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Abstract

Many interesting control systems are mechanical control systems. In spite of this,
there has not been much effort to develop methods which use the special structure
of mechanical systems to obtain analysis tools which are suitable for these systems.
In this dissertation we take the first steps towards a methodical treatment of
mechanical control systems.

First we develop a framework for analysis of certain classes of mechanical con-
trol systems. In the Lagrangian formulation we study “simple mechanical control
systems” whose Lagrangian is “kinetic energy minus potential energy.” We pro-
pose a new and useful definition of controllability for these systems and obtain
a computable set of conditions for this new version of controllability. We also
obtain decompositions of simple mechanical systems in the case when they are
not controllable. In the Hamiltonian formulation we study systems whose control
vector fields are Hamiltonian. We obtain decompositions which describe the con-
trollable and uncontrollable dynamics. In each case, the dynamics are shown to
be Hamiltonian in a suitably general sense.

Next we develop intrinsic descriptions of Lagrangian and Hamiltonian mechan-
ics in the presence of external inputs. This development is a first step towards a
control theory for general Lagrangian and Hamiltonian control systems. Systems
with constraints are also studied. We first give a thorough overview of variational
methods including a comparison of the “nonholonomic” and “vakonomic” meth-
ods. We also give a generalised definition for a constraint and, with this more
general definition, we are able to give some preliminary controllability results for
constrained systems.
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Chapter 1

Introduction

Mechanical control systems form a large and interesting subset of all control sys-
tems. In spite of the proliferation of mechanical systems in the class of all control
systems, little fundamental work has been done to use the special structure of
mechanical systems to build up a control theoretic tool bag which is suited to
these systems. The structure in mechanical systems typically arises in two ways.
In the Lagrangian framework, the structure is that of second-order dynamics on
the tangent bundle of the configuration manifold. In the Hamiltonian setting, the
structure is that of a symplectic manifold. Of particular interest in the class of
Hamiltonian systems are those systems whose symplectic manifold is the cotan-
gent bundle of the configuration manifold endowed with its canonical symplectic
structure.

While one may view the work in this dissertation as an adaptation of the
methods of nonlinear control theory to mechanical systems, one may also view it
as an extension of the methods of geometric mechanics to systems with external
inputs. The modern development of geometric mechanics has, for the most part,
left out this important feature of mechanical systems. An example of work which
has included external forces is that of Yang [1992]. Another missing piece in
geometric mechanics has been the inclusion of constraints in the formulation. This
has received some recent attention in [Bloch, Krishnaprasad, Marsden, and Murray
1996]. A particularly interesting example of a system with constraints and inputs
is the “Snakeboard” which was introduced in [Lewis, Ostrowski, Murray, and
Burdick 1994]. In this example, one can ask interesting control theoretic questions
which the existing tools are ill-suited to answering. Some initial results in the area
may be found in [Ostrowski and Burdick 1997].

It would be improper to give the impression that no work has been done in the
area of mechanical control systems. Bloch and Crouch [1992] discuss mechanical
control systems whose configuration space is a Riemannian manifold and whose
Lagrangian is kinetic energy with respect to the Riemannian metric. With addi-
tional structure in the form of group symmetries and some assumptions on the
inputs, a controllability result is given for this class of systems. The result relies
on the work of San Martin and Crouch [1984] on controllability of systems on prin-
cipal fibre bundles with compact structure group. These results, while interesting,

1



2 1 Introduction

lack generality since they require a priori knowledge of system symmetries. This
knowledge is present in many systems, but in many more it is not.

There is a large body of work which is applicable to control problems whose
control vector fields are the horizontal lifts of vector fields on the base space of
a principal fibre bundle. A nice review of these results in the case where the
bundle is trivial may be found in [Kelly and Murray 1994]. The discussion in
that paper is geared towards controllability as it applies to locomotion. This
motivated the authors to give two versions of controllability which they called total
controllability and fibre controllability. The first corresponds to the usual notion of
controllability, and the second is a weaker notion which does not take into account
the final position in the base space. Thus locomotion problems are examples of
systems which benefit from notions of controllability which are weaker than the
standard versions from nonlinear control theory. We shall see this concept arise in
mechanical systems as well. However, the work of Kelly and Murray [1994] does
not consider important dynamical effects. Indeed, the class of problems studied is
restricted exactly in such a manner that dynamics do not play a rôle.

Bloch, Reyhanoglu, and McClamroch [1992] discuss the stabilisability and con-
trollability of mechanical systems with constraints. As kinematic systems (i.e., ones
where the inputs are velocities rather than forces), systems with constraints may
be viewed as members of a class of control systems known as “driftless” control
systems. These systems are known to violate Brockett’s necessary condition for
stabilisability [Brockett 1983] and so cannot be stabilised under state feedback.
Bloch, Reyhanoglu, and McClamroch [1992] show this to also be the case when
dynamics are taken into account. It is also shown in this paper that, with the
assumption that forces are available from a set of forces which are complementary
to the constraint forces, these systems are small-time locally controllable. We shall
see in Section 6.2.2 that this is a natural thing to expect.

Another area of research in control of mechanical systems that has received a
great deal of attention is stabilisation of satellites and related problems. These
problems have a configuration space which is a Lie group. Because of invariance
of the mechanical properties with respect to the group action, it is often possible
to reduce the system to the Lie algebra in the Lagrangian case, and to the dual
of the Lie algebra in the Hamiltonian case. Some examples of work in this area
are [Aeyels and Szafranski 1988, Bloch, Krishnaprasad, Marsden, and Sánchez de
Alvarez 1992, Jurdjevic and Sussmann 1972, Krishnaprasad 1985, Meyer 1971,
Wang and Krishnaprasad 1992].

Below we outline the dissertation chapter-by-chapter and state what is new in
each chapter.

Chapter 2 In Chapter 2 we give the necessary mathematical preliminaries. The
purpose of this chapter is twofold. First, it serves to review the relevant areas of
mathematics, and second, it is used to present various new or uncommon technical
results which will be needed later. The most significant new object we introduce is
a “symmetric algebra” which we shall use in Section 4.1 to discuss control theory
for Lagrangian systems.
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Chapter 3 Here we review some basic concepts from nonlinear control theory
since a good understanding of these ideas is essential for a clear presentation of
our results for mechanical systems. We present both the distribution and exterior
differential systems viewpoints for representing control systems. In particular, we
give precise statements of the conditions for local accessibility and strong local
accessibility in terms of Pfaffian modules. These results are known, but, to our
knowledge, have not appeared in the literature. We also give a thorough presenta-
tion of invariant distributions in this chapter. Some new results are presented for
characterising integrable invariant distributions using exterior differential systems.

Chapter 4 In this chapter we present the main results of this dissertation. The
aim is to generalise the basic ideas from nonlinear control theory presented in
Chapter 3 to specific classes of mechanical control systems in both the Lagrangian
and Hamiltonian framework.

In the Lagrangian framework we consider what we call “simple mechanical
control systems.” These systems are characterised primarily by having the La-
grangian be of the form “kinetic energy minus potential energy.” We introduce a
new notion of controllability in terms of the configuration space, as this is often
what is most interesting. We are then able to determine computable conditions
for our new version of controllability. Our computations rely in an interesting way
on the structure of simple mechanical control systems. In particular, the covariant
derivative with respect to the Riemannian metric which defines the kinetic energy
plays an important rôle in our computations.

We also discuss Hamiltonian control systems which fully utilise the structure of
the underlying symplectic manifold. The results we derive in this area are partially
present in [Nijmeijer and van der Schaft 1990]. We give the results more structure
by exploiting the various reductions which may be performed on these systems.
We are able to generate some clean results for Hamiltonian control systems in this
way.

To conclude the chapter, we go through the computations for a few examples
and we see how the machinery relates to our intuition for the given problems.

Chapter 5 In this chapter, we discuss means of representing general mechanical
systems in the presence of external forces, but in the absence of constraints. We
present both the Lagrangian and Hamiltonian points of view as they are similar.
Under regularity conditions, we are able to show that the two formulations are
equivalent, generalising the classical results. We also introduce a new object which
we call the “Lagrange force field.” This object establishes Lagrange’s equations as
the components of a geometric entity. This chapter may be regarded as one where
we establish a solid framework for future work which may be done in controlling
fairly general Lagrangian and Hamiltonian control systems.

Chapter 6 In this chapter results are presented for systems with constraints.
We begin our discussion by introducing the variational principles associated with
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mechanical systems with constraints. When the constraints are absent, the varia-
tional formulation (Hamilton’s Principle) is well-known and accepted as standard.
However, when constraints are introduced, the variational formulation is less ob-
vious as there are at least two viable ways to formulate a variational principle in
this case. We investigate the “nonholonomic” and “vakonomic” methods and show
that they are equivalent when the constraints are holonomic. A list of the pros
and cons of the nonholonomic and vakonomic methods is given and, using this,
we give strong arguments on behalf of the nonholonomic method being the proper
way to represent constrained systems.

In Section 6.2 we present a general definition of constraints which takes up
where we left off with external forces in Chapter 5. With these general notions
of external forces and constraints, we are able to give some preliminary control
theoretic results for systems with constraints. The Lagrange force field introduced
in Section 5.6 is useful in establishing these results.

Chapter 7 In this chapter we summarise the new results in this dissertation and
suggest some avenues for future work based upon these results.



Chapter 2

Mathematical preliminaries

In this chapter we present the mathematical tools which will be useful in our
discussion of mechanics and mechanical control systems. We begin with some al-
gebraic concepts in Sections 2.1 and 2.2. Of particular interest here is the concept
of a symmetric algebra introduced in Section 2.2.5. Some basic terminology from
differential geometry is presented in Section 2.3. The intent here is to establish
our notation. Then, in Section 2.4, we discuss some ideas from the theory of (ge-
ometric) distributions. This leads naturally to a discussion of exterior differential
systems in Section 2.5. Next we discuss the mathematical structures which are
important for describing mechanical control systems. In Section 2.7 we present
the basic notions from Riemannian geometry as we will need them to analyse
Lagrangian control systems. It is in this section that we introduce the symmet-
ric product on the set of vector fields on a Riemannian manifold. This product
becomes important in determining conditions for controllability of Lagrangian sys-
tems in Section 4.1. We see the symmetric product as one of the most intriguing
developments in this dissertation. Sections 2.8 and 2.9 are devoted to symplectic
and Poisson manifolds, respectively. Both of these structures are useful in de-
scribing Hamiltonian mechanics. Finally, in Section 2.10, some concepts from the
theory of jet bundles are presented. We shall use these ideas in formulating basic
descriptions of mechanical systems in Chapter 5.
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The following mathematical notation shall be used.

• end of remark, example, or definition

■ end of proof

▼ proof of subresult is done, but the proof of the main result
continues

a ∈ A a is an element of the set A

A ⊂ B A is a subset of B (the same as A ⊆ B)

A \B the points in A that are not in B

A ∪B the union of sets A and B

A ∩B the intersection of sets A and B

2.1 Algebra

We assume the reader to have a basic understanding of linear algebra. However,
we shall need to establish some notation and present some ideas which will be
useful later.

2.1.1 Algebras

We begin with introductory definitions concerning algebras. We will consider
only objects over the field of real numbers although general definitions may be
made over a commutative ring with unit. The algebra definitions come from, for
example, [Lang 2005].

An algebra is a vector space, A, with a product. The product must have the
property that

a(uv) = (au)v = u(av)
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for every a ∈ R and u, v ∈ A. A map, ϕ : A → A′, between algebras is called an
algebra homomorphism if ϕ(u ·v) = ϕ(u) ·ϕ(v). A vector subspace, I, of an algebra
A is called a left ideal (resp. right ideal) if it is closed under algebra multiplication
and if u ∈ A and i ∈ I implies that ui ∈ I (resp. iu ∈ I). A subspace, I, is said
to be a two-sided ideal if it is both a left and right ideal. An ideal may not be
an algebra itself, but the quotient of an algebra by a two-sided ideal inherits an
algebra structure from A.

2.1.2 Free vector spaces

We will need the notion of a free vector space. Let X be a nonempty set. We
define RX to be the free vector space generated by X. It is the set of finite length,
associative, and commutative sums of elements in X. Thus a typical element of
RX is formally written as

a1u1 + · · ·+ anun

for a1, . . . , an ∈ R and u1, . . . , un ∈ X. By definition of RX , for any vector space
V and any map ϕ : X → V , there exists a unique linear map ϕ̄ : RX → V which
extends ϕ. Thus X forms a basis for RX .

2.1.3 The tensor algebra of a vector space

What we discuss in this section may be found in [Abraham, Marsden, and Ratiu
1988].

Let V be a R-vector space with dual V ∗. A tensor of contravariant order r and
covariant order s is a multilinear map t : V ∗ × · · · ×V ∗ ×V × · · · ×V → R (with r
copies of V ∗ and s copies of V ). We may define a product on the set of tensors as
follows. Let t1 be a tensor of contravariant order r1 and covariant order s1 and let
t2 be a tensor of contravariant order r2 and covariant order s2. We define a tensor
t1 ⊗ t2 of contravariant order r1 + r2 and covariant order s1 + s2 by

t1 ⊗ t2(α1, . . . , αr1+r2 , u1, . . . , . . . , us1+s2) =

t1(α1, . . . , αr1 , u1, . . . , us1) · t2(αr1+1, . . . , αr1+r2 , us1+1, . . . , us1+s2).

The set of r-contravariant, s-covariant tensors on V shall be denoted Trs(V ). The
set of all tensors on V will be denoted by T (V ) and they form a R-algebra with
the product given by ⊗.

Certain subsets of T (V ) will be of particular interest to us. In particular, we
mention that the set of contravariant tensors on an n-dimensional vector space
V is isomorphic to the non-commutative polynomials over R in n variables. The
isomorphism of these algebras is fixed by determining a basis for V . In particular,
if V = RX for an ordered set X of n elements, the isomorphism is natural. We
shall need these notions in Section 2.2.3 when we discuss free Lie algebras.

The set of skew-symmetric k-covariant (resp. k-contravariant) tensors on V
will be denoted by

∧k(V ∗) (resp.
∧k(V )). The set of all skew-symmetric covariant

(resp. contravariant) tensors is denoted by
∧
(V ∗) (resp.

∧
(V )). We shall call
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elements of
∧k(V ∗) k-forms on V and elements of

∧k(V ) k-multivectors on V .
Often

∧
(V ) is called the tensor algebra of V . We shall be performing similar

operations on
∧k(V ∗) as on

∧k(V ) so we shall present the specifics for
∧k(V ∗)

only.
On
∧k(V ∗) we may define a special product which preserves the skew-symmetry

of these tensors. This product is called the wedge product. To define it we first
define the alternation mapping on T0

k(V ) as follows:

At(u1, . . . , uk) =
1

k!

∑

σ∈Sk

(signσ)t(uσ(1), . . . , uσ(k)).

Here Sk is the permutation group on k symbols. Restricted to
∧k(V ∗), the map-

ping A is the identity. We now define the wedge product between α ∈ ∧k(V ∗)
and β ∈ ∧l(V ∗) by

α ∧ β =
(k + l)!

k!l!
A(α⊗ β).

It may be verified that α ∧ β ∈ ∧k+l(V ∗).

2.2 Lie algebras and symmetric algebras

When studying control systems in Chapter 3, we will need some basic notions
of Lie algebras. In particular, we will need the notion of a free Lie algebra and
generators for this Lie algebra. In Section 4.1 we will need the notion of what we
shall call a symmetric algebra.

2.2.1 Lie algebra definitions

We begin with introductory definitions concerning Lie algebras. We will consider
only objects over the field of real numbers although general definitions may be
made over a commutative ring with unit. The basic Lie algebra concepts are
from [Serre 1992].

A Lie algebra is an algebra, A, where the multiplication (usually denoted by
(u, v) 7→ [u, v]) has the following properties:

LA1. [u, u] = 0 for every u ∈ A, and

LA2. [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0 for all u, v, w ∈ A.

The condition LA2 is typically referred to as Jacobi’s identity. A subspace E ⊂ A
of a Lie algebra is called a Lie subalgebra if [u, v] ∈ E for every u, v ∈ E. A
map ϕ : A → A′ between Lie algebras is called a Lie algebra homomorphism if
ϕ([u, v]) = [ϕ(u), ϕ(v)] for each u, v ∈ A.

2.2.2 Free algebras

A magma is a set M with a map from M ×M to M . We shall use “·” to denote
this map. Thus the image of (m1,m2) under the magma map is m1 ·m2. If M and
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N are magmas, a map ϕ : M → N is called a magma morphism if ϕ(m1 ·m2) =
ϕ(m1) · ϕ(m2). If X is a set, we may generate the free magma on X as follows.
Define X1 = X and inductively define Xn =

∏
p+q=nXp ×Xq for n ≥ 2. The free

magma on X is the set

M(X) =

∞∏

n=1

Xn.

The map from M(X) ×M(X) to M(X) which makes this a magma is specified
by (m1,m2) 7→ m1 · m2 where m1 ∈ Xp, m2 ∈ Xq, and m1 · m2 ∈ Xp+q by the
inclusion of Xp ×Xq in Xp+q specified in the construction. The name free comes
from the fact that the image of the magma M(X) in another magma is uniquely
determined by the image of the set X ⊂ M(X). Note that any u ∈ M(X) \ X
may be uniquely written as u = v · w for some v, w ∈M(X). Also note that each
u ∈ M(X) is in Xn for some uniquely defined positive integer n. We shall call n
the length of u.

Now we define the free algebra associated with a set X. This R-algebra is
denoted A(X) and consists of all finite linear combinations

∑

m∈M(X)

amm

where am ∈ R. The product of two elements in A(X) is given by


 ∑

m∈M(X)

amm


 ·


 ∑

m∈M(X)

bmm


 =

∑

m1·m2∈M(X)

am1bm2m1 ·m2.

2.2.3 Free Lie algebras

To construct the free Lie algebra generated by X, let I be the two-sided ideal of
A(X) generated by elements of the form a · a and a · (b · c) + c · (a · b) + b · (c · a)
for a, b, c ∈ A(X). The free Lie algebra generated by X is the quotient algebra,
L(X) = A(X)/I. The inherited product on L(X) is typically denoted by [·, ·].
We denote by Br(X) the subset of L(X) containing products of elements in X.
This subset generates L(X) as a R-vector space. However, it is not a linearly
independent subset since, for example, [u, v] = −[v, u] for each u, v ∈ L(X). In
Section 2.2.4 we construct sets of generators which are contained in Br(X).

The set X is canonically included in the free vector space RX . In turn, RX in
canonically included in the tensor algebra T (RX). Therefore we have a canonical
inclusion of X in T (RX). This inclusion induces a magma morphism from L(X)
to T (RX) which is, in fact, an algebra homomorphism. Serre [1992] shows that the
image of L(X) under this homomorphism is the algebra of multivectors described
in Section 2.1.3. It may be shown that T (RX) is isomorphic to the universal
enveloping algebra of L(X).

We will need the notion of what we shall call the components of an element
u ∈ L(X). Every such element u has a unique decomposition as u = [u1, u2].
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In turn, each of u1 and u2 may be uniquely expressed as u1 = [u11, u12] and
u2 = [u21, u22]. This process may be continued until we end up with elements
whose lengths are one. All such elements ui1···im , ia ∈ {1, 2}, shall be called
components of u.

Of special interest to us is the case where the set X is finite. We shall denote
X = {X0, . . . , Xl} as a finite set with l+1 elements. In this case we develop some
extra notation. Let B ∈ Br(X). We define δa(B) to be the number of times the
element Xa occurs in B for a = 0, . . . , l. The degree of B is the sum the δa’s.

2.2.4 Generators for free Lie algebras

We will find it helpful to write down a generating set for L(X). It is possible to
determine linearly independent generating sets, called Philip Hall bases in the liter-
ature (see [Serre 1992]). However, we shall not need such sophisticated techniques
and it is good enough to just determine a generating set without the condition
that it be linearly independent.

We shall present two methods for determining generators for the free Lie algebra
L(X).

2.1 Proposition: Every element of L(X) is a linear combination of repeated brack-
ets of the form

[Xk, [Xk−1, [· · · , [X2, X1] · · · ]]] (2.1 )

where Xi ∈ X, i = 1, . . . , k.

Proof: Denote by L̄(X) the subspace of L(X) generated by brackets of the
form (2.1). It is clear that L̄(X) ⊂ L(X) by definition. Also, X ⊂ L̄(X). Thus, to
show that L̄(X) = L(X), we need only show that L̄(X) is a subalgebra of L(X)
since L(X) is the smallest subalgebra containing X. Note that k in (2.1) is the
degree of the expression. Now consider two such expressions of degree j and l,

U = [Uj , [Uj−1, [· · · , [U2, U1] · · · ]]] (2.2a)

V = [Vl, [Vl−1, [· · · , [V2, V1] · · · ]]]. (2.2b)

We shall prove by induction that [U, V ] ∈ L̄(X) for any j and l. Note that
[U, V ] ∈ L̄(X) for all V and l, and for j = 1. Now suppose this is true for
j = 1, . . . , k. Then, taking j = k + 1 in (2.2a), we have

[U, V ] = [[Uk+1, U
1], V ]

where U1 = [Uj−1, [· · · , [U2, U1] · · · ]]. By the Jacobi identity we have

[[Uk+1, U
1], V ] + [[V,Uk+1], U

1] + [[U1, V ], Uk+1] = 0.

This gives
[U, V ] = [U1, [V,Uk+1]] + [Uk+1, [U

1, V ]].

By the induction hypothesis, [U1, [Uk+1, V ]] ∈ L̄(X) since the degree of U1 is k.
Also [U1, V ] ∈ L̄(X) so the second term is in L̄(X). Thus L̄(X) is a subalgebra
and hence L̄(X) = L(X). ■
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Another method of constructing a generating set for L(X) is given by the
following proposition.

2.2 Proposition: For k ∈ Z+ define Lk(X) to be the subset of Br(X) given by all
brackets of the form (2.1). Then every element of L(X) is a linear combination
of repeated brackets of the form

[Zk, [Zk−1, [· · · , [Z2, Z1] · · · ]]] (2.3 )

where Zi ∈ Lj(X) with j ≤ i, i = 1, . . . , k.

Proof: It is clear that L̄(X) is a subset of the set of brackets given by (2.3). The
proposition then follows from Proposition 2.1. ■

2.2.5 Symmetric algebra definitions

As far as we know, the idea of a symmetric algebra does not appear in the literature.
However, the concept is a very natural one and shall be useful to us.

A symmetric algebra is an algebra, A, where the multiplication (which we shall
denote by (u, v) 7→ ⟨u : v⟩) is symmetric. Thus ⟨u : v⟩ = ⟨v : u⟩ for u, v ∈ A.
A map, ϕ : A → A′, between symmetric algebras is called a symmetric algebra
homomorphism if ϕ(⟨u : v⟩) = ⟨ϕ(u) : ϕ(v)⟩ for each u, v ∈ A.

2.2.6 Free symmetric algebras

In this section we construct a symmetric algebra which is generated by a given
set X. To construct this algebra, let X be a set and recall that A(X) is the free
algebra on X. The free symmetric algebra on X, denoted S(X), is the quotient
algebra obtained by taking the quotient of A(X) by the two-sided ideal generated
by all elements of the form a · b − b · a where a, b ∈ A(X). We shall denote the
product in S(X) by ⟨u : v⟩. Note that, by construction, ⟨u : v⟩ = ⟨v : u⟩ for every
u, v ∈ S(X). We denote by Pr(X) the subset of S(X) consisting of the symmetric
products whose elements are in X.

As with free Lie algebras, the finitely generated case is the most interesting to
us. Let Y = {X1, . . . , Xl+1} (the reason for the slightly unusual enumeration will
become clear in Section 4.1.7). For P ∈ Pr(Y ) define γa(P ) to be the number of
times the element Xa occurs in P ∈ Pr(Y ) for a = 1, . . . , l + 1. We shall call the
sum of the γa’s the degree of P .

2.3 Differential geometry

A basic understanding of differential geometry is assumed. In this section we first
quickly review the notation which will be used. Then we discuss some concepts
from fibre bundle theory which will be useful to us.

The manifolds we deal with in this dissertation will be assumed to belong to the
C∞ category. We shall further suppose that all manifolds are finite-dimensional,
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paracompact, and Hausdorff unless otherwise stated. For the most part, the no-
tation we use is from [Abraham, Marsden, and Ratiu 1988]. The tangent bundle
of a manifold M is denoted TM and the cotangent bundle by T ∗M . The tan-
gent bundle and cotangent bundle projections are denoted by τM : TM →M and
πM : T ∗M →M , respectively. If ϕ : M → N is a smooth mapping from a manifold
M to a manifold N , we will denote its derivative by Tϕ : TM → TN . The set
of all smooth mappings from M to N will be denoted C∞(M,N). We reserve
special notation for the case when N = R. In this case, C∞(M) denotes the set
of real-valued smooth functions on M .

The set of r-contravariant, s-covariant tensor fields onM is denoted by T r
s (M).

Elements of T 1
0 (M) are called vector fields on M and we shall denote the set of

vector fields on M by T (M). The set of vector fields forms a Lie algebra when
equipped with the Lie bracket which we shall denote by [·, ·] : T (M)× T (M) →
T (M). The skew-symmetric k-covariant tensors are also interesting and are given
the name k-forms. We shall denote the set of k-forms on M by Ωk(M). By
convention we take Ω0(M) = C∞(M). We denote by Ω(M) ≜ ⊕∞

k=0Ωk(M) the
entire exterior algebra on M . This is made an exterior algebra by the wedge
product which may be taken between any two elements of Ω(M). We denote the
wedge product of α, β ∈ Ω(M) by α∧ β. The exterior algebra of differential forms
also comes equipped with the exterior derivative which we denote by d. Recall
that the exterior derivative of a k-form is a (k + 1)-form. We say that a k-form α
is closed if dα = 0 and exact if α = dβ for some (k − 1)-form β. Given a vector
field X and a k-form α, the interior product of X and α is a (k − 1)-form which
we denote by X α.

Now we discuss some basic notions for fibre bundles. A fibre bundle is given
by a surjective submersion π : M → B which has the property of being locally
trivial. Thus, there exists a manifold F such that, for each point b ∈ B, there
exists a neighbourhood U of b and a diffeomorphism ϕ : π−1(U) → U × F . The
diffeomorphism ϕ must have the further property that π ◦ ϕ−1 | U = idU . The
vertical subbundle for a fibre bundle π : M → B is the subbundle of TM defined
by VM = ker (Tπ). We shall call a vector field on M vertical if it takes its values
in VM . In a similar manner we define the horizontal subbundle of T ∗M to be the
subbundleH∗M which annihilates VM . A one-form onM will be called horizontal
if it takes its values in H∗M .

A special class of fibre bundles are vector bundles whose fibres have a vector
space structure. A section of a vector bundle π : E → M is a map γ : M → E so
that π ◦ γ = idM . The set of sections of a vector bundle E will typically denoted
by E . If π : E → M is a vector bundle, then M can be naturally realised as a
submanifold of E by identifying m ∈ M with the zero vector in π−1(m). We will
denote this submanifold by Z(E) and call it the zero section of E. For each point
x ∈M , we denote by 0x the corresponding point in the zero section of E.
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2.4 Distributions and foliations

We will at times need to be fairly precise about some concepts from the theory of
(geometric) distributions. In this section we present the relevant concepts in some
detail.

2.4.1 Distributions

Here we present the basic definitions for distributions.

2.3 Definition: Let M be a differentiable manifold. A distribution on M is a
subbundle of TM . We shall call the dimension of D(x) over R the rank of D at
x. A distribution D is said to be involutive if [X,Y ] ∈ D for each X,Y ∈ D . A
function f ∈ C∞(M) is called an integral of D if df(x) ∈ D0(x) for each x ∈ M .
An integral manifold of D is a submanifold, N , of M so that TxN ⊂ D(x) for each
x ∈ N . A distribution is said to be integrable if, for each x ∈ M , there exists an
integral manifold N of D through x whose dimension is the same as the rank of D
at x. We shall call such a submanifold the maximal integral manifold through x. •
Frobenius’ Theorem asserts that involutivity and integrability of a distribution are
equivalent notions, at least locally.

We shall often ask that a distribution have constant rank by which we mean
that its rank be a function independent of x ∈M .

2.4.2 Distributions generated by a family of vector fields

A common way to arrive at a distribution is via a family of vector fields. A family
of vector fields on a differentiable manifold M is simply a subset V ⊂ T (M).
Given a family of vector fields V , we may define a distribution on M by

DV (x) = ⟨X(x) | X ∈ V ⟩R .

Since T (M) is a Lie algebra, we may ask for the smallest Lie subalgebra
of T (M) which contains a family of vector fields V . This will be the set of
vector fields on M generated by repeated Lie brackets of elements in V . It is
most convenient to describe this subalgebra using the ideas from free Lie algebras
presented in Section 2.2.3.

Let X be a set which is bijective to V . Thus each element of X is in 1–1
correspondence with a vector field in V . Recall that T (RX) is the tensor algebra
of the free vector space on X. Thus each element of T (RX) is an associative, but
not necessarily commutative, product of finite linear combinations of elements from
X. Denote by Diff C∞(M) the algebra of differential operators on C∞(M). Given
a bijection ϕ : X → V , we may define a R-algebra homomorphism from T (RX)
to Diff C∞(M) by “plugging in” the vector field ϕ(u) for the element u ∈ X in
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expressions in T (RX). The map is explicitly given by

Ev(ϕ) : T (RX) → T (M)

u1 ⊗ · · · ⊗ uk 7→ ϕ(u1) ◦ · · · ◦ ϕ(uk).

Since elements of L(X) may be regarded naturally as elements of T (RX), the map
Ev(ϕ) restricts to L(X) and so defines a Lie algebra homomorphism from L(X) to
T (M) where we think of T (M) as being the subset of those differential operators
which are derivations. Ev(ϕ) is onto T (M) when restricted to L(X).

The smallest Lie subalgebra of T (M) which contains V may now be stated in
a simple manner. It is simply the image of L(X) under the homomorphism Ev(ϕ).
We shall denote this subalgebra by Lie(V ) and call it the involutive closure of V .

For x ∈M we define the map Evx(ϕ) : T (RX) → TxM by

Evx(ϕ)(u) = (Ev(ϕ)(u))(x).

We shall say that V satisfies the Lie algebra rank condition (LARC) at x if
Evx(ϕ)(L(X)) = TxM .

It is often helpful to be able to compute generators for Lie(V ), so we shall
present two common ways of doing this. The first construction goes as follows.
Let V (0) = V and then iteratively define a sequence of families of vector fields by

V (i+1) = V (i) ∪ {[X,Y ] | X ∈ V and Y ∈ V (i)}.

First we show that this does indeed generate Lie(V ). The following result is proved
by Nijmeijer and van der Schaft [1990]. However, we have essentially proved this
result in Section 2.2.4.

2.4 Proposition: Every element of Lie(V ) is a linear combination of vector fields
of the form

[Zk, [Zk−1, [· · · , [Z2, Z1] · · · ]]]
where Zi ∈ V , i = 1, . . . , k.

Proof: Follows the same method as the proof of Proposition 2.1. ■

This shows that we may use our first iterative procedure to make a set of generators
for Lie(V ).

Now we present another method of producing a set of generators. This method
will enable us to make connections between Pfaffian modules and families of vector
fields in Section 2.5.2. In this construction we define V

(0)
= V and iteratively

define
V

(i+1)
= V

(i) ∪ {[X,Y ] | X,Y ∈ V (i)}.
We may show that this procedure also generates Lie(V ).

2.5 Proposition: Every element of Lie(V ) is a linear combination of repeated Lie
brackets of the form

[Zk, [Zk−1, [· · · , [Z2, Z1] · · · ]]]
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where Zi ∈ V
(i)
, i = 1, . . . , k.

Proof: Follows along the lines of the proof of Proposition 2.2. ■

This verifies that our two methods of constructing generators for Lie(V ) are equiv-
alent.

We may define a nested sequence of distributions

DV = D
(0)
V ⊃ · · · ⊃ D

(i)
V ⊃ · · ·

on M . If it is the case that each of these distributions is of constant rank, it is
then easy to see that this sequence of distributions must terminate at some finite

integer. We will denote the largest distribution generated in this way by D
(∞)
V .

We may think of this distribution as being the smallest integrable distribution on
M which contains DV .

In a similar manner we may construct a sequence of distributions

DV = D
(0)

V
⊃ · · · ⊃ D

(i)

V
· · ·

which, when each has constant rank, will terminate in a distribution which is

denoted by D
(∞)

V
. It is clear that D

(∞)
V = D

(∞)
V when both are defined.

We shall call a distribution D controllable if the sequence D
(0)
D ⊃ · · · ⊃ D

(i)
D ⊃

· · · terminates in a finite number of steps at TM . The following proposition
justifies this terminology.

2.6 Proposition: Let D be a controllable distribution on a connected manifold.
Then, for each x1, x2 ∈M , there exists a piecewise differentiable curve, c : [0, T ] →
M , so that c(0) = x1, c(T ) = x2, and c

′(t) ∈ D(c(t)) for each t ∈ [0, T ].

Proof: Let x ∈ M and let U be a sufficiently small neighbourhood of x. We shall
construct a sequence of submanifolds of U , N1, . . . , Nn where dim(Nj) = j. Since
rank(D(x)) ̸= 0 we may choose X1 ∈ D so that X1(x) ̸= 0. For ϵ1 > 0 sufficiently
small,

N1 ≜ {Xt1
1 (x) | 0 < t1 < ϵ1}

is a submanifold of M of dimension 1 which is contained in U . Here Xt1
1 is the

flow of X1. We now construct Nj for j > 1 by induction. Suppose that Nj−1 ⊂ U
is given by

Nj−1 = {Xtj−1

j−1
◦ · · · ◦Xt1

1 (x) | 0 ≤ σi < ti < ϵi, i = 1, . . . , j − 1}.

Here Xi, i = 1, . . . , j − 1 are vector fields in D and
∑j−1

i=1 σi is sufficiently small.
If j − 1 < n we may find Xj ∈ D and x′ ∈ Nj−1 so that Xj(x

′) ̸∈ Tx′Nj−1. If this

were not possible then this would violate the assumption that rank(D
(∞)
D ) = n in

U . For the same reason we may choose x′ as close to x as we like. Thus the map

(tj , . . . , t1) 7→ X
tj
j

◦X
tj−1

j−1
◦ · · · ◦Xt1

1 (x)
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has rank j for 0 ≤ σi < ti < ϵi for i = 1, . . . , j. Therefore, the image of this map
is a j-dimensional submanifold of W for ϵi sufficiently small. We may continue
this process until n = j at which time it will terminate. Observe that Nn is a
non-empty open subset of M and all points in Nn are reachable from x.

Now note that if X ∈ D then −X ∈ D . For (s1, . . . , sn) which satisfy the
relation σi < si < ϵi, i = 1, . . . , n, consider the map

(tn, . . . , tn) 7→ (−X1)
s1 ◦ · · · ◦ (−Xn)

sn ◦Xtn
n ◦X

tn−1

n−1
◦ · · · ◦Xt1

1 (x).

Since (−Xi)
si = X−si

i , the image of this map must contain a neighbourhood of x
since x is clearly in the interior of the image. Thus we have shown that we may
reach a neighbourhood of x from x.

Let R(x) be the set of points reachable from x. This set is open by our above
calculations. Now suppose that R(x) ⊊M and let y be a point on the boundary of
R(x). Clearly R(y) contains a neighbourhood of y. Hence R(y) ∩R(x) ̸= ∅ which
contradicts y being a boundary point for R(x). This completes the proof. ■

2.4.3 Foliations

Related to integrable distributions are foliations. Without getting too involved
with the technical definition, a foliation, F , of a differentiable manifold M is
a collection of disjoint immersed submanifolds of M whose disjoint union equals
M . We call each connected submanifold of F a leaf of the foliation. Given
an integrable distribution D, the collection of maximal integral manifolds for D
defines a foliation of M . We shall denote this foliation by FD.

A foliation, F , of M defines an equivalence relation on M whereby two points
inM are equivalent if they lie in the same leaf of F . The set of equivalence classes
is denoted M/F and will be called the leaf space of F . A foliation F is said to
be simple if M/F inherits a manifold structure so that the projection from M to
M/F is a surjective submersion.

2.5 Exterior differential systems

When we discuss our formulations for mechanical systems, we shall call on the
tools of exterior differential systems. A discussion of these techniques may be
found in [Bryant, Chern, Gardner, Goldschmidt, and Griffiths 1991].

2.5.1 Pfaffian modules

We shall be interested primarily in particular types of exterior differential systems,
namely those which are generated by Pfaffian modules. In this situation one is
interested in a submodule of T ∗(M). We do not deal with Pfaffian systems since
these do not naturally arise in the applications we encounter.
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2.7 Definition: Let M be a differentiable manifold. A Pfaffian module on M is a
submodule, I , of T ∗(M). We denote by {I } the subset of Ω(M) given by

{I } =

{
ω ∈ Ω(M) | ω =

k∑

i=1

αi ∧ θi for α1, . . . , αk ∈ I and θ1, . . . , θk ∈ Ω(M)

}
.

We shall call {I } the algebraic ideal corresponding to I . We denote by I the
smallest submodule of Ω(M) containing I which is closed under exterior differ-
entiation. We will call I the differential ideal corresponding to I . •
Given a Pfaffian module I , we may define a subbundle of T ∗M , or a codistribution
on M , by

I(x) = ⟨α(x) | α ∈ I ⟩R .
It may be shown that I is the algebraic ideal generated by the set {α,dα | α ∈ I }.
We will denote by I(x) the algebraic ideal of

∧
(T ∗
xM) generated by {α(x),dα(x) |

α ∈ I }. It is the differential ideal I that is the actual exterior differential system.
Since we are dealing with the particular case of Pfaffian modules, things simplify
somewhat.

Now we turn to defining integral manifolds of a Pfaffian module.

2.8 Definition: Let I be a Pfaffian module onM . A submanifoldN ofM is called
an integral manifold of I if TxN ⊂ I(x)⊥ for every x ∈ N . A curve c : I → M is
called an integral curve of I if c′(t) ∈ I(c(t))⊥ for every t ∈ I. •

Corresponding to a Pfaffian module I , we have a distribution,D, onM defined
by D(x) = I(x)⊥. Thus we may speak of integrability of Pfaffian modules.

2.9 Definition: Let I be a Pfaffian module onM and let D be the corresponding
distribution on M . We say that I is integrable if D is integrable. •

For ω1, ω2 ∈ Ω(M), we say that ω1 ≡ ω2modI if ω1 − ω2 ∈ {I }.

2.5.2 The derived flag for a Pfaffian module

Now we turn to the derived flag which will be an important tool when we discuss
control theory. Denote I (0) ≜ I , and define

I (1) = {ω ∈ I | dω ≡ 0modI }.

In this way we can inductively define a sequence of Pfaffian modules, called the
derived flag, denoted

I = I (0) ⊃ · · ·I (i) ⊃ · · · .
If I (i) is the set of sections of a constant rank subbundle, I(i) ⊂ T ∗M , for each i,
then the sequence can be shown to terminate for some integer N called the derived
length. We may think of I(N) as the smallest integrable codistribution contained in
I. We shall call I (i) the ith derived system, and we denote by I (∞) the Pfaffian
module which generates the smallest integrable codistribution when this is defined.
We call I (∞) the bottom derived system.
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The following result makes connections with the sequences of families of vector
fields considered in Section 2.4.2.

2.10 Lemma: Let I be a Pfaffian module on M and let D = I⊥ be the cor-
responding distribution on M . Then D is controllable if and only if the bottom
derived system of I is zero.

Proof: By Proposition 2.6 the lemma will be proved if we can show that

(D + [D ,D ])0 = {ω ∈ I | dω = 0modI }.
Suppose that β ∈ (D + [D ,D ])0. Then

β([X,Y ] + Z) = 0 ∀ X,Y, Z ∈ D
=⇒ β([X,Y ]) + β(Z) = 0 ∀ X,Y, Z ∈ D
=⇒ β([X,Y ]) = 0 ∀ X,Y ∈ D .

Now we use the formula

dβ(X,Y ) = X · β(Y )− Y · β(X) + β([X,Y ])

for X,Y ∈ T (M). If we choose X,Y ∈ D we obtain

β ∈ (D + [D ,D ])0 ∀ X,Y ∈ D =⇒ dβ(X,Y ) = 0 ∀ X,Y ∈ D .

Now choose a basis, {ω1, . . . , ωk, ωk+1, . . . , ωn}, for T ∗(M) over C∞(M) (perhaps
only locally) so that the first k elements form a basis for I . Then we have

dβ = Bijω
i ∧ ωj (2.4)

for some skew-symmetric matrix B. Now choose {ξ1, . . . , ξn} to be the basis for
T (M) over C∞(M) dual to the given basis for T ∗(M). Then we must have

dβ(ξl, ξl) = Bij(ω
i(ξl)ω

j(ξm)− ωi(ξm)ω
j(ξl)) = Blm −Bml = 0

for l,m = k + 1, . . . , n. Since B is skew-symmetric this means that Blm = 0 for
l,m = k + 1, . . . , n. Therefore, each term in the sum in (2.4) contains an element
of {ω1, . . . , ωk}. In other words dβ = 0modI .

Now suppose that β ∈ I is such that dβ = 0modI . Let {ω1, . . . , ωk} be a
basis for I over C∞(M). Then

dβ =
k∑

i=1

θi ∧ ωi

for some θ1, . . . , θk ∈ T ∗(M). Now let X,Y ∈ D . Then

dβ(X,Y ) = X · β(Y )− Y · β(X) + β([X,Y ]) = β([X,Y ]).

Since β ∈ I we obtain

β([X,Y ] + Z) = 0 ∀ X,Y, Z ∈ D .
This completes the proof of the lemma. ■
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2.5.3 Pfaffian modules with independence condition

We shall need the notion of an independence condition to formulate mechanical
systems in the language of exterior differential systems.

2.11 Definition: A Pfaffian module with independence condition on M is a pair,
(I , [ω]), where I is a Pfaffian module and [ω] is an equivalence class of l-forms
on M such that

(i) ω and ω′ are equivalent if ω ≡ ω′modI ,

(ii) locally we may write any representative in [ω] as

ω = ω1 ∧ · · · ∧ ωl

for one-forms ω1, . . . , ωl, and

(iii) ω(x) ̸∈ I(x) for all x ∈M . •
We will be interested in integral manifolds of Pfaffian modules with independence
conditions.

2.12 Definition: Let (I , [ω]) be a Pfaffian module with independence condition
on M . We say that an l-dimensional submanifold, N , of M is an integral manifold
of (I , [ω]) if N is an integral manifold of I and if ω restricted to N is nowhere
zero. •

2.6 Some constructions with differential two-forms

In this section we give two constructions which may be applied to a given two-form
on a manifold M . One construction determines a distribution on M and the other
determines a Pfaffian module on M .

If Ω ∈ Ω2(M) we define the characteristic distribution corresponding to Ω by

DΩ(x) ≜ {v ∈ TxM | Ω(u, v) = 0 for all u ∈ TxM}.

We now may state a result.

2.13 Lemma: Let Ω ∈ Ω2(M) be given by

Ω =
r∑

i=1

αi ∧ βi

where {α1, . . . , αr, β1, . . . , βr} is linearly independent. Then v ∈ DΩ(x) if and only
if v is annihilated by the Pfaffian module generated by

{α1, . . . , αr, β1, . . . , βr}.

Proof: Let I be the Pfaffian module generated by {α1, . . . , αr, β1, . . . , βr} and
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suppose that v ∈ DΩ(x). Then

0 = Ω(u, v) for all u ∈ TxM

=

r∑

i=1

αi ∧ βi(u, v) for all u ∈ TxM

=

r∑

i=1

(αi(u)βi(v)− αi(v)βi(u)) for all u ∈ TxM.

Since {α1, . . . , αr, β1, . . . , βr} is linearly independent, we may select u so that
αi(u) = 0 unless i = j when αj(u) = 1, and so that βi(u) = 0 for i = 1, . . . , r. In
this case we have βj(v) = 0. Similarly we may show that αj(v) = 0 for j = 1, . . . , r.
This shows that v is annihilated by I(x).

Now suppose that v ∈ TxM is annihilated by I. It is then clear by reversing
the above argument that v ∈ DΩ(x). This completes the proof of the lemma. ■

Note that if Ω is of constant rank r, then it is always possible to locally write it
as in the hypothesis of Lemma 2.13.

Now we define the Cartan system of a two-form Ω. This is the Pfaffian module
on M given by

CΩ = {X Ω | X ∈ T (M)}.
The following characterisation of the Cartan system follows in much the same way
as Lemma 2.13.

2.14 Lemma: Let Ω ∈ Ω2(M) be given by

Ω =

r∑

i=1

αi ∧ βi

where {α1, . . . , αr, β1, . . . , βr} is linearly independent. Then γ ∈ CΩ if and only if
γ is a linear combination over C∞(M) of elements of {α1, . . . , αr, β1, . . . , βr}.

2.7 Riemannian geometry

The subject of Riemannian geometry is a vast one and here we shall present only
that part of it which bears upon the subjects in mechanics which are of interest to
us. A detailed discussion of Riemannian geometry may be found in [Klingenberg
1995]. In Section 2.7.2 we introduce the notion of a symmetric family of vector
fields on a Riemannian manifold. This concept will be important for Lagrangian
control theory in Section 4.1.

2.7.1 Riemannian geometry definitions

A pseudo-Riemannian metric on a manifold M is a symmetric nondegenerate sec-
tion of T 0

2 (M). A pseudo-Riemannian metric is Riemannian if it is also positive-
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definite on each fibre. A Riemannian manifold is a pair, (M, g), whereM is a differ-
entiable manifold and g is a Riemannian metric onM . Given a pseudo-Riemannian
metric, we may define two isomorphisms of C∞(M) modules; ♯ : T ∗(M) → T (M)
and ♭ : T (M) → T ∗(M). The map ♭ is defined by

X♭ = {Y 7→ g(X,Y )}

and ♯ is its inverse. These isomorphisms are sometimes called the “musical iso-
morphisms.” In particular, if f is a function on Q, we define its gradient by
grad f = (df)♯.

A Riemannian manifold is endowed with an affine connection. In general an
affine connection is a map from T (M)×T (M) to T (M) denoted by ∇XY which
has the following properties:

1. It is R-linear in both X and Y , and

2. ∇fXY = f∇XY and ∇XfY = f∇XY + (LfX)Y for each f ∈ C∞(M).

We shall call ∇XY the covariant derivative of Y with respect to X. Given an affine
connection and a set of coordinates (x1, . . . , xn) for M , we define the Christoffel
symbols for the affine connection in these coordinates by

∇∂/∂xj

(
∂

∂xk

)
= Γijk

∂

∂xi
.

Given the properties of an affine connection, it may be easily verified that

∇XY =

(
∂Y i

∂xj
Xj + ΓijkX

jY k

)
∂

∂xi
.

Given a curve c : [0, T ] →M on M and X0 ∈ Tc(0)M , there is a unique vector field
X(t) along c with the property that ∇c′(t)X = 0. This then defines a map from
Tc(s)M to Tc(t)M for s, t ∈ [0, T ] which sends X(s) to X(t). This map is called
parallel translation.

If (M, g) is a Riemannian manifold, there exists a unique affine connection on
M with the properties that ∇XY − ∇YX = [X,Y ] and that parallel translation
with respect to this affine connection is an isometry. This affine connection is often
called the Levi-Civita connection. It may be verified that the Christoffel symbols
of the Levi-Civita connection are given by

Γijk =
1

2
gil
(
∂glj
∂qk

+
∂glk
∂qj

− ∂gjk
∂ql

)
.

A curve c : [0, T ] → M on a Riemannian manifold is said to be a geodesic if
∇c′(t)c

′(t) = 0. In local coordinates, a geodesic is given by the solution of the
following second-order differential equation:

ẍi + Γijkẋ
j ẋk = 0.
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This differential equation is, of course, the local representative of a vector field on
TM . This vector field is called the geodesic spray or simply the spray. We shall
denote it by Zg. In local coordinates

Zg = vi
∂

∂qi
− Γijkv

jvk
∂

∂vi
.

There are other topics in Riemannian geometry which are interesting in me-
chanics. In particular, the curvature of the Levi-Civita connection has important
dynamical consequences. See [Ong 1975] for some interesting results in this area.
We will not, however, find the curvature tensor necessary.

2.7.2 The symmetric algebra generated by a family of vector fields

We shall need the concept of a “symmetric subalgebra” of T (M) which is gen-
erated by a family of vector fields V ⊂ T (M). This construction relies on the
covariant derivative discussed in Section 2.7.1. We may make T (M) into a sym-
metric algebra by defining the symmetric product

⟨X : Y ⟩ = ∇XY +∇YX.

Let V be a family of vector fields onM and let X be a set which is bijective to
V with bijection ψ : X → V . As in Section 2.2.6, let S(X) be the free symmetric
algebra on X and let Pr(X) be the symmetric products with elements in X. We
may define a define a symmetric algebra homomorphism from S(X) to T (M) by
extending ψ in the natural way (i.e., ψ(⟨P1 : P1⟩) 7→ ⟨ψ(P1) : ψ(P2)⟩) to yield a
map from Pr(X) to T (M). This map may then be extended by R-linearity to
take values from S(X). We denote the resulting map from S(X) to T (M) by
Ev(ψ). We also define Evx(ψ)(P ) = (Ev(ψ)(P ))(x) for x ∈ M . We denote by
Sym(V ) the image of S(X) under this homomorphism.

2.8 Symplectic manifolds

When studying Hamiltonian mechanics, the basic mathematical tool is the sym-
plectic manifold. In this section we give the definition of a symplectic manifold as
well as a description of some symplectic concepts which shall be useful to us.

2.15 Definition: An almost symplectic manifold is a pair, (P,Ω), where P is a
differentiable manifold and Ω is a nondegenerate two-form on P . We shall say
that an almost symplectic manifold is symplectic if dΩ = 0. •

Now we turn to defining important distributions on symplectic manifolds. We
shall make the necessary rank assumptions so that all objects defined are subbun-
dles. Given a subbundle D, we define its skew-orthogonal complement by

Ω⊥D(p) = {v ∈ TpP | Ω(p)(v, u) = 0 ∀ u ∈ D(p)}.

We say that D is
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(i) isotropic if Ω⊥D ⊂ D,

(ii) coisotropic if D ⊂ Ω⊥D,

(iii) Lagrangian if D = Ω⊥D, and

(iv) symplectic if D ∩ Ω⊥D = {0}.

2.16 Remarks: 1. If the dimension of the manifold P is 2n, then all isotropic
subbundles have rank less than or equal to n, and all coisotropic subbundles
have rank greater than or equal to n.

2. By the above remark, a Lagrangian subbundle will have rank half the di-
mension of P .

3. The above definitions may be applied to submanifolds of P by placing the
requirements on the tangent spaces of the submanifold. •

Since the symplectic form Ω is nondegenerate, the map

X 7→ X Ω

from T (P ) to T ∗(P ) is an isomorphism. We denote this map by Ω♭ and denote its
inverse by Ω♯. Given a function f on P , we define the corresponding Hamiltonian
vector field by

Xf = Ω♯df.

It is well-known that Hamiltonian vector fields leave the symplectic form invariant.
That is to say, LXf

Ω = 0 for every f ∈ C∞(P ). Any vector field which has the
property of leaving the symplectic form invariant is called a locally Hamiltonian
vector field.

We define the Poisson bracket between two functions on P as follows:

{f, g} = Ω(Xf , Xg).

Some authors use a different sign for the Poisson bracket than the convention we
have chosen.

Now we gather some results which we shall need.

2.17 Lemma: Let (P,Ω) be a symplectic manifold and let {, } be the corresponding
Poisson bracket.

(i) Ω♯d{f, g} = −[Xf , Xg].

(ii) If D is an integrable distribution and f is an integral of D, Ω♯df is a section
of Ω⊥D.

Proof: (i) This is just a restatement of the identity X{f,g} = −[Xf , Xg].

(ii) We must show that Ω(Ω♯df,X) = 0 for all sections X of D. We have

Ω(Ω♯df,X) = df ·X.

Since f is an integral of D and X is a section of D, we get the result. ■
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2.9 Poisson manifolds

The concept of a Poisson manifold, (P, {, }), generalises a symplectic manifold by
retaining only the structure of a Poisson bracket between functions. Thus the map
{, } : C∞(P ) × C∞(P ) → C∞(P ) : (f, g) 7→ {f, g} is skew-symmetric, R-linear,
satisfies the Jacobi identity, and the map g 7→ {f, g} is a derivation on the R-
algebra C∞(P ). The Poisson bracket makes C∞(P ) into a R-Lie algebra.

2.18 Definition: Let (P, {, }P ) and (N, {, }N ) be Poisson manifolds. A map
ϕ : P → N is Poisson if {f, g}N ◦ ϕ = {f ◦ ϕ, g ◦ ϕ}P for all f, g ∈ C∞(N). A
vector field X on P is said to be a Poisson vector field if its flow defines a one-
parameter family of Poisson mappings. •
There is a useful infinitesimal condition for checking that a vector field is Poisson.

2.19 Lemma: Let (P, {, }) be a Poisson manifold and let X ∈ T (P ). Then X is
Poisson if and only if

LX{f, g} = {LXf, g}+ {f,LXg}. (2.5 )

Proof: Let Xt denote the flow of X. For t0 ∈ R and f, g ∈ C∞(P ) we have

d

dt
X∗

−t{X∗
t f,X

∗
t g}
∣∣∣
t=t0

= −X∗
−t0(LX{X∗

t0f,X
∗
t0g})+

X∗
−t0({LXX∗

t0f,X
∗
t0g) +X∗

−t0({X∗
t0f,LXX

∗
t0g).

If X is Poisson then the left hand side of the equation is zero, so (2.5) is true.
Conversely, if (2.5) holds, then the right hand side of the equation is zero and so
X is Poisson. ■

On Poisson manifolds it is possible to define analogues of Hamiltonian vector
fields. Given a differentiable function f on P , we define the Hamiltonian vector
field Xf by defining it as the derivation on C∞(P ) given by

Xf (g) = {g, f}.

The map f 7→ Xf is an anti-homomorphism from the Lie algebra C∞(P ) to the
Lie algebra T (P ). Sometimes one sees Hamiltonian vector fields defined to be
of opposite sign to the definition we have given. A Hamiltonian vector field is
Poisson, but the converse is not necessarily true.

On a Poisson manifold we have an associated section of the bundle T 2
0 (P )

of bivector fields on P . The following result is proved by Libermann and Marle
[1987].

2.20 Proposition: Let (P, {, }) be a Poisson manifold. Then there exists a differ-
entiable, skew-symmetric section Σ of T 2

0 (P ) with the property that

{f, g} = Σ(df,dg).

We shall call Σ the Poisson tensor for the given Poisson structure.
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Proof: We first show that {f, g} at a point p ∈ P depends only on the values of
df and dg at that point. First fix f . Then we have

{f, g}(p) = −dg(p) ·Xf (p).

Therefore, {f, g}(p) depends only on dg(p). Similarly we may show that {f, g}(p)
depends only upon df(p). Now note that the map f 7→ df(p) is a surjective map
from C∞(P ) to T ∗

pP . Also observe that, by definition, the map (f, g) 7→ {f, g}(p)
is skew-symmetric and bilinear. This all combines to exhibit the existence of
Σ(p) ∈ ∧2(TpP ) so that

{f, g}(p) = Σ(p)(df(p),dg(p)).

Differentiability of Σ follows from observing that, in a coordinate chart, the com-
ponents of Σ are the Poisson brackets of the coordinates. ■

In the sequel we shall refer to a Poisson manifold by its structure tensor and so
will write it as (P,Σ). The tensor field Σ allows us to define a bundle map, Σ♯,
from T ∗P to TP by

α 7→ {β 7→ Σ(α, β)}.
The image of T ∗P under Σ♯ defines a subset of TP which we shall call the char-
acteristic distribution of Σ. We shall denote this distribution by CΣ. We assume
that the dimension of the characteristic distribution is independent of p ∈ P . This
occurs exactly when the rank of Σ is independent of p.

2.21 Proposition: If the rank of the characteristic distribution is constant, then it
is an integrable distribution.

Idea of Proof: Note that CΣ(p) is generated by the set of all Hamiltonian vector
fields passing trough p. Since the bracket of two Hamiltonian vector fields is again
a Hamiltonian vector field, the distribution is integrable. ■

2.22 Remarks: 1. Proposition 2.21 is true in a more general sense even when
the rank of Σ is not constant [Libermann and Marle 1987].

2. Let C∗
Σ be the maximal subbundle of T ∗P with the property that Σ♯ | C∗

Σ

is a bijection onto CΣ. In this case we have an almost symplectic structure
on the leaves of CΣ (i.e., a two-form of maximal rank). In fact, this almost
symplectic structure can be shown to be symplectic. This defines a foliation
of P into symplectic manifolds. Furthermore, since the tangent spaces to
the symplectic leaves are generated by Hamiltonian vector fields, the integral
curves of Hamiltonian vector fields leave the leaves of the symplectic foliation
invariant. •

2.10 Jet bundles

We begin with some introductory definitions which we will be using to formulate
Lagrangian and Hamiltonian mechanics. The notation for jet bundles is from [Gol-
ubitsky and Guillemin 1973].
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2.10.1 The bundle of jets from R to M

We first need to say what we mean when two curves have the same derivative up
to some order at a point. Let c1 : [a, b] →M and c2 : [a, b] →M be two curves on
M so that c1(t) = c2(t) = x. Let (x1, . . . , xn) be a coordinate chart around x. We
shall say that c1 and c2 agree at order k at x if the kth time derivatives of the
components (x1(s), . . . , xn(s)) agree at s = t. It may be seen that this definition
of equivalence is independent of coordinate chart. If c1 and c2 agree at order k at
x we shall write

c
(k)
1 (t) = c

(k)
2 (t).

2.23 Definition: LetM be a differentiable manifold, let t ∈ R, and let c1, c2 : R →
M be curves onM such that c1(t) = c2(t) = x. We say that c1 and c2 are equivalent
to order m at t if

c
(k)
1 (t) = c

(k)
2 (t)

for k = 1, . . . ,m. We will write c1 ∼m c2 at t and denote the equivalence class by
[c1]m. We denote the set of all such equivalence classes by Jm(R,M)t,x. The set

Jm(R,M) ≜
◦⋃

(t,x)∈R×MJ
m(R,M)t,x

is called the set of m-jets from R to M . By definition we take J0(R,M) = R×M .
•

We will be interested in the sets of 1-jets and 2-jets for the most part. If (x1, . . . , xn)
is a coordinate chart for M , we have natural coordinates for J1(R,M) given by

(t, x1, . . . , xn, v1, . . . , vn).

Explicitly, if c : R → M maps t ∈ R to (x1, . . . , xn) ∈ M in coordinates, then [c]1
in natural coordinates for J1(R,M) is given by

[c]1 =

(
t, x1, . . . , xn, v1 =

dx1

ds
(t), . . . , vn =

dxn

ds
(t)

)
.

In a similar manner we have coordinates

(t, x1, . . . , xn, v1, . . . , vn, a1, . . . , an)

for J2(R,M). Explicitly, if c : R → M maps t ∈ R to (x1, . . . , xn) ∈ M in
coordinates, then [c]2 in natural coordinates for J2(R,M) is given by

[c]2 =
(
t, x1, . . . , xn, v1 =

dx1

ds
(t), . . . , vn =

dxn

ds
(t),

a1 =
d2x1

ds2
(t), . . . , an =

d2xn

ds2
(t)
)
.
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Elements of J1(R,M) and J2(R,M) transform in natural coordinates in specific
ways according to the change of coordinates on M . To be specific, if (X1, . . . , Xn)
are coordinates for M different than (x1, . . . , xn), we have, with the obvious nota-
tion,

V i =
∂Xi

∂xj
vj ,

Ai =
∂Xi

∂xj
aj +

∂2Xi

∂xj∂xk
vjvk.

The fact that the accelerations do not transform linearly is a reflection of the fact
that the 2-jets form an affine bundle over the 1-jets. This is discussed by Gold-
schmidt [1967].

We now define a family of projections from “higher” jet bundles to “lower” jet
bundles. For l < m there is a canonical projection, τm,l : J

m(R,M) → J l(R,M),
which “forgets” the higher order of equivalence. We also define projections
ρm : Jm(R,M) → M by ρm ≜ pr2 ◦ τm,0 where pr2 : R × M → M is the pro-
jection onto the second factor. Note that in natural coordinates for J1(R,M) we
have

ρ1(t, x
1, . . . , xn, v1, . . . , vn) = (x1, . . . , xn)

and in natural coordinates for J2(R,M) we have

ρ2(t, x
1, . . . , xn, v1, . . . , vn, a1, . . . , an) = (x1, . . . , xn).

If c : R → M is a map, jmc : R → Jm(R,M) will denote the map which assigns
to t the equivalence class [c]m ∈ Jm(R,M)t,c(t). If the map c is given by

s 7→ (x1(s), . . . , xn(s)),

then the map j1c is given by

j1c(t) =

(
t, x1(t), . . . , xn(t),

dx1

ds
(t), . . . ,

dxn

ds
(t)

)

and the map j2c is given by

j2c(t) =

(
t, x1(t), . . . , xn(t),

dx1

ds
(t), . . . ,

dxn

ds
(t),

d2x1

ds2
(t), . . . ,

d2xn

ds2
(t)

)
.

For each t ∈ R and x ∈ M we have a canonical identification of TxM with
J1(R,M)t,x. We will implicitly utilise this identification at times.

Note that there is an intrinsically defined function, τ , on Jm(R,M) defined by
τ([c]m) = t if [c] ∈ Jm(R,M)t,x. We shall use the notation dt ≜ dτ .

Note on Notation: It is common to see natural coordinates for J1(R,M) written
as

(t, x1, . . . , xn, ẋ1, . . . , ẋn).
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We will stick to using v’s instead of ẋ’s unless there is a specific curve on M which
we are considering and so we wish to think of vi as dxi/dt. In this case we will
use ẋi. Similar remarks hold for using ai as opposed to using ẍi. •

2.10.2 The bundle of jets from M to R

In this case we will only be interested in first order equivalence.

2.24 Definition: Let M be a differentiable manifold, let x ∈ M , and let
f1, f2 : M → R be two functions on M such that f1(x) = f2(x) = t. We say
that f1 and f2 are equivalent at x ∈M if df1(x) = df2(x). We will write f1 ∼1 f2
at x and denote the equivalence class by [f1]. We denote the set of all such equiv-
alence classes by J1(M,R)x,t. The set

J1(M,R) ≜
◦⋃

(x,t)∈M×RJ
1(M,R)x,t

is called the set of one-jets from M to R. •
If (x1, . . . , xn) is a coordinate chart for M , we have an associated set of natural
coordinates for J1(M,R) given by

(x1, . . . , xn, p1, . . . , pn, t).

Explicitly, if f : M → R maps (x1, . . . , xn) ∈ M to t ∈ R in coordinates, then [f ]
in natural coordinates for J1(M,R) is given by

[f ] =

(
x1, . . . , xn, p1 =

∂f

∂x1
(x), . . . , pn =

∂f

∂xn
(x), t

)
.

The map π1,0 : J
1(M,R) → M × R will denote the projection defined as follows:

Let [f ] ∈ J1(M,R) and let x ∈ M and t ∈ R be such that [f ] ∈ J1(M,R)x,t. We
let π1,0([f ]) = (x, t). In natural coordinates for J1(M,R) we have

π1,0(x
1, . . . , xn, p1, . . . , pn, t) = (x1, . . . , xn, t).

We may also define the projection ρ∗1 : J
1(M,R) → M by ρ∗1 = pr1 ◦ π1,0 where

pr1 : M ×R →M is projection onto the first factor. If f is a function on M then
j1f : M → J1(M,R) will denote the map which assigns to x the equivalence class
[f ] ∈ J1(M,R)x,f(x). In coordinates, the map j1f is given by

j1f(x1, . . . , xn) =

(
x1, . . . , xn,

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x), f(x)

)
.

For each x ∈ M and each t ∈ R we have a canonical identification of T ∗
xM with

J1(M,R)x,t. This identification will be used implicitly below.
There is a canonical projection of J1(M,R) onto T ∗M which “forgets” the

value of the function f in the equivalence class [f ] ∈ J1(M,R). We shall call this
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projection pQ. In natural coordinates we have

pQ(x
1, . . . , xn, p1, . . . , pn, t) = (x1, . . . , xn, p1, . . . , pn).

As with Jm(R,M) we may define the one-form dt on J1(M,R).
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Chapter 3

Nonlinear control theory

In this chapter we review some well-known results for general (i.e., not necessar-
ily mechanical) control systems. Since our results for mechanical systems require
much familiarity with these concepts, they are presented in some detail so that
the reader may refer to them as needed. We also wish to develop the well-known
results in the language of exterior differential systems. In Chapter 5 we shall for-
mulate mechanics in the presence of external forces in terms of exterior differential
systems. It is our opinion that these methods will be useful for future develop-
ments in mechanical control systems. Therefore, the results we present here for
using exterior differential systems in nonlinear control theory may prove to have
some significance in any further work we do in the arena of control of mechanical
systems.

The control system we consider has state space M , a smooth n-dimensional
manifold, and is affine in the controls. Thus it has the form

ẋ = X(x) + uaYa(x) (3.1)

where X,Y1, . . . , Ym are vector fields on M . The vector field X is called the drift
vector field and the vector fields Y1, . . . , Ym are called the control vector fields. For
the purpose of notation, we will denote by Σ the control system defined by the
manifoldM and the vector fields X,Y1, . . . , Ym. To fully specify the control system
properly, one should also specify the type of control actions to be considered. In
this dissertation we consider our controls to be taken from the set

U = {u : R → Rm | u is piecewise constant}.

It is mentioned by Sontag [1998] that this class of controls is sufficient to deal with
all analytic control systems. More generally, one may wish to consider measurable
functions which take their values in a subset of Rm.

We point out that, given a control system of the form (3.1), it is possible to
define a family of vector fields on M by

VΣ = {X + uaYa | u ∈ Rm}.

31
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We shall be using ideas about families of vector fields from Section 2.4.2. We shall
also be using the related ideas from Pfaffian modules from Section 2.5.
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3.1 Nonlinear controllability via distributions

In this section we begin our review of nonlinear controllability by defining the
appropriate notions of accessibility and giving tests for these in terms of distri-
butions. When the system is not accessible, there is a local splitting of the state
space. Most of what we say in this section is extracted from [Nijmeijer and van
der Schaft 1990].

3.1.1 Definitions

Let us review the definitions for local accessibility and strong local accessibility. A
solution of (3.1) is a pair, (c, u), where c : [0, T ] →M is a piecewise smooth curve
on M and u ∈ U such that

c′(t) = X(c(t)) + ua(t)Ya(c(t))

for each t ∈ [0, T ]. For x0 ∈M , a neighbourhood V of x0, and T > 0 denote

RV (x0, T ) = {x ∈M | there exists a solution (c, u) of (3.1)

such that c(0) = x0, c(t) ∈ V for t ∈ [0, T ], and c(T ) = x}

and denote
RV (x0,≤ T ) =

⋃

0≤t≤T
RV (x0, t).

Now we can define the versions of controllability.
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3.1 Definition: The system (3.1) is locally accessible from x0 if there exists T > 0
so that RV (x0,≤ t) contains a non-empty open set of M for all neighbourhoods
V of x0 and all 0 < t ≤ T . If this holds for any x0 ∈ M then the system is called
locally accessible.

The system (3.1) is strongly locally accessible from x0 if there exists T > 0 so
that RV (x0, t) contains a non-empty open set of M for all neighbourhoods V of x0
and all 0 < t ≤ T . If this holds for any x0 ∈ M then the system is called strongly
locally accessible. •

3.1.2 The associated distributions

Now we define the necessary distributions. We begin with the accessibility distri-
bution.

3.2 Definition: The accessibility algebra, C , corresponding to (3.1) is the smallest
subalgebra of T (M) which contains X,Y1, . . . , Ym. The accessibility distribution,
C, is the distribution on M defined by

C(x) = ⟨{Z(x) | Z ∈ C }⟩R . •

This distribution may be computed, for example, by using the methods described
in Section 2.4.2.

Now we turn to the strong accessibility distribution.

3.3 Definition: The strong accessibility algebra, C0, corresponding to (3.1) is the
smallest subalgebra of T (M) which contains Y1, . . . , Ym and for which [X,Z] ∈ C0

for all Z ∈ C0. The strong accessibility distribution, C0, is the distribution on M
defined by

C0(x) = ⟨{Z(x) | Z ∈ C0}⟩R . •
We have the following result which describes the form of the strong accessibility
algebra.

3.4 Proposition: Every element of C0 is a linear combination of vector fields of
the form

[Zk, [Zk−1, [· · · , [Z1, Ya] · · · ]]]
for a = 1, . . . ,m and where Zi ∈ {X,Y1, . . . , Ym}, i = 1, . . . , k.

Proof: The proof of this proposition mirrors that of Proposition 2.1. ■

The accessibility distribution and the strong accessibility distribution are related.

3.5 Lemma: Let x ∈M . Then C(x) = C0(x) + ⟨X(x)⟩R.

Proof: Let Z ∈ C0. By Propositions 2.4 and 3.4 we clearly have Z+X ∈ C . Thus
C0(x) + ⟨X(x)⟩R ⊂ C(x). Now suppose that Z ∈ C . Then Z may have the form

Z = [Zk, [Zk−1, [· · · , [Z1, Ya] · · · ]]]
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for a = 1, . . . ,m and where Zi ∈ {X,Y1, . . . , Ym}, i = 1, . . . , k. In this case
Z ∈ C0. It is also possible that Z = X in which case Z(x) ∈ ⟨X(x)⟩R . Thus
C(x) ⊂ C0(x) + ⟨X(x)⟩R which completes the proof of the lemma. ■

3.1.3 Controllability tests using distributions

Since the distributions C and C0 have names associated to them which indicate
that they have something to do with accessibility, we need to make this association
clear. The results in this section are from [Nijmeijer and van der Schaft 1990].

3.6 Proposition: For the system (3.1) suppose that rank(C(x0)) = n. Then, for
any neighbourhood V of x0 and T > 0, the set RV (x0,≤ T ) contains a non-empty
open subset of M .

Proof: By continuity, there is a neighbourhood U of x0 so that rank(C) = n in U .
We may construct a sequence of submanifolds of U , N1, . . . , Nn where dim(Nj) = j,
exactly as we did in the proof of Proposition 2.6. Just as was the case in that proof,
Nn is a non-empty open subset of M and all points in Nn are reachable from x0.
This proves the proposition. ■

3.7 Remark: By Proposition 2.6 we can see that if X = 0 (i.e., the system is
driftless) then local accessibility implies controllability. Thus driftless systems have
much more structure than do their counterparts with drift. However, it is not true
that controllability is not in general possible for systems with drift. Indeed, linear
systems are controllable if they are locally accessible. We will speak more about
controllability for nonlinear systems in Section 3.4. •
Now we prove what amounts to the converse of Proposition 3.6.

3.8 Proposition: If the system (3.1) is locally accessible then rank(C(x)) = n for
x in an open dense subset of M .

Proof: First note that if rank(C(x0)) = n then rank(C(x)) = n for x in a neigh-
bourhood of x0. Thus the set of points where rank(C(x)) = n is open in M . Now
suppose that rank(C(x)) < n for x in some open subset, U , of M . Then there
exists an open subset, Ū , of U so that rank(C(x)) = k < n for all x ∈ Ū . How-
ever, this contradicts local accessibility by Proposition 3.12. Therefore, there can
be no open subset of M on which rank(C) < n and so the set of points x where
rank(C(x)) = n must be dense. ■

Now we prove the analogous results for the strong accessibility distribution.

3.9 Proposition: Consider the system (3.1). Suppose that rank(C0(x0)) = n.
Then, for any neighbourhood V of x0 and any T > 0, the set RV (x0, T ) con-
tains a non-empty open subset of M .

Proof: Let us extend the system (3.1) to R ×M to obtain the system

ṡ = 1

ẋ = X(x) + uaYa(x).
(3.2)
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This is a control system on R ×M with drift vector field X̃ = X + ∂
∂s and with

control vector fields Ỹa = Ya for a = 1, . . . ,m. Since T (R ×M) ≃ TR × TM we
shall identify a vector field on M with a vector field on R ×M .

Denote by C̃ and C̃0 the accessibility and strong accessibility distributions
corresponding to the extended system (3.2). We have the following lemma.

3.10 Lemma: C̃(x0, t0) = C0(x0) + ⟨X(x0) +
∂
∂s⟩R.

Proof: Note that by Lemma 3.5 we have

C̃0(x0, t0) = C̃(x0, t0) + ⟨X(x0) +
∂
∂s⟩R .

A typical element of C̃0(x0, t0) has the form

[Z̃k, [Z̃k−1, [· · · , [Z̃1, Ỹa] · · · ]]], a = 1, . . . ,m

for Z̃i ∈ {X̃, Ỹ1, . . . , Ỹm}, i = 1, . . . , k. However, since [ ∂∂s , X] = 0 and [ ∂∂s , Ya] = 0
for a = 1, . . . ,m, we have

[Z̃k, [Z̃k−1, [· · · , [Z̃1, Ỹa] · · · ]]] = [Zk, [Zk−1, [· · · , [Z1, Ya] · · · ]]], a = 1, . . . ,m

for Zi ∈ {X,Y1, . . . , Ym}, i = 1, . . . , k. This proves that C̃0(x0, t0) = C0(x0). ▼

From the lemma and the assumption that rank(C0(x0)) = n, we have

rank(C̃(x0, 0)) = rank(C0(x0)) + 1 = n+ 1.

This implies that (3.2) is locally accessible at (x0, 0). Thus, for any neighbourhood

V of x0 and any T > 0, RṼ ((x0, 0),≤ T ) contains a non-empty open subset of
R×M where Ṽ = (−ϵ, T + ϵ)×V for some ϵ > 0. Thus there is a non-empty open

subsetW ofM and an interval (a, b) ⊂ (0, T ] so that (a, b)×W ⊂ RṼ ((x0, 0),≤ T ).
Therefore, for any τ ∈ (a, b) we have

{τ} ×W ⊂ RṼ ((x0, 0),≤ T ).

From this we may conclude that W ⊂ RV (x0, τ). See Figure 3.1. Now let u be an
admissible input with Z = X + uaYa the corresponding vector field on M . Then
the map x 7→ ZT−τ (x) maps W onto an open subset W̃ ⊂ RU (x0, T ) for some
neighbourhood U of x0. If we choose T small enough, W̃ ∩RV (x0, T ) will contain
a non-empty open subset of M and so (3.1) is strongly locally accessible. ■

The converse of this is the following result.

3.11 Proposition: If the system (3.1) is strongly locally accessible then
rank(C0(x)) = n for x in an open dense subset of M .

Proof: The proof goes like the proof of Proposition 3.8. ■

3.1.4 Local decompositions

Corresponding to both the accessibility distribution and the strong accessibility
distribution there are useful decompositions of the state space. Indeed, the follow-
ing two results are proven by Nijmeijer and van der Schaft [1990]. First we present
the result for local accessibility.
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RṼ ((x0, 0), T )

Figure 3.1. Schematic for strong local accessibility proof

3.12 Proposition: Suppose that C has constant rank k in a neighbourhood of x0 ∈
M . Then there exists a coordinate chart, (U, ϕ), about x0 such that the submanifold

Sx0 = {x ∈ U | xi(x) = xi(x0), i = k + 1, . . . , n}

is an integral manifold of C. Then, for any neighbourhood V ⊂ U of x0 and for
all T > 0, RV (x0,≤ T ) is contained in Sx0. Furthermore, RV (x0,≤ T ) contains
a non-empty open set of the integral manifold Sx0. Hence the system restricted to
Sx0 is locally accessible.

Proof: Since C contains X,Y1, . . . , Ym, we may restrict the system to Sx0 . The
restricted system is locally accessible by Proposition 3.6 since dim(Sx0) = rank(C |
Sx0). ■

The analogous result for strong local accessibility is given in the following propo-
sition.

3.13 Proposition: Suppose that C0 has constant rank k in a neighbourhood of
x0 ∈ M . Then there exists a coordinate chart, (U, ϕ), about x0 such that the
submanifolds

S = {x ∈ U | xi(x) = ai, i = k + 1, . . . , n}
for |ai| < ϵ are integral manifolds of C0 and such that the integral manifold through
x0 is

Sx0 = {x ∈ U | xi(x) = 0, i = k + 1, . . . , n}.
There are now two possibilities:
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(i) If X(x0) ∈ C0(x0), then X(x) ∈ C0(x) for all x ∈ Sx0 and RU (x0, T ) ⊂ Sx0
for all T > 0. In this case, the system restricted to Sx0 is locally strongly
accessible.

(ii) If X(x0) ̸∈ C0(x0), then, by continuity, X(x) ̸∈ C0(x) for all x ∈ Ũ for
some neighbourhood Ũ ⊂ U of x0, and rank(C(x)) = rank(C0(x)) + 1 for
all x ∈ Ũ . In this case we may choose coordinates x̄k+1, . . . , x̄n on Ũ so that

Sx0 = {x ∈ Ũ | x̄k+1(x) = · · · = x̄n(x) = 0},

and, if we let

STx0 = {x ∈ Ũ | x̄k+1(x) = T, x̄k+2(x) = · · · = x̄n(x) = 0},

then RŨ (x0, T ) is contained in STx0 for any T > 0 and, moreover, RŨ (x0, T )
contains a non-empty open subset of STx0 for any T > 0 sufficiently small.

Proof: Recall that [X,Z] ∈ C0 for Z ∈ C0. By Frobenius’ Theorem we may
choose coordinates (x1, . . . , xk, xk+1, . . . , xn) so that the leaves of C0 are given by
xk+1 = · · · = xn = constant . Note that

C0(x0) = ⟨ ∂

∂x1
, . . . ,

∂

∂xk
⟩R .

For i = 1, . . . , n we have [
X,

∂

∂xi

]
= −∂X

j

∂xi
∂

∂xj
.

If we evaluate this for i = 1, . . . , k we obtain

∂Xi

∂xj
= 0, i = k + 1, . . . , n, j = 1, . . . , k. (3.3)

(i) Now suppose that X(x0) ∈ C0(x0). From (3.3) we see that X(x) ∈ C0(x)
for all x ∈ Sx0 . Thus (3.1) leaves Sx0 invariant and, if we apply Proposition 3.9 to
the restricted system, we see that it is strongly locally accessible.

(ii) Now suppose that X(x0) ̸∈ C0(x0). By continuity X(x) ̸∈ C0(x) for x ∈
Ũ ⊂ U . Using the local coordinates (x1, . . . , xk, xk+1, . . . , xn), we may define a
vector field on Rn−k by

X̄(xk+1, . . . , xn) =

n∑

i=k+1

Xi(xk+1, . . . , xn)
∂

∂xi
.

Since this vector field is not zero on Ũ , we may make a change of coordinates from
(xk+1, . . . , xn) to (x̄k+1, . . . , x̄n) so that

X̄(x̄k+1, . . . , x̄n) =
∂

∂x̄k + 1
.

It is now clear that RŨ (x0, T ) ⊂ STx0 . To prove that RŨ (x0, T ) is non-empty
and open in STx0 , we may proceed as in Proposition 3.9 since the system in the
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coordinates (x1, . . . , xk, x̄k+1, . . . , x̄n) is essentially the same (the same plus trivial
dynamics) as the system (3.2). ■

3.14 Remarks: 1. Strong local accessibility always implies local accessibility.

2. In Proposition 3.13(i) we see that in the case when rank(C) = rank(C0),
local accessibility implies strong local accessibility.

3. In Proposition 3.13(ii) we see that we may locally regard the leaves of the
accessibility distribution as the leaves of the strong accessibility distribution
“cross” time. •

3.2 Nonlinear controllability via exterior differential
systems

In this section we cast the results of Section 3.1 in the language of exterior dif-
ferential systems. This gives us a taste of how we may use the derived flag to
say things about nonlinear controllability. For background on exterior differential
systems see Section 2.5 and [Bryant, Chern, Gardner, Goldschmidt, and Griffiths
1991].

3.2.1 The Pfaffian module corresponding to a control system

For a few moments, to ease the notation, let us consider control systems of the
form

ẋ = Z(x, u) (3.4)

where x ∈ M , as usual, and u ∈ Rm. For the sake of name calling, let us denote
this control system by Σ in the usual way. Corresponding to this system we may
define a Pfaffian module, IΣ, on R ×M ×Rm by defining

IΣ(t, x, u) =

(
∂

∂s
+ Z(x, u)

)0

.

If we choose coordinates (x1, . . . , xn) for M we have

IΣ(t, x, u) = ⟨dx1 − Z1(x, u)dt, . . . , dxn − Zn(x, u)dt⟩R .

Notice that integral curves of IΣ are solutions of the control system. More pre-
cisely, say that a pair, (c, u), is a solution of (3.4) if c : [0, T ] →M and u ∈ U are
such that (3.4) is satisfied.

3.15 Lemma: Suppose that (c, u) is a solution of (3.4). Then the curve σ : s 7→
(s, c(s), u(s)) is an integral curve of (IΣ,dt).

Conversely, let N be an integral manifold of (IΣ,dt). Then there exists curves
c : [0, T ] → M and u ∈ U so that N is the locally image of the curve σ : s 7→
(s, c(s), u(s)). Furthermore, so defined, (c, u) is a solution of (3.4).
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Proof: Suppose that c : [0, T ] →M and u ∈ U is a solution of (3.4). Then

(dxi − Zi(s, c(s), u(s))dt) · σ′(s) = ẋi(s)− Zi(s, c(s), u(s)) = 0.

Also note that dt(s) · σ′(s) = 1. Thus σ is an integral curve of (IΣ,dt).
Now suppose that N is an integral manifold of (IΣ,dt). Since dt ̸= 0 on N ,

we may regard N as a graph over t. Thus N has the form

(s, c(s), u(s)).

It remains to show that the curve σ : s 7→ (s, c(s), u(s)) is annihilated by IΣ. But
this is clear since N is an integral manifold of IΣ. ■

3.2.2 Local decompositions

Because of Lemma 3.15, we expect that the derived system will give us some
information about the controllability of the system (3.1). We will use the local
decomposition result of Proposition 3.13. We shall now revert back to the control
affine system specified by (3.1).

3.16 Proposition: Consider the control system (3.1). Suppose that C0 has con-
stant rank k in a neighbourhood of x0 ∈M . There are two cases:

(i) Suppose that X(x0) ∈ C0(x0). Then, in the coordinate chart guaranteed by
Proposition 3.13(i),

I
(∞)
Σ (x0) = ⟨dxk+1, . . . ,dxn⟩R .

(ii) Suppose that X(x0) ̸∈ C0(x0). Then, in the coordinate chart guaranteed by
Proposition 3.13(ii),

I
(∞)
Σ (x0) = ⟨dxk+1 −Xk+1dt, . . . ,dxn −Xndt⟩R .

Proof: (i) In the coordinates guaranteed by Proposition 3.13, (3.1) takes the form

ẋi = Xi(x1, . . . , xn) + uaY i
a (x

1, . . . , xn), i = 1, . . . , k (3.5a)

ẋb = Xb(xk+1, . . . , xn), b = k + 1, . . . , n. (3.5b)

(See Proposition 3.27.) However, since X(x0) ∈ C0(x0), we have Xk+1 = · · · =
Xn = 0. Therefore, we immediately have

⟨dxk+1, . . . ,dxn⟩R ⊂ I
(∞)
Σ (x0).

We now make a little computation. For simplicity let

Zi(x, u) = Xi(x) + uaYa(x), i = 1, . . . , k.
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For i = 1, . . . , k we have

d(dxi − Zidt) =
k∑

j=1

∂Zi

∂xj
dxj ∧ dt+

n∑

b=k+1

∂Zi

∂xb
dxb ∧ dt+

m∑

a=1

∂Zi

∂ua
dua ∧ dt

=




k∑

j=1

∂Zi

∂xj
dxj ∧ dt+

m∑

a=1

∂Zi

∂ua
dua ∧ dt


 mod I (∞)

Σ .

Therefore, to prove this part of the proposition, we need only show that, for
xk+1, . . . , xn regarded as constants, the bottom derived system for the Pfaffian
module

I ′ ≜ ⟨dx1 − Z1(x, u)dt, . . . , dxk − Zk(x, u)dt⟩C∞(R×M×Rm)

is zero. Suppose that it is not. Then all integral curves of I ′, and hence all
integral curves of (I ′,dt), must lie on a submanifold of R × Rk of codimension
at least 1. But this contradicts Proposition 3.27 which says that (3.5a) is strongly
locally accessible for each fixed xk+1, . . . , xn.

(ii) The proof here is the same as for i except that Xk+1, . . . , Xn are not all
zero. ■

With this proven we may easily prove the following result.

3.17 Proposition: The system (3.1) is

(i) strongly locally accessible if and only if I (∞)
Σ = {0}, and

(ii) locally accessible if and only if rank(I (∞)
Σ ) ≤ 1 and the integral manifolds

of the bottom derived system are time-dependent.

Proof: (i) Suppose that (3.1) is strongly locally accessible. Then rank(C0) = n and

so, by Proposition 3.16, we must have I (∞)
Σ = {0}. Now suppose that I (∞)

Σ =
{0}. Then, again by Proposition 3.16, rank(C0) = n and so (3.1) is strongly locally
accessible.

(ii) Suppose that (3.1) is locally accessible. Then rank(C) = n. Then, ei-
ther rank(C0) = n (case i of Proposition 3.16) or rank(C0) = n − 1 (case ii of

Proposition 3.16). In the first case I (∞)
Σ = {0}. In the second case I (∞)

Σ =

⟨dxn − Xn(xn)dt⟩C∞(R×M×Rm). Thus, in the second case, rank(I (∞)
Σ ) = 1 and

the integral manifolds of the bottom derived system are time-dependent. Now

suppose that rank(I (∞)
Σ ) ≤ 1. Then, by Proposition 3.16, rank(C0) ≥ n − 1 and

so rank(C) = n. Thus (3.1) is locally accessible. ■

3.3 Invariant distributions

In this section we introduce invariant distributions and show how they may be
used to simplify control systems. The notion of an invariant distribution has
several interpretations, all of which will be useful to us when we come to using
them for simplifying control systems. We begin our discussion with the case of a
distribution being invariant under a vector field.
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3.3.1 Distributions invariant under a vector field

We have the following definition.

3.18 Definition: Let Y be a vector field on M and let D be a distribution on M .
We will say that D is invariant under Y if [Y, Z] ∈ D for every Z ∈ D . •
The following result describes the flow of a vector field which leaves a distribution
invariant.

3.19 Lemma: Let Y be a vector field with Ft its flow and let D be a distribution.
Then D is invariant under Y if and only if TxFt(Dx) = DFt(x) for every t for
which the flow is defined and for every x ∈M .

Proof: Suppose that TxFt(Dx) = DFt(x). Then if Z ∈ D we have

LY Z(x) = lim
t→0

(TxF−t(Z(Ft(x)))− Z(x))

By hypothesis, TxF−t(Z(Ft(x))) ∈ Dx and therefore LY Z(x) ∈ Dx and so D is
invariant under Y .

To prove the converse we make the following observation. Let Y T denote the lift
of Y to TM . Thus Y T is the vector field on TM whose flow is the one-parameter
family of diffeomorphisms t 7→ TFt. Note that TxFt(Dx) = DFt(x) if and only if

D ⊂ TM is invariant under the flow of Y T . We shall prove that Y T is tangent
to D if and only if D is invariant under Y and this will complete the proof of the
lemma. We shall use coordinates for TM which are adapted to the distribution.
Thus we introduce coordinates (x1, . . . , xn) forM and suppose that there is a local
basis of vector fields on M , {W1, . . . ,Wn}, with the property that

Dx = spanR(W1(x), . . . ,Wk(x)).

As coordinates for TM we use (xi, wj ≜ V j
l v

l) where V i
l W

l
j = δij and where (xi, vj)

are the natural coordinates for TM . The coordinates (xi, wj) have the property
that D is defined be the relations wα = 0, α = k + 1, . . . , n. Let (Y 1, . . . , Y n) be
the components of Y . A straightforward coordinate computation verifies

Y T = Y i ∂

∂xi
+
∂Y i

∂xj
vj

∂

∂vi

= Y i ∂

∂xi
+

(
∂Y i

∂xl
W l
mV

j
i w

m − ∂W i
m

∂xl
Y lV j

i w
m

)
∂

∂wj
(3.6)

We also compute

[Y,Wa] =

(
∂W i

a

∂xj
Y j − ∂Y i

∂xj
W j
a

)
∂

∂xi

=

(
∂W i

a

∂xj
Y j − ∂Y i

∂xj
W j
a

)
V m
i Wm. (3.7)
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From (3.6) we see that Y T is tangent to D if and only if

∂Y i

∂xl
W l
aV

α
i w

a − ∂W i
a

∂xl
Y lV α

i w
a = 0, α = k + 1, . . . , n

where a is summed over 1, . . . , k. From (3.7) we see that [Y, Y ] ∈ D for every
Y ∈ D if and only if

∂W i
a

∂xj
Y jV α

i − ∂Y i

∂xj
W j
aV

α
i = 0, α = k + 1, . . . , n, a = 1, . . . , k.

It is now clear that Y T is tangent to D if and only if D is invariant under Y and
this completes the proof of the lemma. ■

The case when the distribution is integrable and defines a foliation FD is es-
pecially interesting. We shall suppose that the quotient space, M/FD, has a dif-
ferentiable structure which makes the projection a submersion. If D has constant
rank, this is always true locally. The computations we present below are extracted
from various locations in [Marmo, Saletan, Simoni, and Vitale 1985].

First we prove a technical lemma.

3.20 Lemma: Let π : M → B be a surjective submersion and let X be a projectable
vector field on M . Thus Tπ ◦X(x) ∈ TbB is independent of x ∈ π−1(b) for each
b ∈ B. Then LXf is constant on fibres of π for every function f which is constant
on fibres of π. Conversely, if LXf is constant on fibres of π for every function
f which is constant on fibres of π, then X is projectable.

Proof: Let f be a function which is constant on the fibres of π. Then f = f̃ ◦ π
for some function f̃ on B. Therefore, df = d(π∗f̃). By definition LXf = df ·X.
If X is projectable then both X and df are constant on fibres of π, and so the
function LXf is constant on fibres of π.

Now suppose that LXπ∗f̃ is constant on fibres of π for every function f̃ on B.
Thus LXπ∗f̃ = π∗g̃ for some function g on B. For convenience, if g ∈ C∞(M)
is constant on the fibres of π, let us denote by g̃ ∈ C∞(B) the function which
satisfies g = π∗g̃. We shall also denote g′ = LXg. We claim that the map

X̃ : C∞(B) → C∞(B)

g̃ 7→ {f̃ | LXg = f}

is a derivation. We denote g̃′ = X̃(g̃). Now let g̃1, g̃2 ∈ C∞(B) and let g̃ = g̃1g̃2.
We then have

π∗g̃′ ≜ g′ = LXg = LX(g1g2) = (LXg1)g2 + (LXg2)g1

= g′1g2 + g′2g1 = π∗(g̃′1g̃2 + g̃′2g̃1).

This verifies that X̃ is a derivation on C∞(B) and hence a vector field on B. We
only need to show now that X̃ is the projection of X. Denote the projection of X
by X ′. We compute

π∗(LX̃ g̃) = π∗g̃′ = g′ = LXg = π∗(X ′ g̃) = π∗(LX′ g̃)

for any g̃ ∈ C∞(B). This completes the proof. ■
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Now we state what happens for invariant distributions.

3.21 Proposition: Let D be an integrable distribution which gives rise to a simple
foliation, FD, of M , and let X be a vector field on M . Then D is invariant under
X if and only if there exists a vector field X̃ on B =M/FD so that the following
diagram commutes.

M
X //

π
��

TM

Tπ
��

B
X̃

// TB

Here π : M → B is the projection.

Proof: First note that there exists a vector field X̃ which makes the diagram com-
mute if and only if Tπ ◦X(x) ∈ TbB is independent of x ∈ π−1(b) for each b ∈ B.
By Lemma 3.20 this implies that LXf is constant on fibres for every f which is
constant on fibres. Since sections of D are tangent to the fibres, for every function
f which is constant on fibres, and for every vector field Y which is a section of D
we have LY f = 0. Therefore, LXLY f = 0 for every function f which is constant
on the fibres of π and vector field Y which is a section of D. Thus we have shown
that LXLY f = 0 for every function f which is constant on fibres of π and for
every section Y of D if and only if there exists a vector field X̃ such that the
diagram above commutes.

Now suppose that D is not invariant under X. Then there exists a section Y ′

of D so that [X,Y ′] is not a section of D. Locally we may suppose that we may
find a function f with the property that LY f = 0 if and only if Y is a section of
D. Therefore,

L[X,Y ′]f = LXLY ′f −LY ′LXf = −LY ′LXf ̸= 0.

Thus LXf is not constant on leaves of π for every function f which is constant
on leaves of π. Therefore, there is no vector field X̃ on B which makes the above
diagram commute.

Now suppose that D is invariant under X. Thus

L[X,Y ]f = LXLY f −LYLXf = −LYLXf = 0

for every function f constant on the fibres of π and every section Y of D. This
implies that LXf is constant on fibres of π which means that a vector field X̃
exists which makes the above diagram commute. This completes the proof. ■

The following result gives an important local decomposition for invariant dis-
tributions.

3.22 Proposition: Let Y be a vector field on M and let D be an integrable dis-
tribution on M which is invariant under Y . Then, in a neighbourhood of x ∈ M
where rank(D) = k, there exists coordinates (x1, . . . , xk, xk+1, . . . , xn) ≜ (x1, x2)
so that Y has representative (Y1(x1, x2), Y2(x2)).
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Proof: By Frobenius’ Theorem we choose coordinates (x1, . . . , xk, xk+1, . . . , xn) so
that

D(x) = ⟨ ∂

∂x1
, . . . ,

∂

∂xk
⟩R .

Then, as in the proof of Proposition 3.13, we obtain

∂Y i

∂xj
= 0

for i = k + 1, . . . , n and j = 1, . . . , k. The result follows directly. ■

Note that Proposition 3.22 is a local consequence of Proposition 3.21, but we
did not use this in the proof.

3.3.2 Distributions invariant under a control system

First we define the concept of an invariant distribution for a control system of the
form (3.1).

3.23 Definition: Let D be a distribution on M . We say that D is invariant
for (3.1) if [X,D ] ∈ D and [Ya,D ] ∈ D for a = 1, . . . ,m. •
Now we prove an easy lemma.

3.24 Lemma: A distribution D is invariant under Σ if and only if D is invariant
under the vector field

Zu ≜ X + uaYa

for every u ∈ Rm.

Proof: Suppose that D is invariant under Σ. Then [X,Z], [Y1, Z], . . . , [Ym, Z] ∈ D
for every Z ∈ D . Thus

[X,Z] + u1[Y1, Z] + · · ·+ um[Ym, Z] ∈ D

for every Z ∈ D and u ∈ Rm. Since u is constant, it now follows that [Zu, Z] ∈ D
for every Z ∈ D and u ∈ Rm. Thus D is invariant under Zu.

Now suppose that D is invariant under Zu for every u ∈ Rm. Choosing u = 0
gives [X,Z] ∈ D for every Z ∈ D . Choosing u = ea, the ath standard basis
element for Rm, for a = 1, . . . ,m gives [Ya, Z] ∈ D for every Z ∈ D . Thus D is
invariant under Σ. ■

Now we give some decompositions for control systems possessing invariant dis-
tributions. First we give an analogue of Proposition 3.22.

3.25 Proposition: Suppose that D is a constant rank, integrable distribution which
is invariant for (3.1). Then there are coordinates, (x1, . . . , xk, xk+1, . . . , xn) ≜
(x1, x2), for M so that

ẋ1 = X1(x1, x2) + uaYa,1(x1, x2)

ẋ2 = X2(x2) + uaYa,2(x2).
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Proof: As in the proof of Proposition 3.22, we choose coordinates guaranteed by
Frobenius’ Theorem and determine that

∂Xi

∂xj
= 0,

∂Y i
a

∂xj
= 0

for a = 1, . . . ,m, i = k + 1, . . . , n and j = 1, . . . , k. The result follows directly. ■

Thus the presence of an integrable invariant distribution allows us to decouple some
variables, the x2 variables, from the others. The accessibility distribution and the
strong accessibility distribution are special examples of invariant distributions. The
following results are from [Nijmeijer and van der Schaft 1990]. For the accessibility
distribution we have the following result.

3.26 Proposition: The accessibility distribution is the smallest integrable invari-
ant distribution which contains X,Y1, . . . , Ym. In the coordinates guaranteed by
Proposition 3.25 the control system (3.1) assumes the form

ẋ1 = X1(x1, x2) + uaYa(x1, x2) (3.8a)

ẋ2 = 0. (3.8b)

Furthermore, for each fixed value of x2, the control system (3.8a) is locally acces-
sible.

Proof: By definition, the accessibility distribution is the smallest integrable dis-
tribution containing X,Y1, . . . , Ym. By virtue of its being invariant, it is also the
smallest integrable invariant distribution containingX,Y1, . . . , Ym. The form of the
equations in the coordinates given by Proposition 3.25 follows from these being
the same coordinates given by Proposition 3.12. Recall that in these coordinates
the submanifolds of M defined by xk+1 = · · · = xn = constant are invariant un-
der (3.1). ■

For the strong accessibility distribution we have the following result.

3.27 Proposition: The strong accessibility distribution is the smallest integrable
distribution, invariant under X, which contains Y1, . . . , Ym. In the coordinates
guaranteed by Proposition 3.25 the control system (3.1) assumes the form

ẋ1 = X1(x1, x2) + uaYa(x1, x2) (3.9a)

ẋ2 = X2(x2). (3.9b)

Furthermore, for each fixed value of x2, the control system (3.9a) is strongly locally
accessible.

Proof: It is clear that C0 is the smallest integrable distribution containing
Y1, . . . , Ym which is invariant under X. The coordinates given by Proposition 3.25
are the same as those given by Proposition 3.13. This gives the form of the equa-
tions as presented. ■
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3.3.3 An exterior differential systems interpretation

Now we give an interpretation of invariant distributions in terms of the Pfaffian
module IΣ on R ×M . Recall that IΣ is the subset of T ∗(R ×M ×Rm) given
by

IΣ = ⟨β − (β · Z)dt | β ∈ T ∗(M)⟩C∞(R×M×Rm)

where
Z = X + uaYa.

Given a distribution D on M , we define a subset of IΣ by

IΣ,D ≜ ⟨β − (β · Z)dt | β ∈ D 0⟩C∞(R×M×Rm).

Observe that for fixed u we may regard IΣ and IΣ,D as Pfaffian modules on R×M .
For u ∈ Rm we shall denote these modules by IΣu and IΣu,D, respectively.

Now we may state an intermediate result.

3.28 Proposition: Let D be an integrable distribution on M and let Y be a vector
field on M . Denote by Σ′ the trivial control system consisting of the vector field Y
(i.e., no controls). Then D is invariant under Y if and only if IΣ′,D is integrable.

Proof: Let (x1, . . . , xk, xk+1, . . . , xn) be coordinates for M so that D 0 =
⟨dxk+1, . . . ,dxn⟩C∞(M). We denote these coordinates symbolically by (x1, x2)

where x1 = (x1, . . . , xk) and x2 = (xk+1, . . . , xn).
Now suppose that D is invariant under Y . In the coordinates given above, the

representative of Y has the form (Y1(x1, x2), Y2(x2)). Thus

IΣ′,D = ⟨dxk+1 − Y k+1(x2)dt, . . . , dx
n − Y n(x2)dt⟩C∞(R×M).

To show that IΣ′,D is integrable we will show that

d(dxa − Y a(x2)dt) = 0modIΣ′,D

for a = k + 1, . . . , n. Indeed

d(dxa − Y a(x2)dt) = −
n∑

b=k+1

∂Y a

∂xb
dxb ∧ dt

= −
n∑

b=k+1

∂Y a

∂xb
(dxb − Y b(x2)dt) ∧ dtmodIΣ′,D

= 0modIΣ′,D.

Now suppose that IΣ′,D is integrable. In coordinates given by Frobenius’
theorem we have

IΣ′,D = ⟨dxk+1 − Y k+1(x1, x2)dt, . . . , dx
n − Y n(x1, x2)dt⟩C∞(R×M).

Since IΣ′,D is integrable we have

d(dxa − Y a(x1, x2)dt) = 0modIΣ′,D
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for a = k + 1, . . . , n. Thus

−∂Y
a

∂xi
dxi ∧ dt = 0modIΣ′,D

for a = k + 1, . . . , n. But

−
n∑

i=1

∂Y a

∂xi
dxi ∧ dt = −

k∑

i=1

∂Y a

∂xi
dxi ∧ dtmodIΣ′,D.

Therefore, we must have

k∑

i=1

∂Y a

∂xi
dxi ∧ dt = 0modIΣ′,D

for a = k + 1, . . . , n. This implies that

∂Y a

∂xi
= 0, a = k + 1, . . . , n, i = 1, . . . , k.

In other words, D is invariant under Y . ■

Combining Proposition 3.28 and Lemma 3.24 gives the following result.

3.29 Proposition: Let D be a distribution on M and let Σ be a control system of
the form (3.1). Then D is invariant under Σ if and only if the Pfaffian module,
IΣu,D, on R ×M is integrable for each u ∈ Rm.

3.4 Sufficient conditions for small-time local controlla-
bility

Sussmann [1987] gives a general result concerning so-called small-time local con-
trollability. We are interested in a version of Sussmann’s result and so will present
only as much background as is necessary to state this result.

The control system (3.1) is said to be small-time locally controllable (STLC)
from x0 ∈M if it is locally accessible from x0 and if there exists T > 0 so that x0
is in the interior of RV (x0,≤ t) for each 0 < t ≤ T and each neighbourhood V of
x0. If this holds for any x0 ∈M then the system is called STLC.

Let X = {X0, . . . , Xm}. We will need some of the notation from Section 2.2.3
regarding free Lie algebras. In particular, Br(X) is the set of “brackets” of elements
from X and δa(B) is the number of occurrences of Xa in B ∈ Br(X). The reader
should also recall the Lie algebra rank condition (LARC) from Section 2.4.2. Note
that this is a sufficient condition for local accessibility. With further conditions on
the types of brackets that a control system possesses, it may also be STLC.

An element B ∈ Br(X) is said to be bad if δ0(B) is odd and δa(B) is even
for each a = 1, . . . ,m. A bracket is good if it is not bad. Let Sm denote the
permutation group on m symbols. For π ∈ Sm and B ∈ Br(X), define π̄(B) to be
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the bracket obtained by fixing X0 and sending Xa to Xπ(a) for a = 1, . . . ,m. Now
define

β(B) =
∑

π∈Sm

π̄(B).

We may state sufficient conditions for STLC.

3.30 Theorem: ([Sussmann 1987]) Consider the bijection ϕ : X → {X,Y1,
. . . , Ym} which sends X0 to X and Xa to Ya for a = 1, . . . ,m. Suppose that (3.1)
is such that every bad bracket B ∈ Br(X) has the property that

Evx(ϕ)(β(B)) =
m∑

a=1

ξa Evx(ϕ)(Ca)

where Ca are good brackets in Br(X) of lower degree than B and ξa ∈ R for
a = 1, . . . ,m. Also suppose that (3.1) satisfies the LARC at x. Then (3.1) is
STLC at x.

Sussmann [1987] gives this result as a corollary of a special case originally conjec-
tured by Hermes [1982] and proven by Sussmann [1983].



Chapter 4

Control theory for mechanical systems

In this chapter we give some control theoretic results for certain classes of mechan-
ical systems. A discussion of general mechanical systems with external forces is
deferred to Chapter 5. The goal in this chapter is to adapt the ideas of Chapter 3
to both Lagrangian (Section 4.1) and Hamiltonian (Section 4.2) control systems.
When we study the Lagrangian problem, we are primarily interested in obtaining
conditions for a refined notion of controllability which is relevant for mechanical
control systems. On the Hamiltonian side, if a natural Hamiltonian structure is as-
sumed for the control problem, we are able to give nice descriptions of the locally
accessible Hamiltonian dynamics and the strongly locally inaccessible Hamilto-
nian dynamics (the locally inaccessible dynamics are always trivial). Some simple
examples are presented in Section 4.3 to illustrate the ideas put forward by the
theory.
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4.1 Lagrangian control theory for simple mechanical
control systems

In this section we study a specific, but large, class of mechanical control systems.
Our presentation is from a Lagrangian point of view since this framework seems
best adapted to the computations we do.

The systems studied are the so-called simple mechanical control systems. Such
systems are characterised by the following data:

1. a Riemannian metric g on the n-dimensional configuration manifold Q,

2. a function V on the configuration manifold, and

3. m linearly independent one-forms, F 1, . . . , Fm, on Q.

The Lagrangian for the control system we consider is defined by

L(v) =
1

2
g(v, v)− V ◦ πTQ(v). (4.1)

Thus we consider the Lagrangian to be “kinetic energy minus potential energy.”
The control torques take their values in the complete subset of T ∗Q (see Sec-
tion 5.2) defined by

Λq = ⟨F 1(q), . . . , Fm(q)⟩R .
This means that we will allow the possible directions for application of force to be
functions of position only. More generally, one may want these directions to be
functions of time and velocity as well.

With this data, the Lagrangian control system in local coordinates has the
form

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= uaF

a
i . (4.2)

For the given Lagrangian, these equations may be expressed in a convenient invari-
ant form. To express this we need the notion of the vertical lift of a vector field.
Let X be a vector field on Q. Its vertical lift is the vector field on TQ defined by

X lift(v) =
d

dt
(v + tX(πTQ(v))) |t=0 .

In local coordinates, if

X(q) = Xi(q)
∂

∂qi

then we have

X lift(vq) = Xi(q)
∂

∂vi
.

The reader may also wish to recall the definition of the geodesic spray, Zg, from
Section 2.7. We shall define

XL = Zg − gradV lift.
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4.1 Lemma: Let L be the Lagrangian defined by (4.1). Then the equations (4.2)
are equivalent to the equations

v̇(t) = XL(v(t)) + ua(t)Y
lift
a (πTQ(v(t))) (4.3 )

where Ya = (F a)♯ for a = 1, . . . ,m.

Proof: Let c : [0, T ] → Q be an integral curve of XL. Thus, in local coordinates,

q̈i + Γijkq̇
j q̇k = −gij ∂V

∂qj
+ uag

ijF aj

where

Γijk =
1

2
gil
(
∂glk
∂qj

+
∂glj
∂qk

− ∂gjk
∂ql

)
.

Note that
∂L

∂qk
=

1

2

∂gij
∂qk

vivj − ∂V

∂qk
,

∂L

∂vk
= gkjv

j .

Therefore,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= gij q̈

j +
∂gij
∂qk

q̇j q̇k − 1

2

∂gjk
∂qi

q̇j q̇k +
∂V

∂qi

= gij q̈
j +

(
∂gij
∂qk

− 1

2

∂gjk
∂qi

)
q̇j q̇k +

∂V

∂qi
.

Now note that

Γljkq̇
j q̇k =

1

2
gli
(
∂gik
∂qj

+
∂gij
∂qk

− ∂gjk
∂qi

)
q̇j q̇k

= gli
(
∂gij
∂qk

− 1

2

∂gjk
∂qi

)
q̇j q̇k.

The lemma now follows by multiplying Lagrange’s equations by the “inverse” of
g. ■

Note that we may also write (4.3) as

∇c′(t)c
′(t) = gradV (c(t)) + ua(t)Ya(c(t)).

We shall use this form of the equations when we define a solution for a simple
mechanical control system in Section 4.1.6.

With systems of this type there are some things that are worth noticing before
proceeding to the calculations. In particular, note that all of the data for the
problem is defined by quantities on the configuration manifold. Therefore, we
would like to be able to compute the answers to interesting questions in terms of
these quantities. An example of such an interesting question is the following:
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Problem Statement: Describe the set of configurations which are reachable from
a given configuration when starting at rest. •
It is exactly this question which we are interested in and which we shall answer.
Furthermore, as we shall see, our answer is obtainable in terms of quantities defined
on Q.

Since some rather detailed calculations are required in this section, let us out-
line what we plan to do. In Section 4.1.1 we present an example which illustrates
what we wish to do and why it is interesting. This example shows that the con-
ventional definitions of controllability given in Chapter 3 are not so well adapted
to the mechanical systems we are considering. We also perform a few calculations
for this example which foreshadow the general results developed in the succeeding
sections. In Section 4.1.2 we do some computations with free Lie algebras. The
reader should be warned that the presentation in this section may be difficult to
follow, but is important in understanding the basic premise of the sections which
follow. We will also find it useful to know some tangent bundle structure. This is
presented in Section 4.1.3. This structure becomes of consequence when we restrict
the accessibility distribution to Z(TQ). The distribution computations are per-
formed in Section 4.1.4. With these computations, in Section 4.1.5 we are able to
state the form of the accessibility distribution restricted to the zero section of TQ.
In Section 4.1.6 we present controllability definitions for systems of the form (4.3).
These formalise the problem statement given above. Using the computations from
Section 4.1.4, we may obtain conditions for our notions of controllability. These
are presented in Section 4.1.7. Finally, in Section 4.1.8 some decomposition results
are presented which are analogous to Propositions 3.12 and 3.13.

4.1.1 A motivating example

In this section we describe in some detail a simple mechanical control system which
illustrates the need to refine the treatment of mechanical systems in nonlinear
control theory. In particular, this example demonstrates that the nonlinear control
calculations which one often performs do not provide a satisfactory resolution to
the controllability problem for all mechanical systems. We propose that a weaker
notion of controllability may be useful. We also do some computations with this
example which hint at how the general calculations will proceed in the sections to
follow.

A description of the system The example we consider is a rigid body with
inertia J which is pinned to ground at its centre of mass. This example was
first presented by Li and Montgomery [1990].1 The body has attached to it an
extensible massless leg and the leg has a point mass with mass m at its tip. The
coordinate θ will describe the angle of the body, and ψ will describe the angle of the
leg from an inertial reference frame. The coordinate r will describe the extension

1In this paper the example considered is actually in free flight. We present the robotic leg
fixed to a point as this simplifies the analysis, but removes none of the essential structure.
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θ

ψ

r

Figure 4.1. The robotic leg

of the leg. Thus the configuration space for this problem is Q = T2 × R+. See
Figure 4.1. The Lagrangian is

L =
1

2
Jv2θ +

1

2
m(v2r + r2v2ψ).

If we consider forces applied in the (θ−ψ) and r-directions, Lagrange’s equations
are

Jθ̈ = u1 (4.4a)

mr2ψ̈ + 2mrṙψ̇ = −u1 (4.4b)

mr̈ −mrψ̇2 = u2. (4.4c)

Contradictory controllability results We may rewrite Lagrange’s equations
in the form (4.3). In this case we compute the Lagrangian vector field as

XL = Zg = vθ
∂

∂θ
+ vψ

∂

∂ψ
+ vr

∂

∂r
− 2vrvψ

r

∂

∂vψ
+ rv2ψ

∂

∂vr

and the input vector fields as

Y1 =
1

J

∂

∂θ
− 1

mr2
∂

∂ψ
, Y2 =

1

m

∂

∂r
.

The distribution calculations may be performed to obtain the accessibility distri-
bution as

C(θ, ψ, r, vθ, vψ, vr) =

〈
2mrvψ

∂

∂vθ
− J

∂

∂r
,mr2

∂

∂vθ
− J

∂

∂vψ
,
∂

∂θ
,
∂

∂ψ
,
∂

∂vr

〉

R

.
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Since this distribution does not span TQ, we conclude that the system is not locally
accessible. Nevertheless, it is possible to steer the system from one configuration to
another. Indeed we have the following result, some of which was proven by Murray
and Sastry [1993].

Claim: Select two configurations, q1 = (θ1, ψ1, r1) and q2 = (θ2, ψ2, r2). Suppose
that the system starts at rest in configuration q1. Then there exists inputs u1, u2
which steer the system to rest at q2.

Proof: We first note that the inputs leave the total angular momentum,

µ = Jθ̇ +mr2ψ̇,

of the system conserved. Thus, when we start at rest at q1, all consequent motions
of the system will have zero angular momentum. This may be thought of as
imposing a constraint given by

Jθ̇ +mr2ψ̇ = 0. (4.5)

Let us first answer the question: How many configurations are accessible from q1
along paths which preserve zero angular momentum? Let D be the distribution
defined by (4.5). This distribution has dimension two and the Lie bracket between
any two basis vector fields forD will not lie inD . This shows thatD is controllable
as discussed in Section 2.4.2. Therefore, by Proposition 2.6, from q1 it is possible
to reach any other configuration while maintaining the constraint of zero angular
momentum. To prove the claim, we need to show that all motions of the system
which preserve zero angular momentum are realisable using suitable inputs, u1, u2.
Let c be a path in Q which satisfies the constraint (4.5) and which connects q1 with
q2. We may suppose that c is reparameterised so that we start at rest at q1 and
end at rest at q2. From (4.4c) and (4.4a) we immediately have u2 = mr̈ −mrψ̇2

and u1 = Jθ̈. We need only show that, so defined, u1 satisfies (4.4b). From (4.5)
we have

Jθ̈ = −mr2ψ̈ − 2mrṙψ̇.

Therefore,
mr2ψ̈ + 2mrṙψ̇ = −u1

which is simply (4.4b). This completes the proof. ■

A closer look at the distribution calculations The above claim indicates
that we would like to be able to consider this problem controllable in some sense.
Let us try to understand how we might do this by taking a closer look at the
distribution computations which yield the accessibility distribution. Since we are
interested in describing the set of points reachable from initial conditions with zero
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velocity, we will evaluate all brackets on the zero section of TQ. We may compute

[Y lift
1 , Y lift

2 ] = 0

[Zg, Y
lift
1 ](0q) = −Y1(q)

[Zg, Y
lift
2 ](0q) = −Y2(q)

[Y lift
1 , [Zg, Y

lift
1 ]] = − 2

m2r3
∂

∂vr

[Y lift
1 , [Zg, Y

lift
2 ]] = 0

[Y lift
2 , [Zg, Y

lift
2 ]] = 0

[Zg, [Zg, Y
lift
1 ]](0q) = 0

[Zg, [Zg, Y
lift
2 ]](0q) = 0

[Zg, [Y
lift
1 , [Zg, Y

lift
1 ]]](0q) = − 2

m2r3
∂

∂r

[[Zg, Y
lift
1 ], [Zg, Y

lift
2 ]](0q) = [Y1, Y2](q).

These turn out to be the only interesting brackets for the robotic leg. If we examine
these bracket calculations, we make the following informal observations.

1. The brackets between the input vector fields are zero.

2. The brackets which contain the drift vector field the same number of times as
the control vector fields give brackets in the “q-direction” when we evaluate
them at zero velocity.

3. The brackets which contain the control vector fields one more time than the
drift vector field are vertical lifts of vector fields on Q.

4. The brackets which contain the drift vector field more often than the control
vector fields are zero when evaluated at points of zero velocity.

These observations suggest what may happen with general systems of the
form (4.3). The sections which follow formally go through the calculations needed
to prove the form of the accessibility distribution for these systems when restricted
to the zero section of TQ. The reader may wish to refer back to the above bracket
calculations at various times during the general exposition.

4.1.2 Computations with free Lie algebras

In this section we perform some calculations with a pair of free Lie algebras which
are suited to our purposes. The reader should be warned that they may not see
what they expect here. Rather than just using a generating set which is in 1–1
correspondence with the set {XL, Y

lift
1 , . . . , Y lift

m } of control vector fields and the
drift vector field, we also use a generating set which is in 1–1 correspondence with
the set {Zg, Y lift

1 , . . . , Y lift
m , gradV lift}. The reason for this will become clear when

we perform the distribution calculations in Section 4.1.4.
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LetX = {X0, . . . , Xm+1} and let L(X) be the free Lie algebra generated by the
set X. We can simplify many of our computations for the controllability analysis
of (4.3) by making simplifications to a set of generators for L(X).

We first need some notation. Let

Brk(X) = {B ∈ Br(X) | the degree of B is k} ,

Brk(X) =

{
B ∈ Br(X) | δ0(B)−

m+1∑

a=1

δa(B) = k

}
.

We will also need the concept of a primitive bracket.

4.2 Definition: Let B ∈ Br0(X) ∪ Br−1(X) and let B1, B2, B11, B12, B21, B22, . . .
be the decomposition of B into its components. We shall say that B is primitive
if each of its components is in Br−1(X) ∪ Br0(X) ∪ {X0}. •
The relevant observations that need to be made regarding primitive brackets are:

Prim1. If B ∈ Br−1(X) is primitive then, up to sign, we may write B = [B1, B2]
with B1 ∈ Br−1(X) and B2 ∈ Br0(X) both primitive.

Prim2. If B ∈ Br0(X) is primitive then, up to sign, B may have one of two forms.
Either B = [X0, B1] with B1 ∈ Br−1(X) primitive or B = [B1, B2] with
B1, B2 ∈ Br0(X) primitive.

Using these two rules, it is possible to construct primitive brackets of any degree.
For example, the primitive brackets of degrees one through four are, up to sign

Degree 1: {Xa | a = 1, . . . ,m}
Degree 2: {[X0, Xa] | a = 1, . . . ,m}
Degree 3: {[Xa, [X0, Xb]] | a, b = 1, . . . ,m}
Degree 4: {[X0, [Xa, [X0, Xb]]] | a, b = 1, . . . ,m}∪

{[[X0, Xa], [X0, Xb]] | a, b = 1, . . . ,m}.

From Proposition 2.1 we know that to generate L(X) we need only look at
brackets of the form

[Xak , [Xak−1
, . . . , [Xa2 , Xa1 ]]] (4.6)

where ai ∈ {0, . . . ,m + 1} for i = 1, . . . , k. We shall see in Section 4.1.4 that
brackets from Brj(X), where j ≥ 1 or j ≤ −2, will not be of interest to us. In
particular, we shall see that when j ≤ −2 the brackets evaluate identically to zero.
Therefore, in this section we concentrate our attention on brackets in Br0(X) ∪
Br−1(X) which satisfy certain requirements. We state this in the following lemma.

4.3 Lemma: Let us impose the condition on elements of Br(X) that we shall
consider a bracket to be zero if any of its components are in Br−j(X) for j ≥ 2.
Let B ∈ Br0(X) ∪ Br−1(X). Then we may write B as a finite sum of primitive
brackets.
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Proof: It is sufficient to prove the lemma for brackets of the form (4.6). We proceed
by induction on k in (4.6). The lemma is true for k = 1, 2 by inspection. Now
suppose the lemma true for k = 1, . . . , l and let B be of the form (4.6) for k = l+1.
Then we have two cases. Either B ∈ Br−1(X) or B ∈ Br0(X).

We look first at the case where B ∈ Br−1(X). Since we are considering brackets
in Br−2(X) to be zero, we may write B = [Xa, B

′] with B′ ∈ Br0(X) of the
form (4.6) and a ∈ {1, . . . ,m+1}. By the induction hypothesis, B′ is a finite sum
of primitive brackets and the lemma is proved in this case since B will then also
be a finite sum of primitive brackets.

Now we look at the case where B ∈ Br0(X). There are two possibilities in this
case. The first possibility is that B = [X0, B

′] with B′ ∈ Br−1(X). In this case B′

is a finite sum of primitive brackets by the induction hypothesis and, therefore, B
is also a finite sum of primitive brackets.

The final case is when B = [Xa1 , B
′] with B′ ∈ Br+1(X) of the form (4.6). If

B′ = [X0, B
′′] with B′′ ∈ Br0(X) then, by Jacobi’s identity, we have

B = [Xa1 , [X0, B
′′]] = −[B′′, [Xa1 , X0]]− [X0, [B

′′, Xa1 ]].

Since B′′ ∈ Br0(X), by the induction hypotheses it may be written as a finite sum
of primitive brackets in Br0(X). Clearly [Xa1 , X0] is primitive which proves that
[B′′, [Xa1 , X0]] is a finite sum of primitive brackets. The bracket [B′′, Xa1 ] is in
Br−1(X). Therefore, by the induction hypotheses it may be written as a finite
sum of primitive brackets. Thus the term [X0, [B

′′, Xa1 ]], and hence B, may be
written as a finite sum of primitive brackets.

Now suppose that B′ = [Xa2 , B
′′] with B′′ ∈ Br+2(X). First look at the case

where B′′ = [X0, B
′′′] with B′′′ ∈ Br+1(X). In this case we have

B = [Xa1 , [Xa2 , [X0, B
′′′]]] = −[Xa1 , [B

′′′, [Xa2 , X0]]]− [Xa1 , [X0, [B
′′′, Xa2 ]]]

= [[Xa2 , X0], [Xa1 , B
′′′]] + [B′′′, [[Xa2 , X0], Xa1 ]]+

[[B′′′, Xa2 ], [Xa1 , X0]] + [X0, [[B
′′′, Xa2 ], Xa1 ]].

The first, third and fourth terms can be written as finite sums of primitive brackets
by the induction hypothesis, and the second term is zero by our condition that
brackets in Br−2(X) are taken to be zero.

If B′′ = [Xa3 , B
′′′] then we keep stripping factors off of B′′′ until we encounter

an X0. When we do, we repeatedly apply the above procedure. This proves the
lemma. ■

An example is useful in illustrating what is behind the lemma.

4.4 Example: Consider the bracket B = [Xm+1, [X0, [X0, Xa]]] ∈ Br0(X). This
bracket is in Br0(X) but is not primitive. However, by Lemma 4.3, we may write
B as a finite sum of primitive brackets. Indeed, by Jacobi’s identity we have

B = [Xm+1, [X0, [X0, Xa]]] = −[[X0, Xa], [Xm+1, X0]]− [X0, [[X0, Xa], Xm+1]]

= [[X0, Xa], [X0, Xm+1]] + [X0, [Xm+1, [X0, Xa]]]. •
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Now we relate the free Lie algebra L(X) with a free Lie algebra which corre-
sponds to the set {XL, Y

lift
1 , . . . , Y lift

a }. Let X ′ = {X ′
0, . . . , X

′
m}. We formally set

X ′
0 = X0 −Xm+1 and X ′

a = Xa for a = 1, . . . ,m. We may now write brackets in
Br(X ′) as linear combinations of brackets in Br(X) by R-linearity of the bracket.
We may, in fact, be even more precise about this.

Let B′ ∈ Br(X ′). We define a subset, S(B′), of Br(X) by saying that B ∈
S(B′) if each occurrence of X ′

a in B′ is replaced with Xa for a = 1, . . . ,m, and if
each occurrence of X ′

0 in B′ is replaced with either X0 or Xm+1. An example is
illustrative. Suppose that

B′ = [[X ′
0, X

′
1], [X

′
2, [X

′
0, X

′
3]]].

Then

S(B′) = {[[X0, X1], [X2, [X0, X3]]], [[X0, X1], [X2, [Xm+1, X3]]],

[[Xm+1, X1], [X2, [X0, X3]]], [[Xm+1, X1], [X2, [Xm+1, X3]]]}.

Now we may precisely state how we write brackets in Br(X ′).

4.5 Lemma: Let B′ ∈ Br(X ′). Then

B′ =
∑

B∈S(B′)

(−1)δm+1(B)B.

Proof: It suffices to prove the lemma for the case when B′ is of the form

B′ = [X ′
ak
, [X ′

ak−1
, [· · · , [X ′

a2 , X
′
a1 ]]]] (4.7)

since these brackets generate L(X ′) by Proposition 2.1. We proceed by induction
on k. The lemma is true for k = 1. Now suppose the lemma true for k = 1, . . . , l
where l ≥ 1 and let B′ be of the form (4.7) with k = l + 1. Then either B′ =
[X ′

a, B
′′], a = 1, . . . ,m or B′ = [X0, B

′′] with B′′ of the form (4.7) with k = l. In
the first case, by the induction hypotheses, we have

B′ =
∑

B∈S(B′′)

[Xa, (−1)δm+1(B)B]

=
∑

B∈S(B′)

(−1)δm+1(B)B.

In the second case we have

B′ =
∑

B∈S(B′′)

[X0 −Xm+1, (−1)δm+1(B)B]

=
∑

B∈S(B′)

(−1)δm+1(B)B.

This proves the lemma. ■
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We shall only be interested in terms in the above decomposition of B′ which
are in Br0(X)∪Br−1(X) since, as we shall see in Section 4.1.4, these are the only
ones which will contribute to Ev0q(ϕ

′)(B′).
A good understanding of this section is important in any effort to understand

the proofs of Proposition 4.11 and Theorem 4.17 which follow. The reader should
come back to this section if they are having difficulty with these proofs.

4.1.3 Some useful tangent bundle structure

Since we are interested in restricting the accessibility distribution to the zero sec-
tion of TQ, there are some useful properties of the tangent bundle which we shall
need.

Since Z(TQ), the zero section of the tangent bundle, is a submanifold of TQ
which is canonically diffeomorphic to Q, it is possible to realise TqQ as a subspace
of T0qTQ. At each point 0q ∈ Z(TQ) we shall call this subspace horizontal. Note
that this version of horizontal is valid only at those points in TQ which are on
the zero section. Present as a subspace of TvqTQ for any vq ∈ TQ is the vertical
subspace. Recall that this subspace is the kernel of the map TvqπTQ. Also note
that at points 0q ∈ Z(TQ), T0qTQ = TqQ⊕ V0qQ. By TqQ in this decomposition
we mean the horizontal subspace of T0qTQ which is canonically isomorphic to TqQ.
The reader should be aware that this identification will be implicitly made in the
sequel.

4.1.4 Distribution computations for simple mechanical control
systems

In this section we use the simplifications of Section 4.1.2 to get a complete de-
scription of the brackets which contribute to the accessibility distribution for (4.3)
restricted to Z(TQ). To make the correspondence between the free Lie algebra
L(X) used in Section 4.1.2 and the accessibility algebra for (4.3), we define a
family of vector fields

V = {Zg, Y lift
1 , . . . , Y lift

m , gradV lift}

and establish a bijection, ϕ, from X to V by mapping X0 to XL, Xa to Y lift
a for

a = 1, . . . ,m, and Xm+1 to gradV lift. Please note that V is not the family of
vector fields which generates the accessibility algebra. The accessibility algebra
is generated by the family V ′ = {XL, Y

lift
1 , . . . , Y lift

m }. We establish a bijection,
ϕ′, from X ′ to V ′ by mapping X ′

0 to XL and X ′
a to Y lift

a for a = 1, . . . ,m. By
Lemma 4.5, each vector field in Lie(V ′) is a R-linear sum of vector fields in Lie(V ).

Now we shall show that it is possible to compute the brackets from Br(X) in
terms of the problem data. We first present a lemma which gives the basic structure
of primitive brackets. In this lemma we see that a large number of brackets are
computable in terms of quantities defined on Q. This is worth noting since the
vector fields themselves are defined on TQ. Of particular interest in the lemma is
the appearance of the covariant derivative which was introduced in Section 2.7.1.
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4.6 Lemma: Suppose that B ∈ Brk(X) is primitive.

(i) If B ∈ Br−1(X) then Ev(ϕ)(B) is the vertical lift of a vector field on Q.

(ii) If B ∈ Br0(X) then U = Ev(ϕ)(B) has the property that, when expressed in
a local chart, the vertical components of U are linear in the fibre coordinates
v and the horizontal components are independent of v. In particular, we
may define a vector field on Q by UQ : q 7→ U(0q) ∈ TqQ ⊂ T0qTQ. There
are two cases to consider.

(a) B = [X0, B1] with B1 ∈ Br−1(X): Define U1 to be the vector field on Q
such that Ev(ϕ)(B1) = U lift

1 . Then U(0q) = −U1(q). Let U2 ∈ T (Q).
Then [U lift

2 , U ] = (∇U1U2 +∇U2U1)
lift.

(b) B = [B1, B2] with B1, B2 ∈ Br0(X): Define U1,Q, U2,Q to be the vector
fields on Q corresponding to Ev(ϕ)(B1),Ev(ϕ)(B2), respectively. Then
Ev(ϕ)(B)(0q) = [U1,Q, U2,Q](q).

Proof: The proof is by induction on k. The result is true for k = 1 trivially. To
prove the result for k = 2 we introduce some notation which we will find handy for
doing the bracket calculations in coordinates. If we have two general vector fields

X1 = Xi
1,h(q, v)

∂

∂qi
+Xi

1,v(q, v)
∂

∂vi
, X2 = Xi

2,h(q, v)
∂

∂qi
+Xi

2,v(q, v)
∂

∂vi
,

their Lie bracket will be represented by

[X1, X2] ∼



∂Xi

2,h

∂qj
∂Xi

2,h

∂vj

∂Xi
2,v

∂qj
∂Xi

2,v

∂vj



(
Xj

1,h

Xj
1,v

)
−



∂Xi

1,h

∂qj
∂Xi

1,h

∂vj

∂Xi
1,v

∂qj
∂Xi

1,v

∂vj



(
Xj

2,h

Xj
2,v

)
.

This is somewhat imprecise, but is convenient notationally.
If X,Y are vector fields on Q we may compute

[X lift, Y lift] ∼
[

0 0
∂Y i

∂qj
0

](
0
Xj

)
−
[

0 0
∂Xi

∂qj
0

](
0
Y j

)
=

(
0
0

)
. (4.8)

If X is a vector field on Q we compute

[Zg, X
lift] ∼

[
0 0
∂Xi

∂qj
0

](
vj

−Γjklv
kvl

)
−
[

0 δij

−∂Γi
kl

∂qj
−2Γijkv

k

](
0
Xj

)
. (4.9)

Inspecting (4.9) shows that [Zg, X
lift](0q) = −X(q). Now let Y ∈ T (Q). We

compute

[Y lift, [Zg, X
lift]] ∼

[
−∂Xi

∂qj
0

∂2Xi

qjqk
vk + 2

∂Γi
kl

∂qj
Xkvl + 2Γikl

∂Xk

∂qj
vl ∂Xi

∂qj
+ 2ΓikjX

k

](
0
Y j

)
−

[
0 0
∂Y i

∂qj
0

](
−Xj

∂Xj

∂qk
vk + 2ΓjklX

kvl

)
.
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Reading the coefficients gives

[Y lift, [Zg, X
lift]] =

(
∂Y i

∂qj
Xj +

∂Xi

∂qj
Y j + 2ΓijkX

jY k

)
∂

∂vi
(4.10)

which is the coordinate representation of (∇XY +∇YX)lift. This shows that the
lemma is true for k = 2.

Now suppose the lemma true for k = 1, . . . , l for l ≥ 2 and let B ∈ Brl+1(X)
be primitive.

(i) Suppose that B ∈ Br−1(X). Without loss of generality (by Prim1) we may
suppose that B = [B1, B2] with B1 ∈ Br−1(X) and B2 ∈ Br0(X). Then, by the
induction hypotheses, we have

Ev(ϕ)(B1) = αi(q)
∂

∂vi
, Ev(ϕ)(B2) = λi(q)

∂

∂qi
+ µij(q)v

j ∂

∂vi
.

Now we compute

Ev(ϕ)([B1, B2]) ∼
[

∂λi

∂qj
0

∂µik
∂qj

vk µij

](
0
αj

)
−
[

0 0
∂αi

∂qj
0

](
λj

µjkv
k

)
.

Note that the components in the q-direction are zero and the components in the
v-direction are only functions of q. This means that this vector field is the vertical
lift of a vector field on Q. This proves (i).

(ii) Suppose that B ∈ Br0(X). Without loss of generality (by Prim2) we may
suppose that either (a) B = [X0, B1] with B1 ∈ Br−1(X) or that (b) B = [B1, B2]
with B1, B2 ∈ Br0(X). Let us deal with the first case. Equation (4.9) gives
Ev(B)(ϕ)(0q) = −U1(q) where U1 is the vector field on Q so that Ev(ϕ)(B1) =
U lift
1 (such a vector field exists by (i)). For every vector field U2 on Q we have

[U lift
2 , [Zg, U

lift
1 ]] = (∇U1U2 +∇U2U1)

lift by (4.10). This proves (a).
Now suppose that we have B1, B2 ∈ Br0(X). Then, by the induction hypothe-

ses, we have

Ev(ϕ)(B1) = αi(q)
∂

∂qi
+ βij(q)v

j ∂

∂vi
, Ev(ϕ)(B2) = λi(q)

∂

∂qi
+ µij(q)v

j ∂

∂vi
.

We compute

Ev(ϕ)([B1, B2]) ∼
[

∂λi

∂qj
0

∂µik
∂qj

vk µij

](
αj

βjkv
k

)
−
[

∂αi

∂qj
0

∂βi
k

∂qj
vk βij

](
λj

µjkv
k

)
.

The components have the order in v specified by the lemma. Also, it is clear that
the vector fields on Q defined by B1 and B2 are

U1,Q = αi(q)
∂

∂qi
, and U2,Q = λi(q)

∂

∂qi
,

respectively. It is easy to see that Ev(ϕ)(B)(0q) = [U1,Q, U2,Q](q). This completes
the proof of the lemma. ■
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This lemma provides us with a strong step towards computing the value of all
primitive brackets when evaluated using Ev(ϕ). Next we show that these are the
only types of brackets we need to consider. First we look at brackets in Brl(X)
for l ≥ 1.

4.7 Lemma: Let l ≥ 1 be an integer and let B ∈ Brl(X). Then Ev(ϕ)(B)(0q) = 0
for each q ∈ Q.

Proof: The lemma may be proved by showing that, in a coordinate chart for TQ,
the horizontal components of U = Ev(ϕ)(B) are polynomial in the fibre coordi-
nates of degree l, and the vertical components of U are polynomial of degree l+1
in the fibre coordinates. This will follow if we can show that bracketing by Xa,
a = 1, . . . ,m reduces the polynomial order of the components by one and brack-
eting by X0 increases the polynomial order of the components by one. This is a
simple calculation which follows along the same lines as the calculations done for
Lemma 4.6. ■

Now we look at the remaining brackets, those in Br−l(X) for l ≥ 2.

4.8 Lemma: Let l ≥ 2 be an integer and let B ∈ Brk(X) ∩ Br−l(X) for k ≥ 2.
Then Ev(ϕ)(B) = 0.

Proof: We prove the lemma by induction on k for brackets of the form (4.6). The
result makes no sense for k = 1 and is true for k = 2 by (4.8). Now suppose the
lemma true for k = 2, . . . , j and let B ∈ Brj+1(X) ∩ Br−l(X) for l ≥ 2 be of the
form (4.6). Then either B = [X0, B

′] with B′ ∈ Br−l−1(X) or B = [Xa, B
′] with

B′ ∈ Br−l+1(X) and a = 1, . . . ,m+1. In either case the result follows immediately
from the induction hypotheses and (4.8). ■

Let us summarise what we have done in this section. First we obtained a
characterisation of primitive brackets inX when we evaluate them in V via Ev(ϕ).
This characterisation involved Lie brackets and covariant derivatives of the vector
fields Y1, . . . , Ym, gradV . Then we showed in Lemmas 4.7 and 4.8 that the primitive
brackets are the only ones we need be concerned with if we are evaluating the vector
fields on the zero section of TQ.

4.1.5 The form of the accessibility distribution restricted to
Z(TQ) for simple mechanical control systems

In this section we compute the accessibility distribution for (4.3) when restricted to
the zero section of TQ. By Lemma 4.5 we know that we may write the vector fields
in the accessibility algebra in terms of vector fields in Lie(V ). In Section 4.1.4 we
saw some hints that we might be able to write vector fields in Lie(V ) in terms of
covariant derivatives and Lie brackets of the input vector fields and gradV . First
we resolve this issue by saying exactly what the vector fields in Lie(V ) look like
when we restrict them to Z(TQ). Recall from Section 2.4.2 that DLie(V ) is the
distribution defined by

DLie(V )(v) = ⟨U(v) | U ∈ Lie(V )⟩R .
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The reader will also wish to recall the ideas from symmetric algebras presented in
Section 2.7.2. In particular recall that the symmetric product on Q is defined by

⟨U1 : U2⟩ = ∇U1U2 +∇U2U1

for U1, U2 ∈ T (Q). We denote Y = {Y1, . . . , Ym}. Recall from Section 4.1.3 that
TqQ may be canonically included in T0qTQ. Also recall from that section that
V TQ is the bundle of vertical vectors on TQ.

4.9 Lemma: Let q ∈ Q. Then

DLie(V )(0q) ∩ V0qTQ = (DSym(Y ∪{gradV })(q))
lift

and
DLie(V )(0q) ∩ TqQ = DLie(Sym(Y ∪{gradV }))(q).

Proof: From Lemmas 4.7 and 4.8 we know that the only brackets from Br(X)
which we need to consider are the primitive brackets. From Lemma 4.6 we know
that the brackets which are in Br−1(X) will generate the vertical directions, and
the brackets which are in Br0(X) will generate the horizontal directions.

First we show that (DSym(Y ∪{gradV })(q))
lift ⊂ DLie(V )(0q). This may be done

inductively. Define Sym(1)(Y ∪ {gradV }) = Y ∪ {gradV } and inductively define

Sym(k)(Y ∪ {gradV }) = {⟨U1 : U2⟩ |
Ui ∈ Sym(ki)(Y ∪ {gradV }), k1 + k2 = k}.

Clearly

Sym(Y ∪ {gradV }) =
⋃

k∈Z+

Sym(k)(Y ∪ {gradV }).

It is trivially true that (Sym(1)(Y ∪ {gradV }))lift ⊂ Lie(V ). Now suppose that
(Sym(k)(Y ∪ {gradV }))lift ⊂ Lie(V ) for k = 1, . . . , l for l ≥ 1. We see that
(Sym(l+1)(Y ∪ {gradV }))lift ⊂ Lie(V ) since we may generate all elements of
(Sym(l+1)(Y ∪ {gradV }))lift by considering brackets of the form [U lift

1 , [Zg, U
lift
2 ]]

where Ui ∈ Sym(li)(Y , V ) and l1+ l2 = l+1. This follows from (4.10). This shows
that (DSym(Y ∪{gradV })(q))

lift ⊂ DLie(V )(0q).

Now we show that DLie(V )(0q) ⊂ (DSym(Y ∪{gradV })(q))
lift. To do this we must

show that the image under Ev(ϕ) of all primitive brackets in Br−1(X) may be
written as a linear combination of vector fields in Sym(Y ∪{gradV }). A primitive
bracket in Br−1(X) may be written as B = [B1, B2] with B1 ∈ Br−1(X) and
B2 ∈ Br0(X) both being primitive. Therefore, either B2 = [X0, B

′
2] with B′

2

primitive and in Br−1(X) or B2 = [B′
2, B

′′
2 ] with B

′
2, B

′′
2 ∈ Br0(X) both primitive.

In the first case Ev(ϕ)(B) ∈ Sym(k)(Y ∪ {gradV }) for some k by (4.10). In the
second case we may use Jacobi’s identity to obtain

B = −[B′′
2 , [B1, B

′
2]] + [B′

2, [B1, B
′′
2 ]].
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We may apply the above argument to the terms [B1, B
′
2] and [B1, B

′′
2 ] repeatedly

using (4.10) until they are expressed in terms of covariant derivatives. When this
is done, Ev(ϕ)(B) will then be a R-linear combination of elements in Sym(Y ∪
{gradV }). This shows that DLie(V )(0q) ⊂ (DSym(Y ∪{gradV })(q))

lift.

To demonstrate the proposed form of DLie(V ) ∩ TqQ, by Lemma 4.6(b) we

need only show that Sym(Y ∪ {gradV })(q) ⊂ DLie(V )(0q). But this is clear from

Lemma 4.6(a). This completes the proof of the lemma. ■

4.10 Remark: Notice that the constructions in the above lemma only depend upon
{Y1, . . . , Ym, gradV }. The effects of the geodesic spray do not appear explicitly.
However, its contribution is obviously important in the essential computations
performed in Section 4.1.4. •

From Lemma 4.5 we know that the vector fields which contribute to Lie(V ′)
when we evaluate on Z(TQ) will be R-linear combinations of vector fields from
Lie(Sym(Y ∪ {gradV })). Thus, to compute these vector fields, we need to fig-
ure out which vector fields need to be “removed” from Lie(Sym(Y ∪ {gradV })).
We present an algorithm which we shall prove determines exactly which R-linear
combinations from Lie(Sym(Y ∪ {gradV })) we need to compute. We define two

sequences of families of vector fields on Q which we shall denote by C (k)
ver (Y , V ) and

C (k)
hor (Y , V ) where k ∈ Z+. In Figure 4.2 the algorithm is presented for computing

these families. When we have computed these sequences we define

Cver(Y , V ) =
⋃

k∈Z+

C (k)
ver (Y , V ), Chor(Y , V ) =

⋃

k∈Z+

C (k)
hor (Y , V ).

The distributions defined by these families of vector fields shall be denoted
Cver(Y , V ) and Chor(Y , V ), respectively.

We may now state the form of the accessibility distribution Lie(V ′) for (4.3)
when restricted to the zero section of TQ.

4.11 Proposition: Let q ∈ Q. Then

DLie(V ′)(0q) ∩ V0qTQ = (Cver(Y , V )(q))lift

and
DLie(V ′)(0q) ∩ TqQ = Chor(Y , V )(q).

Proof: Studying the algorithm that we have used to compute Cver(Y , V ) and
Chor(Y , V ), the reader will notice that we have exactly taken each primitive
bracket B ∈ Br(X) and computed which R-linear combinations from Br(X) ap-
pear along with B in the decomposition of some B′ ∈ Br(X ′) given by Lemma 4.5.
Since it is only these primitive brackets which appear in Lie(V ′) | Z(TQ), this
will, by construction, generate DLie(V ′) | Z(TQ).

We need to prove that, as stated in the first step of the algorithm, if δm+1(B) =
0, then Ev0q(ϕ)(B) ∈ DLie(V ′)(0q). To show that this is in fact the case, let
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4.1 Algorithm:

For i ∈ Z+ do

For B ∈ Br(i)(X) primitive do

If δm+1(B) = 0 then

If B ∈ Br−1(X) then

U ∈ C
1
2
(i+1)

ver (Y , V ) where Ev(ϕ)(B) = U lift

else

U ∈ C (i/2)
hor (Y , V ) where U(q) = Ev0q(ϕ)(B)

end

else

If B has no components of the form [X0, Xm+1] then

Compute B′ ∈ Br(X) by replacing every occurrence of X0

and Xm+1 in B with X ′
0 and by replacing every occurrence

of Xa in B with X ′
a for a = 1, . . . ,m.

Let B′′ = 0.

For B̃ ∈ S(B′) ∩ (Br−1(X) ∪ Br0(X)) do

Write B̃ as a finite sum of primitive brackets in Br(X)
by Lemma 4.3.

B′′ = B′′ + (−1)δm+1(B̃)B̃

end

If B ∈ Br−1(X) then

U ∈ C
1
2
(i+1)

ver (Y , V ) where Ev(ϕ)(B′′) = U lift

else

U ∈ C (i/2)
hor (Y , V ) where U(q) = Ev0q(ϕ)(B

′′)

end

end

end

end

end

end

Figure 4.2. Algorithm for computing Lie(V ′) | Z(TQ)
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B′ ∈ Br(X ′) be the bracket obtained by replacing Xa with X ′
a for a = 0, . . . ,m.

We claim that the only bracket in S(B′) which contributes to Ev(ϕ′)(B′) is B.
This is true since any other brackets in S(B′) are obtained by replacing X0 in B
with Xm+1. Such a replacement will result in a bracket which has at least one
component which is in Br−l(X) for l ≥ 2. These brackets evaluate to zero by
Lemma 4.8.

We also need to show that if B has components of the form [X0, Xm+1] then
it will not contribute to Lie(V ′) | Z(TQ). This is clear since, when constructing
B′ in the algorithm, the component [X0, Xm+1] will become [X ′

0, X
′
0] which means

that B′ will be identically zero. ■

It is perhaps useful to construct a few of the families C (k)
ver (Y , V ) and

C (k)
hor (Y , V ) to show how the algorithm works. We shall do this for k = 1, 2.

Our notation in these calculations follows that in the algorithm.
Let i = 1. The only primitive brackets in Br(1)(X) are X1, . . . , Xm+1. For

the brackets B = Xa, a = 1, . . . ,m, δm+1(B) = 0. Note that Ev(ϕ)(B) = Y lift
a

so Ya ∈ C (1)
ver (Y , V ) for a = 1, . . . ,m. The bracket Xm+1 has no components of

the form [X0, Xm+1] so it is a candidate for providing an element of C (1)
ver (Y , V ).

If B = Xm+1 we compute B′ = X ′
0. Therefore, S(B′) = {X0, Xm+1}. The only

element in S(B′) which is in Br−1(X)∪Br0(X) isXm+1. Therefore, B
′′ = −Xm+1.

We then see that Ev(ϕ)(B′′) = − gradV lift from which we conclude that gradV ∈
C (1)

ver (Y , V ). In summary,

C (1)
ver (Y , V ) = {Y1, . . . , Ym, gradV }.

Now we look at the case when i = 2. The primitive brackets in Br(2)(X) are
{[X0, X1], . . . , [X0, Xm+1]}. The brackets B = [X0, Xa], a = 1, . . . ,m have the
property that δm+1(B) = 0. We compute Ev0q(ϕ)(B) = −Ya(q) and so conclude

that Ya ∈ C (1)
hor (Y , V ). The bracket [X0, Xm+1] is not a candidate for providing

an element of C (1)
hor (Y , V ) so we have

C (1)
hor (Y , V ) = {Y1, . . . , Ym}.

In a similar manner we may compute

C (2)
ver (Y , V ) = {⟨Ya : Yb⟩ | a, b = 1, . . . ,m} ∪ {⟨Ya : gradV ⟩ | a = 1, . . . ,m}

and

C (2)
hor (Y , V ) = C (2)

ver (Y , V ) ∪ {[Ya, Yb] | a, b = 1, . . . ,m}∪
{2⟨Ya : gradV ⟩+ [Ya, gradV ] | a = 1, . . . ,m} .

To compute the terms 2⟨Ya : gradV ⟩ + [Ya, gradV ] in C (2)
hor (Y , V ) we have used

the computations of Example 4.4.
It would be interesting to be able to derive an inductive formula for computing
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the families C (k)
ver (Y , V ) and C (k)

hor (Y , V ). However, such an inductive formula
appears to be quite complex.

There are some important statements which can easily be made regarding the
distributions Chor(Y , V ) and Cver(Y , V ).

4.12 Remarks: 1. The generators we have written for C (k)
ver (Y , V ) and

C (k)
hor (Y , V ) are not linearly independent. Thus one should be able to gen-

erate these families with fewer calculations than are necessary to compute
the generators we give. One way to do this is to choose a Philip Hall basis
for L(X ′) and compute the image of these brackets under Ev(ϕ′). This will
work for any given example. However, we are unable to give the general form
for the image of a Philip Hall basis under Ev(ϕ′).

2. We claim that Chor(Y , V ) is involutive. Let B′
1, B

′
2 ∈ Br(X ′) be brack-

ets which, when evaluated under Ev0q(ϕ
′), give vector fields U1, U2 ∈

Chor(Y , V ). Then the decomposition of Bi given by Lemma 4.5 has the
form B′

i = Bi + B̃i where Bi ∈ Br0(X) and B̃i is a sum of brackets in
Brj(X) for j ≥ 2. Therefore, [B′

1, B
′
2] = [B1, B2] + B′′ where B′′ is a sum

of brackets in Brj(X) for j ≥ 2. This shows that [U1, U2] ∈ Chor(Y , V ).
Here we have imposed the condition that brackets in Br−j(X) are taken to
be zero for j ≥ 2 (see Lemma 4.3).

3. An interesting special case, and one that we shall see in the examples in
Section 4.3, is that when V = 0. In this case we have

Cver(Y , V ) = Sym(Y ), Chor(Y , V ) = Lie(Sym(Y )).

This is easily seen in the algorithm by following the path when δm+1(B) = 0.

4. The calculations of this section and Section 4.1.4 remain valid if we replace
gradV with an arbitrary vector field on Q. •

4.1.6 Controllability definitions for simple mechanical control sys-
tems

It is possible to simply adopt the controllability definitions given in Section 3.1.1
since our system is of the form (3.1). However, since we are dealing with simple
mechanical control systems, it is of more interest to us to know what is happening
to the configurations. A good example of a question of interest in mechanics is
“What is the set of configurations which are reachable from a given configuration
if we start at rest?” This is in fact exactly the question we pose.

4.13 Definition: A solution of (4.3) is a pair, (c, u), where c : [0, T ] → Q is a
piecewise smooth curve and u ∈ U such that

∇c′(t)c
′(t) = gradV (c(t)) + ua(t)Ya(c(t)). •
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Let q0 ∈ Q and let U be a neighbourhood of q0. We define

RUQ(q0, T ) = {q ∈ Q | there exists a solution (c, u) of (4.3)

such that c′(0) = 0q0 , c(t) ∈ U for t ∈ [0, T ], and c′(T ) ∈ TqQ}

and denote
RUQ(q0,≤ T ) =

⋃

0≤t≤T
RUQ(q0, t).

Notice that our definitions for reachable configurations do not require us to get to
a point in the reachable set at zero velocity. They merely ask that we be able to
reach that point at some velocity. It is, however, required that the initial velocity
be zero.

We now introduce our notions of controllability.

4.14 Definition: We shall say that (4.3) is locally configuration accessible at q0 ∈ Q
if there exists T > 0 such that RUQ(q0,≤ t) contains a non-empty open set of Q for
all neighbourhoods U of q0 and all 0 < t ≤ T . If this holds for any q0 ∈ Q then
the system is called locally configuration accessible.

We say that (4.3) is strongly locally configuration accessible at q0 ∈ Q if there
exists T > 0 such that RUQ(q0, t) contains a non-empty open set of Q for all neigh-
bourhoods U of q0 and all 0 < t ≤ T . If this holds for any q0 ∈ Q then the system
is called strongly locally configuration accessible.

We say that (4.3) is small-time locally configuration controllable (STLCC) at
q0 if it is locally configuration accessible at q0 and if there exists T > 0 such that q0
is in the interior of RUQ(q0,≤ t) for every neighbourhood U of q0 and 0 < t ≤ T . If
this holds for any q0 ∈ Q then the system is called small-time locally configuration
controllable. •
Note that this definition may be made to apply to any control system which evolves
on TQ.

Another definition of controllability may be interesting in some cases. We shall
say that q ∈ Q is an equilibrium point for L if XL(0q) = 0. Let E(L) denote the
set of equilibrium points for L. We shall say that (4.3) is equilibrium controllable
if, for q1, q2 ∈ E(L), there exists a solution (c, u) of (4.3) where c : [0, T ] → Q is
such that c(0) = q1, c(T ) = q2 and both c′(0) and c′(T ) are zero.

4.1.7 Conditions for controllability of simple mechanical control
systems

Lewis and Murray [1995a] present sufficient conditions for local configuration ac-
cessibility. Here, since we have a complete description of Lie(V ′) | Z(TQ), we can
give stronger results.

4.15 Theorem: The control system (4.3) is locally configuration accessible at q if
Chor(Y , V )(q) = TqQ.
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Proof: Following Section 3.1, let C denote the accessibility distribution. Since
Chor(Y , V )(q) ⊂ C(0q) by Proposition 4.11, and Chor(Y , V )(q) = TqQ by hypoth-
esis, Z(TQ) must be an integral manifold of C. Let Λ be the maximal integral
manifold which contains Z(TQ). Since C is the accessibility distribution, Λ must
be invariant under the system (4.3) and the system must be locally accessible when

restricted to Λ. Thus the set RŨ (0q,≤ T ) is open in Λ for every neighbourhood
Ũ ⊂ Λ of 0q and for every T sufficiently small. Now let U be a neighbour-
hood of q and define a neighbourhood of 0q in Λ by Ũ = π−1

TQ(U) ∩ Λ. The set

πTQ(R
Ũ (0q,≤ T )) is open in Q for T sufficiently small since πTQ is an open map-

ping. This proves the theorem. ■

We also have a partial converse to Theorem 4.15 when the potential energy is
zero.

4.16 Theorem: Suppose that V = 0 and that (4.3) is locally configuration acces-
sible. Then Chor(Y , V )(q) = TqQ for q in an open dense subset of Q.

Proof: First note that if Chor(Y , V )(q0) = Tq0Q then Chor(Y , V )(q) = TqQ in a
neighbourhood of q0. This proves that the set of points q where Chor(Y , V )(q) =
TqQ is open. Now suppose that Chor(Y , V )(q) ⊊ TqQ in an open subset U of Q.
Then there exists an open subset Ū ⊂ U so that rank(Chor(Y , V )(q)) = k < n
for all q ∈ Ū . However, this contradicts local configuration accessibility by Theo-
rem 4.19. Therefore, there can be no open subset of Q on which Chor(Y , V )(q) ⊊
TqQ. Thus the set of points q where Chor(Y , V )(q) = TqQ is dense. This completes
the proof. ■

We may also prove an easy statement about STLCC. We need to say a few
things about “good” and “bad” symmetric products. Let Y = {X1, . . . , Xm+1}
and establish a bijection ψ : Y → Y ∪ {gradV } by asking that ψ(Xa) = Ya for
a = 1, . . . ,m and ψ(Xm+1) = gradV . If P ∈ Pr(Y ) we shall say that P is bad if
γa(P ) is even for each a = 1, . . . ,m. We say that P is good if it is not bad. Let
Sm denote the permutation group on m symbols. For π ∈ Sm and P ∈ Pr(Y )
define π̄(P ) to be the bracket obtained by fixing Xm+1 and sending Xa to Xπ(a)

for a = 1, . . . ,m. Now define

ρ(P ) =
∑

π∈Sm

π̄(P ).

We may now state the sufficient conditions for STLCC.

4.17 Theorem: Suppose that Y ∪{gradV } is such that every bad symmetric prod-
uct in Pr(Y ) has the property that

Ev0q(ψ)(ρ(P )) =
m∑

a=1

ξa Ev0q(ψ)(Ca)

where Ca are good symmetric products in Pr(Y ) of lower degree than P and ξa ∈ R
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for a = 1, . . . ,m. Also, suppose that (4.3) is locally configuration accessible at q.
Then (4.3) is STLCC at q.

Proof: First recall from the proof of Theorem 4.15 that if (4.3) is locally config-
uration accessible at q, then Z(TQ) is an integral manifold for the accessibility
distribution. We let Λ be the maximal integral manifold for the accessibility dis-
tribution which contains Z(TQ). Restricted to Λ, (4.3) is locally accessible. To
show that (4.3) is STLCC at q, it clearly suffices to show that (4.3) is STLC at 0q
when restricted to Λ. We do this by showing that (4.3) satisfies the hypotheses of
Theorem 3.30 if it satisfies the stated hypotheses on the symmetric products. To
do this we shall show that there is a 1–1 correspondence between bad brackets in
Br(X ′) and bad symmetric products in Pr(Y ) and good brackets in Br(X ′) and
good symmetric products in Pr(Y ).

Suppose that B′ ∈ Br(X ′) is bad. Thus δa(B
′) is even for a = 1, . . . ,m and

δ0(B
′) is odd. When we evaluate Ev0q(ϕ

′)(B′), the only terms that will remain
in the decomposition of Ev(ϕ′)(B′) given by Lemma 4.5 are the terms obtained
from brackets in S(B′) which are in Br0(X) ∪ Br−1(X). Since B′ is bad, we
must have δa(B) even and δ0(B) + δm+1(B) odd for each B ∈ S(B′). If δ0(B)
is odd then δm+1(B) must be even. In this case we get

∑m+1
a=1 δa(B) as even and

δ0(B) as odd. Thus the only brackets in S(B′) which contribute to Ev(ϕ′)(B′)
must be in Br−1(X). This will give us a vector in V0qTQ which comes from a
symmetric product which is bad. Now suppose that δ0(B) is even for B ∈ S(B′).
Then δm+1(B) must be odd. In this case

∑m+1
a=1 δa(B) is odd and δ0(B) is even

and again, the only brackets in S(B′) which contribute to Ev(ϕ′)(B′) must be in
Br−1(X). We then conclude that Ev0q(ϕ

′)(B′) must be of the form (Evq(ψ)(P ))
lift

where P ∈ Pr(Y ) is bad.
Now suppose that B′ ∈ Br(X ′) is good. It is clear that if δa(B

′) is odd for
any a = 1, . . . ,m then B′ cannot give rise to a bad symmetric product. Thus we
may suppose that δa(B

′) is even for each a = 0, . . . ,m. Now let’s look at what
the brackets look like from S(B′) which contribute to Ev(ϕ′)(B′). Let B be such
a bracket. We must have δa(B) even for a = 1, . . . ,m and δ0(B) + δm+1(B) even.
If δ0(B) is odd then δm+1(B) must be odd. Since B is primitive this means that∑m+1

a=1 δa(B) and δ0(B) are odd. Therefore, B must be in Br0(X). Now suppose
that δ0(B) is even. Then δm+1(B) must also be even. Thus

∑m+1
a=1 δa(B) and

δ0(B) are even and so B ∈ Br0(X). Therefore, good brackets from Br(X ′) do not
generate any bad symmetric products. ■

We make some observations about the results of this section.

4.18 Remarks: 1. Notice that Theorem 4.15 explains the example from Sec-
tion 4.1.1. More precisely, we have shown that it is not necessary to be able
to generate all directions on TQ to obtain controllability in the configuration
variables. Indeed, the only vertical directions we generate are Cver(Y , V )
which need not span V0qTQ.

2. Note that the result we have proved for STLCC in Theorem 4.17 is stronger
than the definition for STLCC. In fact, it is true that, starting from rest at
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q0, we may reach a neighbourhood of q0 at rest. In particular, if E(L) ̸= ∅,
then (4.3) is equilibrium controllable if it satisfies the hypotheses of Theo-
rem 4.17. This result may be made even stronger if we allow a point q ∈ Q
to be an equilibrium point if gradV (q) is in the span of the inputs at q. •

4.1.8 Decompositions for simple mechanical control systems

Now we give decomposition results which mirror Propositions 3.12 and 3.13. Our
first result gives a decomposition which is valid for systems with no potential
energy.

4.19 Theorem: Suppose that V = 0 for the control system (4.3) and suppose that
Chor(Y , V ) has constant rank k in a neighbourhood of q0 ∈ Q. Then there exists
a coordinate chart, (U, ϕ), around q0 such that the submanifold

Sq0 = {q ∈ U | qi(q) = qi(q0), i = k + 1, . . . , n}

is an integral manifold of Chor(Y , V ). Then, for any neighbourhood W ⊂ U of
q0 and for all T > 0 sufficiently small, RWQ (q0, T ) is contained in Sq0. Hence the
system restricted to Sq0 is locally configuration accessible.

Proof: The coordinate decomposition exists since Chor(Y , V ) is integrable as
pointed out in Remark 4.12–2. Since V = 0, we have Cver(Y , V ) = Sym(Y ) and
Chor(Y , V ) = Lie(Sym(Y )) as in Remark 4.12–3. This implies that Cver(Y , V ) ⊂
Chor(Y , V ) and so all solutions of (4.3) which start on Sq0 with zero initial veloc-
ity will remain on Sq0 . Thus RWQ (q0, T ) ⊂ Sq0 . It is also clear that the system
is locally configuration accessible when restricted to initial conditions in Sq0 since
dim(Sq0) = rank(Chor(Y , V ) | Sq0). ■

Now we give a result which gives the form of the equations on the integral
manifolds of Chor(Y , V ) when the potential energy is non-zero.

4.20 Theorem: Suppose that Chor(Y , V ) has constant rank k in a neighbourhood
of q0 ∈ Q. Then there exists coordinates (x1, . . . , xk, y1, . . . , yn−k) so that the
system (4.3) has the form

ẍi + Γijk(x, y)ẋ
j ẋk + Γijα(x, y)ẋ

j ẏα + Γiαβ(x, y)ẏ
αẏβ + gij

∂V

∂xj
+ giα

∂V

∂yα
= uaY i

a

ÿα + Γαjβ(x, y)ẋ
j ẏβ + Γαβγ(x, y)ẏ

β ẏγ + gαj
∂V

∂xj
+ gαβ

∂V

∂yβ
= 0.

Furthermore, for each fixed value of y, the control system

ẍi + Γijk(x, y)ẋ
j ẋk + gij

∂V

∂xj
+ giα

∂V

∂yα
= uaY i

a

is locally configuration accessible.

Proof: Since Chor(Y , V ) has constant rank in a neighbourhood of q0 and
Chor(Y , V ) is integrable, by Frobenius’ theorem we may find coordinates
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(x1, . . . , xk, y1, . . . , yn−k) for Q so that

Chor(Y , V )(q0) = ⟨ ∂

∂x1
, . . . ,

∂

∂xk
⟩R .

In general, the equations (4.3) in these coordinates will have the form

ẍi + Γijk(x, y)ẋ
j ẋk + Γijα(x, y)ẋ

j ẏα + Γiαβ(x, y)ẏ
αẏβ + gij

∂V

∂xj
+ giα

∂V

∂yα
= uaY i

a

(4.11a)

ÿα + Γαjk(x, y)ẋ
j ẋk + Γαjβ(x, y)ẋ

j ẏβ + Γαβγ(x, y)ẏ
β ẏγ + gαj

∂V

∂xj
+ gαβ

∂V

∂yβ
= 0.
(4.11b)

We claim that the term Γαjk(x, y)ẋ
j ẋk in (4.11b) must be zero. This follows from

Theorem 4.19 proving the given form of the decomposition. That the top system
is locally configuration accessible follows from the fact that rank(Chor(Y , V )) =
k. (It makes sense to speak of local configuration accessibility of this system by
Remark 4.12–4 and the statement immediately following Definition 4.14.) ■

4.21 Remark: In Theorem 4.19 the act of restricting to Sq0 has specific meaning.
We may pull-back the Riemannian metric to Sq0 since it is a submanifold of Q.
Doing so defines a Riemannian metric on Sq0 . This defines a simple mechanical
control system (with zero potential energy) on Sq0 and, as long as we begin with
zero initial velocity, the trajectories of this control system will be the same as those
of the larger system. •

4.2 Decompositions for Hamiltonian control systems

In this section we investigate mechanical control systems in the Hamiltonian frame-
work. We look at Hamiltonian systems which evolve on a general symplectic man-
ifold rather than just on a cotangent bundle. With this more general structure, it
is natural to restrict the control problem to one which fully respects the symplectic
properties of the phase space. To this end we shall suppose that the control vector
fields are Hamiltonian vector fields. In this section, for simplicity, we shall assume
that all distributions have constant rank.

First we discuss some relevant reductions of symplectic manifolds to smaller
symplectic manifolds and Poisson manifolds. In Section 4.2.1 we present the re-
duction which will give the locally accessible dynamics in Proposition 4.28. The
reduction which leads to the strongly locally inaccessible dynamics of Proposi-
tion 4.30 is discussed in Section 4.2.2.

Note: In this section, if D is a distribution on a symplectic manifold (P,Ω), then
we will denote D⊥ = Ω⊥D in order to simplify the notation. •
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4.2.1 Reduction of symplectic manifolds by invariant foliations

The reduction we discuss is from [Abraham and Marsden 1978] and was originally
developed by Weinstein [1977].

We suppose that we have an integrable distribution D on P . Denote by FD
the maximal foliation corresponding to this integrable distribution. From the
distribution D we may compute, in a natural way, a smaller distribution which is
also integrable.

4.22 Lemma: The distribution D ∩D⊥ is an integrable distribution on P .

Proof: Suppose that X1, X2 are sections of D ∩D⊥. We have

dΩ(X1, X2, Y ) = X2(Ω(X1, Y ))−X1(Ω(X2, Y ))− Y (Ω(X1, X2))+

Ω([X1, X2], Y )− Ω([X1, Y ], X2) + Ω([X2, Y ], X1).

for all sections Y of D. Using the facts that Ω is closed and that D is integrable,
we get Ω([X1, X2], Y ) = 0 for all sections Y of D. Thus [X1, X2] ∈ D⊥. Since D
is integrable, this means that [X1, X2] ∈ D ∩D⊥ for all X1, X2 ∈ D ∩D⊥. Thus
D ∩D⊥ is integrable. ■

Now let us fix a leaf Λ of FD. The distribution D∩D⊥ restricts to Λ and so, by
Frobenius’ Theorem, there exists a maximal foliation of Λ for which the tangent
spaces to the leaves are elements of D ∩D⊥. We denote this foliation of Λ by FΛ.
We shall further assume that Λ/FΛ is a manifold. We can show that this quotient
inherits a symplectic structure from P in a natural manner.

4.23 Proposition: Let Λ be a leaf of the foliation FD. Suppose that Λ is a sub-
manifold of P and that FΛ is simple. Then Λ/FΛ inherits a canonical symplectic
structure ΩΛ which satisfies the property

π∗ΩΛ = i∗Ω.

Here π : Λ → Λ/FΛ is the projection and i : Λ → P is the inclusion.

Proof: We first note that, as a vector bundle over Λ, D/D∩D⊥ is symplectic with
the symplectic form on the fibres defined by

Ω̃(p)([v1], [v2]) = Ω(p)(v1, v2)

for v1, v2 ∈ D(p) = TpΛ and p ∈ Λ. To show that this form is well-defined we
must show that it is independent of the choice of representatives v1, v2. So let
v′1, v

′
2 ∈ D(p) be such that [v1] = [v′1] and [v2] = [v′2]. Then v′1 = v1 + u1 and

v2 = v′2 + u2 for some u1, u2 ∈ D(p) ∩D(p)⊥. We now have

Ω(p)(v′1, v
′
2) = Ω(p)(v1 + u1, v2 + u2)

= Ω(p)(v1, v2) + Ω(p)(v1, u2)+

Ω(p)(u1, v2) + Ω(p)(u1, u2)

= Ω(p)(v1, v2).
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To show that Ω̃ is nondegenerate, fix [v1] ∈ D(p)/D(p) ∩D(p)⊥ and suppose that
Ω̃(p)([v1], [v2]) = 0 for all [v2] ∈ D(p)/D(p)∩D(p)⊥. Then Ω(p)(v1, v2) = 0 for all
v2 ∈ D(p). This implies that v1 ∈ D(p)⊥ and so [v1] = 0. Thus we have shown
that D/D ∩D⊥ is a symplectic vector bundle.

Now suppose that X is a vector field which is tangent to a leaf of FΛ. Then X
is a section of D ∩D⊥ | Λ. Therefore,

LXi
∗Ω = d(X i∗Ω) = 0.

Thus i∗Ω is “constant” on leaves of FΛ. Therefore, it reduces to a two-form ΩΛ on
the quotient Λ/FΛ defined by π∗ΩΛ = i∗Ω. This form is nondegenerate as we have
an identification of T[p]Λ/FΛ with D(p)/D(p) ∩D(p)⊥. Also, π∗dΩΛ = i∗dΩ = 0
and so dΩΛ = 0 since π is a submersion. ■

Now we look at how we may reduce a Hamiltonian vector field on P to a
Hamiltonian vector field on the quotient Λ/FΛ. We will suppose that we are given
a Hamiltonian H whose Hamiltonian vector field is denoted by XH .

Recall that a distribution D is invariant under a vector field X if [X,Y ] ∈ D
for every Y ∈ D (see Section 3.3).

4.24 Proposition: If the distribution D is invariant under XH then so is the dis-
tribution D ∩D⊥.

Proof: We must show that [XH , Y ] ∈ D ∩D⊥ for every Y ∈ D ∩D⊥. Let Z ∈ D .
We compute

dΩ(XH , Y, Z) = Y (Ω(XH , Z))−XH(Ω(Y,Z))− Z(Ω(XH , Y ))+

Ω([XH , Y ], Z)− Ω([XH , Z], Y ) + Ω([Y, Z], XH)

= − Y (dH · Z) + Z(dH · Y )− Ω([XH , Y ], Z)−
Ω([Y,Z], XH)

= − Ω([XH , Y ], Z)− [Y, Z] · dH +Ω(XH , [Y, Z])

= − Ω([XH , Y ], Z).

Thus, since Ω is closed, we have Ω([XH , Y ], Z) = 0 for every Z ∈ D and Y ∈
D ∩D⊥. Thus [XH , Y ] ∈ D ∩D⊥ for Y ∈ D ∩D⊥. ■

If we make a stronger assumption on the Hamiltonian vector field, we may
drop the dynamics to the quotient manifolds Λ/FΛ.

4.25 Corollary: Suppose that XH ∈ D . Then, for each leaf Λ of FD, the vector
field XH gives rise to a Hamiltonian vector field on the quotient Λ/FΛ. The
Hamiltonian, HΛ, for the reduced vector field is defined by π∗HΛ = i∗H.

Proof: This simply amounts to observing that ifXH ∈ D thenXH restricts to each
leaf of FD. Now, since this restricted vector field leaves the distribution D ∩D⊥

invariant by Proposition 4.24, it drops to the quotient by Proposition 3.21. To
show that the vector field is Hamiltonian with the Hamiltonian HΛ we need only
show that H projects. However this is clear since XH is tangent to the leaves of
D ∩D⊥. ■
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4.2.2 Decompositions of symplectic manifolds into Poisson mani-
folds

We saw in Section 2.9 that a Poisson manifold is foliated by symplectic leaves.
In this section we show that distributions with certain properties may be used
to form Poisson manifolds from symplectic ones. This discussion is extracted
from [Libermann and Marle 1987].

4.26 Proposition: Let (P,Σ) be a Poisson manifold and let ϕ : P → N be a sur-
jective submersion. Then the following are equivalent:

(i) The restriction of {f ◦ ϕ, g ◦ ϕ} to ϕ−1(x) is constant for each x ∈ N and
for each f, g ∈ C∞(N), and

(ii) there exists a Poisson structure on N so that ϕ is a Poisson mapping.

Proof: Since ϕ is a surjective submersion, the map f 7→ f ◦ ϕ is an isomorphism of
C∞(N) with the subspace of C∞(M) consisting of functions which are constant
on ϕ−1(x) for each x ∈ N . Therefore, if N has a Poisson structure so that ϕ is
a Poisson mapping, the bracket (on P ) of two functions which are constant on
ϕ−1(x) must also be constant on ϕ−1(x). Thus (ii) implies (i).

Now suppose that (i) is true. We may then define a Poisson structure on N by
making it the unique function which satisfies the property

{f ◦ ϕ, g ◦ ϕ} = {f, g} ◦ ϕ.

This definition makes sense since (i) is true, and it clearly makes ϕ a Poisson
mapping. ■

This result is especially interesting when the Poisson manifold is symplectic.

4.27 Proposition: Let (P,Ω) be a symplectic manifold and let D be an integrable
distribution on P .

(i) The distribution D⊥ is integrable if and only if the Poisson bracket of every
pair of integrals of D is an integral of D.

(ii) Suppose there is a submersion ϕ : P → N so that D = ker(Tϕ). If there
exists a Poisson structure on N so that ϕ is a Poisson mapping, then D⊥

is integrable. Conversely, if D⊥ is integrable and if ϕ−1(x) is connected for
each x ∈ N , then there exists a unique Poisson structure on N so that ϕ is
a Poisson mapping.

Proof: From Lemma 2.17(i) we have have

[Ω♯df,Ω♯dg] = Ω♯d{f, g}

for all f, g ∈ C∞(P ). This holds in particular if f, g are integrals of D. Note that
Ω♯df and Ω♯dg are sections ofD⊥ if f and g are integrals ofD (see Lemma 2.17(ii)).
Therefore, [Xf , Xg] is a section of D⊥ if and only if {f, g} is an integral of D⊥. If
the rank of D is k and the dimension of P is 2n, then around every point p ∈ P we
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may find 2n−k linearly independent functions, f1, . . . , f2n−k, which are integrals of
D. The resulting Hamiltonian vector fields span D⊥. This proves (i) by Frobenius’
theorem.

Note that if D = ker(Tϕ), then the integrals of D are the functions which are
constant on ϕ−1(x) for each x ∈ N . Now apply Proposition 4.26 and (i) to get the
first part of (ii).

Now suppose that ker(Tϕ)⊥ is integrable. By (i), for every two functions
f, g ∈ C∞(N), {f ◦ ϕ, g ◦ ϕ} is constant on ϕ−1(x) for each x ∈ N . But the sets
ϕ−1(x) are the leaves of the maximal foliation of D since we have assumed these
sets to be connected. The second part of (ii) now follows from Proposition 4.26.■

4.2.3 Applications of decompositions to Hamiltonian control sys-
tems

The reductions of Sections 4.2.1 and 4.2.2 may be applied to Hamiltonian control
systems. We shall define a Hamiltonian control system on a symplectic manifold
(P,Ω) to be an affine control system whose drift and control vector fields are
Hamiltonian. We shall write such a system as

ṗ = XH(p) + uaXa(p) (4.12)

where the vector fields Xa are assumed to be Hamiltonian with Hamiltonian Ha for
a = 1, . . . ,m. This type of control system is actually quite common in mechanics,
and is discussed by Nijmeijer and van der Schaft [1990] and the references cited
therein. Examples of systems which are (at least locally) Hamiltonian control
systems are those which evolve on the symplectic manifold T ∗Q and where the
control Hamiltonians are simply coordinate functions on Q.

Following Section 3.1, we denote by C the accessibility distribution and by C0

the strong accessibility distribution for the control system (4.12). The reduction
of Section 4.2.1 may be applied to the case where the integrable distribution is
the accessibility distribution since in this case the leaves of the foliation will be
invariant under both the control vector fields and the drift vector field. By Corol-
lary 4.25, the drift and control vector fields drop to the quotient Λ/FΛ for each
leaf Λ ∈ FC . In this way we obtain a family of Hamiltonian control systems, one
for each leaf of FC . We have the following result.

4.28 Proposition: Let Λ be a leaf of FC and let FΛ be the foliation induced on Λ
by the distribution C ∩C⊥. The control system (4.12) drops to a locally accessible
Hamiltonian control system on the symplectic manifold Λ/FΛ.

Proof: By Proposition 4.23 the manifold Λ/FΛ is symplectic. By Corollary 4.25
the control system (4.12) drops to a Hamiltonian control system on the quotient. It
remains to be shown that this reduced control system is locally accessible. Suppose
it is not. Then the accessibility distribution on the quotient is not maximal. This
immediately implies that the accessibility distribution on Λ must not be maximal
since if it were, it would project to the maximal distribution on Λ. Thus we
contradict local accessibility on the leaf Λ. ■
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Now we study the uncontrollable dynamics. We shall use the decomposition
results of Section 4.2.2. To do so we shall need some properties of the strong
accessibility distribution C0 associated with (4.12).

4.29 Lemma: The distribution C⊥
0 is integrable.

Proof: By Proposition 4.27(i) it suffices to show that the Poisson bracket of every
pair of integrals of C0 is also an integral of C0. It is clear that C0 is the distribution
generated by Hamiltonian vector fields whose Hamiltonians are of the form

{Fk, {Fk−1, {· · · {F1, Ha} · · · }}

for a = 1, . . . ,m and where Fi ∈ {H,H1, . . . ,Hm} for i = 1, . . . , k. Let us denote
this collection of functions by O . The functions on P which commute under Poisson
bracket with O will be denoted O ⊥. The integrals of C0 are all functions which
are annihilated by the vector fields which generate C0. These functions are then
also those functions in O ⊥. Let G1, G2 ∈ O ⊥. We claim that the Poisson bracket
of {G1, G2} with any function in O is zero. Indeed, let F ∈ O . Then, by Jacobi’s
identity

0 = {F, {G1, G2}}+ {G2, {F,G1}}+ {G1, {G2, F}} = {F, {G1, G2}}.

This proves the lemma by Proposition 4.27. ■

With this result we immediately have the following characterisation of the strongly
inaccessible dynamics.

4.30 Proposition: Suppose that the foliation FC0 is simple. Then the manifold
P/FC0 has a Poisson structure so that the projection from P to the quotient is
a Poisson mapping. Furthermore, the vector field XH induces a vector field on
P/FC0 which is Poisson.

Proof: The first part of the proposition follows from Lemma 4.29 and Proposi-
tion 4.27(ii). That the vector field XH drops to the quotient is a consequence
of C0 being invariant under XH and of Proposition 3.21. To show that the pro-
jected vector field, X, on the quotient is Poisson, let f, g ∈ C∞(P/Fc0). Then, by
Lemma 2.19 and since π is a Poisson mapping, we have

LX{f, g} = LXH
π∗{f, g} = LXH

{π∗f, π∗g} = {LXH
π∗f, π∗g}+ {π∗f,LXH

π∗g}
= {LXf, g}+ {f,LXg}.

This shows that X is a Poisson vector field. ■

4.3 Examples of mechanical control systems

In this section we present some examples. The examples are rather simple and are
intended to illustrate the concepts put forward by the theory. One of the advan-
tages of the conditions for local configuration accessibility given in Theorem 4.15
is that it lends itself to symbolic computation. Indeed, a Mathematica package
was written to facilitate the computations in this section.
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4.3.1 The robotic leg

In this section we return to the example discussed in Section 4.1.1. This example,
although simple, exhibits much of the subtle behaviour that makes the study of
mechanical systems interesting. This system may be cast both as a simple me-
chanical control system as in Section 4.1 and a Hamiltonian control system as in
Section 4.2. The reader should be aware that the Hamiltonian representation is
only valid locally since one of the input vector fields is only locally Hamiltonian
and not Hamiltonian.

In the calculations in this section we shall avoid any problems which arise in
the computations when the velocities or momenta are zero.

The robotic leg as a simple mechanical control system

In the coordinates (θ, ψ, r) presented in Section 4.1.1, the Riemannian metric for
the robotic leg is

g = Jdθ ⊗ dθ +mr2dψ ⊗ dψ +mdr ⊗ dr,

the input one-forms are

F 1 = dθ − dψ, F 2 = dr,

and the potential energy function is zero. In Section 4.1.1 we computed the input
vector fields to be

Y1 =
1

J

∂

∂θ
− 1

mr2
∂

∂ψ
, Y2 =

1

m

∂

∂r
.

Since there is no potential energy present, the distribution Chor(Y , V ) is simply
generated by the vector fields Lie(Sym(Y )).

We will find the following computations to be sufficient:

⟨Y1 : Y1⟩ = − 2

m2r3
∂

∂r
,

⟨Y1 : Y2⟩ = 0,

⟨Y2 : Y2⟩ = 0,

[Y1, Y2] = − 2

m2r3
∂

∂ψ
,

[Y1, ⟨Y1 : Y1⟩] =
4

m3r6
∂

∂ψ
.

The reader may wish to compare these calculations with the bracket calculations
of Section 4.1.1.

We may now go ahead and determine the configuration controllability of the
robotic leg for the following three combinations of inputs:

RL1. Inputs Y1 and Y2: In this case it is clear that the system is locally config-
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uration accessible by Theorem 4.15 as the input vector fields and their Lie
bracket generates the maximal distribution on Q. Also, the bad symmetric
product ⟨Y1 : Y1⟩ is a multiple of Y2 so the system is STLCC by Theorem 4.17.

RL2. Input Y1: In this case the system is again locally configuration accessible
since the vector fields {Y1, ⟨Y1 : Y1⟩, [Y1, ⟨Y1 : Y1⟩]} generate the maximal
distribution on Q. Note that the bad symmetric product ⟨Y1 : Y1⟩ does not
lie in the span of the inputs. Therefore, with this input, the robotic leg
violates the sufficient conditions of Theorem 4.17 for STLCC.

RL3. Input Y2: In this case we only generate the direction Y2 and so the system
is not locally configuration accessible. Indeed, starting from rest and only
applying force in the r-direction, the only behaviour that can be observed is
motion back and forth of the mass on the end of the leg. The decomposition
of Theorem 4.20 in this case is given by

r̈ − rψ̇2 =
1

m
u1

θ̈ = 0

ψ̈ +
2

r
ṙψ̇ = 0.

The top system is obviously locally configuration accessible and also STLCC.

RL4. The linearisation of this system around points of zero velocity is not control-
lable so the cases where the system is STLCC do not follow from the linear
calculations.

4.31 Remarks: 1. The fact that the system is STLCC with both inputs (RL1) is
not surprising given the discussion of Section 4.1.1. Here we have just verified
the claim in that section using the formalism developed in Section 4.1.

2. Observe that the decomposition in RL3 is just as specified in Theorem 4.20.
No inputs appear in the bottom two equations, and no terms which are
quadratic in ṙ appear in the bottom two equations.

3. Although the system only violates the sufficient conditions for STLCC in
RL2, one may easily see by looking at the r-component of Lagrange’s equa-
tions that the system is, in fact, not STLCC. The reason for this is that,
since r̈ ≥ 0, r will always increase no matter what happens to the other
variables. Thus our initial configuration will never be in the interior of the
set of reachable configurations. •

The robotic leg as a Hamiltonian control system

Now we look at the robotic leg as a Hamiltonian control system. The symplectic
manifold is the cotangent bundle of the configuration manifold Q = T2 ×R+. As
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coordinates for T ∗Q we shall use (θ, ψ, r, pθ, pψ, pr) where (θ, ψ, r) are as explained
in Section 4.1.1. The symplectic structure we consider is the canonical one for
T ∗Q. Thus

Ω = dθ ∧ dpθ + dψ ∧ dpψ + dr ∧ dpr.

Note: In this section, if D is a distribution on the symplectic manifold (T ∗Q,Ω),
then we will denote D⊥ = Ω⊥D in order to simplify the notation. •
The Hamiltonian is

H =
1

2J
p2θ +

1

2m

(
p2r + r−2p2ψ

)
.

We may then compute the drift vector field to be

XH =
pθ
J

∂

∂θ
+

pψ
mr2

∂

∂ψ
+
pr
m

∂

∂r
+

p2ψ
mr3

∂

∂pr
.

The control vector fields we shall consider are computed to be

X1 =
∂

∂pθ
− ∂

∂pψ
, X2 =

∂

∂pr
.

The reader should be aware that X1 is only locally Hamiltonian.
As we did when we considered the robotic leg as a simple mechanical control

system, we consider three combinations of inputs.

Inputs X1 and X2: The accessibility distribution may be computed to be

C = ⟨ ∂
∂r
,
∂

∂θ
,
∂

∂ψ
,
∂

∂pr
,
∂

∂pθ
− ∂

∂pψ
⟩.

The leaves of the maximal foliation of this distribution are easily seen to be defined
by j ≜ pθ + pψ = constant . As coordinates for j−1(µ) we shall use (θ, ψ, r, pϕ =
pθ − pψ, pr). The inclusion of j−1(µ) into T ∗Q is given by

(θ, ψ, r, pϕ, pr) 7→
(
θ, ψ, r, 12(µ− pϕ),

1
2(µ+ pϕ), pr

)
.

We readily compute

C⊥ = ⟨ ∂
∂θ

+
∂

∂ψ
⟩

and so we see that C ∩ C⊥ = C⊥ (thus C is coisotropic). As the theory says,
C ∩ C⊥ is integrable and its integral manifolds in this case are defined by

θ − ψ = r = pθ = pψ = pr = constant .

As coordinates for j−1(µ)/FC∩C⊥ we will use (ϕ ≜ θ − ψ, r, pϕ, pr). Thus
j−1(µ)/FC∩C⊥ is symplectomorphic to T ∗(S1 ×R+). The drift vector field drops
to this manifold and is the Hamiltonian vector field on T ∗(S1 × R+) with the
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canonical symplectic structure and Hamiltonian

Hµ =
1

2m
p2r +

(
1

8J
+

1

8mr2

)
p2ϕ +

(
1

4mr2
− 1

4J

)
µpϕ +

(
1

8J
+

1

8mr2

)
µ2.

The control vector fields drop to T ∗(S1 ×R+) and are given by

X̃1 =
∂

∂pϕ
, X̃2 = 0

corresponding to X1 and X2, respectively. This defines for us the locally acces-
sible Hamiltonian control system corresponding to the leaf j−1(µ) as specified by
Proposition 4.28.

4.32 Remark: These reduced dynamics are the same as would be obtained by
performing standard symplectic reduction [Abraham and Marsden 1978] corre-
sponding to the group action of G = S1 on Q given by

(α, (θ, ψ, r)) 7→ (θ + α, ψ + α, r). •

We may also compute the strongly inaccessible dynamics in this case as in
Proposition 4.30. When both inputs are present we compute C0 = C. Thus
T ∗Q/FC0 is a Poisson manifold which, in this case, may be coordinatised by µ =
pθ + pψ. The Poisson tensor is identically zero and there are no dynamics on this
reduced manifold. This is a consequence of the fact that the system is strongly
locally accessible on each leaf of Fc0 .

Input X1: In this case the accessibility distribution and the strong accessibility
distribution are the same as those computed with both inputs, so the reductions
are the same.

Input X2: In this case the accessibility distribution may be computed to be

C = ⟨ ∂
∂θ
,
∂

∂ψ
,
∂

∂r
,
∂

∂pr
⟩.

The leaves are defined by pθ = constant and pψ = constant . As coordinates for
any leaf we shall use the coordinates (θ, ψ, r, pr). The injection of the leaf defined
by pθ = µ and pψ = ν is given by

(θ, ψ, r, pr) 7→ (θ, ψ, r, µ, ν, pr).

We may readily compute

C⊥ = ⟨ ∂
∂θ
,
∂

∂ψ
⟩

and so

C ∩ C⊥ = ⟨ ∂
∂θ
,
∂

∂ψ
⟩.
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This distribution is integrable, as it must be, and its integral manifolds are defined
by

r = pθ = pψ = pr = constant .

As coordinates for the quotient of a leaf by FC∩C⊥ we shall use (r, pr). Thus the
reduced manifolds are symplectomorphic to T ∗R+. The drift vector field drops
to the quotient and is the Hamiltonian vector field on T ∗R+ with the canonical
symplectic structure and Hamiltonian

Hµ,ν =
1

2m
p2r +

1

2mr2
ν2 +

1

2J
µ2.

The drift vector field also factors through the quotient to yield the Hamiltonian
vector field

X̃2 =
∂

∂pr

on T ∗R+. In this way we obtain the locally accessible Hamiltonian control system
corresponding to the leaf pθ = µ, pψ = ν as specified by Proposition 4.28.

4.33 Remark: The reduced dynamics that one obtains in this manner are those
corresponding to symplectic reduction by the group action of G = S1 × S1 on Q
given by

((α, β), (θ, ψ, r)) 7→ (θ + α+ β, ψ + α, r). •
We may also compute the strong accessibility distribution as

C0 = ⟨ ∂
∂ψ

,
∂

∂r
,
∂

∂pr
⟩.

This integrable distribution defines a foliation whose leaves are described by

θ = pθ = pψ = constant .

We may use (θ, pθ, pψ) as coordinates for the Poisson manifold T ∗Q/FC0 . In these
coordinates the Poisson tensor is given by

Σ =
∂

∂θ
∧ ∂

∂pθ
.

The vector field XH drops to a vector field on the quotient which may be easily
computed to be

X̃ =
pθ
J

∂

∂θ
.

This is Hamiltonian on the quotient with the Hamiltonian

H̃ =
1

2J
p2θ.

Therefore, the reduced vector field is indeed Poisson on the quotient as in Proposi-
tion 4.30. These dynamics describe the locally strongly inaccessible dynamics for
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O

e2

e1

P

f2 f1

g

Figure 4.3. The configuration of a planar body as an element of
SE(2)

the robotic leg with the input in the r-direction. Physically these dynamics are a
manifestation of the fact that, with this input, the rigid body part of the system
will rotate completely unaffected by what is happening with the actuated leg.

4.3.2 The forced planar rigid body

In this section we study the planar rigid body with various combinations of forces
and torques. The configuration space for the system is the Lie group SE(2). To
establish the correspondence between the configuration of the body and SE(2), fix
a point O ∈ R2 and let {e1 = ∂

∂x , e2 = ∂
∂y} be the standard orthonormal frame

at that point. Let {f1,f2} be an orthonormal frame attached to the body at
its centre of mass. The configuration of the body is determined by the element
g ∈ SE(2) which maps the point O with its frame {e1, e2} to the position, P , of the
centre of mass of the body with its frame {f1,f2}. See Figure 4.3. The inputs for
this problem consist of forces applied at an arbitrary point and a torque about the
centre of mass. Without loss of generality (by redefining our body reference frame
{f1,f2}) we may suppose that the point of application of the force is a distance
h along the f1 body-axis from the centre of mass. The situation is illustrated in
Figure 4.4.

With this convention fixed, we shall use coordinates (x, y, θ) for the planar
rigid body where (x, y) describe the position of the centre of mass and θ describes
the orientation of the frame {f1,f2} with respect to the frame {e1, e2}. In these
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F 2

F 1
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Figure 4.4. Positions for application of forces on a planar rigid
body after simplifying assumptions

coordinates, the Riemannian metric for the system is

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ.

Here m is the mass of the body and J is its moment of inertia about the centre of
mass. The inputs are described by the one-forms

F 1 = cos θdx+ sin θdy, F 2 = − sin θdx+ cos θdy − hdθ, F 3 = dθ

from which we compute the input vector fields to be

Y1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
,

Y2 = −sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
− h

J

∂

∂θ
, Y3 =

1

J

∂

∂θ
.

Again, as with the robotic leg, there is no potential energy so the distribution
Chor(Y , V ) may be computed by calculating Lie(Sym(Y )).
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The following computations are sufficient to obtain the results we desire:

⟨Y1 : Y1⟩ = 0,

⟨Y1 : Y2⟩ =
h sin θ

mJ

∂

∂x
− h cos θ

mJ

∂

∂y
,

⟨Y1 : Y3⟩ = −sin θ

mJ

∂

∂x
+

cos θ

mJ

∂

∂y
,

⟨Y2 : Y2⟩ =
2h cos θ

mJ

∂

∂x
+

2h sin θ

mJ

∂

∂y
,

⟨Y2 : Y3⟩ = −cos θ

mJ

∂

∂x
− sin θ

mJ

∂

∂y
,

⟨Y3 : Y3⟩ = 0,

[Y1, Y2] = −h sin θ
mJ

∂

∂x
+
h cos θ

mJ

∂

∂y
,

[Y1, Y3] =
sin θ

mJ

∂

∂x
− cos θ

mJ

∂

∂y
,

[Y2, Y3] =
cos θ

mJ

∂

∂x
+

sin θ

mJ

∂

∂y
,

[Y2, ⟨Y2 : Y2⟩] =
2h2 sin θ

mJ2

∂

∂x
− 2h2 cos θ

mJ2

∂

∂y
.

With the computations done, we may proceed to determine configuration con-
trollability for the planar rigid body with various combinations of inputs. Since the
case where all inputs are present is trivial from the point of view of controllability,
we do not present it.

PB1. Inputs Y1 and Y2: In this case the maximal distribution on Q is gener-
ated by the inputs and their Lie bracket. Therefore, the system in locally
configuration accessible with these inputs by Theorem 4.15. Also, the bad
symmetric product ⟨Y2 : Y2⟩, is a multiple of Y1 so the system is STLCC by
Theorem 4.17.

PB2. Inputs Y1 and Y3: It is easy to see that the vector fields {Y1, Y3, [Y1, Y3]}
generate the maximal distribution on Q and so the system is locally config-
uration accessible with these inputs. All bad symmetric products vanish so
the system is also STLCC.

PB3. Input Y1: The only direction generated by all symmetric products and Lie
brackets is Y1 itself. Thus the system is not locally configuration accessible.
To use the decomposition of Theorem 4.20 we must make a change of coor-
dinates. In the coordinates (ξ, η, ψ) = (x cos θ + y sin θ,−x sin θ + y cos θ, θ)
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the equations have the form

ξ̈ − 2η̇ψ̇ − ξψ̇2 =
1

m
u

η̈ + 2ξ̇ψ̇ − ηψ̇2 = 0

ψ̈ = 0.

The top system is locally configuration accessible and STLCC.

PB4. Inputs Y2 and Y3: With these inputs the maximal distribution on Q is gen-
erated by the input vector fields and their Lie bracket. Thus the system
is locally configuration accessible. However, the bad symmetric product
⟨Y2 : Y2⟩ does not lie in the span of the inputs so the sufficient conditions of
Theorem 4.17 are violated and the system may not be STLCC.

PB5. Input Y2: With this input the maximal distribution on Q is generated by
the vector fields {Y2, ⟨Y2 : Y2⟩, [Y2, ⟨Y2 : Y2⟩]}. Thus the system is locally
configuration accessible by Theorem 4.15. The bad symmetric product ⟨Y2 :
Y2⟩, is not a multiple of Y2 so the system does not satisfy the sufficient
conditions for STLCC.

PB6. Input Y3: In this final case all symmetric products and Lie brackets are in
the direction Y3. Thus the system is not locally configuration accessible. We
may use the coordinates (θ, x, y) to render the system in the form specified
by Theorem 4.20. We obtain

θ̈ =
1

J
u3

ẍ = 0

ÿ = 0.

The top system is clearly locally configuration accessible and STLCC.

4.34 Remarks: 1. In this example, in the cases when the system fails to satisfy
the sufficient conditions for STLCC of Theorem 4.17, we are not able to say
whether the system is, in fact, not STLCC. In fact, in PB4, even though the
system does not satisfy the sufficient conditions of Theorem 4.17, it is easy
to see that it is STLCC.

2. On a related note, in the robotic leg we saw that it was “Coriolis forces”
which caused the loss of STLCC in RL2. In this example the metric is flat
so the same explanation does not work. It would be interesting to ascertain
why STLCC may be lost in the cases where the metric is flat.

3. The reader should verify that the decompositions given in PB3 and PB6 are
in fact of the form guaranteed by Theorem 4.20.
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Figure 4.5. Pendulum suspended from a cart

4. The linearisation of this system around points of zero velocity is not control-
lable so the cases where the system is STLCC do not follow from the linear
calculations.

5. The planar rigid body we presented in this section is an example of a class
of systems whose configuration manifold is a Lie group, and the Riemannian
metric and the input one-forms are left-invariant. In this case the control
vector fields will also be left-invariant. We may choose a basis, {ξ1, . . . , ξn},
for the Lie algebra of the group. Corresponding to this basis will be a basis of
left-invariant vector fields, {X1, . . . , Xn}, obtained by left translating the Lie
algebra basis to each point in the group. The covariant derivative ∇XiXj will
also be a left-invariant vector field and so we may write ⟨Xi : Xj⟩ = γkijXk for

some set of constants γkij . Similarly we may write [Xi, Xj ] = ckijXk where the

constants ckij are the structure constants for the Lie algebra relative to the
given basis. The conditions for local configuration accessibility and STLCC
may then be expressed in terms of the constants γkij and c

k
ij . •

4.3.3 The pendulum on a cart

In this section we study the problem of a pendulum suspended from a cart. The
configuration manifold for the system is Q = R × S1. As coordinates we shall use
(x, θ) as shown in Figure 4.5. In this case the Riemannian metric for the system is

g = (M +m)dx⊗ dx+ml cos θdx⊗ dθ +ml cos θdθ ⊗ dx+ml2dθ ⊗ dθ.

Here M is the mass of the cart and m is the mass of the pendulum. The potential
energy is

V = magl(1− cos θ)
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where ag is the acceleration due to gravity. The input is given by the one-form

F 1 = dx.

The input vector field is then readily computed to be

Y1 =
ml2

m2l2 +Mml2 −m2l2 cos2 θ

∂

∂x
+

ml cos θ

m2l2 +Mml2 −m2l2 cos2 θ

∂

∂θ
.

To compute Chor(Y , V ) we need the following computations:

⟨Y1 : Y1⟩ =
16m cos2 θ sin θ

l(m+ 2M −m cos 2θ)3
∂

∂x
+

8(M +m) sin θ

l2(m cos 2θ −m− 2M)3
∂

∂θ
,

⟨Y1 : gradV ⟩ = 4agm cos θ(m−m cos 2θ − 2M cos 2θ)

l(m cos 2θ −m− 2M)3
∂

∂x
+

4ag(2M
2 cos 2θ + 3Mm cos 2θ +m2 cos 2θ −Mm−m2)

l2(m cos 2θ −m− 2M)3
∂

∂θ
.

Note that at all points q ∈ Q except those where θ ∈ {0, π}, the vector fields
{Y1, ⟨Y1 : Y1⟩} generate the tangent space at q. This means that the system
is locally configuration accessible at these points. Also, at these points the bad
symmetric product ⟨Y1 : Y1⟩ is not a multiple of Y1 so the system may not be
STLCC at these points. At points where θ ∈ {0, π} the vector fields {Y1, ⟨Y1 :
gradV ⟩} span TqQ and so the system is also locally configuration accessible at
these points. Most importantly, however, the bad symmetric product vanishes at
these two points so the system is STLCC at these equilibria. This must be so as,
at these two points, the linearised system is controllable.

4.35 Remark: This example may also be regarded as a Hamiltonian control sys-
tem. However, it is uninteresting since the resulting Hamiltonian control system
is strongly locally accessible. Therefore, there is only one leaf of the accessibility
distribution: all of T ∗Q. This means that the locally accessible dynamics are just
the original dynamics. Also, T ∗Q/FC0 is trivial and so has no dynamics. •



Chapter 5

Formulations of general mechanical systems

with external forces

In Section 4.1 we studied a class of Lagrangian systems which was specified by
having a particular Lagrangian and a particular set of inputs. Since we would
eventually like to be able to consider more general Lagrangians and more gen-
eral inputs, it is worth formulating, in a precise way, a formulation of mechanics
which lends itself to this task. In the majority of modern geometric descriptions of
mechanics, whether from the Lagrangian or Hamiltonian point of view, the repre-
sentation of external inputs has been neglected. An example of some work which
does incorporate inputs is the dissertation of Yang [1992]. In that work, the geom-
etry of the tangent bundle is used to describe forces in the Lagrangian setting. In
this chapter we present an intrinsic description of mechanics which takes into ac-
count the presence of external forces by modifying the time-dependent Hamiltonian
point of view. Our formulations use the jet bundles J1(R, Q) in the Lagrangian
case and J1(Q,R) in the Hamiltonian case. See Section 2.10 for a discussion of jet
bundles.

We begin in Section 5.1 by introducing the basic objects of mechanics: the
Lagrangian and the Hamiltonian. We also introduce the Legendre transformation
which is used to go from one formulation to the other. In Section 5.2 we present the
objects which we shall use to model inputs in mechanical systems. In Section 5.3
we present the Hamiltonian formulation of mechanics with external inputs. We
present the Hamiltonian representation first since it fits most naturally with our use
of two-forms to describe the equations of motion. Next we adapt our description
of Hamiltonian mechanics to arrive at a Lagrangian formulation in Section 5.4.
In the case when the Lagrangian is hyperregular, the formulations of Lagrangian
and Hamiltonian mechanics are equivalent via the Legendre transformation. We
briefly present these results in Section 5.5. Most of what we say in this section is
a direct consequence of what was done in Section 5.1. In Section 5.6 we introduce
an object which we call the Lagrange force field. With this we are able to write
Lagrange’s equations in a manner which is reminiscent of Newton’s equations.
This also serves the purpose of realising Lagrange’s equations as the coefficients of
a geometric object. Using the notions from Section 2.6, we may construct a Pfaffian
module which describes the equations of motion. This approach is described for

89
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the Lagrangian point of view in Section 5.7.
Throughout this chapter, Q will denote the configuration manifold which we

assume to have dimension n.
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5.1 Lagrangians, Hamiltonians, and the Legendre
transformation

To discuss mechanics we need to say what we mean by the basic concepts of a
Lagrangian and a Hamiltonian. We will also introduce the Legendre transforma-
tion which is used to relate the Lagrangian and Hamiltonian formulations in the
hyperregular case. Our definitions are generalisations to the time-dependent case
of those given by Abraham and Marsden [1978] for the time-independent case.

5.1 Definition: A Lagrangian on Q is a function, L, on J1(R, Q). Let L be a
Lagrangian on Q. The Legendre transformation of L is the map, FL : J1(R, Q) →
J1(Q,R), defined as follows: Let [c]1 ∈ J1(R, Q)t,q. Let Lt,q denote the restriction
of L to J1(R, Q)t,q. Then

FL([c]1) = {[f ] ∈ J1(Q,R)q,t | df(q) = DLt,q([c]1)}.

We say that L is regular if FL is a local diffeomorphism and hyperregular if FL
is a diffeomorphism. •
In natural coordinates for J1(R, Q) and J1(Q,R) we have

FL(t, q1, . . . , qn, v1, . . . , vn) =

(
q1, . . . , qn,

∂L

∂v1
, . . . ,

∂L

∂vn
, t

)
.

It is clear from this coordinate expression that L is regular if and only if the matrix
with components

∂2L

∂vi∂vj
([c]1)
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is nondegenerate for each [c]1 ∈ J1(R, Q). Note that we may consider FL to be
fibre preserving in the sense that the following diagram commutes.

J1(R, Q)
FL //

ρ1
##

J1(Q,R)

ρ∗1{{
Q

Now we may define the action corresponding to a function on J1(R, Q).

5.2 Definition: Let L be a Lagrangian on Q. The action corresponding to L is
the function, AL, on J1(R, Q) defined by

AL([c]1) = df(q) · c′(t)

where [c]1 ∈ J1(R, Q)t,q and f is a function on Q defined by [f ] = FL([c]1). •
In natural coordinates for J1(R, Q) the function AL looks like

(t, q1, . . . , qn, v1, . . . , vn) 7→ ∂L

∂vi
vi.

It is also possible to define the Legendre transformation for a function on
J1(Q,R).

5.3 Definition: A Hamiltonian on Q is a function, H, on J1(Q,R). Let H
be a Hamiltonian on Q. The Legendre transformation of H is the map,
FH : J1(Q,R) → J1(R, Q), defined as follows: Let [f ] ∈ J1(Q,R)q,t. Let Hq,t

denote the restriction of H to J1(Q,R)q,t. Then

FH([f ]) = {[c]1 ∈ J1(R, Q)t,q | c′(t) = DHq,t([f ])}.

We say H is regular if FH is a local diffeomorphism and hyperregular if FH is a
diffeomorphism. •
Here we have made the canonical identification of (T ∗

qQ)∗ with TqQ. In natural
coordinates we have

FH(q1, . . . , qn, p1, . . . , pn, t) =

(
t, q1, . . . , qn,

∂H

∂p1
, . . . ,

∂H

∂pn

)
.

It is clear from this coordinate expression that H is regular if and only if the matrix
with components

∂2H

∂pi∂pj
([f ])

is nondegenerate for each [f ] ∈ J1(Q,R). Like FL, FH is fibre preserving in that
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the following diagram commutes.

J1(Q,R)
FH //

ρ∗1 ##

J1(R, Q)

ρ1
{{

Q

Now we define the action corresponding to a Hamiltonian.

5.4 Definition: Let H be a Hamiltonian on Q. The action corresponding to H is
the function, AH, on J1(Q,R) defined by

AH([f ]) = df(q) · c′(t)

where [f ] ∈ J1(Q,R)q,t and c is a curve on Q defined by [c]1 = FH([f ]). •
In natural coordinates for J1(Q,R), AH looks like

(q1, . . . , qn, p1, . . . , pn, t) 7→
∂H

∂pi
pi.

The two mappings FL and FH turn out to be inverses of each other in the
hyperregular case.

5.5 Proposition: Let L be a hyperregular Lagrangian and define H = (AL− L) ◦

FL−1. Then H is a hyperregular Hamiltonian and FH = FL−1.

Proof: We use natural coordinates for J1(R, Q) and J1(Q,R). The Legendre trans-
formation for L looks like

FL(t, q1, . . . , qn, v1, . . . , vn) =

(
q1, . . . , qn, p1 =

∂L

∂v1
, . . . , pn =

∂L

∂vn
, t

)

and the Hamiltonian looks like

H(q, p, t) =

(
∂L

∂vi
vi − L

)
◦ FL−1(q, p, t)

which, using the Legendre transformation, we write as

H(q, p, t) = piv
i − L.

We are thinking of the v’s as functions of the q’s and p’s via the Legendre trans-
formation. Thus, using the chain rule, we have

∂H

∂pi
= vi + pj

∂vj

∂pi
− ∂L

∂vj
∂vj

∂pi

= vi + pj
∂vj

∂pi
− pj

∂vj

∂pi
= vi.

Thus FH ◦FL = idJ1(R,Q) and so FH is the inverse of FL and so is a diffeomor-
phism. Thus H is hyperregular. ■

Now we have the dual of this.
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5.6 Proposition: Let H be a hyperregular Hamiltonian and define L = (H−AH)◦

FH−1. Then L is a hyperregular Lagrangian and FL = FH−1.

Proof: We use natural coordinates for J1(R, Q) and J1(Q,R). The Legendre trans-
formation for H looks like

FH(q1, . . . , qn, p1, . . . , pn, t) =

(
t, q1, . . . , qn, v1 =

∂H

∂p1
, . . . , vn =

∂H

∂pn

)

and the Lagrangian looks like

L(t, q, v) =

(
H − ∂H

∂pi
pi

)
◦ FH−1(t, q, v)

which, using the Legendre transformation, we write as

L(t, q, v) = H − vipi.

We are thinking of the p’s as functions of the q’s and v’s via the Legendre trans-
formation. Thus, using the chain rule, we have

∂L

∂vi
= pi + vj

∂pj
∂vi

− ∂H

∂pj

∂pj
∂vi

= pi + vj
∂pj
∂vi

− vj
∂pj
∂vi

= pi.

Thus FL ◦FH = idJ1(Q,R) and so FL is the inverse of FH and so is a diffeomor-
phism. Thus L is hyperregular. ■

5.2 External forces for mechanical systems

In this section we say what we shall mean by an external force for a mechanical
system. We shall be quite general and allow the forces to depend on time and on
both position and higher derivatives of position with respect to time.

5.7 Definition: A subset Λ of T ∗Q is called complete if πQ(Λ) = Q. If Λ ⊂ T ∗Q
is complete, we denote Λq = Λ ∩ T ∗

qQ.
Let q ∈ Q. An m-force at q is a map from ρ−1

m (q) to T ∗
qQ. If Λ is a complete

subset of T ∗Q, we say that an m-force at q is Λ-compatible if it lies in Λq. The set
of Λ-compatible m-forces at q is denoted by F m

q (Λ). We will denote the totality
of Λ-compatible m-forces on Q by

F m(Λ) =

◦⋃
q∈QF

m
q (Λ).

We formally regard F m(Λ) as a fibre space over Q and denote the projection from
F m(Λ) to Q by σmΛ . If Λ = T ∗Q we write F m(Λ) = F m(Q) and σmΛ = σmQ .

A Λ-compatible m-force field on Q is a section of F m(Λ). If Λ = T ∗Q we will
simply call a Λ-compatible m-force field an m-force field. We will also think of a



94 5 Formulations of general mechanical systems with external forces

Λ-compatible m-force field as a map, F : Jm(R, Q) → Λ, such that the following
diagram commutes.

Jm(R, Q)
F //

ρm
$$

Λ

πQ��
Q

If c : [a, b] → Q is a curve on Q, an m-force field along c is a mapping,
Fc : [a, b] → F m(Q), such that the following diagram commutes.

[a, b]
Fc //

c
!!

F m(Q)

σm
Q{{

Q

If Λ is a complete subset of T ∗Q, an m-force field along c, Fc, is Λ-compatible if
Fc(t) ∈ F m

c(t)(Λ) for each t ∈ [a, b]. •
In Section 4.1 we were interested in the case where Λ is a subbundle of T ∗Q
and where the force fields are only allowed to depend on position (thus they are
0-force fields in our terminology). The most generality one needs for external
forces is probably only that of a 1-force. However, in Section 5.6 we introduce an
interesting 2-force field associated to a curve, so the extra generality is maintained.

Note that since an m-force field takes its values in T ∗Q, we may write it in
natural coordinates for T ∗Q as

F ([c]m) = Fi([c]m)dq
i.

Thus we can think of an m-force field as a one-form on Q whose coefficients are
functions on Jm(R, Q). It is also clear from this representation that one may regard
an m-force field as a horizontal one-form on the bundle ρm : Jm(R, Q) → Q. Note
that an l-force field, F , may be regarded as an m-force field, F̃ , for m > l by

F̃ ([c]m) = F (τm,l([c]l)).

Now we discuss forces which are allowed to depend upon momenta for use in
the Hamiltonian formulation.

5.8 Definition: Let q ∈ Q. A coforce at q is a map from π−1
1,0(q) to T

∗
qQ. If Λ is a

complete subset of T ∗Q, we say that a coforce at q is Λ-compatible if it lies in Λq.
The set of Λ-compatible coforces at q is denoted by F ∗

q (Λ). We will denote the
totality of Λ-compatible coforces on Q by

F ∗(Λ) =
◦⋃
q∈QF

∗
q (Λ).

We formally regard F ∗(Λ) as a fibre space over Q and denote the projection from
F ∗(Λ) to Q by σ∗Λ. If Λ = T ∗Q we write F ∗(Λ) = F ∗(Q) and σ∗Λ = σ∗Q.
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A Λ-compatible coforce field on Q is a section of F ∗(Λ). If Λ = T ∗Q we will
simply call a Λ-compatible coforce field a coforce field. We will also think of a Λ-
compatible coforce field as a map, F ∗ : J1(Q,R) → T ∗Q, such that the following
diagram commutes.

J1(Q,R)
F ∗

//

ρ∗1 ##

T ∗Q

πQ
}}

Q

If c : [a, b] → Q is a curve on Q, a coforce field along c is a mapping, F ∗
c : [a, b] →

F ∗(Q), such that the following diagram commutes.

[a, b]
F ∗
c //

c
!!

F ∗(Q)

σ∗
Q||

Q

If Λ is a complete subset of T ∗Q, a coforce field along c, F ∗
c , is Λ-compatible if

F ∗
c (t) ∈ F ∗

c(t)(Λ) for each t ∈ [a, b]. •
As with m-forces, we have a convenient representation of a coforce field in

terms of coordinates. We may write

F ∗([f ]) = Fi([f ])dq
i

and so regard a coforce field as a differential form on Q whose coefficients are
functions on J1(Q,R). As with m-forces, we may also regard a coforce field as a
horizontal one-form on the bundle ρ∗1 : J

1(Q,R) → Q.

5.3 The Hamiltonian formulation

The development of the Hamiltonian formalism with external inputs which we
present here is based on that developed by Hermann [1982]. Our development is a
generalisation of the time-dependent contact formulation for Hamiltonian systems
which is presented, for example, by Abraham and Marsden [1978].

As the basic data for our presentation we take the configuration manifold Q,
the Hamiltonian H on Q, and a coforce field F ∗. On J1(Q,R) we define a two-form
by

Ω(H,F ∗) = Ω0 + dH ∧ dt+ F ∗ ∧ dt. (5.1)

Here Ω0 is the canonical symplectic structure on T ∗Q pulled back to J1(Q,R)
via the projection pQ. We now use this two-form to define what is meant by the
equations of motion for the system with Hamiltonian H and coforce field F ∗.

5.9 Definition: Let H be a Hamiltonian on Q and let F ∗ be a coforce field on Q.
A curve c : [a, b] → J1(Q,R) is said to be a solution of Hamilton’s equations with
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Hamiltonian H and coforce field F ∗ if dt · c′(t) = 1 and if c′(t) Ω(H,F ∗) = 0 for
each t ∈ [a, b]. •
Let us see what a solution looks like in natural coordinates for J1(Q,R). Since
dt · c′(t) = 1 we may suppose that the curve has the form

s 7→ (q1(s), . . . , qn(s), p1(s), . . . , pn(s), s).

In coordinates we have

Ω(H,F ∗) = dqi ∧ dpi +

(
∂H

∂qi
dqi +

∂H

∂pi
dpi + F ∗

i dq
i

)
∧ dt.

Thus we compute

c′(t) Ω(H,F ∗) =

(
q̇i − ∂H

∂pi

)
dpi −

(
ṗi +

∂H

∂qi
+ F ∗

i

)
dqi+

(
∂H

∂qi
q̇i +

∂H

∂pi
ṗi + F ∗

i q̇
i

)
dt.

This gives us the standard form of Hamilton’s equations for the systems we are
considering:

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

− F ∗
i .

The equation
∂H

∂qi
q̇i +

∂H

∂pi
ṗi + F ∗

i q̇
i = 0

describes how the value of the Hamiltonian changes along solutions of Hamilton’s
equations. When F ∗ = 0 it is a statement of conservation of energy.

5.10 Remarks: 1. When there are no forces present (i.e., when F ∗ = 0), the
two-form Ω(H,F ∗) is a contact form on J1(Q,R). In this case the Hamil-
tonian vector field is the characteristic vector field for the contact system.
See [Abraham and Marsden 1978] for a discussion of this.

2. When F ∗ ̸= 0, the two form Ω(H,F ∗) is not in general closed. However,
when F ∗ = 0 it is even exact since Ω0 is exact. •

5.4 The Lagrangian formulation

Now we develop the Lagrangian formulation. This goes much like the Hamiltonian
formulation with the obvious modifications to put one on J1(R, Q) rather than on
J1(Q,R).
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The basic data here is the configuration manifold Q, the Lagrangian L on Q,
and a 1-force field F . Associated to the Lagrangian is the action AL which was
defined in Section 5.1. The energy is the function EL defined by

EL = AL− L.

Now define a two-form on J1(R, Q) by

Ω(L,F ) = FL∗Ω0 + dEL ∧ dt+ F ∧ dt.

We state what is meant by a solution of Lagrange’s equations.

5.11 Definition: Let L be a Lagrangian on Q and let F be a 1-force field on Q. A
curve c : [a, b] → Q is said to be a solution of Lagrange’s equations with Lagrangian
L and 1-force field F if j1c′(t) Ω(L,F ) = 0 for each t ∈ [a, b]. •

It is helpful for the following calculations to manipulate the coordinate expres-
sion for Ω(L,F ).

Ω(L,F ) = dqi ∧ d

(
∂L

∂vi

)
+ d

(
∂L

∂vi
vi − L

)
∧ dt+ Fidq

i ∧ dt

= − d

(
∂L

∂vi

)
∧ (dqi − vidt)− dL ∧ dt+

∂L

∂vi
dvi ∧ dt+ Fidq

i ∧ dt

= − d

(
∂L

∂vi

)
∧ (dqi − vidt)− ∂L

∂qi
dqi ∧ dt+ Fidq

i ∧ dt

= −
(
d

(
∂L

∂vi

)
− ∂L

∂qi
dt− Fidt

)
∧ (dqi − vidt). (5.2)

Now it is a simple matter to verify that our definition of a solution of Lagrange’s
equations agrees with the usual coordinate expression. By definition, a solution to
Lagrange’s equations has the form

s 7→ (s, q1(s), . . . , qn(s), q̇1(s), . . . , q̇n(s)).

Therefore, the expression j1c(t) Ω(L,F ) = 0 is simply equivalent to

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi (5.3)

which is the usual expression of Lagrange’s equations with external forces.

5.12 Remarks: 1. Unlike in the Hamiltonian case, the form Ω(L,F ) may not
be a contact form on J1(R, Q) even when F = 0. This is a consequence of
the fact that the Lagrangian may not be regular which may cause the form
FL∗Ω0 to lose rank.

2. In spite of 1, the equations (5.3) always make sense. •
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5.5 The equivalence of the Lagrangian and Hamilto-
nian formulations

As might be gleaned by looking at the respective formulations of Hamiltonian and
Lagrangian mechanics in Sections 5.3 and 5.4, when the Lagrangian or Hamiltonian
is hyperregular, the two formulations agree. In this section we merely state this
precisely.

First we state how to go from the Lagrangian to the Hamiltonian formulation.

5.13 Proposition: Let L be a hyperregular Lagrangian on Q and define a Hamilto-
nian on Q by H = FL∗(AL−L). Let F be a 1-force field on Q and define a coforce
field on Q by F ∗ = FL∗F . Then c : [a, b] → Q is a solution of Lagrange’s equations
with Lagrangian L and 1-force field F if and only if FL ◦ j1c : [a, b] → J1(Q,R)
is a solution of Hamilton’s equations with Hamiltonian H and coforce field F ∗.

Proof: By Proposition 5.5 we have Ω(H,F ∗) = FL∗Ω(L,F ). It is also clear that
dt ·FL ◦ j1c(t) = 1. The proposition now follows since a characteristic vector field
of Ω(L,F ) will be mapped to a characteristic vector field of Ω(H,F ∗) under the
diffeomorphism FL. ■

Now we go from Hamiltonian to Lagrangian.

5.14 Proposition: Let H be a hyperregular Hamiltonian on Q and define a La-
grangian on Q by L = FH∗(H −AH). Let F ∗ be a coforce field on Q and define
a 1-force field on Q by F = FH∗F

∗. Then c : [a, b] → J1(Q,R) is a solution
of Hamilton’s equations with Hamiltonian H and coforce field F ∗ if and only if
ρ∗1 ◦ c : [a, b] → Q is a solution of Lagrange’s equations with Lagrangian L and
1-force field F .

Proof: We need only show that the curve FH ◦ c is of the form j1σ for some curve
σ on Q. We know, as in Proposition 5.13, that FH ◦ c′(t) Ω(L,F ) = 0. If we
refer to (5.2) we can see that this implies that FH ◦ c is indeed the lift of a curve
on Q since the forms dqi− vidt must annihilate FH ◦ c′. This completes the proof
of the proposition. ■

5.6 Lagrange’s equations with the Lagrange force field

In this section we give an alternate formulation of Lagrangian mechanics by intro-
ducing a geometric object which we call the Lagrange force field. This object is
the 2-force field on Q which has the form

FL =

(
∂2L

∂vi∂s
+

∂2L

∂vi∂qj
vj +

∂2L

∂vi∂vj
aj − ∂L

∂qi

)
dqi

in natural coordinates for J2(R, Q). Although we define FL in coordinates, it is, in
fact, independent of the choice of natural coordinates. We present the calculation
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here for completeness. Suppose that (Q1, . . . , Qn) are coordinates in another chart
for Q. The corresponding natural coordinates for J2(R, Q) are given by

V i =
∂Qi

∂qj
vj

and

Ai =
∂Qi

∂qj
aj +

∂2Qi

∂qj∂qk
vjvk.

Now we compute FL in these new coordinates.

FL =

(
∂2L

∂vi∂s
+

∂2L

∂vi∂qj
vj +

∂2L

∂vi∂vj
aj − ∂L

∂qi

)
dqi

=

(
∂2L

∂V k∂s

∂Qk

∂qi
+

∂2L

∂V k∂Ql
∂Qk

∂qi
∂Ql

∂qj
vj+

∂2L

∂V k∂V l

∂Qk

∂qi
∂2Ql

∂qj∂qm
vjvm +

∂L

∂V k

∂2Qk

∂qi∂qj
vj+

∂2L

∂V k∂V l

∂Qk

∂qi
∂Ql

∂qj
aj − ∂L

∂Qk
∂Qk

∂qi
− ∂L

∂V k

∂2Qk

∂qi∂qj
vj
)
dqi

=
∂Qk

∂qi

(
∂2L

∂V k∂s
+

∂2L

∂V k∂Ql
V l +

∂2L

∂V k∂V l
Al − ∂L

∂Qk

)
dqi

=

(
∂2L

∂V k∂s
+

∂2L

∂V k∂Ql
V l +

∂2L

∂V k∂V l
Al − ∂L

∂Qk

)
dQk.

If c : [a, b] → Q is a curve on Q we may define a 2-force field along c, which we
will also denote by FL, by FL(t) = FL(j

2c(t)). If the curve c has the form

s 7→ (q1(s), . . . , qn(s))

in coordinates, then the corresponding 2-force field along c is given by

FL(t) =

(
∂2L

∂vi∂s
+

∂2L

∂vi∂qj
q̇j +

∂2L

∂vi∂vj
q̈j − ∂L

∂qi

)
dqi =

(
d

ds

(
∂L

∂q̇i

)
− ∂L

∂qi

)
dqi.

With this representation we easily see that the following result is true.

5.15 Proposition: A curve c : [a, b] → Q is a solution of Lagrange’s equations with
Lagrangian L and force field F if and only if

FL(j
2c(t)) = F (j1c(t))

for each t ∈ [a, b].

A simple example helps to illustrate the concept of the Lagrange force field.

5.16 Example: We will consider the example of a rolling penny as a simple illus-
tration of the concepts we have introduced. As coordinates for the penny we will
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z

y

x

φr

θ

Figure 5.1. The rolling penny

use (x, y, θ, ϕ) as shown in Figure 5.1. Thus Q = R2 × T2. The Lagrangian we
will consider is

L =
1

2
m
(
v2x + v2y

)
+

1

2
Iv2ϕ +

1

2
Jv2θ .

Here m is the mass of the wheel, and I and J are the moments of inertia and so
are strictly positive constants.

Let’s compute FL. Let c : R → Q be a curve defined by

s 7→ (x(s), y(s), ϕ(s), θ(s))

and let j2c be the corresponding curve in J2(R, Q). Let t ∈ R and let q = c(t).
Note that [c]2 ∈ J2(R, Q)t,q is defined in the given coordinates by

[c]2 = j2c(s) |s=t
= (s, x(s), y(s), ϕ(s), θ(s), ẋ(s), ẏ(s), ϕ̇(s), θ̇(s), ẍ(s), ÿ(s), ϕ̈(s), θ̈(s)) |s=t
= (t, x(t), y(t), ϕ(t), θ(t), ẋ(t), ẏ(t), ϕ̇(t), θ̇(t), ẍ(t), ÿ(t), ϕ̈(t), θ̈(t)).

It is straightforward to compute

FL([c]2) = mẍ(t)dx+mÿ(t)dy + Iϕ̈(t)dϕ+ Jθ̈(t)dθ.

If we use natural coordinates for J2(R, Q) we get: If

[c]2 = (t, x, y, ϕ, θ, vx, vy, vϕ, vθ, ax, ay, aϕ, aθ)

then we have
FL([c]2) = maxdx+maydy + Iaϕdϕ+ Jaθdθ. •
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5.7 An exterior differential systems formulation for
Lagrangian mechanics

In this section we shall study the Pfaffian module on J1(R, Q) specified by the
Cartan system (see Section 2.6) of Ω(L,F ) where L is a Lagrangian on Q and
F is a 1-force field on Q. For the sake of notation, let us denote this system by
I (L,F ). It is interesting to see what this Pfaffian module looks like in natural
coordinates for J1(R, Q). By (5.2) and Lemma 2.14, if the Lagrangian is regular,
a local basis for I (L,F ) is generated by

{
dq1 − v1dt, . . . ,dqn − vndt,

d

(
∂L

∂v1

)
− ∂L

∂q1
dt− F1dt,d

(
∂L

∂vn

)
− ∂L

∂qn
dt− Fndt

}
.

It will be useful to introduce the following notation:

αi = dqi − vidt, i = 1, . . . , n,

Θi(L,F ) = d

(
∂L

∂vi

)
− ∂L

∂qi
dt− Fidt, i = 1, . . . , n.

To make precise the relationship between between solutions of Lagrange’s equations
and I (L,F ) we prove the following result.

5.17 Lemma: Let L be a Lagrangian on Q and let F be a 1-force field on Q.
Suppose that c is a solution to Lagrange’s equations with Lagrangian L and 1-
force field F . Then the curve j1c is an integral curve of (I (L,F ), [dt]).

Conversely, suppose that N is an integral manifold of (I (L,F ), [dt]). Then
there exists a curve, c : [a, b] → Q, on Q so that N is locally the image of the curve
j1c. Furthermore, c is a solution of Lagrange’s equations with Lagrangian L and
1-force field F .

Proof: If c is a solution to Lagrange’s equations, the curve j1c is such that dt·j1c′ =
1. It is a simple calculation to verify that αi · j1c′ = 0 and Θi(L,F ) · j1c′ = 0 for
i = 1, . . . , n. Thus σ is an integral curve of (I (L,F ), [dt]).

Now suppose that N is an integral manifold of (I (L,F ), [dt]). Since dt ̸= 0
on N , we may locally use t as a coordinate for N . Thus we regard N as a graph
over t. Therefore, in coordinates, N is of the form

(s, q1(s), . . . , qn(s), v1(s), . . . , vn(s)).

SinceN is an integral manifold for I (L,F ), αi, i = 1, . . . , n, is zero when restricted
to N . Therefore,

dqi(s)− vi(s)dt =

(
dqi

ds
− vi(s)

)
dt = 0
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for i = 1, . . . , n. This means that on integral manifolds of (I (L,F ), [dt]) we have

vi =
dqi

ds
.

Therefore, N locally has the form

(s, q1(s), . . . , qn(s), q̇1(s), . . . , q̇n(s)).

Thus N is locally the image of a curve on J1(R, Q) of the form j1c for some curve
c on Q. It remains to check that c is a solution to Lagrange’s equations. This
follows from expanding the expression Θi(L,F ) · σ′(s) = 0 for i = 1, . . . , n and
s ∈ [a, b]. This completes the proof. ■

5.18 Remark: Hermann [1982] gives a formulation of Lagrangian mechanics with
external forces which is somewhat similar to what we have presented. However,
he treats the one-forms α1, . . . , αn,Θ1, . . . ,Θn as the basic objects from which to
derive the equations of motion. The problem with this approach is that these one-
forms are not canonically defined. However, the two-form αi ∧ Θi is canonically
defined and this is the object which we regard as basic in our formulation. •



Chapter 6

Mechanical systems with constraints

In Chapter 5 we developed Lagrangian and Hamiltonian formalisms for dealing
with mechanical systems with external forces. Along with forces, another of the
victims of the geometrisation of mechanics has been the inclusion of constraints
in the formulation. A fairly modern treatment of constraints from a Hamiltonian
point of view may be found in [Weber 1986]. Koiller [1992] puts some systems with
constraints in the framework of geometric reduction. A fairly comprehensive state-
ment of the state of the art knowledge of reduction for systems with constraints is
contained in the work of Bloch, Krishnaprasad, Marsden, and Murray [1996]. A
thorough overview of variational methods for systems with constraints is presented
by Lewis and Murray [1995b]. In that work, a simple experiment was performed
in an attempt to settle the debate over which of the nonholonomic or vakonomic
variational methods is correct. In Section 6.1 we give an overview of the theoret-
ical results of this paper. In particular, we give a careful formulation of the two
variational problems, and show that they are equivalent when the constraints are
holonomic. A more general type of constraint is introduced in Section 6.2. With
this type of constraint it is possible to prove some natural controllability results
for constrained systems.

The reader should be aware that the two sections in this chapter are not related
except that they both deal with constrained mechanical systems. Each may be
read, and should be interpreted, independently. To keep with the notation of
Chapter 5, the presentation is on the jet bundle J1(R, Q).
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6.2 General constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.1 Definitions of general constraints . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 Controllability results for general constraints . . . . . . . . . . . . . . . 123

6.1 Variational methods for systems with constraints

In this section we present the nonholonomic and vakonomic methods for deriving
the equations of motion for a mechanical system with constraints. We shall try to
be somewhat precise without overly burdening the presentation with technicalities.

We shall need to be clear about the type of constraints we consider.

6.1 Definition: An affine constraint on Q is a pair, (D, γ), where D is a distribu-
tion on Q and γ is a vector field on Q. A curve c : [a, b] → Q will be said to satisfy
the affine constraint (D, γ) if c′(t)− γ(c(t)) ∈ D(c(t)) for all t ∈ [a, b]. •
We shall assume that D has constant rank k for simplicity. We will use this fact
to suppose, at least locally, the existence of n− k linearly independent one-forms,
ω1, . . . , ωn−k, which annihilate the distribution. That is to say we have

D(q) = ker{ω1(q), . . . , ωn−k(q)}.

All solutions of the constrained system are required to satisfy the conditions

ωa(c′(t)) = ωa(γ(c(t))), a = 1, . . . , n− k.

Now we are ready to give precise definitions of the quantities involved in per-
forming the variational calculations in this section.

6.1.1 Variations and Hamilton’s Principle

In this section we introduce the basic tools for studying variational principles in
mechanics. The main purpose of the discussion is to get the reader acquainted with
the techniques we shall be using to pose and solve the variational problems con-
sidered. In particular, we introduce the notion of a variation and an infinitesimal
variation of a curve c. The classical functional, J , is defined here as well.

The calculus of variations in its own right is a large subject. A good introduc-
tion which addresses some of the same issues we do that of Wan [1995].

Unconstrained variations

We will typically be considering curves, c : [a, b] → Q, which connect two points,
q1 and q2, in the configuration manifold Q. These curves may be subject to
some constraints, but let us initially deal with the unconstrained case for the
sake of concreteness. The set of all such curves which are C2 will be de-
noted by C2(q1, q2, [a, b]). It may be demonstrated that this set is a smooth
infinite-dimensional manifold [Klingenberg 1995]. The tangent space at a point
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q1

q2

c(t)

u(t)

Figure 6.1. An infinitesimal variation

c ∈ C2(q1, q2, [a, b]) may be shown to be given by

TcC
2(q1, q2, [a, b]) = {u : [a, b] → TQ | u is C2,

τQ ◦ u = c, u(a) = 0, and u(b) = 0}.

We may think of a tangent vector u at c as being a vector field along c which
vanishes at the endpoints (see Figure 6.1). Since u is a tangent vector, we may
write it as the tangent vector to a curve which passes through c. A curve in
C2(q1, q2, [a, b]) will be written as

R ∋ s 7→ cs ∈ C2(q1, q2, [a, b]).

For any u ∈ TcC
2(q1, q2, [a, b]) we may write

u =
dcs
ds

∣∣∣∣
s=0

for some curve cs in C
2(q1, q2, [a, b]). We shall refer to the curve cs as a variation

of c = c0 and we shall refer to u as an infinitesimal variation of c.
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Constrained variations

Now we place an affine constraint (D, γ) on Q. For q1, q2 ∈ Q we define

C2(q1, q2, [a, b], D, γ) = {c : [a, b] → Q | c is a C2 curve,

c(a) = q1, c(b) = q2, and c
′(t)− γ(c(t)) ∈ D(c(t)) for t ∈ [a, b]}.

It is possible that this subset of C2(q1, q2, [a, b]) is empty, but let us suppose that
it is not.

We will now define, in the presence of affine constraints, a special class of
infinitesimal variations. In the classical literature these are commonly referred to
as virtual displacements. Let c ∈ C2(q1, q2, [a, b], D, γ). Define

Xc(q1, q2, [a, b], D) = {u ∈ TcC
2(q1, q2, [a, b]) | c′(t) + u(t)− γ(c(t)) ∈ D(c(t))}.

In words, Xc(q1, q2, [a, b], D) is the set of infinitesimal variations which, when added
to c′, still satisfy the affine constraints. Clearly, since c ∈ C2(q1, q2, [a, b], D, γ),
u ∈ Xc(q1, q2, [a, b], D) if and only if u(t) ∈ D(c(t)), i.e., if u satisfies the
non-affine constraints. This is why no reference to γ appears in the name of
Xc(q1, q2, [a, b], D).

The functional J

Since we are on the manifold C2(q1, q2, [a, b]), we may speak of smooth functions
which may be differentiated. We therefore know what it means for a function to
have a critical point. We will only define the functional for unconstrained systems.
It is given by

J : C2(q1, q2, [a, b]) → R

c 7→
∫ b

a
L(j1c(t)) dt

(6.1)

where L is a Lagrangian on Q. Note that dJ(c) = 0 if and only if dJ(c) · u = 0
for every u ∈ TcC

2(q1, q2, [a, b]). It is convenient to write

dJ(c) · u =
d

ds
J(cs)

∣∣∣∣
s=0

.

With J as given by (6.1) we have

dJ(c) · u =
d

ds

∫ b

a
L(j1cs(t)) dt

∣∣∣∣
s=0

=

∫ b

a

d

ds
L(j1cs(t))

∣∣∣∣
s=0

dt.

We wish to evaluate this expression in local coordinates for Q. By the chain rule
we have

dJ(c) · u =

∫ b

a

(
∂L

∂qi
∂qi

∂s
+
∂L

∂q̇i
∂q̇i

∂s

) ∣∣∣∣
s=0

dt.



6.1 Variational methods for systems with constraints 107

Hamilton’s Principle

As an example of how to apply the above concepts, we present Hamilton’s Princi-
ple. This establishes a correspondence between solutions of Lagrange’s equations
and the solutions of a variational problem. We present this as a proposition whose
proof goes much like the one in [Abraham and Marsden 1978].

6.2 Proposition: (Hamilton’s Principle) Let L be a Lagrangian on Q. A curve
c : [a, b] → Q joining q1 with q2 in Q is a solution to Lagrange’s equations,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n,

if and only if dJ(c) = 0.

Proof: We need to show that c is a solution to Lagrange’s equations if and only if
dJ(c) · u = 0 for every u ∈ TcC

2(q1, q2, [a, b]). For any u ∈ TcC
2(q1, q2, [a, b]) we

may then write

u =
dcs
ds

∣∣∣∣
s=0

for some variation cs of c. Then we have

dJ(c) · u =
d

ds

∣∣∣∣
s=0

J(cs)

=
d

ds

∣∣∣∣
s=0

∫ b

a
L(j1cs(t)) dt.

The differentiation may be moved under the integral sign and in coordinates we
have

dJ(c) · u =

∫ b

a

d

ds
L(q(t, s), q̇(t, s), t)

∣∣∣∣
s=0

dt

=

∫ b

a

(
∂L

∂qi
∂qi

∂s
+
∂L

∂q̇i
∂q̇i

∂s

) ∣∣∣∣
s=0

dt.

For the variation given we have

∂qi(t, s)

∂s

∣∣∣∣
s=0

= ui(t), and
∂q̇i(t, s)

∂s

∣∣∣∣
s=0

=
d

dt

∂qi(t, s)

∂s

∣∣∣∣
s=0

= u̇i(t).

We thus have, using integration by parts,

dJ(c) · u =

∫ b

a

(
∂L

∂qi
ui +

∂L

∂q̇i
u̇i
)

dt

=

∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
ui dt+

∂L

∂q̇i
ui
∣∣∣∣
b

a

=

∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
ui dt.
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Clearly then, dJ(c) · u = 0 for every u if and only if Lagrange’s equations are
satisfied. This completes the proof. ■

Now we may apply the basic ideas of this section to the formulation of varia-
tional principles in the presence of constraints.

6.1.2 The nonholonomic method

In this variational method1 one applies the constraints after making the functional
J stationary. Let us formulate this problem more precisely. Let (D, γ) be an affine
constraint on Q. Recall from Section 6.1.1 the definition of C2(q1, q2, [a, b], D, γ).
From now on we shall tacitly assume that C2(q1, q2, [a, b], D, γ) is not empty.
That is to say, we suppose that there are C2 curves which connect q1 and q2
and which satisfy the affine constraint. We shall regard C2(q1, q2, [a, b], D, γ)
as a subset of C2(q1, q2, [a, b]). Also recall from Section 6.1.1 that at a point
c ∈ C2(q1, q2, [a, b], D, γ), we defined Xc as the subset of the TcC

2(q1, q2, [a, b])
consisting of virtual displacements.

The nonholonomic variational problem may now be stated as a definition.

6.3 Definition: A curve c ∈ C2(q1, q2, [a, b], D, γ) will be called a solution to
the nonholonomic constrained variational problem if dJ(c) · u = 0 for every
u ∈ Xc(q1, q2, [a, b], D). •
The following result is natural given our definition of the problem.

6.4 Proposition: Let L be a regular Lagrangian on Q and let (D, γ) be an affine
constraint on Q. Then c ∈ C2(q1, q2, [a, b], D, γ) is a solution of the nonholonomic
constrained variational problem if and only if

[
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
ui(t) = 0

for every u ∈ Xc(q1, q2, [a, b], D).

Proof: Let cs be a variation whose infinitesimal variation is u ∈ Xc(q1, q2, [a, b], D).
Then, as in the proof of Proposition 6.2, we have

dJ(c) · u =

∫ b

a

(
∂L

∂qi
∂qi

∂s
+
∂L

∂q̇i
∂q̇i

∂s

) ∣∣∣∣
s=0

dt.

In this case we simply have

∂qi(t, s)

∂s

∣∣∣∣
s=0

= ui(t), and
∂q̇i(t, s)

∂s

∣∣∣∣
s=0

= u̇i(t).

If we do the usual integration by parts we have

dJ(c) · u =

∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
ui dt

1We call the nonholonomic method a variational method even though, in the strictest sense,
it really is not. However, since we do use variations in discussing this method, our nomenclature
is not entirely inappropriate.
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from which the proposition follows. ■

6.5 Remarks: 1. Note that we do not require cs to be in C2(q1, q2, [a, b], D, γ)
for s ̸= 0. Thus we do not require our variations to satisfy the constraints. We
only require the infinitesimal variations to satisfy the non-affine constraints.
For a discussion of this see Section 6.1.1. The fact that the variations them-
selves do not necessarily satisfy the constraints allows us to interchange the
order of differentiation with respect to s and t in determining ∂q̇i/∂s. In
classical terms, this allows us to interchange the “operators” δ and d/dt.

2. Observe that, unlike Hamilton’s Principle, the nonholonomic constrained
variational problem does not immediately give the equations of motion.
This task is taken up when we discuss the Principle of Virtual Work in
Section 6.1.4. There we will show that the equations of motion for the non-
holonomic method are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaω

a
i , i = 1, . . . , n (6.2)

along with the constraint equations

ωai q̇
i = ωai γ

i, a = 1, . . . , n− k.

There are other forms of the equations of motion for the nonholonomic
method. An example of another form is the so-called Lagrange-d’Alembert
equations. See [Bloch, Krishnaprasad, Marsden, and Murray 1996] for a
discussion of this along with other forms of the equations of motion using
Ehresmann connections on fibre bundles.

3. See Figure 6.2 for a visual representation of the nonholonomic constrained
variational problem. Observe how it differs from the representation of the
vakonomic problem next to it. In particular, observe that we allow the
variations to leave C2(q1, q2, [a, b], D, γ) in the nonholonomic method. •

6.1.3 The vakonomic method

In this variational technique one makes the functional J stationary after asking
that the solutions satisfy the constraints. Thus this is a classical constrained
minimisation problem, and may be solved with techniques from the calculus of
variations with constraints. To make this method precise we must introduce some
involved notation.

We begin with the definition of the solution to the vakonomic problem.

6.6 Definition: A curve c ∈ C2(q1, q2, [a, b], D, γ) will be called a solution to
the vakonomic constrained variational problem if c is a critical point of J |
C2(q1, q2, [a, b], D, γ). •
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We now give a rough derivation of the equations of motion for the vakonomic
constrained variational problem. We shall be somewhat informal here for the sake
of clarity.

Since the vakonomic method is simply a constrained minimisation problem,
we need some results from that field. The main result we shall use is the La-
grange Multiplier Theorem, the version which we use being taken from [Abraham,
Marsden, and Ratiu 1988].

6.7 Lemma: (The Lagrange Multiplier Theorem) Let M be a smooth man-
ifold and let F be a Banach space with g : M → F a smooth submersion so that
N = g−1(0) is a submanifold of M . Let f : M → R be a smooth function. Then
n ∈ N is a critical point of f | N if and only if there exists λ ∈ F ∗ such that n is
a critical point of f − λ ◦ g.

To utilise this lemma, we must further examine the structure of C2(q1, q2,
[a, b], D, γ), which was defined in Section 6.1.1. If E is a real Banach space, we
denote by F ([a, b], E) the Banach space of C2, E-valued functions on the inter-
val [a, b]. Suppose that the distribution D is annihilated by n − k one-forms,
ω1, . . . , ωn−k. We define a function g : C2(q1, q2, [a, b]) → F ([a, b],Rn−k) by

g(c) =
{
t 7→

(
ω1(c′(t))− ω1(γ(c(t))), . . . , ωn−k(c′(t))− ωn−k(γ(c(t)))

)}
. (6.3)

We shall assume that g is a smooth submersion. Note that

C2(q1, q2, [a, b], D, γ) = g−1(0, . . . , 0)

is a smooth submanifold with this assumption.
We shall need to have some idea of what elements of F ([a, b],Rn−k)∗ look

like. We shall be purposefully formal here. Note that F ([a, b],Rn−k) is naturally
isomorphic to the (n − k)-fold direct sum of F ([a, b],R) with itself. Therefore,
F ([a, b],Rn−k)∗ will be naturally isomorphic to the (n − k)-fold direct sum of
F ([a, b],R)∗ with itself. Recall that elements of F ([a, b],R)∗ are (functional an-
alytic) distributions on [a, b]. We shall not depart from the tradition of denoting
the pairing of elements of F ([a, b],R)∗ with elements of F ([a, b],R) by

⟨α; f⟩ =
∫ b

a
α · f(t) dt.

We will at times regard elements of F ([a, b],R)∗ as elements of F ([a, b],R) via
the integral. The reader should be aware of what is taking place, and that it is
not wholly precise.

The following result gives the equations of motion for the vakonomic con-
strained variational problem.

6.8 Proposition: Let L be a Lagrangian on Q, let (D, γ) be an affine con-
straint on Q, and let ω1, . . . , ωn−k be n − k linearly independent differential
one-forms on Q which annihilate D. Then c ∈ C2(q1, q2, [a, b], D, γ) is a solu-
tion of the vakonomic constrained variational problem if and only if there exists
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(λ1, . . . , λn−k) ∈ F ([a, b],Rn−k)∗ such that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n

where L : J1(R, Q) → R is defined along c by

L (j1c(t)) = L(j1c(t))− λa(t)[ω
a(c′(t))− ωa(γ(c(t)))].

Proof: Let (g1(c), . . . , gn−k(c)) denote the components of g(c) under the identifi-
cation of F ([a, b],Rn−k) with F ([a, b],R)⊕ · · · ⊕F ([a, b],R). By (6.3) we have

ga(c) = {t 7→ ωa(c′(t))− ωa(γ(c(t)))}, a = 1, . . . , n− k.

From the Lagrange Multiplier Theorem we know that c is a solution to
the vakonomic constrained variational problem if and only if there exists
(λ1, . . . , λn−k) ∈ F ([a, b],Rn−k)∗ such that c is a critical point of the function
JD on C2(q1, q2, [a, b], D, γ) defined by

JD(c) =

∫ b

a
L(j1c(t)) dt− λa · ga(c).

Note that c is a critical point of JD if and only if

dJD(cs)

ds

∣∣∣∣
s=0

=
d

ds

∫ b

a
L(j1cs(t)) dt

∣∣∣∣
s=0

− d

ds
λa · ga(cs)

∣∣∣∣
s=0

= 0

for every variation cs of c. Now we use the integral notation for the pairing of the
distribution λa with the element ga(cs) of F ([a, b],R). This gives

dJD(cs)

ds

∣∣∣∣
s=0

=

∫ b

a

d

ds

(
L(j1cs(t))− λa · (ωa(c′s(t))− ωa(γ(cs(t)))

) ∣∣∣∣
s=0

dt.

The result now follows by the arguments used in the proof of Hamilton’s Principle,
Proposition 6.2. ■

Let us further examine the equations of motion for the vakonomic problem. In
coordinates we have

L (q, q̇, t) = L(q, q̇, t)− λaω
a
i q̇
i + λaω

a
i γ

i.

Lagrange’s equations for the Lagrangian L then read

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

d

dt

(
∂L

∂q̇i
− λaω

a
i

)
− ∂L

∂qi
+ λa

∂ωaj
∂qi

q̇j − λa
∂ωaj
∂qi

γj − λaω
a
j

∂γj

∂qi

=
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
− λ̇aω

a
i − λa

∂ωaj
∂qi

γj − λaω
a
j

∂γj

∂qi
= 0,

(6.4a)

i = 1, . . . , n.
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Figure 6.2. A representation of
the nonholonomic constrained
variational problem

Figure 6.3. A representation of
the vakonomic constrained vari-
ational problem

Appended to these are the constraint equations which are simply the “λ-part” of
Lagrange’s equations:

ωai q̇
i = ωai γ

i, a = 1, . . . , n− k. (6.4b)

6.9 Remarks: 1. Observe that, in practice, the equations (6.4a) and (6.4b) con-
stitute a set of implicit first order ordinary differential equations in the vari-
ables (q, q̇, λ). This means that one must specify initial conditions for the
Lagrange multipliers for the vakonomic problem.

2. In the case when γ = 0, the equations of motion for the vakonomic problem
look like the equations of motion for the nonholonomic problem except there
is now a λ̇a in place of λa.

3. See Figure 6.3 for a visual representation of the vakonomic constrained
variational problem. Observe how, unlike in the nonholonomic method,
the variations for the vakonomic problem are not allowed to leave
C2(q1, q2, [a, b], D, γ). •

6.1.4 The Principle of Virtual Work

This principle is classically presented as an axiom of mechanics which is not deriv-
able from the other basic axioms. It is typically stated as follows:

The Principle of Virtual Work: The work done by the forces of constraint is zero
on virtual displacements.

When we say that a force does no work on virtual displacements, we mean that,
regarded as a differential one-form, the force annihilates tangent vectors inD. Thus
the constraint force annihilates all vectors annihilated by the forms ω1, . . . , ωn−k.
We shall say that the Principle of Virtual Work is satisfied by a curve c if there
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exists external forces, F ci , which do no work on the constraints and are such that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= F ci (t)

along c. In other words, regarded as a differential form, F ci (t)dq
i must lie in the

span of ω1(c(t)), . . . , ωn−k(c(t)). Thus, for each t ∈ R which is in the domain of
definition of c, there must exist constants λ1(t), . . . , λn−k(t) such that

F ci (t)dq
i = λa(t)ω

a(c(t)) = λa(t)ω
a
i (c(t))dq

i

which means that F ci (t) = λa(t)ω
a
i (c(t)) for some constants λ1(t), . . . , λn−k(t).

Thus Lagrange’s equations may be written as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaω

a
i , i = 1, . . . , n

and we are to solve for the Lagrange multipliers, λ1, . . . , λn−k, as part of the
solution. To get the right number of equations for the number of unknowns, we
append the constraint equations

ωai q̇
i = ωai γ

i, a = 1, . . . , n− k.

We have the following easy result which relates the Principle of Virtual Work
to the nonholonomic constrained variational problem discussed in Section 6.1.2.

6.10 Proposition: A curve c ∈ C2(q1, q2, [a, b], D, γ) is a solution of the nonholo-
nomic constrained variational problem if and only if the Principal of Virtual Work
is satisfied by c.

Proof: We must show that
[
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
ui(t) = 0

for every u ∈ Xc(q1, q2, [a, b], D) if and only if

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= F ci (t)

along c, where the forces F ci do no work on virtual displacements. By definition,
the forces F ci do no work on virtual displacements if and only if

F ci (t)u
i(t) = 0

for every u ∈ Xc(q1, q2, [a, b], D) and t ∈ [a, b]. Thus the proposition is proved. ■

This gives a way of determining equations of motion for the nonholonomic con-
strained variational problem. Existence and uniqueness of solutions of these equa-
tions is not something we shall take up here.
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6.1.5 The nonholonomic and vakonomic methods when the con-
straints are holonomic

It turns out that when the constraints are holonomic, the nonholonomic and vako-
nomic problems are equivalent. We shall say that an affine constraint, (D, γ), is
holonomic if D is integrable and if γ is a section in D. Notice that this is a modest
generalisation of what we would denote as an holonomic constraint for systems
with no affine part. In that case the constraint is simply the distribution D and is
holonomic if D is integrable.

6.11 Remark: Note that if (D, γ) is an holonomic affine constraint, then
C2(q1, q2, [a, b], D, γ) is non-empty if and only if q1 and q2 lie in the same leaf
of FD. Also, any curve that is in a leaf of FD will automatically satisfy the con-
straints. Thus our definition is only a mild generalisation of the usual notion of
integrability of a distribution. •

Let Λ be a leaf of FD. Given a Lagrangian on Q, we may define a Lagrangian
LΛ on Λ by restriction of L to J1(R,Λ) ⊂ J1(R, Q). With this Lagrangian we
may define a function on C2(q1, q2, [a, b], D, γ) by

JΛ : C
2(q1, q2, [a, b], D, γ) → R

c 7→
∫ b

a
LΛ(j

1c(t)) dt.
(6.5)

The result is thus stated.

6.12 Proposition: Let L be a Lagrangian on Q and let (D, γ) be an holonomic
affine constraint on Q. Let c ∈ C2(q1, q2, [a, b], D, γ) where q1 and q2 lie in a
leaf, Λ, of FD. Let JΛ be the function defined by (6.5). Then the following are
equivalent:

(i) c is a solution of the nonholonomic constrained variational problem,

(ii) c is a solution of the vakonomic constrained variational problem,

(iii) c is a critical point of JΛ, and

(iv) c is a solution of Lagrange’s equations on Λ with Lagrangian LΛ.

Proof: By Frobenius’ theorem, we may choose coordinates, (x1, . . . , xk, y1,
. . . , yn−k), around any point q ∈ Λ which have the properties:

1. (x1, . . . , xk) are coordinates for Λ,

2. the injection of Λ into Q looks like (x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0), and

3. D = ker{dy1, . . . , dyn−k} = ⟨ ∂
∂x1

, . . . , ∂
∂xk

⟩.
We first look at the equations of motion for the nonholonomic problem. By (6.2)

we know that c ∈ C2(q1, q2, [a, b], D, γ) is a solution of the nonholonomic con-
strained variational problem if and only if

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaω

a
i , i = 1, . . . , n (6.6)
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for some λ1, . . . , λn−k defined on [a, b]. In the coordinates (x1, . . . , xk, y1, . . . , yn−k),
the curve c looks like

t 7→ (x1(t), . . . , xk(t), 0, . . . , 0).

The equations (6.6) in the coordinates (x1, . . . , xk, y1, . . . , yn−k) are thus

d

dt

(
∂L

∂ẋσ

)
− ∂L

∂xσ
= 0, σ = 1, . . . , k, (6.7a)

∂2L

∂ẏa∂t
− ∂L

∂ya
= λa, a = 1, . . . , n− k. (6.7b)

Note that (6.7b) simply specifies the Lagrange multipliers and has no effect on the
solution in Q since all the time evolution there is specified by (6.7a).

Now we turn to the vakonomic problem. The appended Lagrangian to be used
in the coordinates coordinates (x1, . . . , xk, y1, . . . , yn−k) is

L = L− λaẏ
a.

We may easily determine that the equations (6.4a) appear in these coordinates as

d

dt

(
∂L

∂ẋσ

)
− ∂L

∂xσ
= 0, σ = 1, . . . , k (6.8a)

∂2L

∂ẏa∂t
− ∂L

∂ya
= λ̇a, a = 1, . . . , n− k. (6.8b)

Here again we have used the fact that y1 = · · · = yn−k = 0 along c. As with the
nonholonomic equations, (6.8b) serves to determine the Lagrange multipliers and
does not affect the time evolution of the coordinates (x1, . . . , xk).

In both the nonholonomic and vakonomic equations, the constraint equations
are null since γ is a section of D.

Lagrange’s equations on Λ for the Lagrangian LΛ are

d

dt

(
∂LΛ

∂ẋσ

)
− ∂LΛ

∂xσ
= 0, σ = 1, . . . , k. (6.9)

Note that since y1 = · · · = yn−k = 0 along c we have

∂LΛ

∂ẋσ
=

∂L

∂ẋσ
, and

∂LΛ

∂xσ
=

∂L

∂xσ
, σ = 1, . . . , k. (6.10)

From (6.7a) and (6.8a) we see that the components (x1, . . . , xk) evolve accord-
ing to the same equations of motion in the nonholonomic and vakonomic problems.
This proves that (i) is equivalent to (ii). Using (6.9) and (6.10) we also see that (iv)
is equivalent to both (i) and (ii). Hamilton’s Principle implies that (iii) is equiva-
lent to (iv). This completes the proof. ■
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Ω

(x, y)

Figure 6.4. The rolling ball

6.1.6 The nonholonomic and vakonomic methods compared

In Section 6.1.5 we saw that the nonholonomic and vakonomic methods are equiv-
alent when the constraints are holonomic. However, this is not true in general
when the constraints are not holonomic. For certain systems, even though their
constraints are not holonomic, it is possible to choose the initial conditions for the
Lagrange multipliers in the vakonomic equations in such a way that the resulting
solution is exactly that determined by the nonholonomic method. This occurs,
for example, in the rolling penny considered in Example 5.16 [Bloch and Crouch
1995].

However, it is not true that it is always possible to select the initial conditions
for the Lagrange multipliers in the vakonomic method so that the solutions are
those of the nonholonomic equations. In this section we quickly review the example
presented by Lewis and Murray [1995b] which illustrates that the nonholonomic
and vakonomic methods are fundamentally different. The system is a ball rolling
on a uniformly rotating table with no sliding (see Figure 6.4). Here (x, y) denotes
the position of the point of contact of the ball with respect to the centre of rotation
of the table. The z-axis will be perpendicular to the plane of the table. The ball
is assumed to be spherical and to have uniform mass density. The parameters in
the problem are:

m mass of the ball

r radius of the ball

I moment of inertia of the ball

Ω rotational velocity of the table

The configuration space for the system is Q = R2 × SO(3). We shall use (x, y,R)
to represent a typical point in Q. The constraints for the system are given by

ẋ− reT1 ṘR
Te3 = −Ωy

ẏ + reT3 ṘR
Te2 = Ωx

where {e1, e2, e3} is the standard basis for R3. Since the matrix ṘRT is skew
symmetric (it represents the angular velocity of the ball in spatial coordinates),
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we may write

ṘRT =




0 −ξ3 ξ2

ξ3 0 −ξ1
−ξ2 ξ1 0


 (6.11)

where ξ1, ξ2, ξ3 are the rotational velocities about the x, y, z axes, respectively.
With this notation, the constraints assume a more recognisable form:

ẋ− rξ2 = −Ωy

ẏ + rξ1 = Ωx.

The Lagrangian for the rolling ball is

L = −1

4
I tr(ṘRT ṘRT ) +

1

2
m(ẋ2 + ẏ2).

Lewis and Murray [1995b] show the equations for the nonholonomic method to
be equivalent to the equations derivable from Newton’s equations. Therefore, we
readily obtain the equations

mẍ = λ1 (6.12a)

mÿ = λ2 (6.12b)

Iξ̇1 = rλ2 (6.12c)

Iξ̇2 = −rλ1 (6.12d)

Iξ̇3 = 0. (6.12e)

Here λ1, λ2 are the Lagrange multipliers which are to be determined from the
constraint equations.

The vakonomic equations take a bit more work to derive, but are determined
by Lewis and Murray [1995b] to be

mẍ− λ̇1 − Ωλ2 = 0 (6.13a)

mÿ − λ̇2 +Ωλ1 = 0 (6.13b)

I ξ̇ + ξ̂(λ2re1 − λ1re2) + λ̇1re2 − λ̇2re1 = 0 (6.13c)
[
1 + I

mr2
0

0 1 + I
mr2

](
λ̇1
λ̇2

)
=

(
− IΩ
mr2

λ2 − IΩ
r2
ẏ − λ2ξ

3

IΩ
mr2

λ1 +
IΩ
r2
ẋ+ λ1ξ

3

)
. (6.13d)

Here ξ = (ξ1, ξ2, ξ3) and ξ̂ is the skew-symmetric matrix on the right-hand-side
of (6.11).

With the two sets of equations, we may now prove a lemma which states that
their solutions will be fundamentally different.

6.13 Lemma: Let q0 = (x0, y0, ξ
1
0 , ξ

2
0 , ξ

3
0) ∈ R2 ×R3 and let

cq0 : t 7→ (x(t), y(t), ξ1(t), ξ2(t), ξ3(t))
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be an integral curve for the nonholonomic equations of motion through q0 at t = 0.
Then we may choose q0 so that cq0 is not a solution of the vakonomic equations
of motion for any choice of initial conditions for the Lagrange multipliers.

Proof: Substituting (6.13d) into (6.13a) and (6.13b) we get

mẍ+
mIΩ

I +mr2
ẏ +Ω

(
I

I +mr2
− 1

)
λ2 +

mr2

I +mr2
λ2ξ

3 = 0

mÿ − mIΩ

I +mr2
ẋ+Ω

(
1− I

I +mr2

)
λ1 −

mr2

I +mr2
λ1ξ

3 = 0.

The nonholonomic equations for x, y may be written as

mẍ+
mIΩ

I +mr2
ẏ = 0

mÿ − mIΩ

I +mr2
ẋ = 0.

We may easily see that these equations will give the same motions in x and y only
if

λ2(ξ
3 − Ω) = 0 and λ1(ξ

3 − Ω) = 0.

Let us choose q0 so that ξ30 ̸= Ω. This means that we must have ξ3(t) ̸= Ω for all t
since ξ̇3 = 0 in the nonholonomic equations. Therefore we must have λ1(t) = λ2(t)
for all t. From equations (6.13d) this means that we must have ẋ(t) = ẏ(t) = 0 for
all t if a vakonomic solution is to agree with the nonholonomic solution. To prove
the lemma we then choose initial conditions so that ẋ(0)2 + ẏ(0)2 ̸= 0. ■

6.14 Remark: It is worth noting that the ball rolling on a rotating table is a
system whose constraint has an affine part. It would be interesting to find an
example whose constraint is non-affine, but whose nonholonomic and vakonomic
equations are fundamentally different in the manner demonstrated in Lemma 6.13
for the rolling ball. It may be the case that no such example exists and that the
nonholonomic and vakonomic methods may be taken to be equivalent in the case
where the constraints have no affine part. However, we cannot make a strong
statement in either direction at this point. •

Let us wrap up this section with a presentation of the pros and cons of the
nonholonomic and vakonomic methods.

VM1. The vakonomic method has the advantage that it is a mathematically clean
variational problem. This makes it the more appealing method, at least at
first glance, to those who feel that nature seeks to act through a variational
principle.

VM2. The nonholonomic method has the profound advantage of agreeing with
Newton’s equations in the cases where both techniques are applicable. This
must certainly be held up as the most philosophically convincing argument
in favour of the nonholonomic method.
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VM3. In the vakonomic method, one is faced with having to make choices for the
initial conditions for the Lagrange multipliers. As we saw in Section 6.1.5,
when the constraints are holonomic, the initial conditions for the Lagrange
multipliers are inconsequential since all choices of such initial conditions
lead to the same physical motions as those specified by the nonholonomic
method.

VM4. Finally, in [Lewis and Murray 1995b] a series of experiments were performed
for the ball rolling on a rotating table. If relevant friction effects are added to
the nonholonomic model, the simulated equations give reasonable agreement
with the experimental observations.

To summarise, the nonholonomic method has two strong arguments in its favour,
one philosophical and one experimental. On the philosophical side, since the non-
holonomic method agrees with Newton’s equations in the cases where both are
applicable, one must surely feel that the nonholonomic method is preferable. This
philosophical argument is born out by experimental observation as well. While
there are still some issues remaining unresolved in the nonholonomic versus vako-
nomic debate (see Remark 6.14), we feel that embracing the nonholonomic method
is correct. For the reader interested in the debate over these two methods, we refer
to the papers of Kharlomov [1992] and Kozlov [1992].

6.1.7 Realising constraints

As a final word in our presentation of the nonholonomic and vakonomic methods,
we say a few things about “realising constraints.” One may think of constraints
as being a limiting process where certain dynamical properties become large and
so limit the motion to the unconstrained directions. This may be made precise in
the vakonomic and nonholonomic models. These notions are given in their precise
forms in [Arnol′d 1988], but we shall give rough descriptions of these limits here.

The vakonomic solutions may be regarded as a limit as an inertial term becomes
large. The inertial term is a degenerate one which supplies no inertial forces to
motions allowed by the constraints. When this term goes to infinity, the solutions
of Lagrange’s equations approach a solution for the vakonomic problem.

The nonholonomic solutions may be regarded as a limit as viscosity becomes
large. To be more precise, we add Rayleigh dissipation to the mechanical system
which does no work on motions allowed by the constraints (thus the dissipation
function is degenerate). Then, as we make the magnitude of the dissipation func-
tion go to infinity, the corresponding solutions to Lagrange’s equations approach
the solutions to the nonholonomic equations.

As a simple example of using these limits to obtain constraints, consider the
system in Figure 6.5. We wish to impose the (holonomic, non-affine) constraint
x = 0. There are several ways to do this. One way would be to let the mass M get
large. This would correspond to the vakonomic limit. Another way to impose the
constraint x = 0 would be to let the damping coefficient ζ tend to infinity. This
would correspond to the nonholonomic limit.
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M

x

ζ

m

Figure 6.5. An example of realising constraints

In each case care must be taken in the limit, and the convergence to the vako-
nomic and nonholonomic solutions in each case is not uniform in time. Note that in
the example, since the constraint is holonomic, the limiting processes will produce
the same motions by Proposition 6.12.

6.2 General constraints

In this section we step away from the traditional constraints discussed in Section 6.1
and make more general definitions. The results in this section may be viewed as
an extension of what we did in Chapter 5. We are able to use the language from
that chapter to give an easy proof of an intuitive controllability result.

6.2.1 Definitions of general constraints

In this section we define what we mean by a constraint in our general setting. In
words we want a constraint to be an assignment of admissible directions which may
depend on position, velocity and higher derivatives, and on time. To be completely
general, we shall allow affine constraints. We first need to define what we mean
by an affine subspace of a vector space.

Let V be a vector space and let U ⊂ V . We shall say that U is an affine
subspace of V if there exists v0 ∈ V and a subspace s(U) of V so that U =
v0+s(U). We define the dimension of an affine subspace U to be the dimension of
the corresponding subspace s(U). Note that s(U) is well-defined given the affine
subspace U , but the translation vector v0 is defined only up to addition in s(U).
We denote by Affk(V ) the set of k-dimensional affine subspaces of V and by Aff(V )
the set of all affine subspaces of V .

Now let us introduce the affine bundle of TQ. We define

Aff(TQ) =

◦⋃
q∈QAff(TqQ).

This is a fibre bundle over Q and we denote the projection by ρQ.
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We will also need the Grassmann bundle of T ∗Q. Let Gk(V ) denote the set of
k-dimensional subspaces of the vector space V and let G(V ) denote the set of all
subspaces of V . We shall call

G(T ∗Q) =
◦⋃
q∈QG(T

∗
qQ)

the Grassmann bundle of T ∗Q. This is a fibre bundle over Q and we denote the
projection by ρ∗Q.

Now we define constraints.

6.15 Definition: An m-constraint on Q is a smooth mapping, C : Jm(R, Q) →
Aff(Q), such that the following diagram commutes.

Jm(R, Q)
C //

ρm
$$

Aff(Q)

ρQ
||

Q

•

When we formulate the equations of motion below, we will see that there are
connections between constraints and forces. When constraints are present, forces
may be thought of as falling into two categories: those which act against the
constraints, and those which act in directions complementary to the constrained
directions. We make these notions clear with definitions.

6.16 Definition: Let C be an m-constraint on Q and let F be an m-force field
on Q. We say that F is a C-constraint force if F ([c]m) · v = 0 for every v ∈
s(C([c]m)) and [c]m ∈ Jm(R, Q). A C-complementary force distribution is a map,
W : Jm(R, Q) → G∗(Q), such that the following diagram commutes

Jm(R, Q)
W //

ρm
$$

G∗(Q)

ρ∗Q||
Q

and such that T ∗
qQ = W([c]m) ⊕ s(C([c]m))

0 for each [c]m ∈ Jm(R, Q)t,q, q ∈ Q,
and t ∈ R. An m-force field F is W-admissible if F ([c]m) ∈ W([c]m). •
Intuitively we think of C-constraint forces as those forces which annihilate the
admissible directions and so do no work on motions allowed by the constraints.
A W-admissible force field will apply forces in directions complimentary to the
constrained directions and so will contribute to the net motion of the system.
Given an m-constraint C and a C-complimentary force distribution W, we define
the following complete subsets of T ∗Q.

C0 = {α = F ([c]m) | [c]m ∈ Jm(R, Q) and F a C-constraint force}
W = {α = F ([c]m) | [c]m ∈ Jm(R, Q) and F a W-admissible force}.
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Thus C0 is the set of all C-constraint forces and W is the set of all W-admissible
forces.

Now we define what we mean by a solution of a constrained and forced system.
Recall the definition of the Lagrange force field FL from Section 5.6.

6.17 Definition: Let F be a 1-force on Q, let C be a 1-constraint on Q, and let
L be a Lagrangian on Q. A curve c : [a, b] → Q is called a solution to Lagrange’s
equations with force field F and constraint C if c′(t) ∈ C(j1c(t)) and if there exists
a C-constraint force, λ, along c such that

FL(j
2c(t)) = λ(j1c(t)) + F (j1c(t)). •

A simple example illustrates the concepts. We return to the example of the
rolling penny initially presented in Section 5.6.

6.18 Example: (5.16 cont’d) Recall that the configuration space was Q = R2 ×
T2 and the Lagrangian was given by

L =
1

2
m(v2x + v2y) +

1

2
Iv2ϕ +

1

2
Jv2θ .

The Lagrange force field was computed in Example 5.16. There are velocity con-
straints on the system determined by the differential forms

dx− r cos θdϕ, dy − r sin θdϕ

where r is the radius of the penny. We wish to present these as a 1-constraint on
Q. Let D be the kernel of these two differential one-forms. i.e.,

D = ker {dx− r cos θdϕ,dy − r sin θdϕ} .

We define the 1-constraint C by

C([c]1) = D(ρ1([c]1)).

Note that the constraint in this case depends only on position and not on velocity
or time. A C-constraint force on Q is given by

λ([c]1) = λ1([c]1)(dx− r cos θdϕ) + λ2([c]1)(dy − r sin θdϕ)

since this is the most general force which will annihilate the constrained directions.
A 1-force on Q looks like

F ([c]1) = Fx([c]1)dx+ Fy([c]1)dy + Fϕ([c]1)dϕ+ Fθ([c]1)dθ.
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Let c : [a, b] → Q be a curve on Q. We then have

FL(j
2c(t))− F (j1c(t))− λ(j1c(t)) = (mẍ(t)− Fx(j

1c(t))− λ1(j
1c(t)))dx+

(mÿ(t)− Fy(j
1c(t))− λ2(j

1c(t)))dy+

(Iϕ̈(t)− Fϕ(j
1c(t)) + λ1(j

1c(t))r cos θ(t) + λ2(j
1c(t))r sin θ(t))dϕ+

(Jθ̈(t)− Fθ(j
1c(t)))dθ.

Therefore, omitting arguments, c is a solution to Lagrange’s equations with force
field F and constraint C if and only if

ẋ− r cos θϕ̇ = 0

ẏ − r sin θϕ̇ = 0

and

mẍ− Fx − λ1 = 0

mÿ − Fy − λ2 = 0

Iϕ̈− Fϕ + λ1r cos θ + λ2r sin θ = 0

Jθ̈ − Fθ = 0.

The coefficients of F and λ will, in general, depend on position, velocity, and time.
•

6.2.2 Controllability results for general constraints

Let us first give some definitions of controllability which suit our general notion of
a constrained system.

6.19 Definition: Let C be a 1-constraint on Q. We say that C is controllable if,
for every two points q1, q2 ∈ Q, there exists a piecewise smooth curve c : [a, b] → Q
such that c connects q1 with q2 and c′(t) ∈ C(j1c(t)) for each t ∈ [a, b].

Let L be a Lagrangian on Q and let Λ be a complete subset of T ∗Q. We say
the triple (L,C,Λ) is controllable if, for every two points q1, q2 ∈ Q, there exists:

(i) a piecewise smooth curve c : [a, b] → Q,

(ii) a Λ-compatible 1-force field, F , along c, and

(iii) a C-constraint force, λ, along c

such that

(i) c connects q1 with q2,

(ii) c′(t) ∈ C(j1c(t)) for each t ∈ [a, b],

(iii) FL(j
2c(t)) = F (j1c(t)) + λ(j1c(t)) for each t ∈ [a, b], and

(iv) c′(a) = 0 and c′(b) = 0. •
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6.20 Remark: If the constraint C defines a distribution D (thus C([c]1) depends
only on ρ1([c]1)), then controllability of C is determined by Proposition 2.6. This
problem has also been studied in the nonlinear controls literature. For example
see [Hermann and Krener 1977]. •

First we will show that if C is controllable then there exists a complete subset Λ
of T ∗Q such that, for every Lagrangian L on Q, the triple (L,C,Λ) is controllable.
We also show that, given a complete subset Λ of T ∗Q, it is possible to make it
smaller by removing those forces which do work against the constraints. These
results are presented as a means of demonstrating that our formulation agrees
with what we expect from physical arguments.

If C is a 1-constraint on Q and W is a C-complementary force distribution,
then in Section 6.2.1 we had defined C0 to be the image of J1(R, Q) under all C-
constraint force fields and W to be the image of J1(R, Q) under all W-admissible
force fields.

6.21 Proposition: Let C be a 1-constraint on Q, let W be a C-complementary
force distribution, and let L be a Lagrangian on Q. Then the triple (L,C,W) is
controllable if and only if C is controllable.

Proof: It is clear that if (L,C,W) is controllable then C is controllable.
Now suppose that C is controllable. Then, for any two points q1, q2 ∈ Q, there

is a curve c : [a, b] → Q connecting q1 and q2 such that c′(t) ∈ C(j1c(t)) for each
t ∈ [a, b]. We will show the existence of a W-compatible 1-force field, F , and a
C-constraint force, λ, along c such that the conditions of Definition 6.19 are met.

We reparameterise c with a mapping τ : [a, b] → [a, b] which has the following
properties:

(i) τ is a bijection,

(ii) τ |(a, b) is a diffeomorphism, and

(iii) τ ′(a) = τ ′(b) = 0.

Define c̃ = c ◦ τ as a new curve on Q which connects q1 with q2. Clearly c̃ satisfies
the constraint C.

By definition we have

T ∗
qQ = W([c̃]1)⊕ (C([c̃]1))

0

where q = ρ1([c̃]1). Note that a 1-force at q is W-compatible if it lies in W([c̃]1)
and a 1-force at q is a C-constraint force if it lies in (C([c̃]1))

0. We may now define
F (j1c̃(t)) and λ(j1c̃(t)) uniquely by requiring that

FL(j
2c̃(t)) = F (j1c̃(t)) + λ(j1c̃(t))

and asking that F (j1c̃(t)) ∈ W([c̃]1) and λ(j1c̃(t)) ∈ (C([c̃]1))
0. Therefore, we

see that c̃ is a solution to Lagrange’s equations with force field F and constraint
C. Furthermore, λ is a C-constraint force, and F is W-compatible. Finally, by
construction, c̃′(a) and c̃′(b) are both zero. This proves the proposition. ■
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Note that, although we are able to steer the system from a point at rest to
another point at rest, it may not remain at rest after time b if the final configuration
is not an equilibrium point for the Lagrangian force field.

We present these results for the rolling penny.

6.22 Example: (5.16 cont’d) Recall that the constraint for the rolling penny is

C([c]1) = D(q)

where q = ρ1([c]1) and where the distribution D is defined by

D = ker{dx− r cos θdϕ, dy − r sin θdϕ}.

We have already seen that a C-constraint force is of the form

λ([c]1) = λ1([c]1)(dx− r cos θdϕ) + λ2([c]1)(dy − r sin θdϕ).

Note that we may define a C-complementary force distribution by

W([c]1) = ⟨dϕ, dθ⟩R .

That this is a C-complementary force distribution follows since

{dx− r cos θdϕ, dy − r sin θdϕ, dϕ,dθ}

is linearly independent. Thus we may write any W-admissible force field as

F ([c]1) = F1([c]1)dϕ+ F2([c]1)dθ.

We may think of F1 as forces which contribute to “pure rolling” and F2 as forces
which contribute to “pure spinning.” Proposition 6.21 says that we may steer
between any two configurations by applying W-admissible forces (i.e., by applying
“rolling” and “spinning” torques). Furthermore, Proposition 6.21 gives a way to
compute the torques if we can determine a path onQ which satisfies the constraints.

•
Now we show that if we have a Λ-compatible force field with constraint C,

we may always make Λ “smaller” by removing from it the forces which do work
against the constraints. Let C be a 1-constraint and let W be a C-complementary
force distribution. For each q ∈ Q we define

Λa,q =

{
Λq ∩W, Λq ∩W ̸= ∅
0 ∈ T ∗

qQ, Λq ∩W = ∅

Λc,q =

{
Λq ∩ C0, Λq ∩ C0 ̸= ∅
0 ∈ T ∗

qQ, Λq ∩ C0 = ∅.
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Thus the subsets

Λa =

◦⋃
q∈QΛa,q, Λc =

◦⋃
q∈QΛc,q

are complete subsets of T ∗Q.
We now have the following result.

6.23 Lemma: Let Λ be a complete subset of T ∗Q, let C be a 1-constraint on Q,
and let W be a C-complementary force distribution. Then any Λ-compatible 1-force
field F may be uniquely decomposed as F = Fa + Fc where Fa is Λa-compatible
and Fc is Λc-compatible.

Proof: Let [c]1 ∈ J1(R, Q). By definition we have the unique decomposition

F ([c]1) = Fa([c]1) + Fc([c]1)

where Fa([c]1) ∈ W([c]1) and Fa([c]1) ∈ (C([c]1))
0. It is clear that Fa and Fc so

defined are Λa and Λc-compatible, respectively. ■

Now we have the following result which says that we may effectively consider
only Λa-compatible force fields out of those which are Λ-compatible.

6.24 Proposition: Let Λ be a complete subset of T ∗Q, let C be a 1-constraint on
Q, let W be a C-complementary force distribution, and let F be a Λ-compatible
1-force field. Let L be a Lagrangian on Q. Then c : [a, b] → Q is a solution
to Lagrange’s equations with force field F and constraint C if and only if c is a
solution to Lagrange’s equations with force field Fa and constraint C. In particular,
(L,C,Λ) is controllable if and only if (L,C,Λa) is controllable.

Proof: By definition, c is a solution to Lagrange’s equations with force field F and
constraint C if and only if c′(t) ∈ C(j1c(t)) and there exists a C-constraint force λ
along c such that

FL(j
2c(t)) = F (j1c(t)) + λ(j1c(t))

for each t ∈ [a, b]. We may write

F (j1c(t)) = Fa(j
1c(t)) + Fc(j

1c(t))

where Fa(j
1c(t)) ∈ W(j1c(t)) and Fc(j

1c(t)) ∈ (C(j1c(t)))0 by Lemma 6.23. If we
define

λ̃(j1c(t)) = Fc(j
1c(t)) + λ(j1c(t))

we see that
FL(j

2c(t)) = Fa(j
1c(t)) + λ̃(j1c(t))

which gives the result, since Fa is Λa-admissible and λ̃ is a C-constraint force by
definition. ■

This may be presented for the rolling penny.
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6.25 Example: (5.16 cont’d) If we have a force field which we apply to the rolling
penny of the form

F ([c]1) = Fx([c]1)dx+ Fy([c]1)dy + Fϕ([c]1)dϕ+ Fθ([c]1)dθ,

Proposition 6.24 says that any path we can follow with these forces may also be
followed by a force field which has Fx([c]1) = Fy([c]1) = 0. •

6.26 Remark: In practice we may wish to choose the C-complementary force dis-
tribution W in a particular manner, perhaps to “minimise” the forces wasted doing
work against the constraints. However, in the general mathematical formulation,
this is not reflected. •
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Chapter 7

Conclusions and future work

In this dissertation we have developed some aspects of mechanics and control of
mechanical systems. Since mechanical systems form a large and interesting class of
control systems, and since this class of systems has not received much fundamental
attention in the literature, we have tried to establish a solid foundation for analysis
of mechanical control systems. It is hoped that this will be merely the first step on
a road to developing a complete set of tools for analysis and synthesis of controllers
for these systems.

Contents

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1 Conclusions

When classical mechanics was in its infancy, the concepts of external forces and
constraints were always considered an integral part of any formulation of mechan-
ics. These two notions were, in large part, lost with the recent geometrisation of
mechanics, and only recently has there been an attempt to revive constraints and
inputs to put them in a proper geometric framework. In this dissertation we have
made some additions to this effort. In Sections 5.4 and 5.3 we gave an intrinsic
formulation of mechanics with external forces in the Lagrangian and Hamiltonian
settings, respectively. The presentation here is loosely based upon that of Her-
mann [1982]. However, we use differential two-forms for our formulation. Locally
this determines a Pfaffian module which is the Cartan system of the two-form.
This is explained for the Lagrangian case in Section 5.7.

Another intrinsic approach to formulating equations of motion in the La-
grangian framework employs a new geometric object which we call the Lagrange
force field. This terminology is explained in Section 5.6. With this approach one
may allow general notions of forces and constraints. This is used to advantage in
Section 6.2.2 to obtain some preliminary results for control of mechanical systems
with constraints.

129
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The other part of the dissertation deals with proper control theory for certain
classes of mechanical systems. We may break up the main results in this area into
two parts: Lagrangian (Section 4.1) and Hamiltonian (Section 4.2). The former
is the more original and interesting of the two. In each case we attempt to apply
the formalism of the basic nonlinear control theory presented in Chapter 3 to the
class of mechanical systems we are studying.

In the Lagrangian formalism we studied a class of mechanical control systems
which we call “simple mechanical control systems.” These systems are charac-
terised by their Lagrangian being “kinetic energy minus potential energy.” With
this class of systems, it is most meaningful to be able to define controllability in
terms of the configuration variables. We are then able to use the structure of the
system to develop algebraic conditions for testing this configuration controllability.
As we show with examples, the distinction between determining controllability in
the configuration variables and determining controllability in the configurations
and velocities is important. In many problems it is the controllability in the
configurations which is more useful to us. Our results in Section 4.1.7 may be
summarised as follows:

1. We have provided new definitions of controllability for mechanical systems.
These new versions of controllability are made in terms of the configuration
variables for the mechanical system, as this is often what is more interesting.
This new version of controllability is a natural one to consider for simple
mechanical control systems.

2. We have reduced the number of computations which need to be performed
to answer the configuration controllability question. The computations (co-
variant differentiation and Lie bracket) in the controllability tests we derive
are performed on vector fields on Q rather than on TQ. Also, the number of
operations (covariant differentiation and Lie bracket) which need to be per-
formed is half that which need to be performed in computing Lie brackets of
vector fields on TQ. For example, the bracket

[[XL, Y
lift
a ], [XL, [Y

lift
b , [XL, Y

lift
c ]]]]

is represented by the expression

[Ya, ⟨Yb : Yc⟩]

in our controllability test.

3. In computing the distributions onQ which determine configuration controlla-
bility, we see how the system geometry enters into the problem. Of particular
interest is the appearance of the symmetric product. This is something that
we would not have guessed before we started working on this problem.

On the Hamiltonian side, we complete the analysis of Nijmeijer and van der
Schaft [1990] for Hamiltonian control systems. In particular, we state precisely
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the form of the locally accessible dynamics and the strongly locally inaccessible
dynamics. With the assumed structure of the Hamiltonian control system, we see
that the dynamics in each case is Hamiltonian. In the example of the robotic leg,
we see how the decompositions from Hamiltonian control theory are related to the
classical reductions by group actions which may be performed for this problem.

The examples presented in Section 4.3, while simple, provide valuable insight
into the usefulness of the techniques we have introduced.

7.2 Future work

The work presented in this dissertation on the topic of mechanical control systems
is only a beginning of what can be done. Here is a list of possible directions for
future work which follow naturally from our analysis of simple mechanical control
systems in Section 4.1.

1. Extend the analysis of Section 4.1 to determine the structure of the reachable
sets when the initial velocity is non-zero. This, we feel, is connected with
the problem of determining the structure of the strongly reachable sets.

2. Allow for more general Lagrangians and inputs. Although simple mechanical
systems make up a large number of mechanical control systems, the general-
isation to more general Lagrangians and more general inputs may offer more
insight into the mechanisms at work in controlling Lagrangian systems. It
would be particularly interesting if such analyses could be presented utilising
the framework for Lagrangian mechanics presented in Sections 5.4 and 5.6.

3. Generalise the computations of Sections 4.1 to show what happens in the
situation when the configuration manifold is acted upon by a Lie group
which leaves the problem data invariant. Some work of this type is seen
in [Bloch and Crouch 1992]. Since systems with symmetry have received a
lot of attention in the recent literature (see [Marsden and Ratiu 1999] and
the references contained therein), this would serve to connect our analysis
with some existing analysis, hopefully to the benefit of both.

4. Apply the analysis tools of Section 4.1 to systems with constraints. Bloch,
Reyhanoglu, and McClamroch [1992] perform some analysis of this type.
However, the hypotheses in their work are restrictive in that a large set of
possible forces is assumed. In fact, it is assumed that it is possible to apply
forces in all directions complementary to the constraint forces. As we saw
in Proposition 6.21, in this situation it is quite natural to suppose that the
system will be controllable.

5. The “Holy Grail” in this type of analysis would be the assimilation of the
above steps into a complete control theory for systems with constraints and
symmetries as presented by Bloch, Krishnaprasad, Marsden, and Murray
[1996]. Some interesting, but preliminary, results may be found in [Ostrowski
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and Burdick 1997]. In particular the “Snakeboard” example is presented in
this paper and is shown to be STLCC.

The directions stated above are along the lines of developing tools for analysis of
mechanical systems. Just as important, however, is the development of synthesis
tools. It would be interesting to develop algorithms for controlling simple mechan-
ical control systems which may be shown to be STLCC. A possible example of
existing work which may prove valuable is the work of M’Closkey [1995]. In this
dissertation, stabilisation algorithms are presented for nonlinear systems without
a drift vector field. Moreover, some results are presented which are intended to
model the “dynamic extension” of the kinematic results. However, this extension
must be used with care as it may not properly capture the subtle dynamic effects
as seen in the examples presented in Section 4.3.

The picture of our work on the Hamiltonian side is more complete. However, it
would still be useful to make connections between the Hamiltonian and Lagrangian
presentations in Chapter 4 of this dissertation. Perhaps some of the clean results
of the Hamiltonian theory could be combined with the inherently more useful
Lagrangian results to yield a deeper understanding of each in the cases where they
agree.

Another interesting avenue of future research may involve using the techniques
of Chapter 5 to study fairly general mechanical control systems. The idea here
would be to use the two-form Ω(L,F ) (or Ω(H,F ∗) in the Hamiltonian case) as
the basic object which describes the control system. The results obtained in this
way would have much more of an exterior differential systems flavour, and the
ideas and results in Sections 3.2 and 3.3.3 may be helpful here.
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