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Abstract

In this paper a Lagrangian foliation of the zero energy level is constructed for a
family of planar central force problems. The dynamics on the leaves are explicitly
computed and these dynamics are given a simple interpretation in terms of the dynamics
near the singularity of the potential. Lagrangian submanifolds also arise when seeking
asymptotic solutions to certain partial differential equations with a large parameter.
In determining such solutions, an operator between half densities on the Lagrangian
submanifold and half densities on the configuration space is computed. This operator
is derived for the given example, and the corresponding first order asymptotic solution
to the reduced Schrödinger equation is given.
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1. Introduction

In classical mechanical systems with a potential energy function that becomes un-
bounded from below at certain points in the configuration space, a problem of interest
is the determination of the behaviour of trajectories which pass close to the singularities.
A well-studied example of this type of potential is the gravitational potential used in ce-
lestial mechanics. Coordinate transformations like those introduced by McGehee [1974]
and studied in more detail by Devaney [1980] give a good idea of how we may understand
such a singular potential when the singular set consists of an isolated point. However, it
is not clear how these coordinate transformations may be useful when the singular set is
more complicated. As a first step towards trying to understand how to approach a more
complicated problem, a more intrinsic meaning is given to the collision manifold equations
of Devaney [1980], at least in the case when the configuration space is R2 \ {0}.
∗Professor, Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L
3N6, Canada
Email: andrew.lewis@queensu.ca, URL: http://www.mast.queensu.ca/~andrew/
Work performed while a Graduate Research Assistant at the California Institute of Technology.

1

http://dx.doi.org/10.1007/BF00406547


2 A. D. Lewis

2. Preliminaries

We will study the one-parameter family of Hamiltonian systems on T ∗Q with Q =
R2 \ {0} and Hamiltonian function

H(r, θ, pr, pθ) =
1

2
(p2r +

p2θ
r2

)− r−k (2.1)

for k ∈ R+. Here (r, θ) are regarded as polar coordinates on Q and (pr, pθ) as their re-
spective conjugate momenta. The case of k = 1 corresponds to the Kepler problem of
gravitational interaction between two celestial bodies. For any k, the problem is completely
integrable with two independent constants of motion being the Hamiltonian and the an-
gular momentum pθ. As is well known, this completely integrable structure gives rise to
a stratification of the phase space by level sets of the constants of motion, and the strata
are Lagrangian submanifolds for nondegenerate values of the constants of motion. In any
case, the dynamics of the Hamiltonian system given by (2.1) are easily understood in the
reduced phase space T ∗R+ with the reduced Hamiltonian

Hµ(r, pr) =
1

2
(p2r +

µ2

r2
)− r−k (2.2)

Here the dynamics are simply those of a particle in the amended potential

Vµ(r) =
µ2

2r2
− r−k (2.3)

with µ the value of the conserved angular momentum. In Figure 1 the graph of Vµ is shown
for various k and µ.

For the purposes of the first three sections of this paper, it is more convenient to make
use of Jacobi’s metric for mechanical systems than to study the equations of motion in
their original Hamiltonian form. For a general Riemannian manifold (M, g), and potential
function V : M → R, a Hamiltonian on T ∗M can be defined by

E(α) =
1

2
g♯(α, α) + V ◦ τ∗M (α) (2.4)

where τ∗M : T ∗M →M is the cotangent bundle projection, and g♯ is the vector bundle metric
on T ∗M induced by the metric g on TM . Jacobi showed that the projected integral curves of
the Hamiltonian vector field on the surface E−1(e) are the same, up to reparameterisation,
as geodesics of the Jacobi metric

ge = (e− V )g (2.5)

We must, of course, restrict ourselves to the subset (submanifold, if e is a regular value of
V ) of M where e− V > 0. For more on the use of the Jacobi metric see [Ong 1975].

If a Hamiltonian on T ∗M is defined by

Ee(α) =
1

2
g♯e(α, α) (2.6)

we have the following



Lagrangian submanifolds in central force problems 3

0

0 r

(a) k < 2

Vµ(r)

µ = 0

µ 6= 0
0

0 r

(b) k = 2

Vµ(r) µ >
√
2

µ <
√
2

µ =
√
2

0

0 r

(c) k > 2

Vµ(r)

µ 6= 0
µ = 0

Figure 1. The amended potential

2.1 Lemma: E−1
e (1) = E−1(e).

Proof: Let α ∈ E−1(e). Then

1

2
g♯(α, α) + V ◦ τ∗M (α) = e

=⇒
1
2g

♯(α, α)

(e− V ◦ τ∗M (α))
= 1

=⇒ 1

2
g♯e(α, α) = 1

Thus α ∈ E−1
e (1). The other inclusion is similarly proved. ■

Note that (2.2) is of the same form as (2.4) with M = Q, g the standard metric on Q,
and V (r, θ) = −r−k. Thus the Jacobi metric on Q for our problem is

ge = (e+ r−k)(dr ⊗ dr + r2dθ ⊗ dθ) (2.7)

Since we are claiming to be interested in the behaviour of the orbits near the origin, it
seems plausible to let e = 0. This may be reasoned by observing that, near the origin, the
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kinetic energy is large and positive, and the potential energy is large and negative. Thus
their difference, e, is of little consequence. This issue notwithstanding, we will let e = 0
in (2.7) and study geodesics of the Riemannian manifold (Q, gk) ≜ (Q, g0), or, equivalently,
the orbits of the Hamiltonian system on T ∗Q with Hamiltonian

Hk(r, θ, pr, pθ) =
1

2
rk(p2r +

p2θ
r2

) (2.8)

To study this system it is sufficient to study integral curves on the energy manifold H−1
k (h)

for any h > 0. For, if h̃ > 0 is another value of the energy, then the integral curves
projected from H−1

k (h̃) onto Q via τ∗Q will be the same, up to reparameterisation, as the

integral curves projected from H−1
k (h). We will choose h = 1 so that H−1

k (h) = H−1(0) by
Lemma 2.1. For brevity we will denote Pk = H−1

k (1).
Coordinates will be needed on Pk. First note that Pk ≃ Q × S1. Motivated by this,

define the coordinate ψ ∈ S1 by

ψ = arctan
rpr
pθ

(2.9)

for (r, θ, pr, pθ) ∈ Pk. Note that (2.8) gives

pr =
√
2r−k/2 sinψ

pθ =
√
2r1−k/2 cosψ

(2.10)

if (r, θ, pr, pθ) ∈ Pk. Thus (r, θ, ψ) are coordinates for Pk.

3. Definition of Lagrangian immersions

In this section we explicitly define a family of immersed Lagrangian submanifolds of
Pk. Specifically, for k ̸= 2 and rational, a foliation of Pk by embedded submanifolds, each
diffeomorphic to R+× S1, is defined; for k ̸= 2 and irrational, we define a foliation of Pk by
weakly embedded submanifolds, each diffeomorphic to R+×R1 (We say that an immersed
submanifold, N , of a manifold, M , is a weakly embedded submanifold if, for every manifold
K and smooth mapping f : K → M with image in N , the mapping f : K → N is smooth.
For example, the leaves of a foliation are weakly embedded submanifolds.); finally, for k = 2,
a single embedding of R1 × S1 in Pk is defined.

To define these immersions, the coordinates (r, θ, ψ) introduced in Section 2 will be
used.

Case a) k ̸= 2 and rational: If k is rational, then certainly 1− k/2 is rational. So suppose
1− k/2 = m/n for m,n ∈ Z with (m,n) = 1, and n > 0. We let (R,ϕ) be standard
coordinates for R+ × S1, and let ψ0 ∈ S1 be a parameter. Now we define the map

ik : R
+ × S1 → Pk

(R,ϕ) 7→ ((| 1− k/2 | R)2/(2−k), nϕ(mod2π),

((1− k/2)nϕ+ ψ0)(mod2π))

(3.1a)
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Case b) k ̸= 2 and irrational: If k is irrational, then so is 1− k/2. Let (R, s) be standard
coordinates for R+ × R1, and, as in a), let ψ0 ∈ S1 be a parameter. We define the
map

ik : R
+ ×R1 → Pk

(R, s) 7→ ((| 1− k/2 | R)2/(2−k), s(mod2π),

((1− k/2)s+ ψ0)(mod2π))

(3.1b)

Case c) k = 2: We let (R,ϕ) be standard coordinates for R1 × S1, and define the map

ik : R
1 × S1 → Pk

(R,ϕ) 7→ (eR, ϕ, 0).
(3.1c)

For brevity in the sequel, we will let Mk = R+ × S1 for Case a), Mk = R+ ×R1 for Case
b), and Mk = R1 × S1 for Case c). Also define Λk = ik(Mk) and πk = τ∗Q | Λk. The rôle
of ψ0 in Cases a) and b) is to parameterise the leaves of the foliation of Pk. However, as
will be seen below, due to the rotational symmetry of the problem, the choice of ψ0 is not
important. When we speak of Λk, some value of ψ0 will be assumed chosen and fixed.

We now proceed to verify that the subsets Λk of Pk are immersed Lagrangian subman-
ifolds. That Λk ⊂ Pk is clear from the definition of ik. That the maps ik are immersions is
easily verified by computing that rank(Tmik) = 2 for all m ∈Mk.

In fact, it can easily be seen that, for k ̸= 2, Λk is locally the graph of the differential
of the local function

Sj =

√
2r1−k/2

1− k/2
sin((1− k/2)(θ + 2πj) + ψ0) (3.2)

for some j ∈ Z. More precisely, if U ⊂ Q is a connected, simply connected open subman-
ifold, then every connected component of π−1

k (U) is the graph of dSj | U where Sj | U
is as given by (3.2) for some j ∈ Z. Thus every such connected component of π−1

k (U) is
diffeomorphic to U via the diffeomorphism dSj | U . This also verifies that Λk is Lagrangian
since a submanifold of the cotangent bundle of a manifold which is diffeomorphic to the
zero section is Lagrangian if and only if it is the graph of a closed one-form. It is illustrative
to write Λk in the following way

Λk = {(r, θ,
√
2r−k/2 sin((1− k/2)(θ + 2πj) + ψ0),√

2r1−k/2 cos((1− k/2)(θ + 2πj) + ψ0) ∈ T ∗Q | j ∈ Z} (3.3)

Note that Sj is, formally, a solution of the Hamilton-Jacobi equation Hk(dSj) = 1, and
hence by Lemma 2.1, also a solution of H(dSj) = 0.

Now we fix (r, θ) ∈ Q and look at the set π−1
k (r, θ). The following proposition tells us

the essential features of the map πk : Λk → Q, and, in particular, describes π−1
k (r, θ) for all

(r, θ) ∈ Q.

3.1 Proposition: πk : Λk → Q is a covering map. Furthermore, if k ̸= 2, then

(i) if k is rational with 1 − k/2 = m/n, (m,n) = 1, and n > 0, then πk is an n-sheeted
covering, and
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(ii) if k is irrational, then πk is an infinite-sheeted covering.

Proof: By our remarks following (3.2), πk is a local diffeomorphism, and it is clearly sur-
jective. Thus πk is a covering map. For fixed (r, θ) ∈ Q, (3.3) shows that there are
the same number of points in π−1

k (r, θ) as there are distinct elements in the sequence
{2π(1 − k/2)l | l ∈ Z}(mod2π). This is clearly n if k satisfies the hypotheses of i). If
k is irrational then | π−1

k (r, θ) |= ℵ0 and π−1
k (r, θ) is dense in (τ∗Q | Pk)

−1(r, θ). ■

Observe that Proposition 3.1 confirms that ik is an embedding for Case a), and a weak
embedding for Case b).

This provides a clear description of Λk for k ̸= 2. For k = 2 the situation is simpler
since we have a single embedded copy of R1 × S1 in Pk as a Lagrangian submanifold. In
fact, it is easy to see from (3.1c) that Λ2 is simply the Lagrangian submanifold which is the
graph of the differential of the local function

S̃ =
√
2θ (3.4)

Observe that, unlike for the “function” Sj defined by (3.2), the differential of S̃ is well
defined on all of Q, and so πk : Λk → Q is a diffeomorphism. It is clear that the case k = 2
is something of a degenerate one. This will become more apparent when the behaviour of
the Hamiltonian vector fields on Λk is discussed in the next section.

3.2 Remark: The fundamental group of Q is isomorphic to the group of integers since
S1 is a deformation retract of Q. Thus, for every n ∈ Z+ there exists a unique, up to
diffeomorphism, n-sheeted covering of Q, and an infinite-sheeted covering will be universal.
The n-sheeted covering of Q will be denoted by Cn, and the universal covering by C∞.
Then Proposition 3.1 implies the following:

1. Cn ≃ R+ × S1 ≃ R1 × S1 for all n ∈ Z+, and C∞ ≃ R+ ×R1 ≃ R2.

2. For any n ∈ Z+ (including n = ∞) there exists a diffeomorphism ρ : Cn → Λk for
some, not necessarily unique, k ∈ R+ such that the following diagram commutes.

Cn
ρ //

σ
%%

Λk ⊂ T ∗Q

πk

��
Q

where σ : Cn → Q is the canonical projection. •

It will be desirable to put coordinates on the submanifolds Λk in terms of the coordinates
(r, θ, ψ) on Pk. To do this we will be motivated by the definition, (3.1), of the maps ik.
Consider the curve

c : R → Q

t 7→ (1, t(mod2π))
(3.5)

and let cl be the unique lift , via the covering map, of c to Λk such that cl(0) = (1, 0, ψ0)
(see (3.1) for the definition of ψ0). A diffeomorphism of Λk with Mk for all k ∈ R+ can be
defined as follows
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Case a) k ̸= 2 and rational: Assume m,n ∈ Z satisfy the hypotheses of Proposition 3.1i).

ρk : Λk → R+ × S1

(r, θ, ψ) 7→ (
r1−k/2

| 1− k/2 | ,
∫
γ
dψ(mod2πm))

(3.6a)

where γ is the curve from ψ0 to ψ along cl.

Case b) k ̸= 2 and irrational: Let γ be the same path as defined in a).

ρk : Λk → R+ ×R1

(r, θ, ψ) 7→ (
r1−k/2

| 1− k/2 | ,
∫
γ
dψ)

(3.6b)

Case c) k = 2:
ρk : Λk → R1 × S1

(r, θ, ψ) 7→ (ln r, θ)
(3.6c)

Observe that these maps are essentially the “inverses” of the immersions defined by (3.1).
Thus we will declare that these maps define coordinates (R,ϕ) ∈ R+ × S1 in Case a) (note
that ϕ is defined mod2πm in this case), (R, s) ∈ R+×R1 in Case b), and (R,ϕ) ∈ R1×S1 in
Case c). In Sections 4 and 5 we will see that the important quantities on Λk are essentially
independent of k when written in these coordinates.

3.3 Remark: The meaning of the coordinate R(r) defined in (3.6) is worthy of comment.
Consider the Riemannian manifold (Q, gk) where gk ≜ g0 is given by (2.7). The Riemannian
distance between two points (r1, θ), (r2, θ) ∈ Q is easily computed to be

dgk((r1, θ), (r2, θ)) =| R(r1)−R(r2) | (3.7)

So R can be thought of as measuring the distance from the origin when k < 2, measuring
the distance from infinity when k > 2, and measuring the distance from r = 1 when k = 2.
Thus the Riemannian manifold (Q, gk) is complete if and only if k = 2. For k < 2 the
point at the origin is a finite distance away from any point in Q, and for k > 2 infinity is a
finite distance away from any point in Q. This has some relationship to the completeness
condition for Riemannian manifolds given by Gordon [1973]. •

4. The vector field on Λk

As is well-known (see, for example [Abraham and Marsden 1978]), if a function, f , is
constant on a co-isotropic submanifold, M , of a symplectic manifold, P , then the Hamilto-
nian vector field Xf will be tangent toM . Thus, since Lagrangian submanifolds are minimal
co-isotropic submanifolds, if a Lagrangian submanifold, L, is contained in f−1(a) ̸= ∅ for
some a ∈ R, then Xf will be tangent to L. The Lagrangian submanifolds constructed in
Section 3 are contained in the energy level Pk of the Hamiltonian Hk defined by (2.8). This
implies that the Hamiltonian vector field XHk

will be tangent to Λk. Thus the vector field

Xk ≜ XHk
| Λk (4.1)
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is well-defined on Λk. The coordinates (R,ϕ) or (R, s) defined in Section 3 for Λk will be
used to explicitly determine Xk.

First we look at k ̸= 2. Define a metric Gk on Λk in these cases by

Gk =

{
dR⊗ dR+R2dϕ⊗ dϕ for Case a)

dR⊗ dR+R2ds⊗ ds for Case b)
(4.2a,b)

The following observation can be made about Gk.

4.1 Lemma: Gk is the unique Riemannian metric on Λk such that πk : (Λk, Gk) → (Q, gk)
is a Riemannian covering map.

Proof: The existence and uniqueness of such a metric, Gk, is a consequence of the map πk
being a local diffeomorphism. To show that Gk is indeed as given by (4.2) it suffices to do
the following: Let U ⊂ Λk be an open submanifold such that πk | U is a diffeomorphism.
Then, for Case a), we have

πk | U : U → πk(U)

(R,ϕ) 7→ ((| 1− k/2 | R)2/(2−k),
ϕ− ψo

1− k/2
− 2πj)

for some j ∈ Z. A similar expression holds for Case b). A simple calculation then shows
that Gk | U = (πk | U)∗(gk | πk(U)), thus proving the lemma. ■

Now define a function on Λk by

Sk :Λk → R
(R,ϕ) 7→ R sinϕ for Case a) and k < 2

(R,ϕ) 7→ −R sinϕ for Case a) and k > 2

(R, s) 7→ R sin s for Case b) and k < 2

(R, s) 7→ −R sin s for Case b) and k > 2

(4.3a,b)

The following proposition gives Xk for k ̸= 2.

4.2 Proposition: Xk = G♯
k(dSk) where G

♯
k : T

∗Λk → TΛk is the musical isomorphism asso-
ciated to the metric Gk.

Proof: As in the proof of Lemma 4.1, let U ⊂ Λk be such that πk | U is a diffeomorphism.
Recall from Section 3 that such a U is the graph of the differential of a function Sj | πk(U)
of the form (3.2) for some j ∈ Z. Now (πk | U)∗(Xk | U) is a vector field on πk(U). Indeed,
Hamilton-Jacobi theory (see [Abraham and Marsden 1978]) states that

(πk | U)∗(Xk | U) = g♯k(dSj | πk(U))

Thus
Xk | U = (πk | U)∗(g♯k(dSj | πk(U)))

A simple calculation gives (πk | U)∗(Sj | πk(U)) = Sk | U and Lemma 4.1 gives (πk |
U)∗(gk | πk(U)) = Gk | U . Using commutativity of exterior derivative with pullback and
the musical isomorphism we get

Xk | U = (Gk | U)♯(dSk | U)

as claimed. ■
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For Case a) and k < 2, if t 7→ (R(t), ϕ(t)) is an integral curve for Xk, then (R(t), ϕ(t))
must satisfy the ordinary differential equation

Ṙ = sinϕ

ϕ̇ = R−1 cosϕ
(4.4a)

Similarly, for Case b) and k < 2, an integral curve t 7→ (R(t), s(t)) must satisfy

Ṙ = sin s

ṡ = R−1 cos s
(4.4b)

If k > 2 the differential equations for (R(t), ϕ(t)) and (R(t), s(t)) are the same as (4.4a)
and (4.4b), respectively, up to a multiplication by −1 on the right hand side.

This provides a pretty clear picture of the vector field on Λk for k ̸= 2. For k = 2, the
development of the vector field Xk is analogous to that for k ̸= 2, but with different results.
Define a metric on Λ2 by

G2 = dR⊗ dR+ dϕ⊗ dϕ (3.2c)

where (R,ϕ) are the coordinates on Λ2 defined by (3.6c). As in Lemma 4.1, G2 is the unique
Riemannian metric on Λ2 such that π2(Λ2, G2) : (Q, g2) → is a Riemannian covering map.
Also define the local function

S2 =
√
2ϕ (3.3c)

on Λ2, and, as in Proposition 4.2, find X2 = G♯
2(dS2). So, if t 7→ (R(t), ϕ(t)) is an integral

curve for X2, then (R(t), ϕ(t)) satisfies

Ṙ = 0

ϕ̇ =
√
2

(3.4c)

The integral curves on Λk are shown in Figure 2. From these integral curves we can get a
good idea of what happens to a typical orbit on Pk when k ̸= 2.

1. k < 2: In this case a typical orbit comes from R = ∞ and ϕ (or s)= (n + 1
2)π for

some n ∈ Z and goes to R = ∞ and ϕ (or s) = (m+ 1
2)π where m ∈ {n− 1, n+ 1}.

From (3.6) we see that this implies that the orbit comes from r = ∞, undergoes a
rotation in θ of ±π/(1− k/2), then goes back out tor = ∞.

2. k > 2: Via the same argument as in I, we see that a typical orbit comes from r = 0,
undergoes a rotation of ±π/(1− k/2) in θ, then returns to r = 0.

In both cases, the orbits on ϕ (or s) = (n+ 1
2)π correspond to the zero angular momentum

collision or ejection orbits.
For k = 2 it can be seen that the orbits on Λ2 are all periodic orbits. In fact, Λ2 contains

all the periodic orbits for the case of k = 2 since pθ =
√
2 on Λ2 and hence, from Figure 1,

the amended potential, (2.3), vanishes. So, unlike the cases where k ̸= 2, the orbits on Λ2

are not ’typical’.



10 A. D. Lewis

0 π
2

π 3π
2

2π
0

R

φ or s

(a) k < 2

0 π
2

π 3π
2

2π
0

R

φ or s

(b) k = 2

0 π
2

π 3π
2

2π
0

R

φ or s

(c) k < 2

Figure 2. Integral curves on Λk.

5. Application to the reduced Schrödinger equation

Throughout this section k ̸= 2 unless otherwise stated.
It is well-known that Lagrangian submanifolds arise in the theory of asymptotic differ-

ential operators when one constructs a formally asymptotic solution to some linear partial
differential equation with a large parameter. In this section we show how the Lagrangian
submanifolds Λk constructed in Section 3 can be used to construct an asymptotic solution
to the reduced Schrödinger equation

−ℏ2

2
∆ψ − r−kψ = 0 (5.1)

as Planck’s constant, ℏ, becomes small (ℏ−1 is regarded as our large parameter). Here ∆ is
the Laplace-Beltrami operator on Q with respect to the standard metric.
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Denote by Lk the differential operator in (5.1). Proceeding in the usual manner for
problems of this type (see [Guillemin and Sternberg 1977]), a solution is sought to (5.1) of
the form

ψ = eiS/ℏ
∞∑
j=0

ψj

(i/ℏ)j
(5.2)

where i =
√
−1, and S and ψj are unknown functions on Q. Substituting (5.2) into (5.1)

and setting the coefficient of (i/ℏ)0 to zero we find

σk(dS)ψ0 = 0 (5.3)

where σk : T
∗Q→ R is the symbol of the asymptotic differential operator Lk, and is given

by

σk(r, θ, pr, pθ) =
1

2
(p2r +

p2θ
r2

)− r−k (5.4)

Similarly, setting the coefficient of (i/ℏ)−1 to zero gives

∂S

∂r

∂ψ0

∂r
+

1

r2
∂S

∂θ

∂ψ0

∂θ
+ σk(dS)ψ1 = 0 (5.5)

Note that if S is a solution to (5.3), then (5.5) can be written as

∂σk
∂pr

∂ψ0

∂r
+
∂σk
∂pθ

∂ψ0

∂θ
= 0 (5.6)

which is the transport equation . If the Hamiltonian vector field corresponding to the
symbol σk is denoted by Xσk

, and if ψ0 is regarded as a function on T ∗Q, then (4.6) can be
further simplified to get

LXσk
ψ0 = 0 (5.7)

where LXσk
means Lie differentiation along Xσk

. So, if S satisfies (5.3), and if ψ0 satisfies

the transport equation, then Lk(exp(iS/ℏ)ψ0) = O(ℏ2).
It is well-known that a solution of the form (5.2) cannot be, in general, globally valid, and

that there are techniques for constructing globally valid solutions which locally are of the
form (5.2). A global solution to (5.1), valid to O(ℏ2), will be constructed following Guillemin
and Sternberg [1977]. Roughly, the procedure is as follows.

Step 1. Find a Lagrangian submanifold, L, on which the symbol σk vanishes. That is
L ⊂ σ−1

k (0).

Step 2. Interpret the transport equation as an equation for half densities on L.

Step 3. Assign a half density on Q to every half density on L.

In Section 3 a family of Lagrangian submanifolds, Λk, was found which fulfill the re-
quirements of Step 1 for all k ∈ R+, so this part of the problem is complete.

Step 2 asks that we think of the transport equation as an equation for half densities on
Λk. This interpretation follows from the argument given by Guillemin and Sternberg [1977,
pg. 53-57]. Note that in writing the transport equation in the form (5.7), ψ0 was regarded
as a function on T ∗Q, so this may lead one to think that the transport equation should not
naturally be thought of as an equation on Q.

The transport equation, (5.7), may be related to the vector fields Xk computed in
Section 4 as follows
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5.1 Lemma: Let u be a half density on Λk. Then LXσk
u = 0 if and only if LXk

u = 0.

Proof: The integral curves of Xσk
are the same, up to reparameterisation, as those of Xk.

Thus Xσk
= fXk for some function f > 0 on Λk. Thus LXσk

u = fLXk
u and this proves the

lemma since f > 0. ■

Aided by Lemma 5.1, the form of solutions to the transport equation can be given. We
will go through the calculations for Case a), and k < 2. The calculations for the other
cases follow along the same lines, with similar results. It is convenient to introduce the
coordinates (ξ = R cosϕ, η = R sinϕ) for Λk. In these coordinates Xk = ∂/∂η. It is now
straightforward to verify that LXk

u = 0 implies that u = f(ξ) | dξdη |1/2 where f is a
strictly positive function of ξ. Going back to the coordinates (R,ϕ), the form of a solution
to the transport equation is

u = f(R cosϕ)
√
R | dRdϕ |1/2 (5.8)

Now an operator between half densities on Λk and half densities on Q can be computed.
(The bundle of half densities on a manifold M will be denoted by | ∧ |1/2 M , and the
smooth sections of | ∧ |1/2 M will be denoted by C∞(| ∧ |1/2 M).) In order to define
such an operator, it is necessary and sufficient to satisfy certain quantisation conditions
for the Lagrangian submanifolds Λk. These conditions amount to the requirement that a
certain differential one-form on Λk have an integral de Rham cohomology class. Specif-
ically, if δ∗ : H1(Λk,Z) → H1(Λk,R) is the map in cohomology induced by the natural
homomorphism δ : Z → R, then we must have

ℏ
2π
β +

1

4
M ∈ δ∗(H1(Λk,Z)) (5.9)

where M is the Maslov class of Λk and β is the canonical one-form α = prdr + pθdθ on
T ∗Q restricted to Λk (see [Guillemin and Sternberg 1977]). Since πk : Λk → Q has no
critical points (it is a covering), we have M = 0. This is a consequence of the fact that
the Lagrangian submanifold Λk does not “bend over” itself and so there are no caustics
associated with it. The following lemma tells us when (5.9) is satisfied.

5.2 Lemma: The cohomology class of β is zero.

Proof: It suffices to check that ∫
γ
β = 0 (5.10)

where γ is any generator of H1(Λk,R). There are two cases.

Case a Λk ≃ R+ × S1: In this case, H1(Λk,R) ≃ R and so H1(Λk,R) has a single
generator, γ. In the coordinates (R,ϕ) introduced for Λk in Section 3 we compute

β =
√
2 sinϕdR+

√
2R cosϕdϕ (5.11)

Thus, in order to satisfy (5.10), we must have∫ 2πm

0

√
2R cosϕdϕ = 0

which is indeed true (recall that ϕ is defined mod2πm).
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Case b Λk ≃ R+ ×R1: In this case H1(Λk,R) ≃ 0, so (5.10) is trivially true.

This proves the lemma. ■

Thus (5.9) holds for all values of ℏ and an operator

Ψk : C∞(|
∧

|1/2 Λk) → C∞(|
∧

|1/2 Q) (5.12)

can be defined. Since M = 0, our task is particularly simple. Assume that u ∈ C∞(| ∧ |1/2
Λk) has compact support, and define v = Ψk(u) ∈ C∞(| ∧ |1/2 Q) at q = (r, θ) ∈ Q by

v(q) =
∑

xj∈π−1
k (q)

u(xj) exp(iℏ−1

∫
γj

β) (5.13)

where γj is a path from an arbitrary point on Λk to xj . Since Λk satisfies the quantisation
conditions (5.9), v is independent of the choice of paths γj , up to the arbitrary constant
introduced by a choice of starting point for the paths. The condition of compact support
for u can be weakened by requiring that the support of u be such that the sum in (5.13) be
finite for all q ∈ Q.

Using the expression for β given by (5.11), (5.13) can be made more explicit. The
computations will be carried out in Case a), when Λk is diffeomorphic to R+ × S1. The
computations are similar for Case b). Note that for Case a), the sum in (5.13) will always be
finite since there are a finite number of elements in π−1

k (q) for all q ∈ Q. Fix (R0, ϕ0) ∈ Λk,
and let γ be a path from (R0, ϕ0) to (R,ϕ) ∈ Λk which lies in Λk. We compute∫

γ
β =

√
2(R sinϕ−R0 sinϕ0) (5.14)

Note that if (R1, ϕ1) and (R2, ϕ2) are points in Λk such that both points are in π−1
k (q) for

some q ∈ Q, then R1 = R2. With this and (5.14), (5.13) can be written as

v(q) =
∑

(Rj ,ϕj)∈π−1
k (q)

u(R,ϕj) exp(
√
2iℏ−1(R sinϕj −R0 sinϕ0)) (5.15)

for q ∈ Q. Here R is such that Rj = R for all j, and (R0, ϕ0) is an arbitrary point in Λk.
We can think of Lk as being a differential operator on C∞(| ∧ |1/2 Q) which agrees

with (5.1) when a trivialisation of | ∧ |1/2 Q via some coordinate system is chosen. Then,
if u ∈ C∞(| ∧ |1/2 Λk) satisfies the transport equation, and if v satisfies (4.13), we have

Lk(v) = O(ℏ2) (5.16)

and so v is a formally asymptotic solution to (5.1) (with ψ regarded as a half density) valid
to O(ℏ2).

Typically, one would specify some initial data with (5.1), and would proceed to construct
an asymptotic solution which matches the initial data. However, in our construction of the
solution (5.13), no initial data has been specified. At the moment, it is not clear to the
author how to specify the appropriate Cauchy data in a meaningful manner. It would
certainly be desirable to be able to formulate such a problem as it would give some clues
about the significance of the Lagrangian foliation of Pk constructed in Section 3. It would
also be interesting to see if the above methodology could be applied to a nonintegrable
classical system given the observations made in the appendix of this paper.
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A. Relationship with the collision manifold

Throughout this appendix k ̸= 2 unless otherwise stated.
The problem of understanding dynamical behaviour near isolated singularities of po-

tentials has been discussed quite extensively by Devaney [1980] using a transformation of
coordinates motivated by one used by McGehee [1974]. The coordinate transformations
serve to “slow down” the trajectories near the singularity and turn the singularity itself
into an invariant boundary. If the configuration space is Rn \ {0}, and if certain nondegen-
eracy conditions are met, then this boundary or collision manifold is diffeomorphic to
Sn−1 × Sn−1. One copy of Sn−1 arises from the use of polar coordinates for Rn \ {0}, and
the other copy arises from restriction to an energy level which determines an (n−1)-sphere
in momentum space at each point of the configuration space. This is in complete analogy
with the choice of coordinates θ and ψ on Pk in Section 2.

In [Devaney 1980] the vector field on the collision manifold is computed and some
statements are proven regarding its generic character (e.g., the vector field is generically
Morse-Smale). In this section the relationship between trajectories on the collision manifold
and the Lagrangian submanifolds Λk determined in section 2 will be discussed.

We begin by quickly reviewing the development of the vector field on the collision
manifold for the Hamiltonian system given by the Hamiltonian

H(r, θ, pr, pθ) =
1

2
(p2r +

p2θ
r2

)− r−kf(θ) (A.1)

on T ∗Q. Here f is a periodic function of period 2π. Note that when f(θ) = 1, (A.1)
simplifies to (2.1).

The development proceeds most naturally beginning in Cartesian coordinates (x, y) on
Q and their conjugate momenta (px, py). The equations of motion are

ẋ = px

ẏ = py

ṗx = −∂V
∂x

ṗy = −∂V
∂y

(A.2)

where V = −r−kf(θ). Now make the coordinate change

(x, y, px, py) 7→(
√
x2 + y2, arctan

y

x
,

x√
x2 + y2

px +
y√

x2 + y2
py,

−y√
x2 + y2

px +
x√

x2 + y2
py)

≜ (r, θ, vr, vθ)

(A.3)

Under this coordinate change (A.2) becomes

ṙ = vr

θ̇ = r−1vθ

v̇r = r−1(v2θ − kr−kf(θ))

v̇θ = r−1(f ′(θ)− vrvθ)

(A.4)
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Note that vθ ̸= θ̇, so the coordinate change (A.3) is not just the lift to TQ of the coordinate
change (x, y) 7→ (r, θ) on Q. The coordinate vθ is a tangential velocity rather than an
angular velocity. Now scale the momenta with the change of coordinates

(r, θ, vr, vθ) 7→(r, θ, rk/2vr, r
k/2vθ)

≜ (r, θ, Vr, Vθ)
(A.5)

Equations (A.4) transform to

ṙ = r−k/2Vr

θ̇ = r−1−k/2Vθ

V̇r = r−1−k/2(V 2
θ +

k

2
V 2
r − kf(θ))

V̇θ = r−1−k/2((k/2− 1)VrVθ + f ′(θ))

(A.6)

Next scale the independent variable by r1+k/2 to get

ṙ = rVr

θ̇ = Vθ

V̇r = V 2
θ +

k

2
V 2
r − kf(θ)

V̇θ = (k/2− 1)VrVθ + f ′(θ)

(A.7)

Note that the boundary r = 0 is now invariant. The vector field on this invariant
manifold will be computed. For this purpose, it is convenient to introduce the variable
ψ = arctan(Vr/Vθ) analogous to (2.9) so that

Vr =
√
2f(θ) sinψ

Vθ =
√

2f(θ) cosψ
(A.8)

We compute the vector field on S1 × S1 in the coordinates (θ, ψ) as

θ̇ =
√

2f(θ) cosψ

ψ̇ = (1− k/2)
√
2f(θ) cosψ − f ′(θ)√

2f(θ)
sinψ

(A.9)

This finally leads to an ordinary differential equation for ψ in terms of θ of the form

dψ

dθ
= (1− k/2)− f ′(θ)

2f(θ)
tanψ (A.10)

Now we investigate how (A.10) relates to the formal solution (3.2) of the Hamilton-
Jacobi equation for the Hamiltonian (A.1). A solution is sought to

1

2

(
∂S

∂r

)2

+
1

2r2

(
∂S

∂θ

)2

− r−kf(θ) = 0 (A.11)
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of the form

S(r, θ) =

√
2r1−k/2

1− k/2
sinψ(θ) (A.12)

and we find that ψ(θ) must satisfy (A.10). Observe that if f(θ) = 1 then (A.12) is essentially
the formal solution, (3.2), of the Hamilton-Jacobi equation used to generate the Lagrangian
submanifolds Λk in Section 3. This hints at some connection between the collision manifold
analysis and the Lagrangian submanifolds discussed in this paper.

This relationship can be made more clear with a few observations about the Lagrangian
submanifolds Λk and the flows on them as shown in Figure 2. We see that Λk is actually
the union of Xk-invariant submanifolds, each lying in a strip φ (or s)∈ [(n− 1

2)π, (n+
1
2)π)]

for n ∈ Z. Each of these submanifolds is Lagrangian since they are submanifolds of Λk. If
we denote by Λk,n one of these Xk-invariant submanifolds of Λk, we can say the following:
When f(θ) = 1 there is a 1-1 correspondence between solutions (θ(t), ψ(t)) of (A.9), and the
Lagrangian submanifolds Λk,n. There is no reason to believe that a similar correspondence
does not exist when f(θ) ̸= 1. However, in such cases a description of the Lagrangian
submanifolds could be expected to be somewhat more complicated. A well-studied example
of such a problem is the anisotropic Kepler problem (see [Devaney 1978], and [Gutzwiller
1973]).
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