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Abstract

Analysis and simulations are performed for a simplified model of a commercially
available variant on the skateboard, known as the Snakeboard1. Although the model
exhibits basic gait patterns seen in a large number of locomotion problems, the analysis
tools currently available do not apply to this problem. The difficulty is seen to lie
primarily in the way in which the nonholonomic constraints enter into the system. As
a first step towards understanding systems represented by our model we present the
equations of motion and perform some controllability analysis for the snakeboard. We
also perform some numerical simulations of the gait patterns.
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1. Introduction

This paper investigates a simplified model of a commercially available derivative of
a skateboard known as the Snakeboard. The Snakeboard (Figure 1) allows the rider to
propel him/herself forward without having to make contact with the ground. This motion
is roughly accomplished by coupling a conservation of angular momentum effect with the
nonholonomic constraints defined by the condition that the wheels roll without slipping.
Snakeboard propulsion is discussed in more detail in Section 2.

We study this model for several reasons. First, the snakeboard’s means of locomotion
has not appeared in prior studies of robotic locomotion. Numerous investigators (e.g., [Song
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and Waldron 1989]) have studied and successfully demonstrated quasi-static multi-legged
locomotion devices. Hirose and Umetani [1976], and Chirikjian and Burdick [1991] have con-
sidered and implemented various forms of undulatory, or “snake-like,” locomotion schemes.
Beginning with [Raibert 1986], hopping robots have received considerable attention as well.
See also [Koditschek and Bühler 1991, M’Closkey and Burdick 1993], and [Berkemeier and
Fearing 1992]. Bipedal walking and running has also been an active area of research as
discussed by McGeer [1990] and Kajita and Tani [1991]. In all of these cases except [Berke-
meier and Fearing 1992], the robotic locomotion devices are largely anthropomorphic or
zoomorphic. The method of locomotion used for the snakeboard is significantly different
from all of these approaches and does not appear to have a direct biological counterpart.

Despite its unique features, the mechanics of the snakeboard’s movement has several
properties which we believe to be common to many forms of locomotion. In Section 5,
the simplified snakeboard model is shown to exhibit a number of gaits, each of which
generates a net motion in a certain direction by performing loops in the controlled variables.
This general method of locomotion (i.e., generating net motions by cycling certain control
variables) appears to be generic to most methods of locomotion, including walking, running,
parallel parking, undulating, and sidewinding.

Superficially, the snakeboard appears to be closely related to other robotic systems with
nonholonomic constraints, where cyclic motions in the control space of the vehicle can cause
net motion in the constrained directions (see [Murray and Sastry 1993] for an introduction
and references). However, the dynamics of our model of the Snakeboard do not fit into
the principal fibre bundle structure which has been used by Bloch and Crouch [1992] to
study some nonholonomic systems. The snakeboard seems to represent a class of systems
for which current analysis tools do not provide any assistance.

Thus, the snakeboard model: (1) is an interesting problem in nonholonomic mechanics;
(2) represents an unexplored class of systems which may be used for locomotion; and (3)
serves as a motivating example for developing new frameworks for exploring the relationship
between nonholonomic mechanics and locomotion.

In Section 2 we give a detailed description of the Snakeboard and how it is used. We
also present our simplified model which is intended to capture the essential features of the
Snakeboard. In Section 3 we present Lagrange’s equations for the snakeboard and describe
a control law which allows us to follow specified inputs exactly. Since the snakeboard
is modelled as a constrained control system, it is possible to examine controllability and
thereby determine whether we may reach all points in our state space. This analysis is
presented in Section 4. In Section 5 the above mentioned gaits are presented and analysed.
The failure of the snakeboard to fit into a principal bundle formulation in discussed in
Section 6.

2. The Snakeboard and a simplified model

The Snakeboard consists of two wheel-based platforms upon which the rider is to place
each of his feet. These platforms are connected by a rigid coupler with hinges at each
platform to allow rotation about the vertical axis. See Figure 1. To propel the snakeboard,
the rider first turns both of his feet in. By moving his torso through an angle, the Snakeboard
moves through an arc defined by the wheel angles. The rider then turns both feet so that
they point out, and moves his torso in the opposite direction. By continuing this process
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Figure 1. The Snakeboard

the Snakeboard may be propelled in the forward direction without the rider having to touch
the ground.

Our simplified model of the Snakeboard is shown in Figure 2. As a mechanical system
the snakeboard has a configuration space given by Q = SE(2) × S × S × S. Here SE(2)
is the group of rigid motions in the plane, and we are thinking of this as describing the
position of the board itself. By S we mean the group of rotations on R2. The three copies of
S in Q describe the positions of the rotor and the two wheels, respectively. As coordinates
for Q we shall use (x, y, θ, ψ, ϕb, ϕf ) where (x, y, θ) describes the position of the board with
respect to a reference frame (and so are to be thought of as an element of SE(2)), ψ is the
angle of the rotor with respect to the board, and ϕb, and ϕf are, respectively, the angles
of the back and front wheels with respect to the board. We will frequently refer to the
variables (ψ, ϕb, ϕf ) as the controlled variables since they are the variables which are
rider inputs in the actual Snakeboard. Parameters for the problem are:

m : the mass of the board,
J : the inertia of the board,
Jr : the inertia of the rotor,
Jw : the inertia of the wheels (we assume

them to be the same), and
l : the length from the board’s centre of

mass to the location of the wheels.

The wheels of the snakeboard are assumed to roll without lateral sliding. This condition
is modelled by constraints which may be shown to be nonholonomic. At the back wheels
the constraint assumes the form

− sin(ϕb + θ)ẋ+ cos(ϕb + θ)ẏ − l cos(ϕb)θ̇ = 0. (2.1)

Similarly at the front wheels the constraint appears as

− sin(ϕf + θ)ẋ+ cos(ϕf + θ)ẏ + l cos(ϕf )θ̇ = 0. (2.2)

Alternatively one can write the constraints as the kernel of two differential one-forms. To
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Figure 2. The simplified model of the Snakeboard

be specific, all velocities must lie in ker{ω1, ω2}, where

ω1 = − sin(ϕb + θ)dx+ cos(ϕb + θ)dy − l cos(ϕb)dθ (2.3a)

ω2 = − sin(ϕf + θ)dx+ cos(ϕf + θ)dy + l cos(ϕf )dθ (2.3b)

3. Dynamics and control of the snakeboard

To investigate the dynamics of the snakeboard we use Lagrange’s equations which, for
constrained and forced systems, are given by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

m∑
j=1

λjω
j
i + τi, i = 1, . . . , n.

Here λ1, . . . , λm are the Lagrange multipliers, ω1, . . . , ωm are the constraint one-forms,
and τ1, . . . , τn are the external forces. The first term on the right hand side of Lagrange’s
equations may be regarded as an external force applied to the system to ensure that the
constraints are satisfied. As such, the Lagrange multipliers are a part of the solution to
the problem. See [Pars 1965] for a discussion of Lagrangian mechanics in this vein. For
the snakeboard, ω1 and ω2 are given by (2.3a) and (2.3b), respectively. We will only be
considering torques on the variables ψ, ϕb, and ϕf since this is where they naturally occur
in the actual Snakeboard. The Lagrangian for the snakeboard is

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Jθ̇2 +

1

2
Jr(ψ̇ + θ̇)2 +

1

2
Jw

(
(ϕ̇b + θ̇)2 + (ϕ̇f + θ̇)2

)
.
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Thus Lagrange’s equations are given by

mẍ− λ1 sin(ϕb + θ)− λ2 sin(ϕf + θ) = 0 (3.1a)

mÿ + λ1 cos(ϕb + θ) + λ2 cos(ϕf + θ) = 0 (3.1b)

(J + Jr + 2Jw)θ̈ + Jrψ̈ + Jwϕ̈b + Jwϕ̈f − λ1l cosϕb + λ2l cosϕf = 0 (3.1c)

Jrψ̈ + Jrθ̈ = u1 (3.1d)

Jwϕ̈b + Jwθ̈ = u2 (3.1e)

Jwϕ̈f + Jwθ̈ = u3 (3.1f)

where (u1, u2, u3) are the input torques in the (ψ, ϕb, ϕf ) directions, respectively.
Since the rider of the Snakeboard typically propels himself by performing cyclic motions

with his feet and torso, it was deemed desirable to devise a control law which would allow
one to follow any curve, t 7→ (ψ(t), ϕb(t), ϕf (t)), in the controlled variables. It turns out
that such a control law is derivable with some manipulation of Lagrange’s equations. We
outline some of this manipulation in the proof of this proposition.

3.1 Proposition: Let t 7→ (ψ(t), ϕb(t), ϕf (t)) be a piecewise smooth curve. Then there exists
a control law t 7→ (u1(t), u2(t), u3(t)) so that the (ψ, ϕb, ϕf ) components of the solution to
Lagrange’s equations are given by t 7→ (ψ(t), ϕb(t), ϕf (t)).

Proof: In Lagrange’s equations, (3.1a)-(3.1f), and in the constraints, (2.1) and (2.2), regard
(ψ, ϕb, ϕf ) as known functions of t. Substituting (3.1d)-(3.1f) into (3.1c) gives

θ̈ =
1

J
(−u1 − u2 − u3 + λ1l cosϕb − λ2l cosϕf ). (3.2)

Substituting this expression back into (3.1d)-(3.1f) gives an expression of the form

Bu = P (t) +N(t)λ (3.3)

where u = (u1, u2, u3), λ = (λ1, λ2), B ∈ R3×3 is a known constant matrix, P (t) ∈ R3 is a
known time-dependent vector, and N(t) ∈ R3×2 is a known time-dependent matrix. Now
observe that we may write (3.1a), (3.1b), and (3.2) as

Mz̈ +W T (z, t)λ = f. (3.4)

Here z = (x, y, θ), f = (0, 0,−u1−u2−u3),M ∈ R3×3 is a known constant invertible matrix,
andW (z, t) ∈ R2×3 is a known time-dependent matrix function of z. The constraints appear
as

W (z, t)ż = 0. (3.5)

Using (3.4) and (3.5) we may derive

λ = (WM−1W T )−1(WM−1f + Ẇ ż). (3.6)

Since (u1, u2, u3) appear linearly in f , we can replace WM−1f with an equivalent repre-
sentation which is linear in the control torques, u:

WM−1f = Cu, (3.7)
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where C(z, t) ∈ R2×3. Finally, using (3.3), (3.6) and (3.7) we arrive at the formula

u(z, ż, t) = (B −N(WM−1W T )−1C)−1 · (P +N(WM−1W T )−1Ẇ ż) (3.8)

for the control law which follows a specified trajectory in (ψ, ϕb, ϕf ). The matrices that
need to be inverted may be shown to be invertible except at isolated configurations. ■

A simpler PD-control law was also implemented. This control law was sufficient to simulate
the desired gaits described in more detail in Section 5, but did not perform as well as the
exact tracking controller when it came to doing the numerical gait analysis presented in that
section. A possible explanation for this poorer performance is that the phase lag inherent
in the PD-controller results in less than optimal tracking.

4. Controllability of the snakeboard

As a control system, one would like to show that the snakeboard is controllable in
the following sense: Given two configurations q1, q2 ∈ SE(2) of the board, there exists
an input t 7→ (u1(t), u2(t), u3(t)) which steers the system from rest at q1 to being at rest
at q2. To prove that the snakeboard is so controllable we first reduce the system from a
problem in mechanics to a problem in kinematics. In doing so we reduce the problem to
one of finding paths in the configuration variables which lie in a certain distribution. The
answer to this problem is then given by Chow’s theorem which states that a path lying in
the distribution may be found which connects two points if the distribution is maximally
involutive (see [Hermann and Krener 1977]).

From (3.8) we have a control law which allows us to follow any path in the controlled
variables, (ψ, ϕb, ϕf ), we desire. It turns out that this is enough to allow us to follow any
path we would like in the variables (x, y, θ, ϕb, ϕf ) which satisfy the constraints. Indeed we
have the following result.

4.1 Proposition: Let c : t 7→ (x(t), y(t), θ(t), ϕb(t), ϕf (t)) be a piecewise smooth curve so
that ϕb(t) ̸= ϕf (t) and so that c′(t) ∈ ker{ω1, ω2} for all t. Then there exists a control law
t 7→ (u1(t), u2(t), u3(t)) so that the (x, y, θ, ϕb, ϕf ) components of the solution to Lagrange’s
equations are given by t 7→ (x(t), y(t), θ(t), ϕb(t), ϕf (t)).

Proof: We shall use notation similar to that in the proof of proposition 3.1 although the
objects will be different. First let (x, y, θ, ϕb, ϕf ) be regarded as known functions of t in
Lagrange’s equations and be such that they satisfy the constraints. This immediately
specifies u2(t) and u3(t) from (3.1e) and (3.1f), respectively. If we denote z = (x, y) we may
write (3.1a) and (3.1b) as

Mz̈ +W T (t)λ = 0 (4.1)

whereM ∈ R2×2 is a known constant invertible matrix,W (t) ∈ R2×2 is the time-dependent
matrix given by

W (t) =

[
− sin(ϕb(t) + θ(t)) − sin(ϕf (t) + θ(t))
cos(ϕb(t) + θ(t)) cos(ϕf (t) + θ(t))

]
,

and λ = (λ1, λ2). The constraint equations may be written as

W (t)ż = R(t) (4.2)
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where R(t) ∈ R2 is a known time-dependent vector. Equations (4.1) and (4.2) may be
combined to obtain

λ = (WM−1W T )−1(Ẇ ż − Ṙ(t)) (4.3)

From (3.2) we have a relation of the form

u1 = P (t) +N(t)λ (4.4)

where P (t) is a known function of t, and N(t) ∈ R1×2 is a known time-dependent matrix.
Now we use (4.3) and (4.4) to get

u1(t) = P (t) +N(t)(WM−1W T )−1(Ẇ ż − Ṙ(t)).

Combining this with u2(t) and u3(t) as determined above, we obtain the proposition.
Note the matrix W (t) is invertible if and only if ϕb(t) ̸= ϕf (t). ■

As the proof of the proposition illustrates, the configurations where ϕb = ϕf cause some
problems because W is singular at such configurations. These difficulties lead to one being
able to track only certain types of trajectories in (θ, ϕb, ϕf ). To be specific, we can only
track those trajectories which go through configurations where ϕb = ϕf which have θ̇ = 0.

Proposition 4.1 now allows us to consider controllability of the nonholonomic system

q̇ = v1g1(q) + v2g2(q) + v3g3(q) (4.5)

where q = (x, y, θ, ϕb, ϕf ), and the vector fields g1, g2, g3 span the kernel of the one-forms ω1

and ω2. That is to say, {g1, g2, g3} forms a basis for the distribution defined by ker{ω1, ω2}
(see (2.3a) and (2.3b)). As a basis we use

g1 = (0, 0, 0, 1, 0)

g2 = (0, 0, 0, 0, 1)

g3 = (−l(cosϕb cos(ϕf + θ) + cosϕf cos(ϕb + θ)),

− l(cosϕb sin(ϕf + θ) + cosϕf sin(ϕb + θ)), sin(ϕb − ϕf ), 0, 0)

These vector fields may be shown to span a distribution of rank 3 except when ϕb = ϕf =
±π/2 where the rank drops by 1. The drop in rank at these points is reflected by there
being two directions of admissible motion for the board at these configurations. A simple
computation gives

[g1, g3] = (l(cos(ϕf + θ) sinϕb + cosϕf sin(ϕb + θ)),

− l(cosϕf cos(ϕb + θ)− sinϕb cos(ϕf + θ)), cos(ϕb − ϕf ), 0, 0)

[g2, g3] = (l(cos(ϕb + θ) sinϕf + cosϕb sin(ϕf + θ)),

− l(cosϕb cos(ϕf + θ)− sinϕf cos(ϕb + θ)),− cos(ϕb − ϕf ), 0, 0)

The vector fields {g1, g2, g3, [g1, g3], [g2, g3]} may be shown to span TqQ except at isolated
points. Thus, excluding this set of points, the control system given by (4.5) is controllable
by Chow’s theorem.
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Figure 3. Time histories of the controls and x for the (1, 1, 1) gait

5. Gaits for the snakeboard

By performing various types of loops in our controlled variables, we found that it was
possible to generate gaits for the snakeboard. We will loosely call a gait a generator of
motion in a certain direction by performing periodic motions in the controlled variables.

The use of periodic motions in some variables for trajectory generation has been well
studied for nonholonomic systems. For example Murray and Sastry [1993] use sinusoids to
generate motion in a system with n trailers. Although our system is not directly analogous
to the class of systems for which sinusoids have proven to be useful, we decided to consider
paths in the controlled variables of the form

t 7→ (aψ sin(ωψt+ βψ), ab sin(ωbt+ βb), af sin(ωf t+ βf )). (5.1)

A gait will be referenced by a triple (i1, i2, i3) of integers where i1 = ωψ, i2 = ωb, and
i3 = ωf . All of the gaits we discuss will have i2 = i3, βb = βf , and ab = −af . This
corresponds to typical gaits in the Snakeboard where the rider moves his feet in opposing
motions.

In the gait simulations below, the following parameters were used:

m : 6 kg
J : 0.016 kg·m2

Jr : 0.072 kg·m2

Jw : 0.0013 kg·m2

l : 0.2 m

These values reflect possible choices for a working model of the Snakeboard. In discussing
these gaits, the snakeboard is assumed to have its initial condition at the origin in the
state space. Thus “forward” motion is in the x-direction, and “transverse” motion is in the
y-direction.
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Figure 4. Position of the centre of mass for the (1, 1, 1) gait
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Figure 5. Distance traveled in the (negative) x-direction vs βψ for
the (1, 1, 1) gait

The “drive” gait:

The drive gait is used to move the snakeboard in the x-direction and is determined by the
frequencies (1, 1, 1). Figure 3 shows plots of the controlled variables and x, and Figure 4
shows the position of the centre of mass of the snakeboard along the trajectory for the
(1, 1, 1) gait.

The following parameters were fixed at the indicated values for the analysis of the
(1, 1, 1) gait.

ab,−af : 0.3 rad
ωb, ωf : 1 rad/sec
βb, βf : 0 rad
aψ : 0.7 rad (unless otherwise specified)
ωψ : 1 rad/sec (unless otherwise specified)
βψ : 0 rad (unless otherwise specified)

If one fixes the rotor phase angle βψ at 0 the snakeboard will be propelled in the negative
x-direction. Changing this phase angle to π will result in motion in the positive x-direction.
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Figure 6. Distance traveled in the x-direction vs ωψ for the (1, 1, 1)
gait

Figure 5 shows the result of varying βψ from −π/2 to π/2. Notice that if the rotor moves
90 ◦ out of phase with the wheels, then almost no motion is observed in the x-direction.

Frequency ratios around (1, 1, 1) were also investigated, but, for generating net motion
in the x-direction, the (1, 1, 1) gait was determined to be superior. In Figure 6 we see
the relationship between distance traveled in the x-direction versus ωψ near the operating
point ωψ = 1. Four different simulation times, T , are shown. A similar analysis was
also performed for a wider range of frequencies which demonstrated that the (1, 1, 1) gait
generated more motion in the x-direction than any other frequency ratios.

The final parameter study was done on aψ, the amplitude of the rotor swing. The
results are shown in Figure 7. Notice that for large amplitudes and long simulation times
the distance traveled begins to decrease. This is a result of the oscillations in the y-direction
becoming large enough to cause the board to actually turn around. Thus one cannot just
increase the run time and input magnitude to get longer distances traveled in the (1, 1, 1)
gait. ◦

The “rotate” gait:

The rotate gait generates net motion in the θ-direction by using frequencies (2, 1, 1). A
trace of the centre of mass of the board is shown in Figure 8.

The following parameters were fixed at the indicated values for the analysis of the
(2, 1, 1) gait.

ab,−af : 1 rad
ωb, ωf : 1 rad/sec
βb, βf : 0 rad
aψ : 1 rad
ωψ : 2 rad/sec (unless otherwise specified)
βψ : 0 rad
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Figure 8. Position of the centre of mass for the (2, 1, 1) gait

The relationship between the net angle of rotation and the phase angle, βψ, is much the
same as was observed in the (1, 1, 1) gait. That is to say, if the rotor and wheels are out
of phase, no net motion is produced in the θ-direction. The result of varying the frequency
ratio around the operating point of (2, 1, 1) is shown in Figure 9. If one increases the
amplitude, aψ, for the (2, 1, 1) gait, the resulting net displacement in θ will always increase,
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Figure 9. Magnitude of rotation vs ωψ for the (2, 1, 1) gait

unlike the situation in the (1, 1, 1) gait. ◦

The “parking” gait:

The final gait that was studied is that resulting from the frequency ratios (3, 2, 2). In this
gait a net displacement is produced in the y-direction. The position of the centre of mass
is shown in Figure 10.

The following parameters were fixed for the analysis of the (3, 2, 2) gait.

ab,−af : 1 rad
ωb, ωf : 2 rad/sec
βb, βf : 0 rad
aψ : 1 rad
ωψ : 3 rad/sec (unless otherwise specified)
βψ : 0 rad

The relationships between distance traveled in the y-direction versus the phase angle,
βψ, and the amplitude, aψ, are much the same as in the (1, 1, 1) gait. The distance traveled
in the y-direction versus the frequency is shown in Figure 11. ◦

Of course, there is further analysis yet to be performed on these gaits. Possible avenues
of investigation will certainly include looking at cases where the wheels are driven out of
phase, particularly 90 ◦ out of phase (which has been seen as a working gait used in the
actual Snakeboard); where only one of the wheels is driven (i.e. ϕf = 0 is fixed); and
looking at decreasing the amplitude of the wheel oscillations as forward velocities increase
(to reduce the oscillations seen in Figure 4). Future research may also include further
exploration of parameter sweeps, as well as the possible use of a variable inertia rotor
(which would correspond to the rider’s ability to move his arm’s in and out).
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6. Discussion

The Snakeboard example presented in this paper points to a number of future directions
of research in the areas of locomotion and nonholonomic mechanics. While the Snakeboard
shares a number of properties with other mechanical systems, the unique way in which
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motion is generated in this particular example has raised many new questions.
In some cases there is a natural principal bundle structure present, in which the geometry

of the system can be studied by considering the lifting of paths in a certain base space into
the total space. Roughly speaking, for these systems one can write the constraints as

ṡi =

n−k∑
j=1

aij(r)ṙj i = 1, . . . , k, (6.1)

where q = (r, s) ∈ Rn−k ×Rk represents a splitting of the coordinates into base variables,
r, and fibre variables, s. For such systems, one can generate paths for the system by
specifying an initial condition and a path r(t). The complete trajectory of the system is
then determined by lifting the base path via equation (6.1) to a path in the fibre variables.
For engineering systems, the base space is usually the space of controlled variables and
hence r(t) can be arbitrarily specified. For example, in a mobile robot one can take the
base space to be the angular variables for the wheels. The fibre variables are the remaining
configuration variables in the system and the velocity of the path in the base space gives a
unique velocity for the fibre variables via the constraints.

For the snakeboard, a first-order lifting property is not possible. To see why this is so,
suppose that a set of independent constraints of the form

ṡ−A(r)ṙ = 0

where

r = (ψ, ϕb, ϕf )

s = (x, y, θ)

A(r) ∈ R3×3

were present. Then, if we begin with the base space variables at the origin and traverse a
path which returns the base space variables to the origin and keeps them there (i.e., so that
ṙ = 0 after some time T ), it follows that the time-derivatives of the fibre variables must be
zero (i.e., ṡ = 0 after the same time T ). However, this is not the case since it is possible to
get the snakeboard moving in the forward direction while returning all control variables to
the origin. Thus no such constraint can occur.

Note, however, that we can alternatively split the configuration variables into (r, s),
where r = (θ, ψ, ϕb, ϕf ) and s = (x, y). With this splitting the system fits into the form
of (6.1). This formulation fails due to the fact that we cannot follow arbitrary paths in the
base variables (θ, ψ, ϕb, ϕf ), and have control of only three of the four control directions.

An additional direction of future investigations is the use of tools from geometric me-
chanics for studying other locomotion systems. A related piece of work in this direction
is that of Shapere and Wilczek [1989b] who studied the locomotion of amoeba in highly
viscous fluids. They showed that it was possible to describe this motion using ideas from
geometric mechanics and gauge theory. Following their lead, we have begun to investi-
gate the possible use of geometric mechanics, and in particular the role of connections, in
understanding other locomotion problems.

Finally, in terms of the snakeboard itself, there are a number of interesting questions
related to motion planning. For example, one would like to be able to generate a set of
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inputs which moved the snakeboard from its starting configuration to some other given
configuration. Many of the methods which have been developed for doing this for nonholo-
nomic systems do not apply here since the system cannot be described solely in terms of a
set of (Pfaffian) velocity constraints. Another direction for study is the optimal generation
of inputs given finite energy considerations, similar to the work performed by Shapere and
Wilczek [1989a].

7. Summary

In this paper we have analysed gait patterns for a simplified model of the Snakeboard.
We have found that while these gait patterns resemble those seen in many locomotion
problems, previously used analysis techniques are not applicable to our model. The reason
for the failure of the available tools is that the nonholonomic constraints couple with the
natural inputs differently than is often seen. For this reason we feel that our model of
the Snakeboard is representative of an interesting and important class of systems both in
nonholonomic mechanics and in locomotion.
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