle is what we mentioned earlier that both

ψ and ψ̂ cannot have compact support. If ψ has compact support, then

its Fourier transform is an entire function (see for example, pp. 371-372 of

[11]). As such, the zeros of ψ̂ are isolated unless it is identically zero, in

which case ψ is also identically zero by the inversion theorem.

In quantum mechanics, |ψ(x)|2dx represents the probability density

that a particle is near position x ∈ R. Thus, the probability that such

a particle lies in the interval [a, b] is given by∫ b

a
|ψ(x)|2dx.

Our best guess for the position of the particle is given by the expectation

µ :=

∫ ∞
−∞

x|ψ(x)|2dx

and the error (or uncertainty) involved in this guess is given by the variance∫ ∞
−∞

(x− µ)2|ψ(x)|2dx.

A similar analysis holds for the momentum of the particle. Indeed, the

probability density that the momentum is x ∈ R is |ψ̂(x)|2dx and so the

probability that the momentum lies in [a, b] is given by∫ b

a
|ψ̂(x)|2dx.

The expectation and variance of the momentum are defined as before.

Without any loss of generality, we can normalize our functions so that

the expectation of both the position and momentum are zero. With this

normalization, we see that Heisenberg’s uncertainty principle establishes a

lower bound for the product of these variances (or errors). In other words,

any attempt to lower the error in our observation of the position of a par-

ticle increases the error in determining its momentum and vice versa.
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An uncertainty principle of some sort or other abounds in nature de-

scribed by Fourier duality. Recently, Tao [13] discovered a discrete version

of the uncertainty principle and a simple proof of this can be found in [8].

See also [7] for other variations on this theme. An uncertainty principle

for the equidistribution of arithmetic sequences in arithmetic progressions

and short intervals has been a topic of intense research in analytic number

theory. The reader can find an exposition of this in [5].

4. The Cramér-Rao inequality

A humorous definition of statistics is that it is the converse of prob-

ability theory. Though seemingly funny, the joke contains the essential

idea. In probability theory, we deal with measurable functions (also called

random variables), probabilty density functions (sometimes referred to as

pdfs or probability measures). By contrast, in statistics, we may not know

what the pdf may be of a certain phenomenon. At best, we can take a

large sample and infer from this data, the nascent pdf that describes the

phenomenon.

At the dawn of the 20th century, R.A. Fisher undertook the task of

laying the foundations of theoretical statistics. In his fundamental paper

[4], he wrote “the object of statistical methods is the reduction of data.”

Expanding on this aphorism, he explained, “A quantity of data, which

usually by its mere bulk is incapable of entering the mind, is to be replaced

by relatively few quantities which shall adequately represent the whole.”

Motivated by these considerations, he was led to define (what we now call)

the Fisher information of a random variable X with probability density

function fθ(x) attached to an unknown deterministic parameter θ as follows.

The contribution of x to the information content of the random variable

may be viewed to be − log(fθ(x)) since from information theory we know

that for the discrete setup an ideal lossless binary code would need roughly

these many bits to represent this variable.

The rate of change of this information is then ∂ log fθ
∂θ and it seems

reasonable that the expectation

I(θ) :=

∫ ∞
−∞

(
∂ log fθ
∂θ

)2

fθ(x)dx

(called Fisher information in statistical parlance) gives us some idea of the

amount of information about θ contained in the data.

For example, if X has a Bernoulli distribution where X can have only

two values “heads” or “tails” (or more precisely 0 and 1 say), with 1 having
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probability θ and 0 having probability 1− θ, with density function

fθ(x) = θx(1− θ)1−x,
then log fθ(x) = x log θ + (1 − x) log(1 − θ) and we find, after a simple

calculation, that I(θ) = ( θ(1− θ) )−1.

To take another example, suppose X has a normal distribution with

unknown mean µ and known variance σ2. Let us determine the Fisher

information I(µ) in X. Since fµ(x) = (
√

2π σ)−1 e−(x−µ)
2/2σ2

, we see

log fµ(x)=−(1/2) log(2πσ2)−(x− µ)2/2σ2, so that
∂ log fµ
∂µ

= (x− µ)/σ2.

A direct calculation now gives that I(µ) = 1/σ2.

In statistical problems, large amounts of data are collected to study a

phenomenon. With a desire to derive a mathematical model to describe

it, we may find, numerically, a function φ̃ to approximate a parameter φ.

φ̃ is called an unbiased estimator of φ if E(φ̃) = φ. That is,∫ ∞
−∞

φ̃fθ(x)dx = φ(θ).

Here, θ and x are independent parameters. Differentiating this with respect

to θ and interchanging integration and differentiation (provided of course

that this is permissible) gives:∫ ∞
−∞

φ̃(x)
∂fθ
∂θ

(x)dx = φ′(θ).

The rate of change of information is the function

S(x) :=
∂

∂θ
log fθ(x)

called the score statistic. Plainly, S(x) = 1
fθ(x)

∂fθ
∂θ (x), so that we can write∫ ∞

−∞
φ̃(x)S(x)fθ(x)dx = φ′(θ). (4.1)

Also, the expectation of S(x) is

E(S(x)) =

∫ ∞
−∞

S(x)fθ(x)dx =

∫ ∞
−∞

∂fθ
∂θ

(x)dx =
∂

∂θ

∫ ∞
−∞

fθ(x)dx = 0,

since ∫ ∞
−∞

fθ(x)dx = 1,

because the total probability is 1. Thus, (4.1) can be re-written as∫ ∞
−∞

(φ̃(x)− φ(θ))S(x)fθ(x)dx = φ′(θ).

Applying the Cauchy-Schwarz inequality, we obtain

φ′(θ)2 ≤
(∫ ∞
−∞

(φ̃(x)− φ(θ))2fθ(x)dx

)(∫ ∞
−∞

S(x)2fθ(x)dx

)
.



8 M. RAM MURTY

Writing

I(θ) :=

∫ ∞
−∞

(
∂ log fθ
∂θ

)2

fθ(x)dx,

(called Fisher information in statistical parlance), we can write our inequal-

ity as:

Theorem 4 (The Cramér-Rao inequality). For an unbiased estimator φ̃

of φ, we have ∫ ∞
−∞

(φ̃(x)− φ(θ))2fθ(x)dx ≥ φ′(θ)2

I(θ)
.

Often, this is applied with φ(θ) = θ so that φ′(θ) = 1. The inequality

then gives us a limitation on the accuracy of the unbiased estimator to the

function θ. Somtimes it is referred to as the information inequality. It was

discovered independently by C. R. Rao [10] and H. Cramér [2] in 1945 and

has played a pivotal role in statistical inference. An enlightening survey of

the Cramér-Rao inequality was written by K.R. Parthasarathy [9] where

the reader can find discussion of Riemannian metrics to study population

models.

Regarding Theorem 4, there is a lot of interest in estimators that actu-

ally achieve the Cramer-Rao lower bound. Such estimators are said to be

asymptotically efficient. Under certain regularity conditions the maximum

likelihood estimators are asymptotically efficient. In such cases the Fisher

information about θ in the data is equal to the inverse of the variance of

the estimator.
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