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Abstract

In this paper we present a definition of “configuration controllability” for mechanical
systems whose Lagrangian is kinetic energy with respect to a Riemannian metric minus
potential energy. A computable test for this new version of controllability is derived.
This condition involves an object which we call the symmetric product. Of particular
interest is a definition of “equilibrium controllability” for which we are able to derive
computable sufficient conditions. Examples illustrate the theory.
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1. Introduction

Mechanical systems form a large subset of control systems which have many diverse
applications. These systems are characterised by a rich structure which has been under-
exploited in the current controls literature. In this paper we utilise the structure of a
specific class of mechanical systems to obtain controllability results which are meaningful
for these systems. These results are important in two respects. First, they identify the
structure of mechanical systems which lends to controllability of these systems. Second,
the results provide computable checks for useful notions of controllability. One important
aspect of our work is that the computations for checking controllability are performed on
the configuration space, and not on the phase space. This is important since the phase
space has twice the dimension of the configuration space for mechanical systems.

Much of the previous work in the area of mechanical control systems has relied on spe-
cific structure of these systems. In an early paper, Brockett [1977] outlined the use of special
structures in analytical mechanics as they relate to control theory. Bloch and Crouch [1992]
study mechanical systems on Riemannian manifolds. Under suitable hypotheses on the in-
puts, and assuming some group symmetries for the systems under investigation, the authors
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are able to use a result of San Martin and Crouch [1984] to arrive at a controllability result.
Mechanical systems with nonholonomic constraints are studied by Bloch, Reyhanoglu, and
McClamroch [1992]. In this paper the authors are able to show that the systems considered
are controllable if the inputs span a complement to the constraint forces. In both of the
above papers, the results are limited by the hypotheses placed on the system: symmetries
in the first case, and constraints in the second. In this paper we attempt to develop control
theoretic tools for mechanical control systems. We emphasise mechanical because it is our
intent to use the mechanical structure to advantage in the control problem rather than any
additional structure imposed on the system.

In Section 2 we motivate the development of the paper by posing various controllability
questions for a simple example. In this section we also preview the results of the paper
by stating a simplified form of the most general results. In Section 3 we present enough
background from the theory of free Lie algebras and Riemannian geometry that we can
use these ideas in Section 5. In Section 3.2 we introduce the notion of a symmetric algebra
which is new and will be particularly interesting to us. The symmetric product is defined
in Section 3.3. This is an interesting object whose geometric meaning is not fully utilised
in this paper. However, it proves to be a useful computational tool for expressing our
controllability results. In Section 4 we state a result of Sussmann [1987] which we shall use
to prove some controllability results in Section 5. The main results of the paper are stated
in Section 5. Illustrative examples are given in Section 6.

2. Preliminary statement of results

It is possible to state a subset of the results of the paper without going through all of
the formality needed to state the most general results. In this section we give some idea of
the questions that we answer in the paper as well as state the results in the case when no
potential energy is present.

Consider the planar rigid body system of Figure 1. On this body we consider two
possible sets of forces. In one case we are able to apply a force in any direction to the
body at a point away from the centre of mass (case (a) in the figure). In the other case, we
can only apply a force which is in a direction perpendicular to the line joining the point of
application of the force with the centre of mass (case (b) in the figure). The reader may
wish to consider the former case as corresponding to having a thruster on the body whose
direction may be varied, while in the second case the thruster can only provide thrust in
one direction. In each of these cases one may ask certain questions about the controllability
of this system. We list some of these questions below and in parentheses give the name of
the general notion corresponding to this question.

1. Starting from rest at a given configuration, is it possible to reach an open set of
configurations? (local configuration accessibility)

2. Starting from rest in a given configuration, is it possible to reach a neighbourhood of
the initial configuration? (local configuration controllability)

3. Is it possible to get to these configurations with zero velocity? (equilibrium control-
lability)
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Figure 1. A planar rigid body with a variable direction thruster
(a) and a fixed directional thruster (b)

It is exactly these questions which we address in this paper. Observe that the above
controllability questions have the feature that the initial velocity is assumed to be zero.
This turns out to greatly simplify the controllability computations. We observe that for
this example the linearisation is not controllable so, if the system is controllable, nonlinear
tools must be employed.

Although we delay answering the above questions for the planar rigid body until Sec-
tion 6.2, we may state general results for a class of systems smaller than the general class
we consider in the sequel. Let us consider, for the moment, mechanical systems whose
Lagrangian is kinetic energy with respect to a Riemannian metric g on the configuration
manifold Q. Suppose that the inputs are modelled by vector fields Y = {Y1, . . . , Ym}. We
may define the symmetric product between two vector fields on Q by

⟨X : Y ⟩ = ∇XY +∇YX

where ∇XY is the covariant derivative of Y with respect to X. If T (Q) denotes the
set of vector fields on Q, and if V ⊂ T (Q), we denote by Sym(V ) the set of vector fields
on Q obtained by taking iterated symmetric products of vector fields from V . The usual
involutive closure of V will be denoted Lie(V ). We shall say that a symmetric product from
Sym(Y ) is bad if it contains an even number of each of the vector fields in Y . Otherwise we
shall call a symmetric product from Sym(Y ) good . The degree of an iterated symmetric
product of factors from Y will denote the total number of factors.

Notice that with the Lagrangian given by just kinetic energy, all configurations with
zero velocity are equilibrium points for the unforced mechanical system. We shall say the
system is locally configuration accessible at q ∈ Q if the set of points reachable starting
from q at zero velocity is open in Q. We shall say the system is equilibrium controllable
if, starting from a given configuration at zero velocity, we can reach an open set of final
configurations at zero velocity. Now we may state two results.

Theorem: Consider the mechanical control system on the configuration manifold Q whose
Lagrangian is the kinetic energy with respect to a Riemannian metric g and whose input
vector fields are Y = {Y1, . . . , Ym}. Then
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(i) the system is locally configuration accessible at q if the distribution defined by
Lie(Sym(Y )) has maximal rank at q, and

(ii) the system is equilibrium controllable if it is locally configuration accessible and if
every bad symmetric product is a linear combination of good symmetric products of
lower degree.

To prove this result, one basically proceeds as follows. Compute the accessibility distri-
bution on TQ for the mechanical control system and evaluate at zero velocity. This will
describe the set of states accessible from points of zero velocity. However, since we are
interested in controllability of the configurations, we can project the accessibility distribu-
tion to Q with TπTQ, the derivative of the tangent bundle projection. It turns out that
this is exactly the distribution Lie(Sym(Y )). In this way we see that the conditions in (i)
give local configuration accessibility. To prove (ii), we appeal to the controllability results
of Sussmann [1987] on local controllability. An application of Sussmann’s results to the
systems we are considering yields (ii).

The sections which follow formalise the above definitions and results and also generalise
them to the case where the system has potential energy.

3. Mathematical preliminaries

In this section we present the necessary mathematical ideas we shall need for our expo-
sition of Section 5.

3.1. Free lie algebras and families of vector fields. In this section we recall some ideas for
Lie algebras as presented in [Serre 1992]. These ideas will be important in our adaptation
of the conditions for small-time local controllability of Sussmann [1987] as well as for some
bracket calculations in Section 5.1.

Let X be a set and let A(X) be the free algebra of associative but not necessarily
commutative products of elements in X. Let I be the two-sided ideal of A(X) generated
by elements of the form a ·a and a · (b · c)+ c · (a · b)+ b · (c ·a). The algebra L(X) = A(X)/I
is called the free Lie algebra generated by X. The inherited product on this algebra
satisfies the usual Lie bracket properties of a Lie algebra. We denote by Br(X) the subset
of L(X) consisting of brackets whose elements are in X. This subset generates L(X) as a
real vector space. In fact, the following proposition, whose proof may be found in [Jacobson
1962], gives a subset of Br(X) which generates L(X).

3.1 Proposition: Every element of L(X) is a linear combination of repeated brackets of the
form

[Xk, [Xk−1, [· · · , [X2, X1] · · · ]]] (3.1 )

where Xi ∈ X, i = 1, . . . , k.

We will need the notion of what we shall call the components of an element u ∈ L(X).
Every such element u has a unique decomposition as u = [u1, u2]. In turn, each of u1 and
u2 may be uniquely expressed as u1 = [u11, u12] and u2 = [u21, u22]. This process may be
continued until we end up with elements which are not decomposable. All such elements
ui1···im , ia ∈ {1, 2}, shall be called components of u.
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If X = {X0, . . . , Xl}, for B ∈ Br(X) we define δa(B), a = 0, . . . , l, to be the number of
times that Xa occurs in B. The sum of the δa’s we shall call the degree of B.

Given a family of vector fields on a manifold M , V ⊂ T (M), we may define a distri-
bution on M by

DV (x) = spanR {X(x) | X ∈ V } .

Since T (M) is a Lie algebra, we may ask for the smallest Lie subalgebra of T (M) which
contains a family of vector fields V . It is convenient to describe this subalgebra using the
ideas from free Lie algebras presented above.

Let X be a set which is bijective to V with bijection ϕ. Thus, to each element of X we
associate a vector field in V . We establish a Lie algebra homomorphism, Ev(ϕ) : L(X) →
T (M), in a natural manner. Thus we define Ev(ϕ) so that [Ev(ϕ)(B1),Ev(ϕ)(B2)] =
Ev(ϕ)([B1, B2]) for B1, B2 ∈ Br(X) and then extend this to L(X) by R-linearity. The
smallest Lie subalgebra of T (M) which contains V may now be stated in a simple manner.
It is simply the image of L(X) under the homomorphism Ev(ϕ). We shall denote this
subalgebra by Lie(V ) and call it the involutive closure of V .

For x ∈M we define the map Evx(ϕ) : L(X) → TxM by

Evx(ϕ)(u) = (Ev(ϕ)(u))(x).

We shall say that V satisfies the Lie algebra rank condition (LARC ) at x if
Evx(ϕ)(L(X)) = TxM .

It is possible to talk about the involutive closure and the LARC without using free Lie
algebras. However, since we will have to use free Lie algebras later in the paper, using them
here provides us an opportunity to introduce the ideas in a more straightforward setting.

3.2. Symmetric algebras. As far as we know, the idea of a symmetric algebra does not
appear in the literature. However, the concept is a natural one and shall be useful to us.
A symmetric algebra is an algebra, A, where the multiplication (which we shall denote
by (u, v) 7→ ⟨u : v⟩) satisfies ⟨u : v⟩ = ⟨v : u⟩ for u, v ∈ A. A map, σ : A → A′, between
symmetric algebras is called a symmetric algebra homomorphism if σ(⟨u : v⟩) = ⟨σ(u) :
σ(v)⟩ for each u, v ∈ A.

We now construct a symmetric algebra which is generated by a given setX. To construct
this algebra, let X be a set and recall that A(X) is the free algebra on X. The free
symmetric algebra on X, denoted S(X), is the quotient algebra obtained by taking the
quotient of A(X) by the two-sided ideal generated by all elements of the form a·b−b·a where
a, b ∈ A(X). We shall denote the product in S(X) by ⟨u : v⟩. Note that, by construction,
⟨u : v⟩ = ⟨v : u⟩ for every u, v ∈ S(X). We denote by Pr(X) the subset of S(X) consisting
of the symmetric products whose elements are in X.

As with free Lie algebras, the finitely generated case is the most interesting to us. Let
Y = {X1, . . . , Xl+1} (the reason for the slightly unusual enumeration will become clear in
Section 5.5). For P ∈ Pr(Y ) define γa(P ) to be the number of times the element Xa occurs
in P ∈ Pr(Y ) for a = 1, . . . , l + 1. We shall call the sum of the γa’s the degree of P .

3.3. Some Riemannian geometry. The kinetic energy of a mechanical system may be
regarded as being determined by a Riemannian metric on the configuration space. A
Riemannian metric, g, on a manifold,M , is simply a smooth assignment of an inner product
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for each tangent space of the manifold. In a set of coordinates (x1, . . . , xn) for M , the
components of the metric are given by gij = g( ∂

∂xi ,
∂

∂xj ). For each x ∈ M , we may define
isomorphisms ♯ : T ∗

xM → TxM and ♭ : TxM → T ∗
xM in the usual manner (see [Klingenberg

1995]). These maps naturally extend to isomorphisms from T (M), the set of vector fields
on M , to T ∗(M), the set of one-forms on M . In this case, given a function f ∈ C∞(M),
we define grad f = (df)♯.

A Riemannian manifold is endowed with a unique affine connection (called the Levi-
Civita connection) which is characterised by being torsion free and by its parallel trans-
portation being metric preserving (see [Klingenberg 1995]). This affine connection defines
∇XY , which is called the covariant derivative of Y with respect to X. In coordinates
we have

∇XY =

(
∂Y i

∂xj
Xj + Γi

jkX
jY k

)
∂

∂xi
.

The Γi
jk are the Christoffel symbols and are given by

Γi
jk =

1

2
gil

(
∂glj
∂xk

+
∂glk
∂xj

−
∂gjk
∂xl

)
.

Here gij is the inverse of the matrix gij . On TM we may define a second-order vector field
called the geodesic spray which we denote by Zg. This vector field is characterised by the
fact that the projection to M of the integral curves of Zg by the tangent bundle projection
are geodesics. In coordinates we have

Zg = vi
∂

∂xi
− Γi

jkv
jvk

∂

∂vi
.

Here we are denoting by (x1, . . . , xn, v1, . . . , vn) the natural coordinates for TM correspond-
ing to coordinates (x1, . . . , xn) for M .

We shall need the concept of a “symmetric subalgebra” of T (M) which is generated by
a family of vector fields V ⊂ T (M). This construction relies on the covariant derivative
discussed above. We may make T (M) into a symmetric algebra by defining the symmetric
product

⟨X : Y ⟩ = ∇XY +∇YX.

We remark that this product first appeared in the work of Crouch [1981] on gradient dy-
namical systems. Let V be a family of vector fields on M and let X be a set which is
bijective to V with bijection ψ : X → V . As in Section 3.2, let S(X) be the free symmetric
algebra on X and let Pr(X) be the symmetric products with elements in X. We may define
a symmetric algebra homomorphism from S(X) to T (M) by extending ψ in the natural
way much as we did for Lie brackets in Section 3.1. We denote the resulting map from S(X)
to T (M) by Ev(ψ). We also define Evx(ψ)(P ) = (Ev(ψ)(P ))(x) for x ∈ M . We denote
by Sym(V ) the image of S(X) under this homomorphism and call this the symmetric
closure of V .

4. Sufficient conditions for small-time local controllability

Sussmann [1987] gives a general result concerning so-called small-time local controlla-
bility. We are interested in a version of Sussmann’s result and so will present only as much
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background as is necessary to state this result. We consider control systems of the form

ẋ = X(x) + uaYa(x) (4.1)

on a manifold M where X,Y1, . . . , Ym are analytic. (Here and in the sequel, when we write
uaYa there will be an implied sum over a from 1 to m.) We shall consider inputs from the
set U of piecewise constant inputs. Let x0 ∈ M , let V be a neighbourhood of x0, and let
T > 0. We denote by RV (x0, T ) the set of points which can be reached from x0 in time T
while remaining in V using inputs from U . We also denote RV (x0,≤ T ) = ∪T

t=0R
V (x0, t).

We say that the system (4.1) is locally accessible at x0 if RV (x0,≤ T ) contains an open
subset of M for each V and for each T sufficiently small. Furthermore, we say that (4.1)
is small-time locally controllable (STLC) if it is locally accessible and if x0 is in the
interior of RV (x0,≤ T ) for each V and for each T sufficiently small.

Let X = {X0, . . . , Xm}. An element B ∈ Br(X) is said to be bad if δ0(B) is odd and
δa(B) is even for each a = 1, . . . ,m. A bracket is good if it is not bad. Let Sm denote
the permutation group on m symbols. For π ∈ Sm and B ∈ Br(X), define π̄(B) to be the
bracket obtained by fixing X0 and sending Xa to Xπ(a) for a = 1, . . . ,m. Now define

β(B) =
∑
π∈Sm

π̄(B).

We may state sufficient conditions for STLC.

4.1 Theorem: ([Sussmann 1987]) Consider the bijection ϕ : X → {X,Y1, . . . , Ym} which
sends X0 to X and Xa to Ya for a = 1, . . . ,m. Suppose that (4.1) is such that every bad
bracket B ∈ Br(X) has the property that

Evx(ϕ)(β(B)) =
m∑
a=1

ξa Evx(ϕ)(Ca)

where Ca are good brackets in Br(X) of lower degree than B and ξa ∈ R for a = 1, . . . ,m.
Also suppose that (4.1) satisfies the LARC at x. Then (4.1) is STLC at x.

Sussmann [1987] gives this result as a corollary of a special case originally conjectured
by Hermes [1982] and proven by Sussmann [1983].

5. Controllability of simple mechanical control systems

In this section we present the main results of the paper. First we make explicit the class
of control systems we are considering. All problem data will be assumed to be analytic so
that we may use piecewise constant inputs. The data for the systems we consider is: an
n-dimensional configuration manifold Q, a Riemannian metric, g, on Q which represents the
kinetic energy, a R-valued function, V , on Q which represents the potential energy, and m
linearly independent one-forms, F 1, . . . , Fm, on Q which represent the input forces for the
system. A system described by this data we call a simple mechanical control system .
Although the one-forms F 1, . . . , Fm describe the forces for the problem, it is the vector
fields Ya = (F a)♯, a = 1, . . . ,m, which will appear in the computations. Nevertheless, it is
the one-forms which are basic in the problem description.
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Given a vector field X on Q, we define the vertical lift (see [Abraham and Marsden
1978]) of X as the vector field on TQ defined by

X lift(v) =
d

dt

∣∣∣∣
t=0

(v + tX(πTQ(v)))

for v ∈ TQ and where πTQ : TQ→ Q. If (q1, . . . , qn) are coordinates for Q, we shall denote
the corresponding natural coordinates for TQ by (q1, . . . , qn, v1, . . . , vn). In coordinates we
have

X lift(vq) = Xi(q)
∂

∂vi

for vq ∈ TqQ. We may now define the vector field XL on TQ by XL = Zg −gradV lift where
we recall that Zg is the geodesic spray introduced in Section 3.3. With this notation, the
Euler-Lagrange equations for the forced system may be shown to be equivalent to the first
order system

v̇ = XL + uaY lift
a (5.1)

on TQ. Thus the drift vector field for the system is XL and the control vector fields are
Y lift
1 , . . . , Y lift

m . It is this first order affine control system which we study in this section. We
are particularly interested in the following problem:

Problem Statement: Describe the set of configurations reachable from a given configura-
tion when starting at rest.

Observe that we place no restriction on the final velocities of the system. The reader will
further observe that this problem statement involves only configurations and not velocities.
It would be desirable, therefore, to derive an answer to this problem in terms of quantities
on the configuration space. As we shall see, this can in fact be done and is one of the more
compelling aspects of this approach.

Since the computations in this section are quite involved, let us outline them here before
we begin. The main goal of the computations is to describe the accessibility distribution
for (5.1) at points of zero velocity in TQ. Thus we need to compute the involutive closure
of the family of vector fields V ′ = {XL, Y

lift
1 , . . . , Y lift

m }. Observe that since XL = Zg −
gradV lift, we may write vector fields in Lie(V ′) as R-linear combinations of vector fields
in V = {Zg, Y

lift
1 , . . . , Y lift

m , gradV lift}. This is made precise using free Lie algebras in
Section 5.1. When we evaluate the brackets which are used in the computation of the
accessibility distribution at zero velocity, only a small number of them make a contribution,
and the rest vanish. The brackets which vanish do so in one of two ways. Either they are
identically zero, or they are polynomial in the velocity coordinates and so go to zero when
the velocity goes to zero. Therefore, we have three possible classes of brackets: one class
which is non-zero when the velocity is zero, one-class which is identically zero, and one
class which is not identically zero, but is zero when the velocity is zero. In Section 5.1 we
categorise these three types of brackets. There we shall see that the brackets which make
a contribution to the accessibility distribution at zero velocity may be written as linear
combinations of special brackets which we call primitive brackets. The computations in
Section 5.1 are done at the level of free Lie algebras since this provides a rigorous way
to perform the necessary computations. In Section 5.2 we give expressions for primitive
brackets in terms of the geometry of the problem. It is here that the symmetric product
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introduced in Section 3.3 makes its appearance. In Section 5.3 we assemble the results of
Sections 5.1 and 5.2 to arrive at the form of the accessibility distribution for (5.1) at points
of zero velocity. In Section 5.4 we provide a precise statement of the types of controllability
we consider, and in Section 5.5 we provide computable conditions for these versions of
controllability.

We remark that most of the complexity of this section is a consequence of including
potential energy in the formulation. In [Lewis and Murray 1995] the authors provide suffi-
cient conditions for controllability when there is no potential energy function. Due to space
considerations, some of the free Lie algebra proofs from Section 5.1 are omitted. We refer
the reader to the dissertation of Lewis [1995] for these proofs.

5.1. Computations with free Lie algebras. In this section we perform some calculations
with a pair of free Lie algebras which are suited to our purposes. Rather than just using
a generating set which is in 1–1 correspondence with the set V ′ = {XL, Y

lift
1 , . . . , Y lift

m } of
control vector fields and the drift vector field, we also use a generating set which is in 1–1
correspondence with the set V = {Zg, Y

lift
1 , . . . , Y lift

m , gradV lift}. The reason for this is that
vector fields in V ′ are R-linear combinations of vector fields in V , and, as we shall see in
Section 5.3, it is comparatively easy to describe the involutive closure of V .

Let X = {X0, . . . , Xm+1} and let L(X) be the free Lie algebra generated by the set
X. We can simplify many of our computations for the controllability analysis of (5.1) by
making simplifications to a set of generators for L(X). We first need some notation. Let

Brk(X) = {B ∈ Br(X) | the degree of B is k} ,

Brk(X) =

{
B ∈ Br(X) | δ0(B)−

m+1∑
a=1

δa(B) = k

}
.

We shall see in Section 5.2 that, when we restrict to zero velocities, only a small subset of
Br(X) will evaluate to something non-zero. In turn, these brackets will be seen to be linear
combinations of a special class of brackets which we shall call primitive brackets. Recall
from Section 3.1 the notion of components in L(X).

5.1 Definition: Let B ∈ Br0(X) ∪ Br−1(X) and let B1, B2, B11, B12, B21, B22, . . . be the
decomposition of B into its components. We shall say that B is primitive if each of its
components is in Br−1(X) ∪ Br0(X) ∪ {X0}. •
The relevant observations that need to be made regarding primitive brackets are:

Prim1. If B ∈ Br−1(X) is primitive then, up to sign, we may write B = [B1, B2] with
B1 ∈ Br−1(X) and B2 ∈ Br0(X) both primitive.

Prim2. If B ∈ Br0(X) is primitive then, up to sign, B may have one of two forms. Either
B = [X0, B1] with B1 ∈ Br−1(X) primitive, or B = [B1, B2] with B1, B2 ∈ Br0(X)
both primitive.

Using these two rules, it is possible to construct primitive brackets of any degree. For
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example, the primitive brackets of degrees one through four are, up to sign

Degree 1: {Xa | a = 1, . . . ,m}
Degree 2: {[X0, Xa] | a = 1, . . . ,m}
Degree 3: {[Xa, [X0, Xb]] | a, b = 1, . . . ,m}
Degree 4: {[X0, [Xa, [X0, Xb]]] | a, b = 1, . . . ,m}∪

{[[X0, Xa], [X0, Xb]] | a, b = 1, . . . ,m}.

From Proposition 3.1 we know that to generate L(X) we need only look at brackets of
the form

[Xak , [Xak−1
, . . . , [Xa2 , Xa1 ]]] (5.2)

where ai ∈ {0, . . . ,m + 1} for i = 1, . . . , k. We shall see in Section 5.2 that brackets
from Brj(X), where j ≥ 1 or j ≤ −2, will not be of interest to us. In particular, we
shall see that when j ≤ −2 these brackets evaluate identically to zero. Therefore, in this
section we concentrate our attention on brackets in Br0(X)∪Br−1(X) which satisfy certain
requirements. We state the form of these brackets in the following lemma.

5.2 Lemma: Let us impose the condition on elements of Br(X) that we shall consider a
bracket to be zero if any of its components is in Br−j(X) for j ≥ 2. Let B ∈ Br0(X) ∪
Br−1(X). Then we may write B as a finite sum of primitive brackets.

The inductive proof is straightforward and we refer the interested reader to [Lewis 1995].
However, in lieu of a proof an example is illustrative.

5.3 Example: Consider the bracket B = [Xm+1, [X0, [X0, Xa]]] ∈ Br0(X). This bracket is
in Br0(X) but is not primitive. However, by Lemma 5.2, we may write B as a finite sum
of primitive brackets. Indeed, by Jacobi’s identity we have

B = [Xm+1, [X0, [X0, Xa]]] = −[[X0, Xa], [Xm+1, X0]]− [X0, [[X0, Xa], Xm+1]]

= [[X0, Xa], [X0, Xm+1]] + [X0, [Xm+1, [X0, Xa]]].

The proof of Lemma 5.2 is essentially a generalisation of this example.

Now we relate the free Lie algebra L(X) with a free Lie algebra which corresponds
to the set V ′ = {XL, Y

lift
1 , . . . , Y lift

m }. As we mentioned above, the reason we wish to
do this is because the vector fields in V ′ are R-linear combinations of vector fields in
V = {Zg, Y

lift
1 , . . . , Y lift

m , gradV lift}, the latter family of vector fields being bijective with
the set X. Let X ′ = {X ′

0, . . . , X
′
m}. We formally set X ′

0 = X0 −Xm+1 and X ′
a = Xa for

a = 1, . . . ,m. We may now write brackets in Br(X ′) as linear combinations of brackets in
Br(X) by R-linearity of the bracket. We may, in fact, be even more precise about this.

Let B′ ∈ Br(X ′). We define a subset, S(B′), of Br(X) by saying that B ∈ S(B′) if
each occurrence of X ′

a in B′ is replaced with Xa for a = 1, . . . ,m, and if each occurrence of
X ′

0 in B′ is replaced with either X0 or Xm+1. An example is illustrative. Suppose that

B′ = [[X ′
0, X

′
1], [X

′
2, [X

′
0, X

′
3]]].

Then

S(B′) = {[[X0, X1], [X2, [X0, X3]]], [[X0, X1], [X2, [Xm+1, X3]]],

[[Xm+1, X1], [X2, [X0, X3]]], [[Xm+1, X1], [X2, [Xm+1, X3]]]}.

Now we may precisely state how we write brackets in Br(X ′).
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5.4 Lemma: Let B′ ∈ Br(X ′). Then

B′ =
∑

B∈S(B′)

(−1)δm+1(B)B.

The proof is by induction and may be found in [Lewis 1995].
We shall only be interested in terms in the above decomposition of B′ which are in

Br0(X) ∪ Br−1(X) since, as we shall see in Section 5.2, these are the only ones which will
contribute to Ev0q(ϕ

′)(B′). Here 0q is the zero vector in TqQ.

5.2. Distribution computations for simple mechanical control systems. In this section
we use the simplifications of Section 5.1 to get a complete description of the brackets which
contribute to the accessibility distribution for (5.1) restricted to Z(TQ), the zero section of
TQ. Note that we restrict to Z(TQ) because we are interested in determining the reachable
points starting with zero initial velocity. To make the correspondence between the free Lie
algebra L(X) used in Section 5.1 and the accessibility algebra for (5.1), we use the family
of vector fields V = {Zg, Y

lift
1 , . . . , Y lift

m , gradV lift} and establish a bijection, ϕ, from X to
V by mapping X0 to XL, Xa to Y lift

a for a = 1, . . . ,m, and Xm+1 to gradV lift. Please
note that V is not the family of vector fields which generates the accessibility algebra. The
accessibility algebra is generated by the family V ′ = {XL, Y

lift
1 , . . . , Y lift

m }. We establish a
bijection, ϕ′, from X ′ to V ′ by mapping X ′

0 to XL and X ′
a to Y lift

a for a = 1, . . . ,m. By
Lemma 5.4, each vector field in Lie(V ′) is a R-linear sum of vector fields in Lie(V ). That
lemma also completely describes the sum.

Now we shall show that it is possible to compute the brackets from Br(X) in terms of
the problem data. We first present a lemma which gives the basic structure of primitive
brackets. In this lemma we see that a large number of brackets are computable in terms of
quantities defined on Q. This is worth noting since the vector fields themselves are defined
on TQ. Of particular interest in the lemma is the appearance of the symmetric product
which was introduced in Section 3.3.

We need to say a few words about the structure of TQ. We denote by Z(TQ) the zero
section of TQ. Since Q is naturally diffeomorphic to Z(TQ), there is a natural inclusion
of TqQ into T0qTQ for each q ∈ Q. We shall call the image of this inclusion in T0qTQ the
horizontal subspace . We shall call the subspace of T0qTQ which is tangent to the fibre of
TQ at q the vertical subspace and denote it by V0qTQ. We have T0qTQ = TqQ⊕ V0qTQ
for each q ∈ Q. We mention that this notion of vertical is valid at any point in TQ.
However, the definition of horizontal is only valid on Z(TQ).

5.5 Lemma: Suppose that B ∈ Brk(X) is primitive.

(i) If B ∈ Br−1(X) then Ev(ϕ)(B) is the vertical lift of a vector field on Q.

(ii) If B ∈ Br0(X) then U = Ev(ϕ)(B) has the property that, when expressed in a local
chart, the vertical components of U are linear in the fibre coordinates v and the
horizontal components are independent of v. In particular, we may define a vector
field on Q by UQ : q 7→ U(0q) ∈ TqQ ⊂ T0qTQ. There are two cases to consider.

(a) B = [X0, B1] with B1 ∈ Br−1(X): Define U1 to be the vector field on Q such that
Ev(ϕ)(B1) = U lift

1 . Then U(0q) = Ev(ϕ)(B)(0q) = −U1(q). Let U2 ∈ T (Q).
Then [U lift

2 , U ] = (∇U1U2 +∇U2U1)
lift.
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(b) B = [B1, B2] with B1, B2 ∈ Br0(X): Define U1,Q, U2,Q to be the vector fields on
Q corresponding to Ev(ϕ)(B1),Ev(ϕ)(B2), respectively. Then Ev(ϕ)(B)(0q) =
[U1,Q, U2,Q](q).

Proof: The proof is by induction on k. The result is true for k = 1 trivially. If X and Y
are vector fields on Q it is a straightforward coordinate computation to show that

[X lift, Y lift] = 0.

If X is a vector field on Q we compute

[Zg, X
lift] = −Y i ∂

∂qi
+

(
∂Y i

∂qj
vj + Γi

jkY
jvk + Γi

kjv
kY j

)
∂

∂vi
. (5.3)

Inspecting (5.3) shows that [Zg, X
lift](0q) = −X(q). Now let Y ∈ T (Q). We compute

[Y lift, [Zg, X
lift]] =

(
∂Y i

∂qj
Xj +

∂Xi

∂qj
Y j + 2Γi

jkX
jY k

)
∂

∂vi
(5.4)

which is the coordinate representation of (∇XY +∇YX)lift. This shows that the lemma is
true for k = 2.

Now suppose the lemma true for k = 1, . . . , l for l ≥ 2 and let B ∈ Brl+1(X) be
primitive.

(i) Suppose that B ∈ Br−1(X). Without loss of generality (by Prim1) we may sup-
pose that B = [B1, B2] with B1 ∈ Br−1(X) and B2 ∈ Br0(X). Then, by the induction
hypotheses, we have

Ev(ϕ)(B1) = αi(q)
∂

∂vi
, Ev(ϕ)(B2) = λi(q)

∂

∂qi
+ µij(q)v

j ∂

∂vi
.

Now we compute

Ev(ϕ)([B1, B2]) =

(
µijα

j − ∂αi

∂qj
λj
)

∂

∂vi
.

Note that the components in the q-direction are zero and the components in the v-direction
are only functions of q. This means that this vector field is the vertical lift of a vector field
on Q. This proves (i).

(ii) Suppose that B ∈ Br0(X). Without loss of generality (by Prim2) we may suppose
that either (a) B = [X0, B1] with B1 ∈ Br−1(X) or that (b) B = [B1, B2] with B1, B2 ∈
Br0(X). Let us deal with the first case. Equation (5.3) gives Ev(B)(ϕ)(0q) = −U1(q) where
U1 is the vector field on Q so that Ev(ϕ)(B1) = U lift

1 (such a vector field exists by (i)). For
every vector field U2 on Q we have [U lift

2 , [Zg, U
lift
1 ]] = (∇U1U2 +∇U2U1)

lift by (5.4). This
proves (a).

Now suppose that we have B1, B2 ∈ Br0(X). Then, by the induction hypotheses, we
have

Ev(ϕ)(B1) = αi(q)
∂

∂qi
+ βij(q)v

j ∂

∂vi
, Ev(ϕ)(B2) = λi(q)

∂

∂qi
+ µij(q)v

j ∂

∂vi
.
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We compute

Ev(ϕ)([B1, B2]) =

(
∂λi
∂qj

αj − ∂αi

∂qj
λj
)

∂

∂qi
+(
∂µik
∂qj

αjvk + µijβ
j
kv

k −
∂βik
∂qj

λjvk − βijµ
j
kv

k

)
∂

∂vi
.

The components have the order in v specified by the lemma. Also, it is clear that the vector
fields on Q defined by B1 and B2 are

U1,Q = αi(q)
∂

∂qi
, and U2,Q = λi(q)

∂

∂qi
,

respectively. It is easy to see that Ev(ϕ)(B)(0q) = [U1,Q, U2,Q](q). This completes the proof
of the lemma. ■

This lemma provides us with a positive step towards computing the value of all primitive
brackets when evaluated using Ev(ϕ). The following lemma shows that these are the only
brackets we need to consider.

5.6 Lemma: (i) Let l ≥ 1 be an integer and let B ∈ Brl(X). Then Ev(ϕ)(B)(0q) = 0
for each q ∈ Q.

(ii) Let l ≥ 2 be an integer and let B ∈ Brk(X)∩Br−l(X) for k ≥ 2. Then Ev(ϕ)(B) = 0.

The proof of this lemma may be found in [Lewis 1995]. It goes very much like the proof of
Lemma 5.5.

Let us summarise what we have done in this section. First we obtained a characterisation
of primitive brackets in X when we evaluate them in V via Ev(ϕ). This characterisation
involved Lie brackets and covariant derivatives of the vector fields Y1, . . . , Ym, gradV . Then
we showed in Lemma 5.6 that primitive brackets are the only ones we need be concerned
with if we are evaluating the vector fields on the zero section of TQ.

5.3. The form of the accessibility distribution restricted to Z(TQ) for simple mechanical
control systems. In this section we compute the accessibility distribution for (5.1) when
restricted to the zero section of TQ. By Lemma 5.4 we know that we may write the vector
fields in the accessibility distribution in terms of vector fields in Lie(V ). In Section 5.2 we
saw some hints that we might be able to write vector fields in Lie(V ) in terms of covariant
derivatives and Lie brackets of the input vector fields and gradV . First we resolve this
issue by saying exactly what the vector fields in Lie(V ) look like when we restrict them to
Z(TQ). We denote by DLie(V ) the distribution defined by

DLie(V )(v) = spanR
{
U(v) | U ∈ Lie(V )

}
.

The reader will also wish to recall the ideas from symmetric algebras presented in Sec-
tion 3.3. We denote Y = {Y1, . . . , Ym}.

The following lemma describes the horizontal and vertical parts of the involutive closure
of V restricted to Z(TQ). The reader may wish to recall our remarks about the structure
of the tangent bundle preceding Lemma 5.5.
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5.7 Lemma: Let q ∈ Q. Then

DLie(V )(0q) ∩ V0qTQ = (DSym(Y ∪{gradV })(q))
lift

and
DLie(V )(0q) ∩ TqQ = DLie(Sym(Y ∪{gradV }))(q).

Proof: From Lemma 5.6 we know that the only brackets from Br(X) which we need to
consider are the primitive brackets. From Lemma 5.5 we know that the brackets which are
in Br−1(X) will generate the vertical directions, and the brackets which are in Br0(X) will
generate the horizontal directions.

First we show that (DSym(Y ∪{gradV })(q))
lift ⊂ DLie(V )(0q). This may be done induc-

tively. Define Sym(1)(Y ∪ {gradV }) = Y ∪ {gradV } and inductively define

Sym(k)(Y ∪ {gradV }) = {⟨U1 : U2⟩ | Ui ∈ Sym(ki)(Y ∪ {gradV }), k1 + k2 = k}.

Clearly

Sym(Y ∪ {gradV }) =
⋃

k∈Z+

Sym(k)(Y ∪ {gradV }).

It is trivially true that (Sym(1)(Y ∪{gradV }))lift ⊂ Lie(V ). Now suppose that (Sym(k)(Y ∪
{gradV }))lift ⊂ Lie(V ) for k = 1, . . . , l for l ≥ 1. We see that (Sym(l+1)(Y ∪{gradV }))lift ⊂
Lie(V ) since we may generate all elements of (Sym(l+1)(Y ∪ {gradV }))lift by considering
brackets of the form [U lift

1 , [Zg, U
lift
2 ]] where Ui ∈ Sym(li)(Y , V ) and l1 + l2 = l + 1. This

follows from (5.4). This shows that (DSym(Y ∪{gradV })(q))
lift ⊂ DLie(V )(0q).

Now we show that DLie(V )(0q) ⊂ (DSym(Y ∪{gradV })(q))
lift. To do this we must show

that the image under Ev(ϕ) of all primitive brackets in Br−1(X) may be written as a linear
combination of vector fields in Sym(Y ∪ {gradV }). A primitive bracket in Br−1(X) may
be written as B = [B1, B2] with B1 ∈ Br−1(X) and B2 ∈ Br0(X) both being primitive.
Therefore, either B2 = [X0, B

′
2] with B

′
2 primitive and in Br−1(X) or B2 = [B′

2, B
′′
2 ] with

B′
2, B

′′
2 ∈ Br0(X) both primitive. In the first case Ev(ϕ)(B) ∈ Sym(k)(Y ∪ {gradV }) for

some k by (5.4). In the second case we may use Jacobi’s identity to obtain

B = −[B′′
2 , [B1, B

′
2]] + [B′

2, [B1, B
′′
2 ]].

We may apply the above argument to the terms [B1, B
′
2] and [B1, B

′′
2 ] repeatedly using (5.4)

until they are expressed in terms of covariant derivatives. When this is done, Ev(ϕ)(B)
will then be a R-linear combination of elements in Sym(Y ∪ {gradV }). This shows that
DLie(V )(0q) ⊂ (DSym(Y ∪{gradV })(q))

lift.

To demonstrate the proposed form of DLie(V ) ∩ TqQ, by Lemma 5.5(b) we need only

show that Sym(Y ∪{gradV })(q) ⊂ DLie(V )(0q). But this is clear from Lemma 5.5(a). This
completes the proof of the lemma. ■
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5.8 Remark: Notice that the constructions in the above lemma depend only upon
{Y1, . . . , Ym, gradV }. The effects of the geodesic spray do not appear explicitly. However,
its contribution is obviously important in the computations performed in Section 5.2.

From Lemmas 5.4 and 5.7 we know that the vector fields which contribute to Lie(V ′)
when we evaluate on Z(TQ) will beR-linear combinations of vector fields from Lie(Sym(Y ∪
{gradV })). Thus, to compute these vector fields, we need to figure out which vector fields
need to be “removed” from Lie(Sym(Y ∪ {gradV })). We present an algorithm which we
shall prove determines exactly which R-linear combinations from Lie(Sym(Y ∪ {gradV }))
we need to compute. We define two sequences of families of vector fields on Q which we

shall denote by C (k)
ver (Y , V ) and C (k)

hor (Y , V ) where k ∈ Z+. In Figure 2 the algorithm is
presented for computing these families. When we have computed these sequences we define

Cver(Y , V ) =
⋃

k∈Z+

C (k)
ver (Y , V ), Chor(Y , V ) =

⋃
k∈Z+

C (k)
hor (Y , V ).

The distributions defined by these families of vector fields shall be denoted Cver(Y , V ) and
Chor(Y , V ), respectively.

We may now state the form of the accessibility distribution Lie(V ′) for (5.1) when
restricted to the zero section of TQ.

5.9 Proposition: Let q ∈ Q. Then

DLie(V ′)(0q) ∩ V0qTQ = (Cver(Y , V )(q))lift

and
DLie(V ′)(0q) ∩ TqQ = Chor(Y , V )(q).

Proof: Studying the algorithm that we have used to compute Cver(Y , V ) and Chor(Y , V ),
the reader will notice that we have exactly taken each primitive bracket B ∈ Br(X) and
computed which R-linear combinations from Br(X) appear along with B in the decompo-
sition of some B′ ∈ Br(X ′) given by Lemma 5.4. Since it is only these primitive brackets
which appear in Lie(V ′) | Z(TQ), this will, by construction, generate DLie(V ′) | Z(TQ).

We need to prove that, as stated in the first step of the algorithm, if δm+1(B) = 0, then
Ev0q(ϕ)(B) ∈ DLie(V ′)(0q). To show that this is in fact the case, let B′ ∈ Br(X ′) be the

bracket obtained by replacing Xa with X ′
a for a = 0, . . . ,m. We claim that the only bracket

in S(B′) which contributes to Ev(ϕ′)(B′) is B. This is true since any other brackets in
S(B′) are obtained by replacing X0 in B with Xm+1. Such a replacement will result in a
bracket which has at least one component which is in Br−l(X) for l ≥ 2. These brackets
evaluate to zero by Lemma 5.6(ii).

We also need to show that if B has components of the form [X0, Xm+1], then it will not
contribute to Lie(V ′) | Z(TQ). This is clear since, when constructing B′ in the algorithm,
the component [X0, Xm+1] will become [X ′

0, X
′
0] which means that B′ will be identically

zero. ■

It is perhaps useful to construct a few of the families C (k)
ver (Y , V ) and C (k)

hor (Y , V ) to
show how the algorithm works. We shall do this for k = 1, 2. Our notation in these
calculations follows that in the algorithm.
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5.1 Algorithm:

For i ∈ Z+ do

For B ∈ Br(i)(X) primitive do

If δm+1(B) = 0 then

If B ∈ Br−1(X) then

U ∈ C
1
2
(i+1)

ver (Y , V ) where Ev(ϕ)(B) = U lift

else

U ∈ C (i/2)
hor (Y , V ) where U(q) = Ev0q(ϕ)(B)

end

else

If B has no components of the form [X0, Xm+1] then

Compute B′ ∈ Br(X) by replacing every occurrence of X0 and
Xm+1 in B with X ′

0 and by replacing every occurrence of Xa in B
with X ′

a for a = 1, . . . ,m.

Let B′′ = 0.

For B̃ ∈ S(B′) ∩ (Br−1(X) ∪ Br0(X)) do

Write B̃ as a finite sum of primitive brackets in Br(X) by
Lemma 5.2.

B′′ = B′′ + (−1)δm+1(B̃)B̃

end

If B ∈ Br−1(X) then

U ∈ C
1
2
(i+1)

ver (Y , V ) where Ev(ϕ)(B′′) = U lift

else

U ∈ C (i/2)
hor (Y , V ) where U(q) = Ev0q(ϕ)(B

′′)

end

end

end

end

end

end

Figure 2. Algorithm for computing Lie(V ′) | Z(TQ)

Let i = 1. The only primitive brackets in Br(1)(X) are X1, . . . , Xm+1. For the brackets

B = Xa, a = 1, . . . ,m, δm+1(B) = 0. Note that Ev(ϕ)(B) = Y lift
a so Ya ∈ C (1)

ver (Y , V )
for a = 1, . . . ,m. The bracket Xm+1 has no components of the form [X0, Xm+1] so it is

a candidate for providing an element of C (1)
ver (Y , V ). If B = Xm+1 we compute B′ = X ′

0.
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Therefore, S(B′) = {X0, Xm+1}. The only element in S(B′) which is in Br−1(X)∪Br0(X)
is Xm+1. Therefore, B

′′ = −Xm+1. We then see that Ev(ϕ)(B′′) = − gradV lift from which

we conclude that gradV ∈ C (1)
ver (Y , V ). In summary,

C (1)
ver (Y , V ) = {Y1, . . . , Ym, gradV }.

Now we look at the case when i = 2. The primitive brackets in Br(2)(X) are
{[X0, X1], . . . , [X0, Xm+1]}. The bracketsB = [X0, Xa], a = 1, . . . ,m have the property that

δm+1(B) = 0. We compute Ev0q(ϕ)(B) = −Ya(q) and so conclude that Ya ∈ C (1)
hor (Y , V ).

The bracket [X0, Xm+1] is not a candidate for providing an element of C (1)
hor (Y , V ) so we

have
C (1)

hor (Y , V ) = {Y1, . . . , Ym}.
In a similar manner we may compute

C (2)
ver (Y , V ) = {⟨Ya : Yb⟩ | a, b = 1, . . . ,m} ∪ {⟨Ya : gradV ⟩ | a = 1, . . . ,m}

and

C (2)
hor (Y , V ) = {⟨Ya : Yb⟩ | a, b = 1, . . . ,m} ∪ {[Ya, Yb] | a, b = 1, . . . ,m}∪

{2⟨Ya : gradV ⟩+ [Ya, gradV ] | a = 1, . . . ,m} .

To compute the terms 2⟨Ya : gradV ⟩+ [Ya, gradV ] in C (2)
hor (Y , V ), we have used the com-

putations of Example 5.3.
It would be interesting to be able to derive an inductive formula for computing the

families C (k)
ver (Y , V ) and C (k)

hor (Y , V ). However, such an inductive formula appears to be
quite complex.

There are some important statements which can easily be made regarding the distribu-
tions Chor(Y , V ) and Cver(Y , V ).

5.10 Remarks: 1. The generators that we have written for C (k)
ver (Y , V ) and C (k)

hor (Y , V )
are not linearly independent. Thus one should be able to generate these families with
fewer calculations than are necessary to compute the generators we give. One way
to do this is to choose a Philip Hall basis for L(X ′) and compute the image of these
brackets under Ev(ϕ′). This will work for any given example. However, we are unable
to give the general form for the image of a Philip Hall basis under Ev(ϕ′).

2. We claim that Chor(Y , V ) is involutive. Let B′
1, B

′
2 ∈ Br(X ′) be brackets which,

when evaluated under Ev0q(ϕ
′), give vector fields U1, U2 ∈ Chor(Y , V ). Then the

decomposition ofBi given by Lemma 5.4 has the formB′
i = Bi+B̃i whereBi ∈ Br0(X)

and B̃i is a sum of brackets in Brj(X) for j ≥ 2. Therefore, [B′
1, B

′
2] = [B1, B2] +B′′

where B′′ is a sum of brackets in Brj(X) for j ≥ 2. This shows that [U1, U2] ∈
Chor(Y , V ). Here we have imposed the condition that brackets in Br−j(X) are taken
to be zero for j ≥ 2 (see Lemma 5.2).

3. An interesting special case, and one that we shall see in the examples in Sec-
tion 6, is that when V = 0. In this case we have Cver(Y , V ) = Sym(Y ) and
Chor(Y , V ) = Lie(Sym(Y )). This is easily seen in the algorithm by following the
path when δm+1(B) = 0.
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4. The calculations of this section and Section 5.2 remain valid if we replace gradV with
an arbitrary vector field on Q.

5.4. Controllability definitions for simple mechanical control systems. It is possible to
simply adopt the controllability definitions from nonlinear control theory since our system
may be written as a standard control system on TQ. However, since we are dealing with
simple control mechanical systems, it is of more interest to us to know what is happening
to the configurations. A good example of a question of interest in mechanics is “What is
the set of configurations which are reachable from a given configuration if we start at rest?”
This is in fact exactly the question we pose.

5.11 Definition: A solution of (5.1) is a pair, (c, u), where c : [0, T ] → Q is a piecewise
smooth curve and u ∈ U such that (c′, u) satisfies the first order control system (5.1). •
Note that since XL is a second-order vector field on TQ, every solution of the control sys-
tem (5.1) will be of the form (c′, u) for some curve c on Q. We refer the reader to [Abraham
and Marsden 1978] for a discussion of second-order, and particularly Lagrangian, vector
fields.

Let q0 ∈ Q and let U be a neighbourhood of q0. We define

RU
Q(q0, T ) = {q ∈ Q | there exists a solution (c, u) of (5.1)

such that c′(0) = 0q0 , c(t) ∈ U for t ∈ [0, T ], and c′(T ) ∈ TqQ}

and denote RU
Q(q0,≤ T ) =

⋃
0≤t≤T RU

Q(q0, t). Notice that our definitions for reachable
configurations do not require us to get to a point in the reachable set at zero velocity. They
merely ask that we be able to reach that point at some velocity. It is, however, required
that the initial velocity be zero.

We shall say that q ∈ Q is an equilibrium point for L if XL(0q) = 0. Let E(L) denote
the set of equilibrium points for L.

We now introduce our notions of controllability.

5.12 Definition: We shall say that (5.1) is locally configuration accessible at q0 ∈ Q
if there exists T > 0 such that RU

Q(q0,≤ t) contains a non-empty open set of Q for all
neighbourhoods U of q0 and all 0 < t ≤ T . If this holds for any q0 ∈ Q then the system is
called locally configuration accessible .

We say that (5.1) is small-time locally configuration controllable (STLCC) at q0
if it is locally configuration accessible at q0 and if there exists T > 0 such that q0 is in the
interior of RU

Q(q0,≤ t) for every neighbourhood U of q0 and 0 < t ≤ T . If this holds for any
q0 ∈ Q then the system is called small-time locally configuration controllable .

We shall say that (5.1) is equilibrium controllable if, for q1, q2 ∈ E(L), there exists a
solution (c, u) of (5.1) where c : [0, T ] → Q is such that c(0) = q1, c(T ) = q2 and both c′(0)
and c′(T ) are zero. •
Note that these definitions may be made to apply to any control system which evolves on
TQ.

5.5. Conditions for controllability of simple mechanical control systems. In [Lewis and
Murray 1995] the authors present sufficient conditions for local configuration accessibility
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in the absence of potential energy. Here, since we have a complete description of Lie(V ′) |
Z(TQ), we can give stronger results.

5.13 Theorem: The control system (5.1) is locally configuration accessible at q if
Chor(Y , V )(q) = TqQ.

Proof: Let C denote the accessibility distribution. Since Chor(Y , V )(q) ⊂ C(0q) by Propo-
sition 5.9, and Chor(Y , V )(q) = TqQ by hypothesis, Z(TQ) must be an integral manifold of
C. Let Λ be the maximal integral manifold which contains Z(TQ). Since C is the accessibil-
ity distribution, Λ must be invariant under the system (5.1) and the system must be locally

accessible when restricted to Λ. Thus the set RŨ (0q,≤ T ) is open in Λ for every neighbour-
hood Ũ ⊂ Λ of 0q and for every T sufficiently small. Now let U be a neighbourhood of q and

define a neighbourhood of 0q in Λ by Ũ = π−1
TQ(U) ∩ Λ. The set πTQ(R

Ũ (0q,≤ T )) is open
in Q for T sufficiently small since πTQ is an open mapping. This proves the theorem. ■

We also have a partial converse to Theorem 5.13 in the case when there is no potential
energy.

5.14 Theorem: Suppose that V = 0 and (5.1) is locally configuration accessible. Then
Chor(Y , V )(q) = TqQ for q in an open dense subset of Q.

Proof: First note that if Chor(Y , V )(q0) = Tq0Q then Chor(Y , V )(q) = TqQ in a neighbour-
hood of q0. This proves that the set of points q where Chor(Y , V )(q) = TqQ is open. Now
suppose that Chor(Y , V )(q) ⊊ TqQ in an open subset U of Q. Then there exists an open
subset Ū ⊂ U so that rank(Chor(Y , V )(q)) = k < n for all q ∈ Ū . However, this contradicts
local configuration accessibility. Therefore, there can be no open subset of Q on which
Chor(Y , V )(q) ⊊ TqQ. Thus the set of points q where Chor(Y , V )(q) = TqQ is dense. This
completes the proof. ■

We may also prove an easy statement about STLCC. We need to say a few things about
“good” and “bad” symmetric products. Let Y = {X1, . . . , Xm+1} and establish a bijection
ψ : Y → Y ∪{gradV } by asking that ψ(Xa) = Ya for a = 1, . . . ,m and ψ(Xm+1) = gradV .
If P ∈ Pr(Y ) we shall say that P is bad if γa(P ) is even for each a = 1, . . . ,m. We say
that P is good if it is not bad. Let Sm denote the permutation group on m symbols. For
π ∈ Sm and P ∈ Pr(Y ) define π̄(P ) to be the bracket obtained by fixing Xm+1 and sending
Xa to Xπ(a) for a = 1, . . . ,m. Now define

ρ(P ) =
∑
π∈Sm

π̄(P ).

We may now state the sufficient conditions for STLCC.

5.15 Theorem: Suppose that Y ∪ {gradV } is such that every bad symmetric product in
Pr(Y ) has the property that

Ev0q(ψ)(ρ(P )) =
m∑
a=1

ξa Ev0q(ψ)(Ca)

where Ca are good symmetric products in Pr(Y ) of lower degree than P and ξa ∈ R for
a = 1, . . . ,m. Also, suppose that (5.1) is locally configuration accessible at q. Then (5.1)
is STLCC at q.
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Proof: First recall from the proof of Theorem 5.13 that if (5.1) is locally configuration
accessible at q, then Z(TQ) is an integral manifold for the accessibility distribution. We let
Λ be the maximal integral manifold for the accessibility distribution which contains Z(TQ).
Restricted to Λ, (5.1) is locally accessible. To show that (5.1) is STLCC at q, it clearly
suffices to show that (5.1) is STLC at 0q when restricted to Λ. We do this by showing
that (5.1) satisfies the hypotheses of Theorem 4.1 if it satisfies the stated hypotheses on the
symmetric products. To do this we shall show that there is a 1–1 correspondence between
bad brackets in Br(X ′) and bad symmetric products in Pr(Y ) and good brackets in Br(X ′)
and good symmetric products in Pr(Y ).

Suppose that B′ ∈ Br(X ′) is bad. Thus δa(B
′) is even for a = 1, . . . ,m and δ0(B

′) is
odd. When we evaluate Ev0q(ϕ

′)(B′), the only terms that will remain in the decomposition
of Ev(ϕ′)(B′) given by Lemma 5.4 are the terms obtained from brackets in S(B′) which
are in Br0(X)∪Br−1(X). Since B′ is bad, we must have δa(B) even and δ0(B) + δm+1(B)
odd for each B ∈ S(B′). If δ0(B) is odd then δm+1(B) must be even. In this case we get∑m+1

a=1 δa(B) as even and δ0(B) as odd. Thus the only brackets in S(B′) which contribute
to Ev(ϕ′)(B′) must be in Br−1(X). This will give us a vector in V0qTQ which comes from
a symmetric product which is bad. Now suppose that δ0(B) is even for B ∈ S(B′). Then
δm+1(B) must be odd. In this case

∑m+1
a=1 δa(B) is odd and δ0(B) is even and again, the only

brackets in S(B′) which contribute to Ev(ϕ′)(B′) must be in Br−1(X). We then conclude
that Ev0q(ϕ

′)(B′) must be of the form (Evq(ψ)(P ))
lift where P ∈ Pr(Y ) is bad.

Now suppose that B′ ∈ Br(X ′) is good. It is clear that if δa(B
′) is odd for any a =

1, . . . ,m then B′ cannot give rise to a bad symmetric product. Thus we may suppose that
δa(B

′) is even for each a = 0, . . . ,m. Now let’s look at what the brackets look like from
S(B′) which contribute to Ev(ϕ′)(B′). Let B be such a bracket. We must have δa(B)
even for a = 1, . . . ,m and δ0(B) + δm+1(B) even. If δ0(B) is odd then δm+1(B) must be
odd. Since B is primitive this means that

∑m+1
a=1 δa(B) and δ0(B) are odd. Therefore, B

must be in Br0(X). Now suppose that δ0(B) is even. Then δm+1(B) must also be even.
Thus

∑m+1
a=1 δa(B) and δ0(B) are even and so B ∈ Br0(X). Therefore, good brackets from

Br(X ′) do not generate any bad symmetric products. ■

Since the system restricted to the integral manifold Λ in the proof of the above theorem
is STLC, the hypotheses of the theorem imply more than STLCC. In fact, the following
corollary is easily seen to be true.

5.16 Corollary: Suppose that the hypotheses of Theorem 5.15 hold for each q ∈ Q. Then
the system (5.1) is equilibrium controllable.

5.17 Remarks: 1. We have shown that it is not necessary to be able to generate all
directions on TQ to obtain controllability in the configuration variables. Indeed, the
only vertical directions we generate are Cver(Y , V ) which need not span V0qTQ. This
means that the notion of configuration controllability is genuinely weaker that are the
standard notions of controllability if we are to simply regard the system (5.1) as a
typical nonlinear control system.

2. The result 5.16 may be made even stronger if we allow a point q ∈ Q to be an
equilibrium point if gradV (q) is in the span of the inputs at q.
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θ

ψ

r

Figure 3. The robotic leg

6. Examples of mechanical control systems

In this section we present some examples. The examples are rather simple and are
intended to illustrate the concepts put forward by the theory. One of the advantages of
the conditions for local configuration accessibility given in Theorem 5.13 is that it lends
itself to symbolic computation. Indeed, a Mathematica package was written to facilitate
the computations in this section.

6.1. The robotic leg. This example, although simple, exhibits much of the subtle be-
haviour that makes the study of mechanical systems interesting. The example is a rigid
body with inertia J which is pinned to ground at its centre of mass. The body has attached
to it an extensible massless leg and the leg has a point mass with mass m at its tip. The
coordinate θ will describe the angle of the body, and ψ will describe the angle of the leg from
an inertial reference frame. The coordinate r will describe the extension of the leg. Thus
the configuration space for this problem is Q = T2 ×R+. See Figure 3. In the coordinates
(θ, ψ, r) the Riemannian metric for the robotic leg is

g = Jdθ ⊗ dθ +mr2dψ ⊗ dψ +mdr ⊗ dr,

the input one-forms are F 1 = dθ − dψ and F 2 = dr, and the potential energy function is
zero. We may compute the input vector fields to be

Y1 =
1

J

∂

∂θ
− 1

mr2
∂

∂ψ
, Y2 =

1

m

∂

∂r
.

Since there is no potential energy present, the distribution Chor(Y , V ) is simply generated
by the vector fields Lie(Sym(Y )).

We will find the following computations to be sufficient:

⟨Y1 : Y1⟩ = − 2

m2r3
∂

∂r
, ⟨Y1 : Y2⟩ = 0, ⟨Y2 : Y2⟩ = 0,

[Y1, Y2] = − 2

m2r3
∂

∂ψ
, [Y1, ⟨Y1 : Y1⟩] =

4

m3r6
∂

∂ψ
.
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Inputs
Locally configuration

accessible?
Satisfies sufficient

conditions for STLCC? STLCC?

Y1 (torque) yes no no

Y2 (extension) no no no

Y1 and Y2 yes yes yes

Table 1. Controllability results for the robotic leg. The first col-
umn displays which inputs are present, the second column in-
dicates whether the system is locally configuration accessible
with these inputs, the third column indicates whether the sys-
tem with these inputs satisfies the sufficient conditions of The-
orem 5.15 for STLCC, and the last column indicates whether
the system with these inputs is actually STLCC.

The controllability results for the robotic leg are displayed in Table 1.

6.1 Remarks: 1. The linearisation of this system at points of zero velocity is not con-
trollable with any combination of inputs, so the controllability does not follow from
linear results.

2. When only the input Y2 is present the equations are

r̈ − rψ̇2 =
1

m
u1

θ̈ = 0

ψ̈ +
2

r
ṙψ̇ = 0.

Note that when the initial velocity is zero, the top equation decouples from the bottom
two equations. Physically this means that we are simply moving the leg back and forth
with no effect on the configuration of the body since the initial velocity is zero.

3. Although the system only violates the sufficient conditions for STLCC with the input
Y1, one may easily see by looking at the r-component of the equations of motion that
the system is, in fact, not STLCC. The reason for this is that, since r̈ ≥ 0, r will
always increase no matter what happens to the other variables. Thus our initial
configuration will never be in the interior of the set of reachable configurations.

6.2. The forced planar rigid body. In this section we study the planar rigid body discussed
in the introduction with various combinations of forces and torques. The configuration
space for the system is the Lie group SE(2). To establish the correspondence between the
configuration of the body and SE(2), fix a point O ∈ R2 and let {e1 = ∂

∂x , e2 =
∂
∂y} be the

standard orthonormal frame at that point. Let {f1,f2} be an orthonormal frame attached
to the body at its centre of mass. The configuration of the body is determined by the
element g ∈ SE(2) which maps the point O with its frame {e1, e2} to the position, P , of
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O

e2

e1

P

f2 f1

g

f2

f1

h

F 2

F 1

F 3

Figure 4. The configuration of a
planar rigid body as an element
of SE(2)

Figure 5. Positions for application
of forces on a planar rigid body
after simplifying assumptions

the centre of mass of the body with its frame {f1,f2}. See Figure 4. The inputs for this
problem consist of forces applied at an arbitrary point and a torque about the centre of
mass. Without loss of generality (by redefining our body reference frame {f1,f2}) we may
suppose that the point of application of the force is a distance h along the f1 body-axis
from the centre of mass. The situation is illustrated in Figure 5.

With this convention fixed, we shall use coordinates (x, y, θ) for the planar rigid body
where (x, y) describe the position of the centre of mass and θ describes the orientation of the
frame {f1,f2} with respect to the frame {e1, e2}. In these coordinates, the Riemannian
metric for the system is

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ.

Here m is the mass of the body and J is its moment of inertia about the centre of mass.
The inputs are described by the one-forms

F 1 = cos θdx+ sin θdy, F 2 = − sin θdx+ cos θdy − hdθ, F 3 = dθ

from which we compute the input vector fields as

Y1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
,

Y2 = −sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
− h

J

∂

∂θ
, Y3 =

1

J

∂

∂θ
.

Again, as with the robotic leg, there is no potential energy so the distribution Chor(Y , V )
may be computed by calculating Lie(Sym(Y )).
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Inputs
Locally configuration

accessible?
Satisfies sufficient

conditions for STLCC? STLCC?

Y1 (force at CM) no no no

Y2 (force ⊥ to CM) yes no no

Y3 (torque) no no no

Y1 and Y2 yes yes yes

Y1 and Y3 yes yes yes

Y2 and Y3 yes no yes

Table 2. Controllability results for the planar rigid body. The first
column displays which inputs are present, the second column
indicates whether the system is locally configuration accessible
with these inputs, the third column indicates whether the sys-
tem with these inputs satisfies the sufficient conditions of The-
orem 5.15 for STLCC, and the last column indicates whether
the system with these inputs is actually STLCC.

The following computations are sufficient to obtain the results we desire:

⟨Y1 : Y1⟩ = 0, ⟨Y1 : Y2⟩ =
h sin θ

mJ

∂

∂x
− h cos θ

mJ

∂

∂y
,

⟨Y1 : Y3⟩ = −sin θ

mJ

∂

∂x
+

cos θ

mJ

∂

∂y
, ⟨Y2 : Y2⟩ =

2h cos θ

mJ

∂

∂x
+

2h sin θ

mJ

∂

∂y
,

⟨Y2 : Y3⟩ = −cos θ

mJ

∂

∂x
− sin θ

mJ

∂

∂y
, ⟨Y3 : Y3⟩ = 0,

[Y1, Y2] = −h sin θ
mJ

∂

∂x
+
h cos θ

mJ

∂

∂y
, [Y1, Y3] =

sin θ

mJ

∂

∂x
− cos θ

mJ

∂

∂y
,

[Y2, Y3] =
cos θ

mJ

∂

∂x
+

sin θ

mJ

∂

∂y
, [Y2, ⟨Y2 : Y2⟩] =

2h2 sin θ

mJ2

∂

∂x
− 2h2 cos θ

mJ2

∂

∂y
.

With the computations done, we may proceed to determine configuration controllability
for the planar rigid body with various combinations of inputs. The results are displayed in
Table 2.

6.2 Remarks: 1. The linearisation of this system around points of zero velocity is not
controllable so the cases where the system is STLCC do not follow from the linear
calculations.

2. In this example, in the cases when the system fails to satisfy the sufficient conditions
for STLCC of Theorem 5.15, we are not able to say whether the system is, in fact,
not STLCC. In fact, when the inputs Y2 and Y3 are present, even though the system
does not satisfy the sufficient conditions of Theorem 5.15, it is easy to see that it is
STLCC. Recent work, beyond the scope of this paper, shows that when only the input
Y2 is present, the system is not STLCC (see [Lewis 1997]).
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m
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l

θx

Figure 6. Pendulum suspended from a cart

3. In the case when only the input Y1 is present, it is illustrative to represent the equa-
tions in the coordinates (ξ, η, ψ) = (x cos θ + y sin θ,−x sin θ + y cos θ, θ). In these
coordinates the equations have the form

ξ̈ − 2η̇ψ̇ − ξψ̇2 =
1

m
u

η̈ + 2ξ̇ψ̇ − ηψ̇2 = 0

ψ̈ = 0.

Notice that the top equation decouples from the last two equations when the initial
velocity is zero. Since Y1 is directed towards the centre of mass, applying this input
will cause the body to move in this direction and none of the other degrees of freedom
are affected.

4. In the case when the input Y3 is present, the equations have the form

θ̈ =
1

J
u3

ẍ = 0

ÿ = 0.

Again, the top equation decouples from the bottom two equations. This time the
coupling is true for all initial velocities, and not just zero initial velocity. In this case
we see that the input simply causes a rotation of the body about its centre of mass.
The position of the centre of mass is not affected if the initial velocity is zero.

6.3. The pendulum on a cart. To illustrate the effects of potential energy, consider the
problem of a pendulum suspended from a cart. The configuration manifold for the system
is Q = R × S1. As coordinates we shall use (x, θ) as shown in Figure 6. In this case the
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Riemannian metric for the system is

g = (M +m)dx⊗ dx+ml cos θdx⊗ dθ +ml cos θdθ ⊗ dx+ml2dθ ⊗ dθ.

Here M is the mass of the cart and m is the mass of the pendulum. The potential energy
is

V = magl(1− cos θ)

where ag is the acceleration due to gravity. The input is given by the one-form

F 1 = dx.

The input vector field is then readily computed to be

Y1 =
ml2

m2l2 +Mml2 −m2l2 cos2 θ

∂

∂x
+

ml cos θ

m2l2 +Mml2 −m2l2 cos2 θ

∂

∂θ
.

To compute Chor(Y , V ) we need the following computations:

⟨Y1 : Y1⟩ =
16m cos2 θ sin θ

l(m+ 2M −m cos 2θ)3
∂

∂x
+

8(M +m) sin θ

l2(m cos 2θ −m− 2M)3
∂

∂θ
,

⟨Y1 : gradV ⟩ = 4agm cos θ(m−m cos 2θ − 2M cos 2θ)

l(m cos 2θ −m− 2M)3
∂

∂x
+

4ag(2M
2 cos 2θ + 3Mm cos 2θ +m2 cos 2θ −Mm−m2)

l2(m cos 2θ −m− 2M)3
∂

∂θ
.

Note that at all points q ∈ Q except those where θ ∈ {0, π}, the vector fields {Y1, ⟨Y1 :
Y1⟩} generate the tangent space at q. This means that the system is locally configuration
accessible at these points. Also, at these points the bad symmetric product ⟨Y1 : Y1⟩ is
not a multiple of Y1 so the system may not be STLCC at these points. At points where
θ ∈ {0, π}, the vector fields {Y1, ⟨Y1 : gradV ⟩} span TqQ and so the system is also locally
configuration accessible at these points. Most importantly, however, the bad symmetric
product vanishes at these two points so the system is STLCC at these equilibria. This must
be so as, at these two points, the linearised system is controllable.

7. Conclusions and future work

In this paper we have outlined what we regard as a beginning of a thorough program
for analysis and synthesis for simple mechanical control systems. The first part of such a
program is to determine the pertinent versions of controllability (local configuration acces-
sibility and STLCC) and determine algebraic tests for these notions of controllability. The
conditions we present for checking our versions of controllability involve only computations
on the configuration space. In determining these conditions, the symmetric product proved
to play an important rôle. As we have presented it, the symmetric product is a useful com-
putational tool. Our recent work provides a fairly complete description of the geometric
rôle of the symmetric product in the control of mechanical systems. This will be the subject
of an upcoming paper.

In the examples in Section 6 some interesting circumstances may be observed. The
most interesting of these is a comparison of the robotic leg with input Y2 and the planar
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rigid body with the inputs Y2 and Y3. In the former case the system does not satisfy the
sufficient conditions for STLCC and may be shown to indeed not be STLCC. However, in
the latter case, even though the sufficient conditions for STLCC are not met, the system is
STLCC. It would be interesting to better understand why this happens, and perhaps arrive
at a stronger condition for STLCC.

Finally we mention that, from a practical point of view, perhaps the most useful con-
tribution is that of the notion, mentioned in Section 5.4, of equilibrium controllability. If
a system satisfies the hypotheses of Theorem 5.15 at each configuration, it would be inter-
esting to determine a means of generating paths which connect points in the configuration
manifold at zero velocity. Such an algorithm may involve a deeper understanding of the
symmetric product.

In summary, we feel that this paper provides an effective initial understanding of me-
chanical control systems, and we hope that it will prove to be a useful foundation for further
work in the area of mechanical control theory.
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