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Abstract

In this paper we present two methods, the nonholonomic method and the vakonomic
method, for deriving equations of motion for a mechanical system with constraints. The
resulting equations are compared. Results are also presented from an experiment for a
model system: a ball rolling without sliding on a rotating table. Both sets of equations
of motion for the model system are compared with the experimental results. The
effects of various forms of friction are considered in the nonholonomic equations. With
appropriate friction terms, the nonholonomic equations of motion for the model system
give reasonable agreement with the experimental observations.
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1. Introduction

Until recently there has been little attention paid to nonholonomic constraints in the
geometric mechanics literature. There has been some recent effort to cast some of the ideas
of nonholonomic mechanics in a more mathematical setting to make it consistent with the
treatment received by unconstrained mechanics. For a survey of such efforts see [Bloch,
Krishnaprasad, Marsden, and Murray 1996] and the references contained therein.

For deriving equations of motion for systems with constraints, there are at least two
methods one may use. We call them the nonholonomic method and the vakonomic method.
The nonholonomic method is the classical method for deriving equations of motion for con-
strained systems. A thorough exposition of this method, in classical language, may be found
in [Pars 1965]. In this reference one will find various methods of determining equations of
motion for systems with constraints. All of these equations of motion are equivalent and
differ only in how the constraint forces are handled. The vakonomic method was origi-
nally proposed in [Kozlov 1983]. This method treats mechanical systems with constraints
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as a standard constrained variational problem and the equations of motion are derivable
using techniques from the calculus of variations with constraints. Kharlomov [1992] gives a
critique of the vakonomic method which presents some “thought experiments” for certain
systems, including a billiard ball. A counterpoint of this critique appears in [Kozlov 1992].

In this paper we present the nonholonomic and vakonomic methods for deriving equa-
tions of motion for systems with constraints and compare them with each other. We consider
systems with what we shall call affine constraints. Pars [1965] refers to these systems as
acatastatic. This separates our presentation slightly from the usual presentations of con-
strained mechanics where the affine part of the constraint is zero. We also define what it
means for an affine constraint to be holonomic. This may be thought of as a modest gen-
eralisation of the Frobenius notion of integrability for distributions to affine constraints. In
the case where the constraints are holonomic, the nonholonomic and vakonomic equations
are shown to give the same physical motions for the system. These results are presented in
Section 2.

In Section 3 we introduce our example of a ball rolling on a rotating table. We point
out that this is a system with affine constraints. We derive the equations for this system
using both the nonholonomic and vakonomic methods. In the nonholonomic approach an
analytical solution is possible. With the vakonomic method we present some simulations to
determine the behaviour of the system. We show that for the ball on the rotating table, it is
not possible to obtain the solutions for the nonholonomic method as a subset of the solutions
for the vakonomic method. In this section we also present some data from an experiment
which was performed. We show that, with the addition of suitable friction terms to the
nonholonomic model, it is possible to obtain reasonable agreement of the analytical and
experimental data. This provides some justification for the adoption of the nonholonomic
method as a legitimate way to model mechanical systems with constraints.

In Section 4 we present some questions which still need to be addressed regarding
variational methods and their applicability for modelling physical systems. We also include
four appendices in which we present various technical details. The reader may refer to
these at appropriate times, but an understanding of the material should not be too severely
jeopardised if a reading of the appendices is omitted.

2. Methods for modelling mechanical systems with constraints

In this section we present the nonholonomic and vakonomic methods for deriving the
equations of motion of a mechanical system with constraints. We shall try to be somewhat
precise without overly burdening the presentation with technicalities. If the reader is so
inclined he may refer to appendices which give details.

We shall use the following notation:

Q : a smooth configuration manifold which is n-dimensional, paracompact,
and connected.

τM : TM → M : the tangent bundle projection of a manifold M .

πM : T ∗M → M : the cotangent bundle projection of a manifold M .

L : a Lagrangian which is simply a function on TQ×R.
ċ(t) : the derivative of a curve c. It is defined by ċ(t) = Tc(t, 1).

J : the classical functional (see Appendix A).
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d : the exterior derivative of a differential form.

All mappings shall be assumed to be smooth unless otherwise stated.
We now make clear the type of constraints we shall consider.

2.1 Definition: An affine constraint on Q is a pair, (D, γ) where D is a distribution on
Q and γ is a vector field on Q. A curve c : [a, b] → Q will be said to satisfy the affine
constraint (D, γ) if ċ(t)− γ(c(t)) ∈ D(c(t)) for all t ∈ [a, b]. •
We shall assume thatD has a constant rank k for simplicity. We will use this fact to suppose,
at least locally, the existence of n− k linearly independent one-forms, ω1, . . . , ωn−k, which
annihilate the distribution. That is to say we have

D(q) = ker{ω1(q), . . . , ωn−k(q)}.

All solutions of the constrained system are required to satisfy the condition

ωa(ċ(t)) = ωa(γ(c(t))), a = 1, . . . , n− k.

At this time, readers unfamiliar with techniques in the calculus of variations as applied to
mechanics may wish to refer to Appendix A. Here they will find the notions of a variation
and an infinitesimal variation defined.

2.1. The nonholonomic method. In this variational method, one applies the constraints
after making the functional J stationary. Let us formulate this problem more precisely.
Let (D, γ) be an affine constraint on Q. As in Appendix A, for q1, q2 ∈ Q we define the set
of twice differentiable curves which connect q1 to q2 and satisfy the constraints as

C2(q1, q2, [a, b], D, γ) = {c : [a, b] → Q | c is a C2 curve,

c(a) = q1, c(b) = q2, and ċ(t)− γ(c(t)) ∈ D(c(t)) for t ∈ [a, b]}.

From now on we shall tacitly assume that C2(q1, q2, [a, b], D, γ) is not empty. That is to
say, we suppose that there are C2 curves which connect q1 and q2 and which satisfy the
affine constraint. We shall regard C2(q1, q2, [a, b], D, γ) as a subset of C2(q1, q2, [a, b]). At
a point c ∈ C2(q1, q2, [a, b], D, γ), we define a subset of the tangent space TcC

2(q1, q2, [a, b])
by

Xc(q1, q2, [a, b], D) = {u : [a, b] → TQ | u is C2, τQ ◦ u = c,

u(a) = 0, u(b) = 0, and u(t) ∈ D(c(t)) for t ∈ [a, b]}.

For a discussion of the meaning of Xc(q1, q2, [a, b], D) see Appendix A. We define the func-
tional J by

J : C2(q1, q2, [a, b], D, γ) → R

c 7→
∫ b

a
L(ċ(t), t) dt

.

The variational problem is stated as a definition.
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2.2 Definition: A curve, c ∈ C2(q1, q2, [a, b], D, γ), will be called a solution to the
nonholonomic constrained variational problem if dJ(c) · u = 0 for every u ∈
Xc(q1, q2, [a, b], D). •
The following result is natural given our definition of the problem. Recall that a Lagrangian
is said to be regular if the corresponding Legendre transformation is a local diffeomorphism
(see [Abraham and Marsden 1978]).

2.3 Proposition: Let L be a regular Lagrangian on Q, and let (D, γ) be an affine con-
straint on Q. Then c ∈ C2(q1, q2, [a, b], D, γ) is a solution of the nonholonomic constrained
variational problem if and only if[

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
ui(t) = 0

for every u ∈ Xc(q1, q2, [a, b], D).

Proof: Let cs be a variation whose infinitesimal variation is u ∈ Xc(q1, q2, [a, b], D). Then,
as in the proof of Proposition A.1, we have

dJ(c) · u =

∫ b

a

(
∂L

∂qi
∂qi

∂s
+

∂L

∂q̇i
∂q̇i

∂s

) ∣∣∣∣
s=0

dt.

In this case we simply have

∂qi(t, s)

∂s

∣∣∣∣
s=0

= ui(t), and
∂q̇i(t, s)

∂s

∣∣∣∣
s=0

= u̇i(t).

If we do the usual integration by parts we have

dJ(c) · u =

∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
ui dt

from which the proposition follows. ■

2.4 Remarks: 1. Note that we do not require cs to be in C2(q1, q2, [a, b], D, γ) for s ̸= 0.
Thus we do not require our variations to satisfy the constraints. We only require
the infinitesimal variations to satisfy the (non-affine) constraints. For a discussion
of this see Appendix A. The fact that the variations do not necessarily satisfy the
constraints allows us to interchange the order of differentiation with respect to s
and t in determining ∂q̇i/∂s. In classical terms, this allows us to interchange the
“operators” δ and d/dt.

2. Observe that, unlike Hamilton’s Principle, the nonholonomic constrained variational
problem does not immediately give the equations of motion. This task is taken up
when we discuss the Principle of Virtual Work in Appendix B. There we will show
that the equations of motion for the nonholonomic method are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaω

a
i , i = 1, . . . , n (2.1)
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along with the constraint equations

ωa
i q̇

i = ωa
i γ

i, a = 1, . . . , n− k.

There are other forms of the equations of motion for the nonholonomic method. An ex-
ample of another form is the so-called Lagrange-d’Alembert equations. See [Bloch,
Krishnaprasad, Marsden, and Murray 1996] for a discussion of this along with other
forms of the equations of motion using Ehresmann connections on fibre bundles.

3. See Figure 1 for a visual representation of the nonholonomic constrained variational
problem. Observe how it differs from the representation of the vakonomic problem
next to it. •

2.2. The vakonomic method. In this variational technique one makes the functional J
stationary after asking that the solutions satisfy the constraints. Thus this is a classical
constrained minimisation problem, and may be solved with techniques from the calculus of
variations with constraints. To make this method precise we must introduce some involved
notation. Therefore, we postpone the technical proofs to Appendix C.

We begin with the definition of the solution to the vakonomic problem.

2.5 Definition: A curve, c ∈ C2(q1, q2, [a, b], D, γ), will be called a solution to
the vakonomic constrained variational problem if c is a critical point of J |
C2(q1, q2, [a, b], D, γ). •

In Appendix C we show that the equations of motion for a vakonomic system may
derived as Lagrange’s equations for the appended Lagrangian

L (ċ(t), t) = L(ċ(t), t)− λa(t)[ω
a(ċ(t))− ωa(γ(c(t)))]

defined on Q×Rn−k. Here (λ1, . . . , λn−k) are to be regarded as generalised coordinates for
Rn−k.

Let us further examine the equations of motion for the vakonomic problem. In coordi-
nates we have

L (q, q̇, t) = L(q, q̇, t)− λaω
a
i q̇

i + λaω
a
i γ

i.

Lagrange’s equations for the Lagrangian L then read

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

d

dt

(
∂L

∂q̇i
− λaω

a
i

)
− ∂L

∂qi
+

λa

∂ωa
j

∂qi
q̇j − λa

∂ωa
j

∂qi
γj − λaω

a
j

∂γj

∂qi

=
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
− λ̇aω

a
i − λa

∂ωa
j

∂qi
γj − λaω

a
j

∂γj

∂qi
= 0, (2.2)

i = 1, . . . , n.

Appended to these are the constraint equations which are simply the “λ-part” of Lagrange’s
equations:

ωa
i q̇

i = ωa
i γ

i, a = 1, . . . , n− k. (2.3)



6 A. D. Lewis and R. M. Murray

c

cs

C2(q1, q2, [a,

c

cs

C2(q1, q2, [a,

Figure 1. A representation of the
nonholonomic constrained varia-
tional problem

Figure 2. A representation of
the vakonomic constrained
variational problem

2.6 Remarks: 1. Observe that, in practice, the equations (2.2) and (2.3) constitute a
set of implicit first order ordinary differential equations in the variables (q, q̇, λ). This
means that one must specify initial conditions for the Lagrange multipliers for the
vakonomic problem.

2. In the case when γ = 0, the equations of motion for the vakonomic problem look like
the equations of motion for the nonholonomic problem except there is now a λ̇a in
place of λa.

3. See Figure 2 for a visual representation of the vakonomic constrained variational prob-
lem. •

2.3. The nonholonomic and vakonomic methods compared. Generally, the nonholo-
nomic and vakonomic methods yield different equations of motion. This is readily seen by
observing that the vakonomic equations have λ̇a’s in them which are not present in the
nonholonomic equations. For certain systems, however, it is possible to choose the initial
conditions for the Lagrange multipliers in the vakonomic equations in such a way that the
resulting solution is exactly that determined by the nonholonomic method. This occurs,
for example, in the example of a penny rolling upright on a planar surface (see [Bloch and
Crouch 1995]). This is not the case in general, however, as we will show when we discuss
the ball rolling on the rotating table.

It also turns out that when the constraints are holonomic, the nonholonomic and vako-
nomic problems are equivalent. We shall say that an affine constraint (D, γ) is holonomic
if D is integrable and if γ is a section in D. Notice that this is a modest generalisation of
what we would denote as an holonomic constraint for systems with no affine part. In that
case the constraint is simply the distribution, D, and is holonomic if D is integrable.

2.7 Remark: Note that if (D, γ) is an holonomic affine constraint, then C2(q1, q2, [a, b], D, γ)
is non-empty if and only if q1 and q2 lie in the same connected component of a leaf of the
foliation defined by D. Also, any curve that is in a leaf of the foliation defined by D will
automatically satisfy the constraints. Thus the definition is only a mild generalisation of
the usual notion of integrability of a distribution. •
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Let Λ be a leaf of the foliation defined by D. Given a Lagrangian on Q we may define
a Lagrangian LΛ on Λ by restriction of L to TΛ×R ⊂ TQ×R. With this Lagrangian we
may define a function on C2(q1, q2, [a, b], D, γ) by

JΛ : C
2(q1, q2, [a, b], D, γ) → R

c 7→
∫ b

a
LΛ(ċ(t), t) dt.

(2.4)

The result is thus stated.

2.8 Proposition: Let L be a Lagrangian on Q, and let (D, γ) be an integrable affine con-
straint on Q. Let c ∈ C2(q1, q2, [a, b], D, γ) where q1 and q2 lie in a leaf Λ of the foliation
determined by D. Let JΛ be the function defined by (2.4). Then the following are equivalent:

(i) c is a solution of the nonholonomic constrained variational problem.

(ii) c is a solution of the vakonomic constrained variational problem.

(iii) c is a critical point of JΛ.

(iv) c is a solution of Lagrange’s equations on Λ with Lagrangian LΛ.

Proof: By Frobenius’ theorem, we may choose coordinates, (x1, . . . , xk, y1, . . . , yn−k),
around any point q ∈ Λ which have the properties:

1. (x1, . . . , xk) are coordinates for Λ,

2. the injection of Λ into Q looks like (x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0), and

3. D = ker{dy1, . . . , dyn−k} = ⟨ ∂
∂x1 , . . . ,

∂
∂xk ⟩.

We first look at the equations of motion for the nonholonomic problem. By (2.1) we
know that c ∈ C2(q1, q2, [a, b], D, γ) is a solution of the nonholonomic constrained variational
problem if and only if

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaω

a
i , i = 1, . . . , n (2.5)

for some λ1, . . . , λn−k defined on [a, b]. In the coordinates (x1, . . . , xk, y1, . . . , yn−k) above,
the curve c looks like

t 7→ (x1(t), . . . , xk(t), 0, . . . , 0).

The equations (2.5) in the coordinates (x1, . . . , xk, y1, . . . , yn−k) are thus

d

dt

(
∂L

∂ẋσ

)
− ∂L

∂xσ
= 0, σ = 1, . . . , k, (2.6)

∂2L

∂ẏa∂t
− ∂L

∂ya
= λa, a = 1, . . . , n− k. (2.7)

Note that (2.7) simply specifies the Lagrange multipliers and has no effect on the solution
in Q since all the time evolution there is specified by (2.6).

Now we turn to the vakonomic problem. The appended Lagrangian to be used in the
coordinates coordinates (x1, . . . , xk, y1, . . . , yn−k) is

L = L− λaẏ
a.
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We may easily determine that the equations (2.2) appear in these coordinates as

d

dt

(
∂L

∂ẋσ

)
− ∂L

∂xσ
= 0, σ = 1, . . . , k (2.8)

∂2L

∂ẏa∂t
− ∂L

∂ya
= λ̇a, a = 1, . . . , n− k. (2.9)

Here again we have used the fact that y1 = · · · = yn−k = 0 along c. As with the nonholo-
nomic equations, (2.9) serves to determine the Lagrange multipliers and does not affect the
time evolution of the coordinates (x1, . . . , xk).

In both the nonholonomic and vakonomic equations, the constraint equations are null
since γ is a section of D.

Lagrange’s equations on Λ for the Lagrangian LΛ are

d

dt

(
∂LΛ

∂ẋσ

)
− ∂LΛ

∂xσ
= 0, σ = 1, . . . , k. (2.10)

Note that since y1 = · · · = yn−k = 0 along c we have

∂LΛ

∂ẋσ
=

∂L

∂ẋσ
, and

∂LΛ

∂xσ
=

∂L

∂xσ
, σ = 1, . . . , k. (2.11)

From (2.6) and (2.8) we see that the components (x1, . . . , xk) evolve according to the
same equations of motion in the nonholonomic and vakonomic problems. This proves
that (i) is equivalent to (ii). Using (2.10) and (2.11) we also see that (iv) is equivalent
to both (i) and (ii). Hamilton’s Principle implies that (iii) is equivalent to (iv). This com-
pletes the proof. ■

2.4. Realising constraints. As a final word in our presentation of the nonholonomic and
vakonomic methods, we say a few things about “realising constraints”. One may think of
constraints as being a limiting process where certain dynamic properties become large and so
limit the motion to the constrained directions. This may be made precise in the vakonomic
and nonholonomic models. These notions are given in their precise forms by Arnol′d [1988],
but we shall give rough descriptions of these limits here.

The vakonomic solutions may be regarded as a limit as an inertial term becomes large.
The inertial term is a degenerate one which supplies no inertial forces to motions allowed
by the constraints. When this term goes to infinity, the solutions of Lagrange’s equations
approach a solution for the vakonomic problem.

The nonholonomic solutions may be regarded as a limit as viscosity becomes large. To
be more precise, we add Rayleigh dissipation to the mechanical system which does no work
on motions allowed by the constraints (thus the dissipation function is degenerate). Then,
as we make the magnitude of the dissipation function go to infinity, the corresponding
solutions to Lagrange’s equations approach the solutions to the nonholonomic equations.

As a simple example of using these limits to obtain constraints, consider the system in
Figure 3. We wish to impose the (holonomic, non-affine) constraint x = 0. There are several
ways to do this. One way would be to let the mass M get large. This would correspond
to the vakonomic limit. Another way to impose the constraint x = 0 would be to let the
damping coefficient c tend to infinity. This would correspond to the nonholonomic limit.
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M

x

ζ

m

Figure 3. An example of realising constraints

Ω

(x, y)

Figure 4. The rolling ball

In each case care must be taken in the limit, and the convergence to the vakonomic
and nonholonomic solutions in each case is not uniform in time. Note that in this case,
since the constraint is holonomic, the limiting processes should produce the same motions
by Proposition 2.8.

3. The ball on a rotating table

In this section we present the mechanical system which we study analytically, numeri-
cally, and experimentally. The system is a ball rolling on a uniformly rotating table with
no sliding (see Figure 4). Here (x, y) denotes the position of the point of contact of the ball
with respect to the centre of rotation of the table. The z-axis will be perpendicular to the
plane of the table. The ball is assumed to be spherical and to have uniform mass density.
The parameters in the problem are:

m : mass of the ball
r : radius of the ball
I : moment of inertia of the ball
Ω : rotational velocity of the table
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The configuration space for the system is Q = R2 × SO(3). We shall use (x, y,R) to
represent a typical point in Q. The constraints for the system are given by

ẋ− reT1 ṘRTe3 = −Ωy

ẏ + reT3 ṘRTe2 = Ωx

where {e1, e2, e3} is the standard basis for R3. Since the matrix ṘRT is skew symmetric
(it represents the angular velocity of the ball in spatial coordinates), we may write

ṘRT =

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


and ξ1, ξ2, ξ3 are the rotational velocities about the x, y, z axes, respectively. With this
notation, the constraints assume a more recognisable form:

ẋ− rξ2 = −Ωy

ẏ + rξ1 = Ωx.

The Lagrangian for the rolling ball is

L = −1

4
I tr(ṘRT ṘRT ) +

1

2
m(ẋ2 + ẏ2).

3.1. The nonholonomic ball. First we concentrate on the nonholonomic model for the
rolling ball. This model turns out to be equivalent to using Newton’s equations, so we will
simply balance forces and torques to obtain the equations of motion. As above, ξ1, ξ2, ξ3

are the components of the spatial angular velocity of the ball. The forces acting on the ball
satisfy

mẍ = Rx + Fx (3.1a)

mÿ = Ry + Fy (3.1b)

Iξ̇1 = rRy + T1 (3.1c)

Iξ̇2 = −rRx + T2 (3.1d)

Iξ̇3 = T3. (3.1e)

Here Rx, Ry are the constraint forces which are to be determined from the constraint equa-
tions, and Fx, Fy, T1, T2, T3 are external forces in the appropriate directions. We shall
include external forces which arise from dissipative effects in Section 3.2.

Setting the external forces to zero for the moment, it is possible to explicitly derive
equations of motion for the variables x, y which are independent of the rotational velocities
ξ1, ξ2, ξ3. To do this we determine from the constraints that

ξ1 =
Ω

r
x− 1

r
ẏ (3.2a)

ξ2 =
Ω

r
y +

1

r
ẋ (3.2b)
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Figure 5. An orbit for the nonholonomic equations of motion with
no external forces

and, differentiating this, that

ξ̇1 =
Ω

r
ẋ− 1

r
ÿ (3.3a)

ξ̇2 =
Ω

r
ẏ +

1

r
ẍ. (3.3b)

With external forces Fx, Fy, T1, T2, T3 set to zero, we may solve for Rx, Ry in terms of
ξ̇1, ξ̇2 from equations (3.1c) and (3.1d). These may be put in terms of x, y, ẋ, ẏ, ẍ, ÿ
from (3.2a), (3.2b), (3.3a), and (3.3b). These expressions for Rx, Ry in terms of x, y, ẋ, ẏ, ẍ, ÿ
are then substituted into (3.1a) and (3.1b) to get the following equations for x, y:[

I +mr2 0
0 I +mr2

](
ẍ
ÿ

)
+

[
0 IΩ

−IΩ 0

](
ẋ
ẏ

)
=

(
0
0

)
. (3.4)

Once a solution to these equations has been found, it is possible to construct the solutions
for ξ1, ξ2 directly from the constraint equations.

Note that these equations are, in fact, linear first order equations in ẋ, ẏ. We may
readily determine the solution as

(
x(t)
y(t)

)
=

I +mr2

IΩ

 sin
(

IΩ
I+mr2

t
)

cos
(

IΩ
I+mr2

t
)

− cos
(

IΩ
I+mr2

t
)

sin
(

IΩ
I+mr2

t
)(ẋ(0)

ẏ(0)

)
+

(
x(0)− I+mr2

IΩ ẏ(0)

y(0) + I+mr2

IΩ ẋ(0)

)
.

Thus, in the presence of no external forces, the nonholonomic model predicts that the point
of contact of the ball will sweep out a circle on the table. See Figure 5.
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3.2. Friction effects in the nonholonomic model. Here we consider the effects of adding
dissipation to the equations of motion derived via the nonholonomic method. The types of
dissipation we consider are:

1. Translational viscous friction: We are uncertain how to motivate adding this type of
friction to the model, but we add it since it is easy to do, and does not make the
analysis any more difficult. To add translational viscous friction we add terms of the
form

Fx = −νẋ

Fy = −νẏ

to the equations of motion. Here ν is a strictly positive real number.

2. Rolling friction: This type of friction arises from the resistance that the ball encoun-
ters as it rolls over the surface of the table. One may think of the situation as depicted
in Figure 6. As the ball rolls over the surface, there is an elastic deformation of the
surface which creates resistance to the ball’s motion. The force resulting from rolling
friction turns out to be proportional to the weight of the ball, and is in the direction
opposite the direction the ball is moving relative to the table. Thus the rolling friction
force has the form

Fx = −δmg
vx
∥v∥

Fy = −δmg
vy
∥v∥

where g is the acceleration due to gravity and v = (vx, vy) is the relative velocity of
the ball with respect to the table. Thus

vx = ẋ+Ωy

vy = ẏ − Ωx.

See [Bidwell 1962, Flom 1962] and [Koizumi, Shibazaki, Nishio, and Nishiwaki 1983]
for a discussion of how this form of the rolling friction force arises. The coefficient
δ may be determined experimentally for the materials involved. An experimental
study of rolling contact may be found in [Flom 1962]. Unfortunately none of the
experimental results presented in this work apply directly to the parameters in our
experiment so it is difficult to extrapolate an appropriate value for δ without further
study of rolling friction itself.

3. Rotational viscous friction: In this type of friction, air resistance is modelled. The
effects are assumed to be viscous so the forces added to the equations of motion are
of the form

T1 = −µξ1 (3.5a)

T2 = −µξ2. (3.5b)
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Fc

Figure 6. Rolling friction

With these types of friction it is still possible to reduce the equations of motion to
equations involving only the x, y variables. Proceeding much as we did when there were no
external forces we may arrive at the equations[

I +mr2 0
0 I +mr2

](
ẍ
ÿ

)
+

[
µ+ νr2 IΩ
−IΩ µ+ νr2

](
ẋ
ẏ

)
+[

0 µΩ
−µΩ 0

](
x
y

)
− δmg

∥v∥

(
vx
vy

)
=

(
0
0

)
(3.6)

which describe the motion of the point of contact of the ball on the table.

3.3. Analysis and simulation of the nonholonomic ball. Here we perform some analysis
for (3.6) when such analysis is possible. When it is not, we perform simulations to give
some idea of the behaviour.

Note on presentation of simulations: In our discussion of the various models for the ball
rolling on a rotating table, we present some simulations. These simulations were done for a
2.54 cm diameter steel (density = 7.8 gm/cm3) ball rolling on a table rotating at 45 rpm.
These parameters were selected to match one of the experiments discussed below. So that
one may visualise the experimental setup, the simulations are presented on a background
which represents the experiment setup. In Figure 7 is a schematic of a plan view of the
experiment. The surface on which the ball rolled was 30 cm in diameter. The arrow indicates
the direction of motion in the simulations. The initial conditions for (x, y) for all simulations
was (x = 10 cm, y = 0 cm, ẋ = 0 cm/sec, ẏ = 5 cm/sec). Initial conditions for ξ1, ξ2 are
then determined by the constraints. For the nonholonomic method, the initial value of ξ3
is inconsequential since its dynamics are decoupled from the rest of the dynamics. This,
along with the initial conditions for the Lagrange multipliers, is given more consideration
below. •
When δ = 0 in (3.6), the equation is linear, and so it is possible to do some analysis on the
equations directly.
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30 cm

Figure 7. Schematic of the experimental setup which is a back-
ground for the simulation results.

1. δ = µ = ν = 0: This is the situation dealt with in Section 3.1. Here we note that the
eigenvalues of the linear system are

λ ∈
{
0, 0, i

IΩ

I +mr2
,−i

IΩ

I +mr2

}
.

Again, refer to Figure 5 for a typical orbit.

2. δ = µ = 0: In this case we have only translational viscous friction. It is still compar-
atively easy to determine the closed form of the solution as

(
x(t)
y(t)

)
=

I +mr2

IΩ
e−νr2t

 sin
(

IΩ
I+mr2

t
)

cos
(

IΩ
I+mr2

t
)

− cos
(

IΩ
I+mr2

t
)

sin
(

IΩ
I+mr2

t
)(ẋ(0)

ẏ(0)

)
+

(
x(0)− I+mr2

IΩ ẏ(0)

y(0) + I+mr2

IΩ ẋ(0)

)
.

Note that the eigenvalues for the system are

λ ∈
{
0, 0,− νr2

I +mr2
+ i

IΩ

I +mr2
,− νr2

I +mr2
− i

IΩ

I +mr2

}
.

Since ν > 0, the orbits will be stable spirals. Since the two zero eigenvalues from the
undamped case persist, the spirals will be asymptotic to a point on the table which
depends on the initial conditions. See Figure 8 for a typical orbit in this case.

3. δ = 0: In this case we eliminate only rolling friction so the equations are still linear.
However, an explicit determination of the eigenvalues proves to be complicated. It
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Figure 8. An orbit when δ = µ = 0 and ν = 5.0.

Figure 9. An orbit when δ = ν = 0 and µ = 6.0.

is possible to obtain some stability boundaries using the Routh-Hurwitz method, but
the resulting expressions are too bulky to allow any analysis. Therefore, a numerical
investigation of the eigenvalues was performed, and the eigenvalues were typically
found to be of the form

λ ∈ {α1 ± iβ1, α2 ± iβ2}

where α1 < 0 and the sign of α2 was undetermined. When ν = 0, (i.e., when only
rotational viscous friction was present), α2 was always observed to be positive. These
numerical studies should not be regarded as conclusive, however. See Figure 9 for a
typical orbit when only rotational friction is present.

4. δ ̸= 0: In this case the equations are nonlinear so numerical simulation was performed
to obtain some trajectories. A typical trajectory is shown in Figure 10.
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Figure 10. An orbit when µ = ν = 0 and δ = 0.005.

3.4. The vakonomic ball. Now we analyse the rolling ball on a spinning table using the
vakonomic approach. The derivation of the equations of motion does not proceed as easily
in this case since we must begin from the Lagrangian formulation on T (R2 × SO(3)).
This analysis is performed by Bloch and Crouch [1995] in the case when Ω = 0 (i.e., the
stationary table). We follow their lead in our computations. In particular, we work on
the configuration manifold R2 ×R3 ×R3×3 using (x, y) as coordinates for the R2 portion,
(ξ1, ξ2, ξ3) as coordinates for the R3 portion, and {Rij | i, j = 1, 2, 3} as coordinates for
the R3×3 portion. Here ξ represents the angular velocity in inertial coordinates. To make
the dynamics evolve on R2 × SO(3) we introduce a constraint given by

Ṙ = ξ̂R (3.7)

where ξ̂ is the skew-symmetric matrix

ξ̂ =

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 .

We also still have the constraint that the ball roll without slipping.
In Appendix D we show that the equations of motion for the vakonomic ball are La-

grange’s equation for the Lagrangian

L =
1

2
I((ξ1)2 + (ξ2)2 + (ξ3)2) +

1

2
m(ẋ2 + ẏ2)−

λ1(ẋ− rξ2 +Ωy)− λ2(ẏ + rξ1 − Ωx)− tr(Λ(Ṙ− ξ̂R)). (3.8)

on R2 × R3 × R3×3 × R2 × R3×3 where (x, y) ∈ R2, ξ ∈ R3, R ∈ R3×3, (λ1, λ2) ∈ R2,
and Λ ∈ R3×3. Here Λ is a 3× 3 matrix of Lagrange multipliers. We compute Lagrange’s
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equations to be equivalent to

mẍ− λ̇1 − Ωλ2 = 0 (3.9a)

mÿ − λ̇2 +Ωλ1 = 0 (3.9b)

Λ̇T − ξ̂ΛT = 0 (3.9c)

vT (Iξ + λ1re2 − λ2re1) + tr(Λv̂R) = 0, ∀ v ∈ R3, (3.9d)

plus the constraint equations

ẋ− rξ2 +Ωy = 0 (3.10a)

ẏ + rξ1 − Ωx = 0 (3.10b)

Ṙ− ξ̂R = 0 (3.10c)

Here {e1, e2, e3} are the standard basis vectors for R3. Now we differentiate (3.9d) with
v ∈ R3 arbitrary to get

vT (I ξ̇ + λ̇1re2 − λ̇2re1) + tr(Λ̇v̂R− Λv̂Ṙ) = 0

=⇒ vT I ξ̇ − tr(Λ(ξ̂v̂ − v̂ξ̂)R) + vT (λ̇1re2 − λ̇2re1) = 0 by (3.9c)

and (3.7)

=⇒ vT I ξ̇ − tr(Λ(̂ξ̂v)R) + vT (λ̇1re2 − λ̇2re1) = 0

=⇒ vT I ξ̇ − vT ξ̂(Iξ + λ1re2 − λ2re1) + vT (λ̇1re2 − λ̇2re1) = 0 by (3.9d)

=⇒ vT (I ξ̇ + ξ̂(λ2re1 − λ1re2) + λ̇1re2 − λ̇2re1) = 0.

Thus
I ξ̇ + ξ̂(λ2re1 − λ1re2) + λ̇1re2 − λ̇2re1 = 0. (3.11)

The final thing to be done to get equations that are in a form for simulation is solving for
λ̇1, λ̇2. From (3.11) we get (

λ̇1

λ̇2

)
=

(
− I

r ξ̇
2 − λ2ξ

3

I
r ξ̇

1 + λ1ξ
3

)
.

From the constraints and (3.9a), and (3.9b) we have

rξ̇1 = Ωẋ− ÿ =
1

m
(λ1Ω− λ̇2) + Ωẋ

rξ̇2 = Ωẏ + ẍ =
1

m
(λ2Ω+ λ̇1) + Ωẏ.

This then gives [
1 + I

mr2
0

0 1 + I
mr2

](
λ̇1

λ̇2

)
=

(
− IΩ

mr2
λ2 − IΩ

r2
ẏ − λ2ξ

3

IΩ
mr2

λ1 +
IΩ
r2
ẋ+ λ1ξ

3

)
.
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Therefore, the equations which we simulate are

mẍ− λ̇1 − Ωλ2 = 0 (3.12)

mÿ − λ̇2 +Ωλ1 = 0 (3.13)

I ξ̇ + ξ̂(λ2re1 − λ1re2) + λ̇1re2 − λ̇2re1 = 0 (3.14)[
1 + I

mr2
0

0 1 + I
mr2

](
λ̇1

λ̇2

)
=

(
− IΩ

mr2
λ2 − IΩ

r2
ẏ − λ2ξ

3

IΩ
mr2

λ1 +
IΩ
r2
ẋ+ λ1ξ

3

)
. (3.15)

These may be further simplified using the relation I = 2
5mr2 for a solid spherical ball.

3.5. Analysis and simulation of the vakonomic ball. Not much can be easily done in
the way of concrete analysis of the vakonomic equations for the ball on the rotating table.
However, there is one important observation that we can make which illustrates that, for
this system, the nonholonomic and vakonomic methods are fundamentally different. We
state this as a lemma.

3.1 Lemma: Let q0 = (x0, y0, ξ
1
0 , ξ

2
0 , ξ

3
0) ∈ R2 ×R3 and let

cq0 : t 7→ (x(t), y(t), ξ1(t), ξ2(t), ξ3(t))

be an integral curve for the nonholonomic equations of motion through q0 at t = 0. Then
we may choose q0 so that cq0 is not a solution of the vakonomic equations of motion for
any choice of initial conditions for the Lagrange multipliers.

Proof: Substituting (3.15) into (3.12) and (3.13) we get

mẍ+
mIΩ

I +mr2
ẏ +Ω

(
I

I +mr2
− 1

)
λ2 +

mr2

I +mr2
λ2ξ

3 = 0

mÿ − mIΩ

I +mr2
ẋ+Ω

(
1− I

I +mr2

)
λ1 −

mr2

I +mr2
λ1ξ

3 = 0.

The nonholonomic equations for x, y may be written as

mẍ+
mIΩ

I +mr2
ẏ = 0

mÿ − mIΩ

I +mr2
ẋ = 0.

We may easily see that these equations will give the same motions in x and y only if

λ2(ξ
3 − Ω) = 0

λ1(ξ
3 − Ω) = 0.

Let us choose q0 so that ξ30 ̸= Ω. This means that we must have ξ3(t) ̸= Ω for all t since
ξ̇3 = 0 in the nonholonomic equations. Therefore we must have λ1(t) = λ2(t) = 0 for all t.
From equations (3.15) this means that we must have ẋ(t) = ẏ(t) = 0 for all t if a vakonomic
solution is to agree with the nonholonomic solution. To prove the lemma we then choose
initial conditions so that ẋ(0)2 + ẏ(0)2 ̸= 0. ■
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Figure 11. Vakonomic trajectories
with λ2(0) = ω3(0) = 0 and λ1(0)
varying.

Figure 12. Vakonomic trajectories
with λ1(0) = ω3(0) = 0 and λ2(0)
varying.

Note that the lemma is true for an open set of initial conditions q0.
Simulations of the vakonomic equations were performed. Since a choice of initial con-

ditions for the Lagrange multipliers was required, we chose to display the effects of these
initial conditions on the trajectories keeping the other initial conditions fixed. In fact, the
initial conditions for x, y, ξ1, ξ2 are the same as for the nonholonomic simulations. The
effects of the choice of initial conditions for ω3 were also explored.

In Figure 11 we fix λ2(0) = 0 and ω3(0) = 0. The initial condition for λ1 was varied
from 0 to 100 in increments of 10. The arrow on the plot show the direction of increasing
λ1(0). The same thing was done for λ2(0) with λ1(0) and ω3(0) fixed at 0. The results are
shown in Figure 12. In Figure 13 we show λ1(0) and λ2(0) fixed at 0 and ω3(0) varying.
The value of ω3(0) was varied from 0 to 10 in increments of 1. In Figure 12 and Figure 13
the arrows indicate the direction of increasing λ2(0) and ω3(0), respectively.

3.6. The experimental setup. In an effort to get some conclusive answers regarding the
validity of either of our two models of the rolling ball on a spinning table, a simple experi-
mental apparatus was put together. The spinning table was provided by a turntable with
available rotational velocities of 331

3 rpm and 45 rpm. A plexiglass plate was fabricated as
the surface on which the ball rolls.

The following objects were used as balls:

1. Steel balls of diameters 0.635 cm, 1.905 cm, and 2.54 cm,

2. a 2.54 cm diameter aluminium ball,

3. nylon balls of diameters 1.905 cm, and 2.54 cm,

4. a ping pong ball, and

5. a “super” ball.
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Figure 13. Vakonomic trajectories with λ1(0) = λ2(0) = 0 and
ω3(0) varying.

3.7. Comparison of experimental data and simulations. The most consistent results were
obtained with the most massive balls. We shall present here data obtained from experiments
using the 2.54 cm diameter steel ball. This was the data used in both the nonholonomic
and vakonomic simulations. Since we were not able to produce any vakonomic simulations
which resembled the experimental observations, we will limit ourselves to comparisons of
the experiment with the nonholonomic simulations.

The comparisons we make are:

1. Period: Here we extend a ray from the centre of rotation of the table through the
initial condition and measure the time it takes for the trajectory to cross this line
again. When this period varies (for example, when the amplitude grows with the
addition of dissipation in the simulations), the average period from the initial time
until the ball leaves the table is measured. If the ball did not leave the table, the
average period of the first five crossings was measured.

2. Amplitude: We use the same ray as described above and now we measure the distance
between crossings of that ray. We shall enumerate the first five crossings of the ray
and give the corresponding distances as d i, i = 1, 2, 3, 4, 5.

In Table 1 we display the data.
We also make some general observations about how the experiment compares with

simulations.

1. The experimental apparatus was noticed to be quite sensitive to deviations of the
rolling surface from level. If the surface was not made level before an experiment was
started, the ball typically left in short order (two or three revolutions).

2. If good level was obtained, however, the experimental results were quite good (in
that they agreed with simulations) and repeatable. On some occasions, when the
level was particularly good, the ball would exhibit equilibrium behaviour if given zero
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Period(sec) d1(cm) d2(cm) d3(cm) d4(cm) d5(cm)

Experiment 4.38 -1.84 -0.64 0.0 0.64 1.84

δ = µ = ν = 0 4.67 0.0 0.0 0.0 0.0 0.0

δ = µ = 0,
ν = 5.0 4.65 -0.8 -0.63 -0.49 -0.39 -0.3

δ = ν = 0,
µ = 6.0 4.67 -0.47 -0.29 -0.11 0.05 0.21

µ = ν = 0,
δ = 0.005 4.67 1.48 1.61 1.67 1.72 1.75

ν = 0,
δ = 0.005,
µ = 6.0 4.66 0.79 0.73 0.67 0.61 0.57

Table 1. Display of experimental and numerical data.

initial velocity. This would indicate that rolling friction and rotational viscous friction
are negligible in these instances since these dissipational effects will not preserve this
equilibrium in general.

3. Also, when good level was attained, the general behaviour was in good agreement
with the nonholonomic simulations with rotational friction.

There are several sources of error that may contribute to deviations between experimen-
tal observations and simulated data. We feel that the most significant of these is deviation
of the rotating surface from level. This error has the effect of supplying an unmodelled
potential field to the experimental dynamics. Another source of a similar type of error is
unevenness in the surface of the rotating plate. Errors are also incurred in imparting initial
velocity to the ball. This was not done precisely in the experiment. This difference in
initial condition should not affect the comparison of periods between the experiment and
the simulations, but will affect other quantitative comparisons.

These sources of error notwithstanding, we may make the following conclusion.

Conclusion: The nonholonomic equations of motion provide a good model for the ball
rolling on a rotating table. The agreement between the model and observations may be
further improved with addition of appropriate dissipative effects to the model. •

4. Future work

In this paper we have discussed some of the differences in the nonholonomic and vako-
nomic methods for deriving equations of motion for mechanical systems with constraints.
By performing a simple experiment and comparing observed data with the two sets of equa-
tions of motion, we have provided evidence that may lead one to conclude that, at least for
the system studied, the nonholonomic equations of motion do a reasonable job of predicting
physical reality. This is especially true if we include some well-motivated friction effects
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in the nonholonomic model. However, there are still some things that should be resolved
before the book can be closed on this issue.

Certainly a more careful end exhaustive experimental effort on systems other than the
ball on the rotating table would be valuable in providing data which would allow for a
fair comparison of the nonholonomic and vakonomic methods. Such experimentation may
include a more careful determination of the friction forces which are inevitably present and
which affect, in no small way, the behaviour of nonholonomic systems.

One of the major drawbacks of the vakonomic method was determined to be its requiring
initial conditions for the Lagrange multipliers. It was pointed out that for the penny rolling
upright on a stationary table, the nonholonomic equations of motion may be regarded as
a subset of the vakonomic solutions. It would be interesting, and perhaps useful, to know
exactly when this can be done. It certainly cannot be done for all systems, given Lemma 3.1.
A discussion along these lines takes place in [Cardin and Favretti 1996].

Finally we mention that the nonholonomic method is implicit in many aspects nonholo-
nomic control theory. In particular, in [M’Closkey and Murray 1994] a mobile robot towing
a cart is modelled as a nonholonomic system, and there is good agreement between the
theory and the experiments.
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Appendices

A. Variations and Hamilton’s method

In this appendix we introduce the basic tools for studying variational principles. The
main purpose of the discussion is to get the reader acquainted with the techniques we shall
be using to pose and solve the variational problems considered. In particular, we introduce
the notion of a variation of a curve c and an infinitesimal variation . The classical
functional, J , is defined here as well.

A.1. Unconstrained variations. We will typically be considering curves, c : [a, b] → Q,
which connect two points, q1 and q2, in the configuration manifold Q. These curves may
be subject to some constraints, but let us initially deal with the unconstrained case for
the sake of concreteness. The set of all such curves which are C2 will be denoted by
C2(q1, q2, [a, b]). It may be demonstrated that this set is a smooth infinite-dimensional
manifold (see [Klingenberg 1995]). The tangent space at a point c ∈ C2(q1, q2, [a, b]) may
be shown to be given by

TcC
2(q1, q2, [a, b]) = {u : [a, b] → TQ | u is C2,

τQ ◦ u = c, u(a) = 0 and u(b) = 0}.

We may think of a tangent vector, u, at c as being a vector field along c which vanishes at
the endpoints (see Figure 14). Since u is a tangent vector we may write it as the tangent
vector to a curve which passes through c. A curve in C2(q1, q2, [a, b]) will be written as

R ∋ s 7→ cs ∈ C2(q1, q2, [a, b]).

https://doi.org/10.1016/0021-8928(92)90016-2
https://doi.org/10.1016/0043-1648(83)90299-5
https://doi.org/10.1016/0021-8928(92)90017-3
https://doi.org/10.1016/0021-8928(92)90017-3
https://doi.org/10.1109/ACC.1994.751893


24 A. D. Lewis and R. M. Murray

q1

q2

c(t)

u(t)

Figure 14. An infinitesimal variation.

For any u ∈ TcC
2(q1, q2, [a, b]) we may write

u =
dcs
ds

∣∣∣∣
s=0

.

We shall refer to the curve cs in C2(q1, q2, [a, b]) as a variation of c = c0 and we shall refer
to u as an infinitesimal variation of c.

A.2. Constrained variations. Now we place an affine constraint, (D, γ), on Q. For q1, q2 ∈
Q we define

C2(q1, q2, [a, b], D, γ) = {c : [a, b] → Q | c is a C2 curve,

c(a) = q1, c(b) = q2, and ċ(t)− γ(c(t)) ∈ D(c(t)) for t ∈ [a, b]}.

It is possible that this subset of C2(q1, q2, [a, b]) is empty, but let us suppose that it is not.
We will now define, in the presence of affine constraints, a special class of infinitesimal

variations. In the classical literature these are commonly referred to as virtual displace-
ments. Let c ∈ C2(q1, q2, [a, b], D, γ). Define

Xc(q1, q2, [a, b], D) = {u ∈ TcC
2(q1, q2, [a, b]) |

ċ(t) + u(t)− γ(c(t)) ∈ D(c(t))}.

In words, Xc(q1, q2, [a, b], D) is the set of infinitesimal variations which, when added to ċ, still
satisfy the affine constraints. Clearly, since c ∈ C2(q1, q2, [a, b], D, γ), u ∈ Xc(q1, q2, [a, b], D)
if and only if u(t) ∈ D(c(t)), i.e., if u satisfies the non-affine constraints. This is why no
reference to γ appears in the name of Xc(q1, q2, [a, b], D).
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A.3. The functional J . Since we are on a manifold, we may speak of smooth functions
which may be differentiated. We therefore know what it means for a function to have a
critical point. We will only define the functional for unconstrained systems. It is given by

J : C2(q1, q2, [a, b]) → R

c 7→
∫ b

a
L(ċ(t), t) dt

(A.1)

where L is a Lagrangian on Q. Note that dJ(c) = 0 if and only if dJ(c) · u = 0 for every
u ∈ TcC

2(q1, q2, [a, b]). It is convenient to write

dJ(c) · u =
d

ds

∣∣∣∣
s=0

J(cs).

With J as given by (A.1) we have

dJ(c) · u =
d

ds

∫ b

a
L(ċs(t), t) dt

∣∣∣∣
s=0

=

∫ b

a

d

ds
L(ċs(t), t)

∣∣∣∣
s=0

dt.

We wish to evaluate this expression in local coordinates for Q. By the chain rule we have

dJ(c) · u =

∫ b

a

(
∂L

∂qi
∂qi

∂s
+

∂L

∂q̇i
∂q̇i

∂s

) ∣∣∣∣
s=0

dt.

A.4. Hamilton’s Principle. As an example of how to apply the above concepts we present
Hamilton’s Principle . This establishes a correspondence between solutions of Lagrange’s
equations and the solution of a variational problem. We present this as a proposition whose
proof goes much like the one by Abraham and Marsden [1978]. Recall that the Legendre
transformation for a Lagrangian, L, is the map defined in coordinates by

FL : TQ → T ∗Q(
q1, . . . , qn, v1, . . . , vn

)
7→
(
q1, . . . , qn, p1 =

∂L

∂v1
, . . . , pn =

∂L

∂vn

)
.

We say that L is a regular Lagrangian if FL is a local diffeomorphism.

A.1 Proposition: (Hamilton’s Principle) Let L be a regular Lagrangian on Q. A curve,
c : [a, b] → Q, joining q1 with q2 in Q is a solution to Lagrange’s equations,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n,

if and only if dJ(c) = 0.

Proof: We need to show that c is a solution to Lagrange’s equations if and only if dJ(c) ·
u = 0 for every u ∈ TcC

2(q1, q2, [a, b]). Let cs be a one-parameter family of curves in
C2(q1, q2, [a, b]) with c0 = c. For any u ∈ TcC

2(q1, q2, [a, b]) we may then write

u =
dcs
ds

∣∣∣∣
s=0
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for some such one-parameter family. Then we have

dJ(c) · u =
d

ds
J(cs)

∣∣∣∣
s=0

=
d

ds

∫ b

a
L(cs(t), ) dt

∣∣∣∣
s=0

.

The differentiation may be moved under the integral sign and in coordinates we have

dJ(c) · u =

∫ b

a

d

ds
L(q(t, s), q̇(t, s), t)

∣∣∣∣
s=0

dt

=

∫ b

a

(
∂L

∂qi
∂qi

∂s
+

∂L

∂q̇i
∂q̇i

∂s

) ∣∣∣∣
s=0

dt.

For the variation given we have

∂qi(t, s)

∂s

∣∣∣∣
s=0

= ui(t), and
∂q̇i(t, s)

∂s

∣∣∣∣
s=0

=
d

dt

∂qi(t, s)

∂s

∣∣∣∣
s=0

= u̇i(t).

We thus have, using integration by parts,

dJ(c) · u =

∫ b

a

(
∂L

∂qi
ui +

∂L

∂q̇i
u̇i
)

dt

=

∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
ui dt+

∂L

∂q̇i
ui
∣∣∣∣b
a

=

∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
ui dt.

Clearly then dJ(c) ·u = 0 for every u if and only if Lagrange’s equations are satisfied. This
completes the proof. ■

Note that the condition that L be regular is present to ensure that Lagrange’s equations
have a solution.

B. The Principle of Virtual Work

This principle is classically presented as an axiom of mechanics which is not derivable
from the other basic axioms. It is typically stated in terms as follows:

The Principle of Virtual Work: The work done by the forces of constraint is zero on mo-
tions allowed by the constraints.

When we say that a force does no work on motions allowed by the constraints we mean
that, regarded as a differential one-form, the force annihilates tangent vectors in D. Thus
the constraint force annihilates all vectors annihilated by the forms ω1, . . . , ωn−k. We shall
say that the Principle of Virtual Work is satisfied by a curve, c, if there exists external
forces F c

i which do no work on the constraints and are such that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= F c

i (t)
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along c. In other words, regarded as a differential form, F c
i (t)dq

i must lie in the span of
ω1(c(t)), . . . , ωn−k(c(t)). Thus, for each t ∈ R which is in the domain of definition of c,
there must exist constants λ1(t), . . . , λn−k(t) such that

F c
i (t)dq

i = λa(t)ω
a(c(t)) = λa(t)ω

a
i (c(t))dq

i

which means that F c
i (t) = λa(t)ω

a
i (c(t)) for some constants λ1(t), . . . , λn−k(t). Thus La-

grange’s equations may be written as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaω

a
i , i = 1, . . . , n

and we are to solve for the Lagrange multipliers λ1, . . . , λn−k as part of the solution. To
get the right number of equations for the number of unknowns we append the constraint
equations

ωa
i q̇

i = ωa
i γ

i, a = 1, . . . , n− k.

We have the following easy result which relates the Principle of Virtual Work to the
nonholonomic constrained variational problem discussed above.

B.1 Proposition: A curve, c ∈ C2(q1, q2, [a, b], D, γ), is a solution of the nonholonomic
constrained variational problem if and only if the Principal of Virtual Work is satisfied by
the curve c.

Proof: We must show that [
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
ui(t) = 0

for every u ∈ XcC
2(q1, q2, [a, b], D) if and only if

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= F c

i (t)

along c, where the forces F c
i do no work on motion allowed by the constraints. By definition,

the forces F c
i do no work on motions allowed by the constraints if and only if

F c
i (t)u

i(t) = 0

for every u ∈ XcC
2(q1, q2, [a, b], D) and t ∈ [a, b]. Thus the proposition is proved. ■

This gives a way of determining equations of motions for solutions to the nonholonomic
constrained variational problem. Existence and uniqueness of solutions of these equations
of motion is not something we shall take up here.

C. Derivation of the vakonomic equations of motion

Since the vakonomic method is simply a constrained minimisation problem, we need
some results from that field. The main one we shall use is the Lagrange Multiplier Theorem,
the version which we use being taken from [Abraham, Marsden, and Ratiu 1988].
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C.1 Lemma: (The Lagrange Multiplier Theorem) Let M be a smooth manifold and
let E be a Banach space with g : M → E a smooth submersion so that N = g−1(0) is a
submanifold of M . Let f : M → R be a smooth function. Then n ∈ N is a critical point
of f | N if and only if there exists λ ∈ E∗ such that n is a critical point of f − λ ◦ g.

To utilise this lemma we must further examine the structure of C2(q1, q2, [a, b], D, γ),
which was defined when we introduced the nonholonomic problem. If E is a real Banach
space we denote by F ([a, b], E) be the Banach space of C2, E-valued functions on the inter-
val [a, b]. Suppose that the distribution D is annihilated by n− k one-forms, ω1, . . . , ωn−k.
We define a function g : C2(q1, q2, [a, b]) → F ([a, b],Rn−k) by

g(c) =
{
t 7→

(
ω1(ċ(t))− ω1(γ(c(t))), . . . , ωn−k(ċ(t))− ωn−k(γ(c(t)))

)}
. (C.1)

We shall assume that g is a smooth submersion. Note that

C2(q1, q2, [a, b], D, γ) = g−1(0, . . . , 0)

is a smooth submanifold with this assumption.
We shall need to have some idea of what elements of F ([a, b],Rn−k)∗ look like. We

shall be purposefully formal here. Note that F ([a, b],Rn−k) is naturally isomorphic to the
(n − k)-fold direct product of F ([a, b],R) with itself. Therefore F ([a, b],Rn−k)∗ will be
naturally isomorphic to the (n − k)-fold direct product of F ([a, b],R)∗ with itself. Recall
that elements of F ([a, b],R)∗ are distributions on [a, b]. We shall not depart from the
tradition of denoting the pairing of elements of F ([a, b],R)∗ with elements of F ([a, b],R)
by

⟨α; f⟩ =
∫ b

a
α · f(t) dt.

We will at times regard elements of F ([a, b],R)∗ as elements of F ([a, b],R) via the integral.
The reader should be aware of what is taking place, and that it is not wholly precise. In
any case, we may write the action of an element of F ([a, b],Rn−k)∗ on an element of
F ([a, b],Rn−k) as

⟨(α1, . . . , αn−k); (f1, . . . , fn−k)⟩ =
∫ b

a
αc · fc(t) dt.

The following result gives the equations of motion for the vakonomic constrained vari-
ational problem.

C.2 Proposition: Let L be a Lagrangian on Q, let (D, γ) be an affine constraint on Q, and
let ω1, . . . , ωn−k be n−k linearly independent differential one-forms on Q which annihilate
Q. Then c ∈ C2(q1, q2, [a, b], D) is a solution of the vakonomic constrained variational
problem if and only if there exists (λ1, . . . , λn−k) ∈ F ([a, b],Rn−k)∗ such that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n

where L : TQ×R → R is defined along c by

L (ċ(t), t) = L(ċ(t), t)− λa(t)[ω
a(ċ(t))− ωa(γ(c(t)))].
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Proof: Let (g1(c), . . . , gn−k(c)) denote the components of g(c) under the identification of
F ([a, b],Rn−k) with F ([a, b],R)× · · · ×F ([a, b],R). By (C.1) we have

ga(c) = {t 7→ ωa(ċ(t))− ωa(γ(c(t)))}, a = 1, . . . , n− k.

From the Lagrange Multiplier Theorem we know that c is a solution to the vakonomic
constrained variational problem if and only if there exists (λ1, . . . , λn−k) ∈ F ([a, b],Rn−k)∗

such that c is a critical point of the function JD on C2(q1, q2, [a, b], D) defined by

JD(c) =

∫ b

a
L(ċ(t), t) dt− λa · ga(c).

Note that c is a critical point of JD if and only if

dJD(cs)

ds

∣∣∣∣
s=0

=
d

ds

∫ b

a
L(ċs(t), t) dt

∣∣∣∣
s=0

− d

ds
λa · ga(cs)

∣∣∣∣
s=0

= 0

for every variation cs of c. Now we use the integral notation for the pairing of the distribution
λa with the element ga(cs) of F ([a, b],R). This then gives

JD(cs)

ds

∣∣∣∣
s=0

=

∫ b

a

d

ds
(L(ċs(t))− λa · (ωa(ċs(t))− ωa(γ(c(t))))

∣∣∣∣
s=0

dt.

The result now follows by the arguments used in the proof of Hamilton’s Principle, Propo-
sition A.1. ■

D. Derivation of the vakonomic equations for the rolling ball on the spinning
table

Here we derive a simple set of equations whose solutions describe the motion of the
vakonomic ball on the spinning table. To be somewhat precise about it we need to introduce
some notation. Let Q = R2×SO(3) and let Q̃ = R2×R3×R3×3. Let q1 = (x1, y1, R1), q2 =
(x2, y2, R2) ∈ Q and define the set

X = {c : [a, b] → Q̃ | c is C2, c(a) = (x1, y1, ξ
1, R1), and

c(b) = (x2, y2, ξ
2, R2) where ξ1, ξ2 ∈ R3 are arbitrary}.

If we write c ∈ X as
t 7→ (x(t), y(t), ξ(t), R(t)),

we may define the following R3×3-valued function on X:

g : X → R3×3

c 7→ Ṙ(t)− ξ̂(t)R(t).

We claim that g−1(0) may be naturally identified with C2(q1, q2, [a, b]). Indeed, it is easy
to check that the identification is provided by

ρ : g−1(0) → C2(q1, q2, [a, b])

(x(t), y(t), ξ(t), R(t)) 7→ (x(t), y(t), R(t)).
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Now define Lagrangians on Q and Q̃ by

L(x, y,R, ẋ, ẏ, Ṙ) = −1

4
I tr(ṘRT ṘRT ) +

1

2
m(ẋ2 + ẏ2)

and

L̃(x, y, ξ, R, ẋ ẏ, ξ̇, Ṙ) =
1

2
I∥ξ∥+ 1

2
m(ẋ2 + ẏ2),

respectively. These determine functionals defined on C2(q1, q2, [a, b]) and X defined by

J =

∫ b

a
L(x(t), y(t), R(t), ẋ(t), ẏ(t), Ṙ(t)) dt

and

J̃ =

∫ b

a
L̃(x(t), y(t), ξ(t), R(t), ẋ(t), ẏ(t), ξ̇(t), Ṙ(t)) dt,

respectively. Note that J ◦ ρ(c) = J̃(c) for all c ∈ g−1(0). Thus, determining a minimum
of J is equivalent to determining the minimum of J̃ on the submanifold g−1(0). By the
Lagrange Multiplier Theorem, c is a critical point of J̃ | g−1(0) if and only if there exists
Λ ∈ F ([a, b],R3×3)∗ so that c is a critical point of

c 7→ J̃(c)− Λ · g(c).

If in the usual manner we write the action of F ([a, b],R3×3)∗ on F ([a, b],R3×3) via the
integral, we see that critical points of J are in correspondence with critical points of the
functional

c 7→
∫ b

a

(
L̃(c(t))− tr(Λ · (Ṙ(t)− ξ̂(t)R(t)))

)
dt. (D.1)

Hamilton’s Principle does not directly apply here since our variations do not have fixed
endpoints (ξ is arbitrary). Nevertheless critical points of (D.1) are solutions of Lagrange’s
equations on R2 ×R3 ×R3×3 ×R3×3 with Lagrangian given by

L̃(x, y, ξ, R, ẋ, ẏ, ξ̇, Ṙ)− tr(Λ(Ṙ− ξ̂R)) (D.2)

as the following lemma points out.

D.1 Lemma: Let Λ ∈ F ([a, b],R3×3)∗. A curve c ∈ X is a critical point of the func-
tional in (D.1) if and only if c is a solution to Lagrange’s equations with Lagrangian given
by (D.2).

Proof: Let us denote by q̃ the coordinates (x, y, ξ, R) for R2 × R3 × R3×3. Let cs be a
variation of a curve c ∈ X and let u be the corresponding infinitesimal variation. Then, as
in the proof of Proposition A.1, we have

dJ(c) · u =

∫ b

1

(
∂L̃

∂q̃i
− d

dt

∂L̃

∂ ˙̃qi

)
ui dt+

∂L̃

∂ ˙̃qi
ui
∣∣∣∣b
a

. (D.3)

Since c ∈ X, the infinitesimal variation must satisfy

ux(t) = uy(t) = uRij (t) = 0, i, j = 1, 2, 3, t = a, b.
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Also, since L̃ does not depend on ξ̇ we have

∂L̃

∂ξ̇i
= 0, i = 1, 2, 3

for all t. Therefore the boundary term in (D.3) must vanish and the lemma follows from
an arbitrary choice of u. ■

In the above discussion we have omitted any mention of the rolling constraints for the
ball. One may easily see that they may simply be added on at each step so that they appear
in the same manner in both the determination of J and J̃ . Thus, we have sketched a proof
of the following result.

D.2 Lemma: A curve t 7→ (x(t), y(t), R(t)) is a solution to the vakonomic equations for the
ball rolling on the spinning table if and only if there exists a function t 7→ (ξ(t),λ(t),Λ(t))
so that the curve t 7→ (x(t), y(t), ξ(t), R(t),λ(t),Λ(t)) is a solution of Lagrange’s equations
on R2 ×R3 ×R3×3 ×R2 ×R3×3 with Lagrangian

L =
1

2
I((ξ1)2 + (ξ2)2 + (ξ3)2) +

1

2
m(ẋ2 + ẏ2)−

λ1(ẋ− rξ2 +Ωy) + λ2(ẏ + rξ1 − Ωx)− tr(Λ(Ṙ− ξ̂R)).
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