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Abstract

We present a generalisation of the Gibbs–Appell equations which is valid for general
Lagrangians. The general form of the Gibbs–Appell equations is shown to be valid in the
case when constraints and external forces are present. In the case when the Lagrangian
is the kinetic energy with respect to a Riemannian metric, the Gibbs function is shown
to be related to the kinetic energy on the tangent bundle of the configuration manifold
with respect to the Sasaki metric. We also make a connection with the Gibbs–Appell
equations and Gauss’s principle of least constraint in the general case.
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1. Introduction

In this paper we study the so-called Gibbs–Appell equations and relate these equations
to Gauss’s principle of least constraint. The basic structure of the Gibbs–Appell equations
was introduced by Gibbs [1879] and was developed further by Appell [1900a, 1900b]. The
equations have held their appeal mainly because of their simple form. However, these
equations have yet to be placed in a general geometric framework since the presentation
typically relies on the mechanical system being a collection of point masses and rigid bodies.
In this paper we present the Gibbs–Appell equations for regular Lagrangians and show
that, like the equations in their less general form, they provide a simple way of writing
the equations of motion for systems with constraints. The classical reference for Gauss’s
principle of least constraint is [Gauss 1829].

Interest in the Gibbs–Appell equations has carried on through the present in the work
of various researchers. A few recent references are [Desloge 1988, Sharf, D’eleuterio, and
Hughes 1992, Townsend 1991]. Some comments are made in these papers regarding similar-
ities between the Gibbs–Appell equations and the equations of motion presented in [Kane
1983]. We shall not comment on this here. We should point out that the above references
all deal with mechanical systems formed by collections of particles and rigid bodies. A
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general presentation of mechanics, including constraints, is given in [Giachetta 1992]. In
fact, in that paper, the general Gibbs function is almost constructed, but is not realised
as such. The presentation of the Gibbs–Appell equations in [Giachetta 1992] is also quite
different from ours. A statement of Gauss’s principle of least constraint may also be found
in that paper. Other work related to Gauss’s principle is that of Udwadia and Kalaba
[1992] and Kalaba and Udwadia [1993]. However, that work is limited by restrictions on
the Lagrangian and on the structure of the configuration manifold for the system (it is
assumed to be Rn). Another recent work on Gauss’s principle of least constraint is that
of Ray [1992].

In Section 2 we present a simple example which uses the classical Gibbs–Appell equa-
tions to arrive at the equations of motion. We show “by hand” that these equations are
equivalent to Lagrange’s equations. In the general formulation we rely heavily on construc-
tions using jet bundles. The necessary background in jet bundles is presented in Section 3.
The reader familiar with jets should be able to skip this section except to refer to it for
notation. The basic elements of Lagrangian mechanics, the Lagrangian, external forces, and
constraints, are formulated quickly in Section 4. In Section 5 we present the Gibbs–Appell
formulation of the equations of motion in our general framework. First we construct the
Gibbs function. Then, with the Gibbs function in hand, it is an easy matter to give the
Gibbs–Appell equations in the absence of constraints and show that these equations are
equivalent to Lagrange’s equations. This is done in Section 5.2. To present the equations
in the presence of constraints takes a bit more development, and this is done in Section 5.3.
The interesting special case when the Lagrangian is the kinetic energy with respect to a
Riemannian metric is presented in Section 6. In this case the Gibbs function is related to the
Sasaki metric on the tangent bundle of the configuration manifold. With our development
of the Gibbs–Appell equations, it is a comparatively simple matter to make connections
with a general version of Gauss’s principle of least constraint which we do in Section 7.
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2. A simple example

In this section we present a very simple example as a means of demonstrating how the
Gibbs–Appell equations may be applied in their classical form. This serves to motivate our
more general discussion. The presentation is somewhat formal in this section.

The example is a particle of mass m moving in R3 subject to the constraint

ż − yẋ = 0

and to an arbitrary force F = (Fx, Fy, Fz). The constraint specifies a distribution D on R3

and we may choose {
∂

∂y
, y

∂

∂z
+

∂

∂x

}
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as a basis for D. Thus, as coordinates for the admissible states we can use

(x, y, z, ν1 ≜ ẏ, ν2 ≜ yż + ẋ).

This gives the three relations
ν1 = ẏ

ν2 = yż + ẋ

0 = ż − yẋ.

(2.1)

The equations (2.1) may be inverted to give

ẋ =
1

1 + y2
ν2

ẏ = ν1

ż =
y

1 + y2
ν2.

(2.2)

Thus we compute

ẍ =
1

1 + y2
ν̇2 − 2y

(1 + y2)2
ν1ν2

ÿ = ν̇1

z̈ =
y

1 + y2
ν̇2 +

1

1 + y2
ν1ν2 − 2y2

(1 + y2)2
ν1ν2.

(2.3)

The Gibbs function for this system is given by

G =
1

2
m(ẍ2 + ÿ2 + z̈2).

If we substitute the relations (2.3) into the Gibbs function we obtain

G =
1

2
m

(
1

1 + y2
(ν̇2)2 +

1

(1 + y2)2
(ν1ν2)2 − 2y

(1 + y2)2
ν1ν2ν̇2 + (ν̇1)2

)
.

The forces which appear in the Gibbs–Appell equations are defined by

F1 =
∂ẋ

∂ν1
Fx +

∂ẏ

∂ν1
Fy +

∂ż

∂ν1
Fz = Fy

F2 =
∂ẋ

∂ν2
Fx +

∂ẏ

∂ν2
Fy +

∂ż

∂ν2
Fz =

1

1 + y2
Fx +

y

1 + y2
Fz

The Gibbs–Appell equations are

∂G

∂ν̇a
= Fa, a = 1, 2.

Doing the calculations gives

mν̇1 = Fy (2.4)

m

1 + y2
ν̇2 − my

(1 + y2)2
ν1ν2 =

1

1 + y2
Fx +

y

1 + y2
Fz (2.5)
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If we append to these equations the equations (2.2), we obtain the correct number of
equations describing the motion of the system with the given constraints.

It remains to be shown, however, that these equations are the same as Lagrange’s
equations. Let us quickly go through this formalism for this example to verify that the two
approaches are in fact equivalent. Lagrange’s equations are given by

mẍ = − λy + Fx (2.6)

mÿ = Fy (2.7)

mz̈ = λ+ Fz (2.8)

where λ is a Lagrange multiplier. Substituting (2.8) into (2.6) to eliminate λ gives

mẍ+myz̈ = Fx + yFz

which may easily be seen to be equivalent to (2.5) using (2.3). Also, it is clear that (2.7)
is equivalent to (2.4). This shows that, for this example, the Gibbs–Appell equations are
equivalent to Lagrange’s equations.

3. Jet bundles

We shall need to know some fairly detailed structure of bundles of jets from R to the
configuration manifold Q. In particular we need the structure of the jet bundles as affine
bundles. Therefore, we start with a discussion of affine bundles in Section 3.1. With this
we discuss the necessary facts about jet bundles in Sections 3.2, 3.3, and 3.4. So-called
special vector fields are discussed in Section 3.5. Finally, we introduce the acceleration
derivative in Section 3.6.

3.1. Affine bundles. In this section we give a review of affine bundles as discussed in [Gold-
schmidt 1967]. We begin with affine spaces.

3.1 Definition: An affine space over a field k modelled on a vector space E is a set A
which is a homogeneous space for the additive group of E, and upon which the action of E
is free. If e ∈ E and a ∈ A we denote by e+ a the action of e on a. •
If a, b ∈ A we denote by a − b the unique element of E defined by (a − b) + b = a. Also,
for each a ∈ A we have a natural identification of A with E given by b 7→ b− a ∈ E. This
identification induces a vector space structure on A where the zero vector is a. A non-empty
subset U of A is an affine subspace of A if U is a subspace of A considered as a vector
space with the vector space structure induced by some element a ∈ U . An affine subspace
U may be thought of as an affine space modelled on the subspace of E given by all elements
x− y where x, y ∈ U . Clearly then, if F is a subspace of E and if a ∈ A, the set

{e+ a | e ∈ F}

is an affine subspace of A.
Now we discuss affine bundles.
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3.2 Definition: Let π : E → B be a vector bundle. An affine bundle over B modelled on
E is a fibre bundle τ : A → B and a map ϕ : E ×B A → A such that the following diagram
commutes

E ×B A
ϕ //

pr1
��

A

τ
��

E π
// B

and such that e+ a ≜ ϕ(e, a) makes Ab into an affine space modelled on Eb for each b ∈ B.
Here pr1 is projection onto the first factor. Let F be a vector subbundle of E. A subbundle
of A modelled on F is a subbundle U of the fibre bundle τ : A → B such that Ub is an affine
subspace of Ab associated with Fb. •
Finally, we give some obvious notation to an object which we will have occasion to use. Let
M be a differentiable manifold, let S be a sequence of fibre bundles

A0 A1
τ1oo · · ·oo Ak Ak+1

τkoo · · ·

and suppose that we have fibre bundles πk : Ak → M for k = 0, 1, . . . Suppose that π : E →
M is a vector bundle. We may then define a family of vector bundles by pull-back,

F = {π∗
kπ : π

∗
kE → Ak}k∈Z+ .

We shall say that S is a tower of affine bundles modelled on F if, for each k ∈ Z+,
τk : Ak → Ak−1 is an affine bundle modelled on π∗

k−1π : π
∗
k−1E → Ak−1.

3.2. The bundle of jets from R to Q. The notation in this section follows that of Golu-
bitsky and Guillemin [1973].

We first need to say what we mean when two curves have the same derivative up to
some order at a point. Let c1 : R → Q and c2 : R → Q be two curves on Q so that
c1(t) = c2(t) = q for some t ∈ R. Let (q1, . . . , qn) be a coordinate chart around q. We shall
say that c1 and c2 agree at order k at q if the kth time derivatives of the components
(q1(s), . . . , qn(s)) agree at s = t. It may be seen that this definition of equivalence is
independent of coordinate chart. If c1 and c2 agree at order k at q we shall write

c
(k)
1 (t) = c

(k)
2 (t).

3.3 Definition: Let Q be a differentiable manifold, let t ∈ R, and let c1, c2 : R → Q be
curves on Q such that c1(t) = c2(t) = q. We say that c1 and c2 are equivalent to order
m at t if

c
(k)
1 (t) = c

(k)
2 (t)

for k = 1, . . . ,m. We shall denote the equivalence class by [c1]m. We denote the set of all
such equivalence classes by Jm(R, Q)t,q. The set

Jm(R, Q) ≜
◦⋃

(t,q)∈R×QJ
m(R, Q)t,q

is called the set of m-jets from R to Q. By definition we take J0(R, Q) = R × Q. For
[c]m ∈ Jm(R, Q)t,q we call t the source of [c]m and q the target of [c]m. •
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We will be interested in the sets of 1-jets and 2-jets. If (q1, . . . , qn) is a coordinate chart for
Q, we have natural coordinates for J1(R, Q) given by

(t, q1, . . . , qn, v1, . . . , vn).

In a similar manner we have natural coordinates

(t, q1, . . . , qn, v1, . . . , vn, a1, . . . , an)

for J2(R, Q). We shall write a typical element of J1(R, Q) as v and a typical element of
J2(R, Q) as a. Elements of J1(R, Q) and J2(R, Q) transform in natural coordinates in
specific ways according to the change of coordinates on Q. To be specific, if (Q1, . . . , Qn)
are coordinates for Q different than (q1, . . . , qn), we have, with the obvious notation,

V i =
∂Qi

∂qj
vj

Ai =
∂Qi

∂qj
aj +

∂2Qi

∂qj∂qk
vjvk.

We now define a family of projections from “higher” jet bundles to “lower” jet bundles. If
l < m there is a canonical projection τm,l : J

m(R, Q) → J l(R, Q) which “forgets” the higher
order of equivalence. We also define projections ρm : Jm(R, Q) → Q by ρm ≜ pr2 ◦ τm,0

where pr2 : R × Q → Q is the projection onto the second factor. Note that in natural
coordinates for J1(R, Q) we have

ρ1(t, q
1, . . . , qn, v1, . . . , vn) = (q1, . . . , qn)

and in natural coordinates for J2(R, Q) we have

ρ2(t, q
1, . . . , qn, v1, . . . , vn, a1, . . . , an) = (q1, . . . , qn).

If c : R → Q is a map, jmc : R → Jm(R, Q) will denote the map which assigns to t the
equivalence class [c]m ∈ Jm(R, Q)t,c(t). If the curve c is given by

s 7→ (q1(s), . . . , qn(s)),

then the map j1c is given by

j1c(t) =

(
t, q1(t), . . . , qn(t),

dq1

ds
(t), . . . ,

dqn

ds
(t)

)
and the map j2c is given by

j2c(t) =

(
t, q1(t), . . . , qn(t),

dq1

ds
(t), . . . ,

dqn

ds
(t),

d2q1

ds2
(t), . . . ,

d2qn

ds2
(t)

)
.

For each t ∈ R and q ∈ Q we have a canonical identification of TqQ with J1(R, Q)t,q. We
will implicitly utilise this identification at times.
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Note on Notation: It is common to see natural coordinates for J1(R, Q) written as

(t, q1, . . . , qn, q̇1, . . . , q̇n).

We will stick to using v’s instead of q̇’s unless there is a specific curve onQ we are considering
and so we wish to think of vi as dqi/dt. In this case we will use q̇i. Similar remarks hold
for using ai as opposed to using q̈i. •

3.3. The structure of the tangent bundle of a jet bundle. There will be a couple of
instances where it will be useful to realise the special structure of the tangent bundle of a
jet bundle. We state this as a lemma.

3.4 Lemma: Jm(R, Q) may be canonically embedded as a submanifold of TJm−1(R, Q).

Proof: Let [c]m ∈ Jm(R, Q)t,q. Recall that jm−1c is a curve on Jm−1(R, Q). Therefore
(jm−1c)′(t) ∈ TJm−1(R, Q). In this manner we obtain a 1–1 correspondence between
Jm(R, Q) and a subset of TJm−1(R, Q). In natural coordinates it is easy to verify that
this inclusion is an embedding. ■

We may write the above embeddings in the case where m = 1, 2. For m = 1 we have

(t, qi, vj) ↪→ (t, qi, 1, vj)

and for m = 2 we have
(t, qi, vj , ak) ↪→ (t, qi, vj , 1, vk, al).

We shall also be interested in the vertical bundle corresponding to the fibration
σ1 : J

1(R, Q) → J0(R, Q). We shall denote this subbundle of TJ1(R, Q) by V J1(R, Q).
Note that we may naturally identify V J1(R, Q) with the pull-back bundle ρ∗1TQ. In natural
coordinates this identification has the form

((t, qi, vj), uk) 7→ (t, qi, vj , 0, 0, uk). (3.1)

3.4. The affine structure of Jm(R, Q). Now we examine the affine structure of Jk(R, Q)
over Jk−1(R, Q). This point of view is taken in [Goldschmidt and Sternberg 1973] and [Her-
mann 1982] with both references drawing from [Goldschmidt 1967].

We first need to generate a family of vector bundles which will serve as a model for
the tower of affine bundles given by τk,k−1 : J

k(R, Q) → Jk−1(R, Q). We may construct a
family of vector bundles by pull-back as follows. For k > 1 we define the pull-back bundle

ρ∗kπTQ : ρ∗kTQ → Jk(R, Q)

where πTQ : TQ → Q is the tangent bundle projection. We shall define τk = ρ∗kπTQ. This
defines a family of vector bundles

JQ ≜ {τk : ρ∗kTQ → Jk(R, Q)}k∈Z+ .

Now we may state the result.
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3.5 Proposition: Let σk = τk,k−1 for k ∈ Z+. Then the sequence

J0(R, Q) J1(R, Q)
σ1oo · · ·oo Jk(R, Q) Jk+1(R, Q)

σkoo · · ·

is a tower of affine bundles modelled on JQ.

Idea of Proof: The proposition will be proved if we can show that σ−1
k (u) is an affine space

modelled on TqQ where u ∈ Jk−1(R, Q)t,q. Let v ∈ TqQ and let [c]k ∈ σ−1
k (u). Suppose

that c̃ is a deformation of the curve c in a neighbourhood Uof t. Thus c̃ : U × (−ϵ, ϵ) → Q
is such that c̃(s, 0) = c(s) for all s ∈ U . Further suppose that

dc̃(t, τ)

dτ

∣∣∣∣
τ=0

= v.

Then we may define a curve on Q by

s 7→ c̃(s, (s− t)k). (3.2)

The k-jet of this curve at s = t will be denoted

v + [c]k. (3.3)

We claim that this defines an action of TqQ on σ−1
k (u) which make the latter into an affine

space modelled on the former. To show this, we must prove that

(i) v + [c]k ∈ σ−1
k (u),

(ii) the map (3.3) defines an action,

(iii) the action is free, and

(iv) the action is transitive.

(i) To see that v + [c]k ∈ σ−1
k (u) we need only observe that the (k − 1)-jet of the curve

defined by (3.2) is the same as that of c. This may be seen by applying the chain rule to
the former curve.

(ii) To show that (3.3) does define an action, suppose that v1, v2 ∈ TqQ. By performing
successive deformations of c using these two vectors one may show that

(v1 + v2) + [c]k = v1 + (v2 + [c]k).

This implies that (3.3) does indeed define an action.
(iii) Suppose that

v + [c]k = [c]k.

Then the curve defined by (3.2) must agree with c to order k. This is only true if v = 0.
Thus the action is free.

(iv) Let [c′]k ∈ σ−1
k (u). By applying the chain rule, one may see that there is a vector

v ∈ TqQ so that
v + [c]k = [c′]k.

This completes the proof. ■
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We now look at the affine structure of J1(R, Q) and J2(R, Q) in natural coordinates.
Suppose that v ∈ TqQ has components (v1, . . . , vn) and that u ∈ J1(R, Q)t,q has coordinates
(t, q1, . . . , qn, u1, . . . , un). Then we have

v + u = (t, q1, . . . , qn, u1 + v1, . . . , un + vn).

Similarly, for a ∈ J2(R, Q) we have

v + a = (t, q1, . . . , qn, u1, . . . , un, a1 + v1, . . . , an + vn).

Observe that these definitions obey the appropriate transformation laws for jets. Also note
that J1(R, Q) has more structure than just that of an affine bundle over J0(R, Q). It is, in
fact, a vector bundle.

3.5. Special vector fields. Let X : J1(R, Q) → TJ1(R, Q) be a vector field on J1(R, Q).
We say that X is special if Tσ1 ◦ X(v) = v ∈ TJ0(R, Q) (recalling that J1(R, Q) ⊂
TJ0(R, Q) by Lemma 3.4). It is easy to show that in natural coordinates a special vector
field must have the form

X(t, qi, vj) = (t, qi, vj , 1, vk, X l(t, q, v)).

From Lemma 3.4 with m = 2 we see that a special vector field restricts to J2(R, Q) ⊂
TJ1(R, Q). Thus we can regard a special vector field as a map from J1(R, Q) to J2(R, Q)
given in natural coordinates by

X(t, qi, vj) = (t, qi, vj , Xk(t, q, v)).

In the sequel we shall at times view a special vector field in this manner.

3.6. The acceleration derivative. In this section we introduce a new derivative which will
be useful to us in describing the Gibbs–Appell equations.

Recall from Section 3.1 that if A is an affine space modelled on a vector space E, then
there is a canonical identification of A with E for each a ∈ A. σ2 : J

2(R, Q) → J1(R, Q) is
an affine bundle whose fibre, σ−1

2 (v), is modelled on the vector space Tρ1(v)Q. Therefore,

for each a ∈ σ−1
2 (v), we have a canonical identification of σ−1

2 (v) with Tρ1(v)Q.

Now let f be a function on J2(R, Q) and fix v̄ ∈ J1(R, Q). Let f̃ denote the restriction
of f to σ−1

2 (v̄). For each ā ∈ σ−1
2 (v̄) we may regard f̃ as a function on Tρ1(v̄)Q and, therefore,

df̃(ā) may be identified with an element of T ∗
ρ1([c]1)

Q. Performing this construction defines

a map from J2(R, Q) to T ∗Q which we call the acceleration derivative of f and denote
by daf . Let ρ∗1πT ∗Q : ρ∗1T

∗Q → J1(R, Q) denote the pull-back of T ∗Q to J1(R, Q). Here
πT ∗Q : T ∗Q → Q is the cotangent bundle projection. We can also regard daf as taking its
values in ρ∗1T

∗Q and we shall use the fact that the following diagram commutes.

J2(R, Q)
daf //

ρ2
##

ρ∗1T
∗Q

πT∗Q◦pr2
||

Q
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Here pr2 : ρ
∗
1T

∗Q = J1(R, Q) ×Q T ∗Q → T ∗Q is the projection onto the second factor of
the fibred product.

Let us compute what the acceleration derivative looks like in natural coordinates. Let
us fix v̄ = (t̄, q̄i, v̄j) ∈ J1(R, Q). Also fix ā = (t̄, q̄i, v̄j , āk) ∈ J2(R, Q). The identification of
σ−1
2 (v̄) with Tρ1(v̄)Q at ā is given by

(t̄, q̄1, . . . , q̄n, v̄1, . . . , v̄n, a1, . . . , an) 7→ (q̄1, . . . , q̄n, a1 − ā1, . . . , an − ān).

We can define a function on Tρ1(v)Q by

f̃(v1, . . . , vn) = f(t̄, q̄1, . . . , q̄n, v̄1, . . . , v̄n, v1 + ā1, . . . , vn + ān).

We see that daf(ā) = df̃(0). Therefore we have

daf(ā) =
∂f

∂ai
(ā)dqi.

When we deal with constrained systems we shall consider the acceleration derivative
restricted to an affine subbundle of J2(R, Q). Let Ē be a vector subbundle of ρ∗1TQ. Thus
Ē is a specification of a subspace of TQ as a function of J1(R, Q). Now suppose that
E is an affine subbundle of σ2 : J

2(R, Q) → J1(R, Q) modelled on Ē. We may restrict
any function f on J2(R, Q) to E and follow the above construction to arrive at a map
dE
a (f | E) : E → Ē∗ so that the following diagram commutes.

E
dE
a (f |E) //

ρ2|E ��

Ē∗

~~
Q

Without additional structure we cannot identify Ē∗
v as a subset of T ∗

ρ1(v)
Q.

4. Lagrangian mechanics using jet bundles

In this section we present the basic elements of Lagrangian mechanics formulated on
jet bundles. The basic elements we shall use are the Lagrangian, external forces, and
constraints. We tie everything together by saying what is meant by a solution to Lagrange’s
equations with a given external force and a given set of constraints.

4.1. The Lagrangian. A Lagrangian on Q is a function on J1(R, Q). Define the funda-
mental tensor corresponding to L on J1(R, Q) by

g =
∂2L

∂vi∂vj
dqi ⊗ dqj .

It is easy to verify that the above definition of g is independent of the choice of natural
coordinates for J1(R, Q). Note that for fixed v ∈ J1(R, Q) we may regard g(v) as a
symmetric bilinear form on Tρ1(v)Q. This allows us to define a symmetric bilinear form
on the fibres of ρ∗1TQ and so define a bundle map ♭ : ρ∗1TQ → ρ∗1T

∗Q. We say that L is
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regular if this map is nondegenerate on each fibre. In this case the inverse bundle map
will be denoted ♯ : ρ∗1T

∗Q → ρ∗1TQ. Note that ♭ and ♯ are not quite the usual musical
homomorphisms associated with a Riemannian metric. They are, however, the natural
generalisation of those notions. In this paper we shall assume that the Lagrangians we
deal with are regular. A regular Lagrangian defines a special vector field via Lagrange’s
equations

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
=

∂2L

∂vi∂vj
aj +

∂2L

∂vi∂qj
vj +

∂2L

∂vi∂t
− ∂L

∂qi
= 0.

The corresponding vector field on J1(R, Q) is

XL =
∂

∂t
+ vi

∂

∂qi
+ gij

(
∂L

∂qj
− ∂2L

∂vj∂qk
vk − ∂2L

∂vj∂t

)
∂

∂vi
.

Viewed as taking its values in J2(R, Q) as in Section 3.5, XL has the form

(t, qi, vj) 7→
(
t, qi, vj , gkl

(
∂L

∂ql
− ∂2L

∂vl∂vm
vm − ∂2L

∂vl∂t

))
in natural coordinates. See [Lewis 1995] for an example of how Lagrange’s equations may
be developed intrinsically.

4.2. External forces. We shall define a force to be a semi-basic differential one-form on
the bundle ρ1 : J

1(R, Q) → Q. In natural coordinates such a one-form is given as

F = Fi(t, q, v)dq
i.

It is also possible to consider a force to be a section of the bundle ρ∗1πT ∗Q : ρ∗1T
∗Q →

J1(R, Q). If we think of a force in this manner, using the identification of ρ∗1TQ with
V J1(R, Q) given by (3.1), we may regard F ♯ as a vertical vector field on the bundle
σ1 : J

1(R, Q) → J0(R, Q). In fact, in [Giachetta 1992] forces are defined in this man-
ner. However, we feel it is important to regard forces as differential forms since this is how
they arise from first principles. Only by using the Lagrangian (by means of the map ♯) can
we consider a force to be a vertical vector field on σ1 : J

1(R, Q) → J0(R, Q). One certainly
does not want the idea of a force to depend on the Lagrangian, so the notion of a force as
a one-form is fundamental.

Note that if X is a special vector field, then we may also think of X + F ♯ as a special
vector field. In natural coordinates we have

X + F ♯ : (t, qi, vj) 7→ (t, qi, vj , Xk(t, q, v) + gklFl(t, q, v)).

4.3. Constraints. One of the greatest conveniences of the Gibbs–Appell equations is that,
interpreted properly, they are valid in the presence of constraints. In this section we define
what we shall mean by constraints. We first present the general case then specialise to
affine constraints. We refer the reader to [Lewis and Murray 1995] for a precise statement
of the equations of motion for affine constraints as well as some variational motivation.
That paper also contains a detailed detailed comparison of the so-called “nonholonomic”
and “vakonomic” equations of motion for constrained systems.
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General constraints

The general type of constraint we consider is defined by an m-dimensional codistribution
β on J1(R, Q). If a basis of β is locally given by

βa = βa
0 (t, q, v)dt+ βa

i (t, q, v)dq
i + β̂a

i (t, q, v)dv
i, a = 1, . . . ,m,

we will impose the additional requirement that the m×n matrix with components β̂a
i have

rank m. This condition is given geometric meaning in [Giachetta 1992]. A special vector
field X is said to be β-admissible if β(X) = 0 for every β which is a section of β. It is
straightforward to show that a β-admissible special vector field X satisfies the relations

βa
0 + βa

i v
i + β̂a

i X
i = 0, a = 1, . . . ,m (4.1)

in natural coordinates. Denote C = β⊥ ∩ J2(R, Q) recalling that J2(R, Q) ⊂ TJ1(R, Q).
Here β⊥ denotes the set of vectors annihilated by the one-forms in β. Observe that C
is exactly the subset of TJ1(R, Q) in which β-admissible special vector fields take their
value. Now recall that ρ∗1TQ is identifiable with the set of vertical vectors on the bundle
σ1 : J

1(R, Q) → J0(R, Q) by (3.1). Thus we may regard ρ∗1TQ ⊂ TJ1(R, Q). Therefore we
may define a subbundle of ρ∗1TQ by intersection with β⊥. Denote this subbundle by C̄ . In
natural coordinates, elements ((t, qi, vj), uk) of ρ∗1TQ must satisfy the relations

β̂a
i u

i = 0, a = 1, . . . ,m (4.2)

if they are to be in C̄ . Comparing (4.1) with (4.2) we see that C is an affine subbundle of
J2(R, Q) modelled on the vector subbundle C̄ of ρ∗1TQ. We define iC̄ : C̄ → ρ∗1TQ to be
the inclusion map. Note that the bundle map

C̄
iC̄ //

##

ρ∗1TQ

yy
J1(R, Q)

is linear on the fibres. We shall denote by iT
C̄
: ρ∗1T

∗Q → C̄ ∗ the fibre-wise transpose of iC̄ .

A curve c : [a, b] → Q is said to satisfy the constraint β if (j1c)′(t) ∈ β⊥
j1c(t) for

t ∈ [a, b]. In natural coordinates this implies that if c is given by

s 7→ (q1(s), . . . , qn(s)),

then c satisfies the constraint β if and only if

βa
0 + βa

i q̇
i + β̂a

i q̈
i = 0, a = 1, . . . ,m. (4.3)

A force F : J1(R, Q) → ρ∗1T
∗Q is called a β-constraint force if F (v) ∈ C̄ 0

v for each
v ∈ J1(R, Q). We see from (4.2) that in natural coordinates a force F given by (t, qi, vj) 7→
((t, qi, vj), Fk) is a β-constraint force if and only if Fk is a linear combination of β̂1

k, . . . , β̂
m
k

for k = 1, . . . , n.
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Affine constraints

We shall define an affine constraint on Q to be an m-dimensional codistribution γ on
J0(R, Q). In natural coordinates a basis for γ may be written as

γa = γa0 (t, q)dt+ γai (t, q)dq
i, a = 1, . . . ,m.

We will impose the condition that the m×n matrix with components γai have rank m. We
may then define a constraint of general type by defining β to be locally generated by the
one-forms

βa(t, q, v) = d(γa0 (t, q) + γai (t, q)v
i), a = 1, . . . ,m.

If we expand these equations we obtain

βa(t, q, v) =

(
∂γa0
∂t

+
∂γai
∂t

vi
)
dt+

(
∂γa0
∂qi

+
∂γaj
∂qi

vj
)
dqi + γai dv

i, a = 1, . . . ,m. (4.4)

The rank condition on the matrix γai is then easily seen to guarantee that the rank condition
on the matrix β̂a

i for general constraints is met.
In the affine case the solutions are restricted to the subset of J1(R, Q) defined by the

constraints. We denote this subset by D . It is clear that D is an integral manifold of β.
This will become relevant in our discussion of the constrained Gibbs–Appell equations for
affine constraints in Section 5.3. Also, notice that a β-constraint force, when β is derived
from an affine constraint, is a linear combination of the forms with components γai , . . . , γ

m
i in

natural coordinates. The coefficients in the linear combination are classically the Lagrange
multipliers.

4.4. Lagrange’s equations with external forces and constraints. In the previous three
sections we have defined the fundamental elements of Lagrangian mechanics. Now we
precisely state what we shall mean by a solution of Lagrange’s equations in the presence on
external forces and constraints.

4.1 Definition: Let L be a regular Lagrangian on Q with Lagrangian vector field XL. Let
F be a force and let β be a constraint. A curve c : [a, b] → Q is a solution of Lagrange’s
equations with force F and constraint β if c satisfies the constraint β and if there
exists a β-constraint force λ such that

j2c(t) = XL(j
1c(t))− F ♯(j1c(t))− λ♯(j1c(t))

for each t ∈ [a, b]. •
In natural coordinates this definition gives the well-known equations

q̈i = gij
(
∂L

∂qj
− ∂2L

∂vj∂qk
q̇k − ∂2L

∂vj∂t

)
+ gijFj(t, q, v) + gijλj(t, q, v) (4.5)

which determine the motion when combined with the constraint equations (4.3).
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5. The Gibbs–Appell equations

In this section we present the Gibbs–Appell equations for regular Lagrangians. First we
construct the Gibbs function in Section 5.1. The Gibbs–Appell equations in the absence of
constraints are then easily presented in Section 5.2. The constrained case is dealt with in
Section 5.3. We then present the example of Section 2 in our general framework to illustrate
how the computations may be done.

5.1. The Gibbs function. In this section we present one of the main constructions of the
paper. Namely, we define a generalised version of the Gibbs function which serves the
purpose of the function given for the example of Section 2.

Let L be a regular Lagrangian on Q and let a ∈ J2(R, Q). Note that we may naturally
regard XL(σ2(a))−a as an element of Tρ2(a)Q. Therefore we can define theGibbs function
corresponding to L as

GL(a) =
1

2
g(XL(σ2(a))− a,XL(σ2(a))− a). (5.1)

In natural coordinates we have

GL(t, q
i, vj , ak) =

1

2
gija

iaj +

(
∂2L

∂vi∂qj
vj +

∂2L

∂vi∂t
− ∂L

∂qi

)
ai +

1

2
gijX

i
LX

j
L.

Notice that the expression for Xi
L is independent of ai. As we shall see in Sections 5.2

and 5.3, this means that the third term in the coordinate representation of the Gibbs
function does not affect the equations of motion. Nevertheless, their appearance is necessary
to make the function GL well-defined on J2(R, Q).

5.2. The Gibbs–Appell equations in the absence of constraints. It is an easy matter
to write the Gibbs–Appell equations when no constraints are present and show that these
equations are the same as Lagrange’s equations.

5.1 Theorem: Let L be a regular Lagrangian and let F be a force. Let GL be the Gibbs
function defined by (5.1). A curve c : [a, b] → Q is a solution of Lagrange’s equations if and
only if c is a solution of the Gibbs–Appell equations,

daGL(j
2c(t)) = F (j1c(t)),

for each t ∈ [a, b]. Here we are regarding both daGL and F as taking values in T ∗Q.

Proof: The proof is easy in natural coordinates. If we compute daGL we obtain

daGL =

(
∂2L

∂vi∂vj
aj +

∂2L

∂vi∂qj
vj +

∂2L

∂vi∂t
− ∂L

∂qi

)
dqi.

The Gibbs–Appell equations in natural coordinates are then

gij q̈
j +

∂2L

∂vi∂qj
q̇j +

∂2L

∂vi∂t
− ∂L

∂qi
= Fi, i = 1, . . . , n,

which are clearly equivalent to Lagrange’s equations by inspecting (4.5). ■
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5.2 Remark: In [Lewis 1995] Lagrange’s equations are realised as the components of a semi-
basic differential one-form, FL, on the bundle ρ2 : J

2(R, Q) → Q. In natural coordinates

FL =

(
∂2L

∂vi∂vj
aj +

∂2L

∂vi∂qj
vj +

∂2L

∂vi∂t
− ∂L

∂qi

)
dqi.

The above theorem verifies that FL = daGL. •

5.3. The Gibbs–Appell equations in the presence of constraints. Now we show that,
properly interpreted, the Gibbs–Appell equations remain valid when constraints are im-
posed on the system. Let β be a constraint. Recall from Section 4.3 that β defines an
affine subbundle C of J2(R, Q) modelled on a vector subbundle C̄ of ρ∗1TQ. We can now
use the construction given in Section 3.6 for the acceleration derivative restricted to affine
subbundles. This defines dCa (GL | C ) : C → C̄ ∗.

5.3 Theorem: Let L be a regular Lagrangian on Q, let F be a force, and let β be a con-
straint. Let GL be the Gibbs function defined by (5.1). A curve c : [a, b] → Q is a solution of
Lagrange’s equations with force F and constraint β if and only if c satisfies the constraint
β and if c is a solution of the constrained Gibbs–Appell equations,

dCa (GL | C )(j2c(t)) = iT
C̄
(F (j1c(t))), (5.2 )

for each t ∈ [a, b]. Here we are regarding F as taking values in ρ∗1T
∗Q.

Proof: We first state a simple linear algebra formula. Let E be a vector space with F ⊂ E
a subspace. Let i : F → E denote the inclusion and let b ∈ E∗. Then i∗b(e) = (b | F )(e) for
all e ∈ F . In particular, this implies that

dCa (f | C )(a) = iT
C̄
daf(a) (5.3)

if a ∈ C and if f is a function on J2(R, Q).
By Theorem 5.1 we know that c is a solution of Lagrange’s equations with force F and

constraint β if and only if c satisfies the constraint β and if there exists a β-constraint force
λ so that

daGL(j
2c(t)) = F (j1c(t)) + λ(j1c(t)).

If we apply the mapping iT
C̄

to the above equation we get the constrained Gibbs–Appell

equations. Here we use (5.3) and the fact that λ(j1c(t)) ∈ C̄ 0
j1c(t). Thus, if c is a solution of

Lagrange’s equations with force F and constraint β, then it is a solution of the constrained
Gibbs–Appell equations.

Now suppose that c is a solution of the constrained Gibbs–Appell equations. Then,
using (5.3), we may write

iT
C̄
daGL(j

2c(t)) = iT
C̄
(F (j1c(t))).

This implies that daGL(j
2c(t))− F (j1c(t)) ∈ ker(iT

C̄
). Thus

daGL(j
2c(t))− F (j1c(t)) = λ(j1c(t))

for some force λ which is a section of β. Thus c is a solution of Lagrange’s equations with
force F and constraint β. ■
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5.4 Remarks: 1. Notice that in the above construction the “projection” by iT
C̄

and the
addition of the constraint force λ amount to the same thing. The constraint force may
be viewed as a Lagrange multiplier and so we see here some suggestions of constrained
variational methods. This is discussed further in Section 7.

2. If M ⊂ J1(R, Q) is an integral manifold of β, it is possible to restrict the construction
of the constrained Gibbs–Appell equations to M . Thus we first consider the restricted
bundle J2(R, Q) | M which is an affine bundle over M modelled on the vector bundle
(ρ1 | M)∗TQ over M . Then C | M is an affine subbundle of J2(R, Q) | M modelled
on C̄ | M . Since the acceleration derivative only depends on the value of the function
on the fibres of J2(R, Q), it may still be defined in this restricted case. Similarly, the
map iT

C̄
is only defined on fibres and so also reduces to the case where we restrict to

M . •
It is worth deriving the coordinate formulas for the constrained Gibbs–Appell equations.

To do so let (q1, . . . , qn) be a coordinate chart for Q with (t, q1, . . . , qn, v1, . . . , vn) the
corresponding natural coordinates for J1(R, Q). We coordinatise the fibres of C ⊂ J2(R, Q)
in this chart with coordinates α1, . . . , αn−m. As coordinates for the fibres of C̄ ⊂ ρ∗1TQ we
use ν1, . . . , νn−m. Therefore the inclusion of C̄ in ρ∗1TQ may be written in our coordinates
as

iC̄ : ((t, qi, vj), νa) 7→ ((t, qi, vj), uk(νa))

where the relations uk(νa) are linear in νa. Thus we may write uk = Ak
aν

a where the matrix
Ak

a is in general a function on J1(R, Q). The constrained Gibbs–Appell equations in these
coordinates then take the fairly familiar form

∂(GL | C )

∂αa
= Ai

aFi. (5.4)

By using the fact that the variables αa are linear combinations of the ais, we write (5.4)
as n−m second order differential equations on Q. These equations may be then combined
with the m constraint equations (4.3) to obtain n second-order differential equations on Q
which determine the motion.

When the constraints are affine we can give a bit more structure to the constrained
Gibbs–Appell equations. In this case the solutions are restricted to D ⊂ J1(R, Q). We
denote by iD : D → J1(R, Q) the inclusion mapping. If we use coordinates (t, qi, νa) for
D , we may write the inclusion as

iD : (t, qi, νa) 7→ (t, qi, vj(νa))

where the relations vj(νa) are affine in νa so we may write vj = Bj
aνa + rj . The matrix Bj

a

and the vector rj will in general be functions on J0(R, Q). In practice, to determine Bj
a

and rj we observe that the variables νa are affine in vj . Thus we may write νa = Ca
j v

j +sa.
The affine system

Ca
j v

j = νa − sa, a = 1, . . . , n−m

γbjv
j = −γb0, b = 1, . . . ,m

may then be solved to yield vj = Bj
aνa + rj . The set D lift ≜ range(TiD ) ∩ J2(R, Q) ⊂ C

is invariant and so we may restrict GL to D lift and compute the constrained Gibbs–Appell
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equations on this smaller manifold as in Remark 5.4–2. In coordinates we have the inclusion
of D lift in J2(R, Q) as

iD lift : (t, qi, νa, αb) 7→
(
t, qi, Bj

aν
a + rj , Bk

bα
b +

∂Bk
b

∂ql
Bl

cν
cνb +

∂Bk
b

∂t
νb +

∂rk

∂ql
Bl

bν
b +

∂rk

∂t

)
.

The forces which appear in the Gibbs–Appell equations may be computed in the same
manner as in the general case and this gives

Fa = Bi
aFi.

The Gibbs–Appell equations may then be computed just as in (5.4). However, in the affine
case, the Gibbs function may be restricted to the smaller set D lift. We therefore expect
to be able to write fewer then 2n differential equations to describe the system in local
coordinates. Indeed, the relations vj = Bj

aνa + rj combine with (5.4) to give 2n −m first
order differential equations the independent variables (qi, νa) which determine the motion
of the system on D .

The equations (5.4) are indeed one of the most, if not the most, compact ways of
representing the equations of motion of a system with constraints. This does not mean,
however, that they are necessarily the most convenient or revealing. For a survey of other
methods of writing the equations in the presence of constraints we refer the reader to [Bloch,
Krishnaprasad, Marsden, and Murray 1996].

5.4. The example of Section 2 revisited. With the coordinate formulae of Section 5.3 we
can now make better sense of the computations we performed in Section 2. Recall that the
example was a particle of mass m in Q = R3 subject to the constraint

ż − yẋ = 0.

We also considered the presence of an arbitrary force F on the system.
In our development the Lagrangian is given by

L =
1

2
m

(
v2x + v2y + v2z

)
and the affine constraint is defined by the one-form

γ1 = dz − ydx.

An arbitrary force is given by

F = Fxdx+ Fydy + Fzdz

where the components Fx, Fy, Fz are functions on J1(R, Q). Here we are thinking of the
force as a map from J1(R, Q) to T ∗Q. An easy computation gives the Gibbs function as

GL =
1

2
m

(
a2x + a2y + a2z

)
.
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Now we turn to parameterising the necessary objects. As coordinates for D ⊂ J1(R, Q)
we choose (t, x, y, z, ν1 ≜ vy, ν

2 ≜ vx+ yvz). The inclusion of D in J1(R, Q) then looks like

iD : (t, x, y, z, ν1, ν2) 7→
(
t, x, y, z,

1

1 + y2
ν2, ν1,

y

1 + y2
ν2
)
.

With this we are able to compute the inclusion ofD lift = range(TiD )∩J2(R, Q) in J2(R, Q)
to be

iD lift : (t, x, y, z, ν1, ν2, α1, α2) 7→
(
t, x, y, z,

1

1 + yy
ν2, ν1,

y

1 + y2
ν2,

1

1 + y2
α2 − 2y

(1 + y2)2
ν1ν2, α1,

y

1 + y2
α2 +

1

1 + y2
ν1ν2 − 2y2

(1 + y2)2
ν1ν2

)
.

We then compute the restriction of GL to D lift as

GL | D lift =
1

2
m

(
1

1 + y2
(α2)2 +

1

(1 + y2)2
(ν1ν2)2 − 2y

(1 + y2)2
ν1ν2α2 + (α1)2

)
.

To compute how the forces enter the equations of motion, note that the matrix Bi
a is given

by

B =

0
1

1+y2

1 0
0 y

1+y2

 .

Thus we compute

F1 = Fy, F2 =
1

1 + y2
Fx +

y

1 + y2
Fz.

The Gibbs–Appell equations are then easily computed to be

mα1 = Fy

m

1 + y2
α2 − my

(1 + y2)2
ν1ν2 =

1

1 + y2
Fx +

y

1 + y2
Fz.

Of course we regard these as differential equations since αi = ν̇i, i = 1, 2. On top of these
equations we have the equations which define the constraints,

ż − yẋ = 0,

and the equations which define the coordinates ν1, ν2,

ν1 = ẏ, ν2 = ẋ+ yż.

These may be inverted as in Section 2 to give (ẋ, ẏ, ż) in terms of (ν1, ν2). Of course the
equations obtained here agree with the equations obtained in Section 2.
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6. The Gibbs function on Riemannian manifolds

When the Lagrangian is given by the kinetic energy with respect to a Riemannian
metric, Lagrange’s equations yield the equations for geodesics. It turns out that in this
case the Gibbs function has an interesting form when thought of as a function on TTQ.

Let (Q, g) be a Riemannian manifold. Recall that the Riemannian connection defines a
bundle map K : TTQ → TQ such that the following diagram commutes.

TTQ
K //

πTTQ

��

TQ

πTQ

��
TQ πTQ

// TQ

The subbundleHQ = ker(K) has the property of making a complement to V Q = ker(TπTQ)
in TTQ. In natural coordinates for TTQ the map K has the form

K(qi, vj , uk, wl) = (qi, wj + Γj
klu

kvl)

where Γj
kl are the Christoffel symbols for the Riemannian metric. On TTQ we may now

define a function

G̃g(w) =
1

2
g(K(w),K(w)).

In natural coordinates we have

G̃g(q
i, vj , uk, wl) =

1

2
gijw

iwj + gijw
iΓj

klu
kvl +

1

2
gijΓ

i
klΓ

j
rsu

kvlurvs.

Now recall the canonical involution of TTQ. This is a map J such that the following
diagram commutes.

TTQ
J //

TπTQ ""

TTQ

πTTQ||
TQ

In natural coordinates the map J has the form

J(qi, vj , uk, wl) = (qi, uj , vk, wl).

We shall denote by Fix(J) the set of points in TTQ which are fixed by J . For each t ∈ R
there is a diffeomorphism from the two-jets of maps from R to Q whose source is t to
Fix(J). In natural coordinates this diffeomorphism is given by

(t, qi, vj , ak) 7→ (qi, vj , vk, al).

By restricting the function G̃g(w) on TTQ to Fix(J) we may define a function Gg on
J2(R, Q). This function has the form

Gg(t, q
i, vj , ak) =

1

2
gija

iaj + gija
iΓj

klv
kvl +

1

2
gijv

ivj +
1

2
gijΓ

i
klΓ

j
rsv

kvlvrvs.

in natural coordinates for J2(R, Q). The following result is easily proven.
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6.1 Proposition: Let (Q, g) be a Riemannian manifold and define a Lagrangian by L(v) =
1
2g(v, v). Then Gg = GL.

Proof: The proof consists of a simple comparison of (5.1) with the definition of Gg in natural
coordinates. ■

6.2 Remarks: 1. On a Riemannian manifold one may define a Riemannian metric on its
tangent bundle called the Sasaki metric (see Sasaki [1958, 1962]). This metric is
defined by

g̃(w1, w2) = g(TπTQ(w1), TπTQ(w2)) + g(K(w1),K(w2)).

Notice that the Gibbs function for the geodesic system differs from the kinetic energy
of the Sasaki metric exactly by the kinetic energy of the original system regarded as
a function on J2(R, Q). To be precise,

Gg(w) =
1

2
g̃(w,w)− 1

2
g(TπTQ(w), TπTQ(w)).

2. One can see why the expression “acceleration energy” is sometimes used for the Gibbs
function. Indeed, the Gibbs function in the Riemannian case is simply one-half of the
norm squared of the “geometric acceleration” with respect to the original metric.

3. In [Giachetta 1992] it is shown that a special vector field (in particular a Lagrangian
vector field) defines an Ehresmann connection on the bundle ρ1 : J

1(R, Q) → Q. In
the case when the special vector field is the Lagrangian vector field corresponding to
the kinetic energy on a Riemannian manifold, this Ehresmann connection is easily
seen to be the Riemannian connection corresponding to the metric. Therefore, we
may ask whether the construction we performed above generalises to arbitrary regular
Lagrangians. It turns out that it does not, and it is just in the Riemannian case that
the construction of the Gibbs function in Section 5.1 agrees with the function Gg as
we defined it above. •

7. Gauss’s Principle of Least Constraint

Gauss’s principle of least constraint roughly says that, among the accelerations which
satisfy the given constraints and external forces, the one which determines the equations of
motion is that which minimises some positive definite function of acceleration. We have the
machinery developed which makes it easy to make this a precise statement for our general
development. We shall say that a Lagrangian L is positive-definite if the corresponding
fundamental tensor g is positive-definite thought of as a bilinear form on the fibres of the
bundle ρ∗1TQ.

7.1 Theorem: (Gauss’s Principle of Least Constraint) Let L be a positive-definite
Lagrangian on Q, let F be a force, and let β be a constraint. Let C be the subset of
J2(R, Q) defined by the constraints β. Fix v ∈ J1(R, Q)t,q. Suppose that c : [a, b] → Q is
a solution of Lagrange’s equations through v with force F and constraint β. Then j2c(t) is
the unique element of (σ2 | C )−1(v) which minimises the function

G(L,F )(a) = g(XL(v)− F ♯(v)− a,XL(v)− F ♯(v)− a)
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restricted to C ⊂ J2(R, Q). Here we are thinking of XL−F ♯ as a special vector field taking
its values in J2(R, Q).

Proof: Note that the function G(L,F ) | C is a smooth convex function on the affine space
Cv. Therefore, its minimum will be the unique point where its derivative vanishes. That is
to say, G(L,F ) has its unique minimum at the point a ∈ Cv where d

C
a (G(L,F ) | C )(a) = 0.

By (5.3) we have
dCa (G(L,F ) | C )(a) = iT

C̄
daG(L,F )(a)

for a ∈ C . In natural coordinates we have

G(L,F ) = gij

(
aiaj − 2ai

(
Xj

L − gjkFk

)
+ (Xi

L − gikFk)(X
j
L − gjlFl)

)
.

We may compute
daG(L,F )(a) = 2 (daGL(a)− F (v)) .

This implies that

dCa (G(L,F ) | C )(a) = 0 ⇐⇒ dCa (GL)(a) = iT
C̄
(F (v))

which proves the theorem by Theorem 5.3. ■

7.2 Remarks: 1. Observe that when no constraints are present, then we may select a ∈
σ−1
2 (v) so that the absolute minimum value, zero, for G(L,F ) is attained. In this case

we immediately obtain the equations of motion j2c(t) = XL(j
1c(t))− F (j1c(t)).

2. In [Lanczos 1970] Gauss’s principle is related to d’Alembert’s principle. Here it
is pointed out that Gauss’s principle makes a variational principle out of the non-
variational d’Alembert’s principle. Indeed, Gauss’s principle of least constraint can
be seen to take an infinite-dimensional problem in the calculus of variations and make
it into a finite-dimensional one. Furthermore, the finite-dimensional constrained vari-
ational problem on σ−1

2 (v) is a simple one since the function to be minimised is convex.
See [Lewis and Murray 1995] for a discussion of variational methods for systems with
constraints. •

8. Conclusions

In this paper we have generalised the Gibbs–Appell equations for particles and rigid
bodies to general (regular) Lagrangians. Our formulation is shown to give the same equa-
tions of motion as Lagrange’s equations in the presence of general classes of forces and
constraints. When the Lagrangian is kinetic energy with respect to a Riemannian metric,
the Gibbs function is shown to be related to the Sasaki metric on the tangent bundle of
the configuration manifold. We are able to use our formulation to give a general version of
Gauss’s principle of least constraint.
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