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Abstract

In this letter we present a decomposition for control systems whose drift vector field
is the geodesic spray associated with an affine connection. With the geometric insight
attained with this decomposition, we are able to easily prove some special results for
this class of control systems. Examples illustrate the theory.
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1. Introduction

In a recent paper, Lewis and Murray [1997] introduce the notion of “configuration
controllability” for a class of mechanical control systems and present some results for this
notion of controllability. In the statement of their results, the so-called symmetric product
provides a valuable shorthand. For Levi-Civita connections, the symmetric product was
originally seen in the work of Crouch [1981] on gradient control systems. The geometric
meaning of the symmetric product on manifolds with a general affine connection is given
by Lewis [1998]. In this letter we combine the results of Lewis and Murray [1997] with
the interpretation of the symmetric product by Lewis [1998] to obtain a decomposition
of control systems whose drift vector field is the geodesic spray associated with a general
affine connection. Examples of such control systems include Lagrangian mechanical systems
whose Lagrangian is the kinetic energy with respect to a Riemannian metric. However, the
use of general affine connections is more than simply an easily performed abstraction. Synge
[1928] gives a formulation of the constrained equations of motion for a mechanical system
in terms of an affine connection which is in general not a Levi-Civita connection. Other
authors have done similar work along these lines since the work of Synge. In the control
context, we mention a recent paper of Bloch and Crouch [1995]. This puts the associated
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constrained control systems in the framework of the present paper and so provides impetus
to study control systems associated with general affine connections. The decompositions
we obtain are entirely analogous to the decompositions one obtains for nonlinear control
systems which reduce to the Kalman controllability decomposition for linear systems.

In Section 2 we review the necessary concepts from the theory of affine connections and
also review the results of [Lewis 1998]. In Section 3 we present the control systems we will
consider. These systems have a phase space which is the tangent bundle of a manifold. It
is common to be interested only in the control of the points on the manifold and not be
concerned with their velocities. Apropos to this, we review the controllability definitions
of [Lewis and Murray 1997]. With the results on the symmetric product presented in
Section 2, we are able to concisely restate the main controllability results of [Lewis and
Murray 1997]. When the system is not controllable (by our definition), we are able to
succinctly describe the reachable sets in terms of geometry of the affine connection. In
Section 4 we use our main results of Section 3 to arrive at some natural corollaries. Thus
the contribution of the paper is threefold. First, we make clear the geometry of the results
of [Lewis and Murray 1997]; second, we describe a natural decomposition of the systems we
are considering in cases when they are not controllable; third, we present some new results
which are easily derived from the general theory. Examples which illustrate our results are
given in Section 5.

2. Affine connections

We refer the reader to [Kobayashi and Nomizu 1963] for a discussion of affine connec-
tions. Let M be an n-dimensional manifold. We denote by C∞(M) the set of C∞ functions
on M and by T (M) the set of C∞ vector fields on M . An affine connection on M as-
signs to every pair of vector fields X and Y on M a vector field ∇XY with the assignment
satisfying

AC1. the map (X,Y ) 7→ ∇XY is R-bilinear,

AC2. ∇fXY = f∇XY for f ∈ C∞(M) and X,Y ∈ T (M), and

AC3. ∇X(fY ) = f∇XY + (LXf)Y for f ∈ C∞(M) and X,Y ∈ T (M).

If we define ∇Xf = LXf for f ∈ C∞(M) and X ∈ T (M), then we may extend ∇X to a
derivation of the tensor algebra ofM in a unique manner. The vector field∇XY is called the
covariant derivative of Y along X. If c : [a, b] →M is a piecewise smooth curve, then Y
is parallel along c if ∇ċ(t)Y (c(t)) = 0 for each t ∈ [a, b]. If c is a curve such that its tangent
vector field is parallel along the curve itself (i.e., ∇ċ(t)ċ(t) = 0) then c is a geodesic of ∇.
The torsion of ∇ is the (1, 2) tensor field T defined by T (X,Y ) = ∇XY −∇YX − [X,Y ]
for X,Y ∈ T (M). If T = 0 then we say ∇ is torsion-free .

Let g be a Riemannian metric on M . There exists a unique affine connection
g

∇ on M
with the properties

LC1.
g

∇ is torsion-free, and

LC2.
g

∇Xg = 0 for X ∈ T (M).
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This affine connection is called the Levi-Civita connection associated with g. The geodesics
of the Levi-Civita connection have the property that they locally determine the paths of
shortest length between two points.

2.1 Remark: The link between geodesics of a Levi-Civita connection and Lagrangian me-
chanics is as follows. Let g be a Riemannian metric on M and define a Lagrangian function
on TM by L(v) = 1

2g(v, v) (i.e., the kinetic energy with respect to the Riemannian metric).
Then it is easy to show that a curve c : [a, b] →M is a solution of Lagrange’s equations with
the Lagrangian L if and only if c is a geodesic for the Levi-Civita connection associated
with g. •

In a set of coordinates (x1, . . . , xn) for M , the Christoffel symbols, Γkij , for a general
affine connection ∇ are defined by

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂k
.

One may verify that an affine connection is torsion-free if and only if Γkij = Γkji, i, j, k =
1, . . . , n. The equations for a geodesic then have the form

ẍi + Γijkẋ
j ẋk = 0, i = 1, . . . , n.

These second-order equations are equivalent to the system of first-order equations on TM
given by

ẋi = vi, i = 1, . . . , n

v̇j = −Γjklv
kvl, j = 1, . . . , n

which defines a vector field on TM called the geodesic spray of ∇ which we denote by
Zg.

Now we review the concepts of [Lewis 1998]. Let D be a distribution on a manifold
M with an affine connection ∇. Classically, a submanifold N of M is said to be totally
geodesic if every geodesic whose initial velocity is tangent to N remains on N . We wish
to weaken this notion. We say a distribution D is geodesically invariant if for every
geodesic c : [a, b] →M of ∇, ċ(a) ∈ Dc(a) implies that ċ(t) ∈ Dc(t) for each t ∈ [a, b]. We say
that an integrable distribution D is geodesically generated if it is the involutive closure
of a geodesically invariant distribution.

We make a few remarks which will be useful in our discussion of control theory in
Section 3.

2.2 Remarks: 1. There are distributions which are geodesically invariant but which are
not integrable.

2. If L(D) is the involutive closure of a gendesically invariant distribution D, i.e., if
L(D) is geodesically generated by D, then obviously those geodesics whose initial
configuration lies in a maximal integral manifold Λ of L(D), and whose initial velocity
lies in D, will evolve so as to remain on Λ. •

The symmetric product between X,Y ∈ T (M) is the vector field

⟨X : Y ⟩ = ∇XY +∇YX.

We shall denote by Γ∞(D) the set of sections of a distribution D. The main result of [Lewis
1998] is the following theorem.
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2.3 Theorem: A distribution D is geodesically invariant if and only if ⟨X : Y ⟩ ∈ Γ∞(D)
for every X,Y ∈ Γ∞(D).

3. Control systems on manifolds with an affine connection

In this section we introduce the class of control systems we will study, we present con-
trollability definitions, and we present decompositions for these systems. Our motivation
for studying systems whose drift vector field is the geodesic spray of a general affine con-
nection comes in part from Remark 2.1. We also remind the reader of the work of Synge
[1928] mentioned in the introduction which enables one to cast mechanical systems with
constraints in the general formulation we consider.

Let ∇ be an affine connection on a manifold M and let Y1, . . . , Ym be linearly indepen-
dent vector fields on M . We shall consider control systems of the form

∇ċ(t)ċ(t) = ua(t)Ya(c(t)). (3.1)

Here a is summed over 1, . . . ,m. This equation is readily seen to be equivalent to the first
order system

v̇(t) = Zg(v(t)) + ua(t)Y lift
a (v(t))

for v ∈ TM where Zg is the geodesic spray associated with ∇. Here Y lift
a is the vertical

lift of Ya which is the vector field on TM defined by

Y lift
a (vx) =

d

dt

∣∣∣∣
t=0

(vx + tYa(x))

for vx ∈ TxM (see [Abraham and Marsden 1978]). In this way we obtain a first-order
nonlinear control system on TM whose drift vector field is the geodesic spray Zg.

We consider controls from the sets

UT = {u : [0, T ] → Rm| u is piecewise constant}.

A solution of (3.1) is a pair (c, u) where c : [0, T ] → M is a curve on M and u ∈ UT . We
define the reachable sets as follows. Let x0 ∈M and let U be a neighbourhood of x0 in M .
Define

RUM (x0, T ) = {x ∈M | there exists a solution (c, u) of (3.1)

such that ċ(0) = 0x0 , c(t) ∈ U for t ∈ [0, T ], and ċ(T ) ∈ TxM}

and denote
RUM (x0,≤ T ) =

⋃
0≤t≤T

RUM (x0, t).

Here 0x ∈ TxM denotes the zero vector in the tangent space. The essential feature of these
definitions is that we restrict ourselves to studying the points in M (not TM) which can
be reached from a state whose initial velocity is zero. The velocity of the final state is
unspecified.

We may now state our versions of controllability.
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3.1 Definition: We shall say that (3.1) is locally configuration accessible at x0 ∈M if
there exists T > 0 such that RUM (x0,≤ t) contains a non-empty open subset of M for all
neighbourhoods U of x0 and all 0 < t ≤ T . If this holds for any x0 ∈M then the system is
called locally configuration accessible . •

To state the controllability results, we need some notation. Let V be a family of vector
fields on M . The smallest subset of T (M) which contains V and which is closed under
Lie bracket we denote by Lie(V ). This is known as the involutive closure of V . The
smallest subset of T (M) containing V and which is closed under symmetric product we
denote by Sym(V ) and call the symmetric closure of V . Although the work in [Lewis
and Murray 1997] is presented in the context of Levi-Civita connections, the results are
equally valid for general affine connections. The verification of this is simply a check of the
relevant Lie bracket formulas for the control system on TM . These formulas are

[Zg, Y
lift
a ](0x) = −Ya(x)

[Y lift
b , [Zg, Y

lift
a ]] = ⟨Ya : Yb⟩lift (3.2)

[[Zg, Y
lift
a ], [Zg, Y

lift
b ]](0x) = [Ya, Yb](x)

and are easily proved with coordinate computations. Note that in the first and third of
these equations, we are naturally regarding TxM ⊂ T0xTM as may be done on the zero
section in TM .

Now we are ready to state one of the main results of Lewis and Murray [1997].

3.2 Theorem: Let Y = {Y1, . . . , Ym}. We suppose that Sym(Y ) and Lie(Sym(Y )) define
distributions on M of constant rank which we denote by Cver and Chor, respectively. Then
RUM (x,≤ T ) is an open subset of the maximal integral manifold of Chor through x.

It may also be shown that the set of velocities accessible from 0x is an open subset of
(Cver)x.

Now we recall our discussion regarding geodesically invariant and geodesically generated
distributions in Section 2. From Theorem 2.3 it is clear that Cver is the smallest geodesically
invariant distribution containing the input vector fields Y . By Remark 2.2–2, Chor is the
distribution geodesically generated by the inputs Y . Theorem 3.2 may also be stated in
the following form which constitutes one of the main contributions of the present paper.

3.3 Theorem: Let x ∈M and denote by Λ the maximal integral manifold through x of the
distribution geodesically generated by the inputs. For each neighbourhood U of x and for
each T > 0 sufficiently small, RUM (x,≤ T ) ⊂ Λ and RUM (x,≤ T ) contains a non-empty
open subset of Λ.

All the hard work in the proof of this theorem is contained in Theorems 2.3 and 3.2.
Nevertheless, Theorem 3.3 is itself important since it identifies how the geometry of the
problem enters into the description of the reachable configurations.

If we choose a set of coordinates (x1, . . . , xk, y1, . . . , yn−k) such that the maximal integral
manifolds of Chor are given by y1 = · · · = yn−k = constant, then the system (3.1) has a
coordinate representation of the form

ẍσ + Γσρτ ẋ
ρẋτ + Γσρβẋ

ρẏβ + Γσβρẏ
βẋρ + Γσβγ ẏ

β ẏγ = uaY σ
a , σ = 1, . . . , k

ÿα + Γαρτ ẋ
ρẋτ + Γαρβẋ

ρẏβ + Γαβρẏ
βẋρ + Γαβγ ẏ

β ẏγ = 0, α = 1, . . . , n− k
(3.3)
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where Γαρτ (x, y)ẋ
ρẋτ = 0 if ẋ ∈ Cver(x, y). Here the Christoffel symbols of the affine

connection are defined by

∇ ∂
∂xρ

∂

∂xτ
= Γσρτ

∂

∂xσ
+ Γαρτ

∂

∂yα
, ∇ ∂

∂xρ

∂

∂yβ
= Γσρβ

∂

∂xσ
+ Γαρβ

∂

∂yα
,

∇ ∂

∂yβ

∂

∂xρ
= Γσβρ

∂

∂xσ
+ Γαβρ

∂

∂yα
, ∇ ∂

∂yβ

∂

∂yγ
= Γσβγ

∂

∂xσ
+ Γαβγ

∂

∂yα
.

Observe that if ẏ(0) = 0 and if ẋ(0) ∈ Cver(x(0), y(0)) then ẏ(t) = 0 for t > 0. Therefore,
if we start with zero initial velocities as our controllability definitions suggest, in local
coordinates our system is simply governed by the equations

ẍσ + Γσρτ ẋ
ρẋτ = uaY σ

a , σ = 1, . . . , k

which comprise a locally configuration accessible control system of the form (3.1) on each
of the maximal integral manifolds of Chor. This is consistent with our Remark 2.2–2.

It is worth pointing out that the decomposition (3.3) provides for us the same informa-
tion as the Kalman controllability decomposition provides for linear systems. In the linear
case, one may simplify the system to the form

ẋ = A11x+A12y +B1u

ẏ = A22y.
(3.4)

The reason that the term Γαρτ ẋ
ρẋτ vanishes when ẋ ∈ Cver in the y-part of equation (3.3)

is analogous to A21 being zero in (3.4).

4. An application of the main result

We consider a situation where the system has a natural geodesically invariant distribu-
tion. Again we consider the case when M comes equipped with a Riemannian metric g.
Now we suppose that H is a Lie group which acts on M from the left by isometries. For
h ∈ H we denote by Φh the associated diffeomorphism of M induced by the group action.
For ξ ∈ h, the Lie algebra of H, we define the infinitesimal generator associated with ξ
to be the vector field on M given by

ξM (x) =
d

dt

∣∣∣∣
t=0

Φexp(tξ)(x).

Now define the momentum map corresponding to this group action as the map J : TM →
h∗ determined by

⟨J(vx); ξ⟩ = g(ξM (x), vx).

We refer the reader to [Marsden and Ratiu 1999] for a discussion of the above concepts.
There the reader will also find a proof of the fact that for µ ∈ h∗, J−1(µ) is invariant under
the geodesic flow on TM . This is in particular true for µ = 0. Furthermore, we note that
since J is linear in the fibre variables on TM , J−1(0) is a distribution onM (assuming that
0 is a regular value of J). Therefore D ≜ J−1(0) is a geodesically invariant distribution.
There are many examples where D is not integrable and hence not geodesically generated.



Affine connections and control systems 7

One may readily verify that X ∈ T (M) is such that X lift is tangent to D ⊂ TM if
and only if X ∈ Γ∞(D), the set of sections of D. Therefore, any actuation of the system
by control vector fields in D will maintain the conservation law J = 0. Note that this
implies that, with this type of actuation, the system cannot be locally accessible in the
phase space TM from points on J−1(0). Nevertheless, it is possible that the system be
locally configuration accessible. This is illustrated by the robotic leg example in Section 5.

Let us expand on this a bit further. If we use inputs which span D, or equivalently, use
a maximal set of inputs which maintain the conservation law, then RUM (x,≤ T ) will be an
open subset of a maximal integral manifold of the involutive closure of D. In particular,
if D is maximally involutive (i.e., Lie(Γ∞(D)) = T (M)), then the control system will be
locally configuration accessible.

We summarise the above discussion with the following result.

4.1 Proposition: Let J : TM → h∗ be the momentum map associated with a left action of
a Lie group H on M . Then:

(i) D ≜ J−1(0) is a geodesically invariant distribution for the Levi-Civita connection;

(ii) if the control vector fields take their values in D, then the trajectories of the control
system whose initial velocities are zero are tangent to D ⊂ TM ;

(iii) if Y = {Y1, . . . , Ym} generates Γ∞(D), then the control system is locally configuration
accessible if D is maximally involutive.

5. Examples

In this section we present decompositions for a few examples. Some of these examples
are presented by Lewis and Murray [1997]. However, in that work the emphasis was on
deciding whether the systems were locally configuration accessible. Here we are interested
in the case when the systems are not locally configuration accessible and in studying the
associated decompositions. In the robotic leg example, we also make connections with
Proposition 4.1.

5.1. The robotic leg. We consider a system which consists of a rigid body pinned at its
centre of mass and attached is an extendible massless leg with a point mass on its tip. The
configuration space is M = S1 × S1 × R+. We use the coordinates (θ, ψ, r) as illustrated
in Figure 1. We take ∇ to be the Levi-Civita connection associated with the Riemannian
metric

g = Jdθ ⊗ dθ +mr2dψ ⊗ dψ +mdr ⊗ dr

on M . Here J is the moment of inertia of the body and m is the value of the point mass on
the end of the leg. With this Riemannian metric the system’s Lagrangian is L(v) = 1

2g(v, v).
The non-zero Christoffel symbols are

Γψψr = Γψrψ =
1

r
, Γrψψ = −r.

As inputs we choose a force which extends the mass on the end of the leg and a torque
which actuates the relative angle between the leg and the body. The corresponding input
vector fields are

Y1 =
1

J

∂

∂θ
− 1

mr2
∂

∂ψ
, Y2 =

1

m

∂

∂r
.
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θ

ψ

r

Figure 1. The robotic leg

This system admits an action of H = S1 which preserves the metric. The action is given
by

(α, (θ, ψ, r)) 7→ (θ + α,ψ + α, r).

The corresponding momentum map is

J(θ, ψ, r, vθ, vψ, vr) = Jvθ +mr2vψ.

One may readily verify that Y1 and Y2 are sections of D ≜ J−1(0). Thus, by Proposi-
tion 4.1(ii), trajectories of the control system whose initial conditions lie on D will remain
on D. In particular, those trajectories of the control system whose initial velocities are
zero will evolve on D. Therefore, the system cannot be locally accessible (in TM). Nev-
ertheless, in [Lewis and Murray 1997] it is shown that the system is locally configuration
accessible with both inputs. (In fact, the system is locally configuration controllable with
both inputs.) This turns out to be a situation where Proposition 4.1(iii) applies.

Now we consider the case where we just use the input Y2. In this case the system is not
locally configuration accessible. One may check that Chor is generated by the vector field
Y2 itself. The decomposition given by (3.3) takes the form

r̈ − rψ̇2 =
1

m
u

θ̈ = 0

ψ̈ +
2

r
ṙψ̇ = 0.

Observe that if we have zero velocity initial conditions, the values of θ and ψ are constant
so the dynamics are effectively governed by the equation

r̈ =
1

m
u.

This is clearly a locally configuration accessible system on each maximal integral manifold
of Chor. Physically, this motion is simply one of extending and retracting the mass on the
end of the leg while the body itself remains stationary.
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O

e2

e1

P

f2 f1

g

f2

f1

h

Y1

Y2

Figure 2. The configuration of a
planar body as an element of
SE(2)

Figure 3. Positions for application
of forces on a planar rigid body
after simplifying assumptions

5.2. The planar rigid body. In this section we study the planar rigid body. The configura-
tion space for the system is the Lie group SE(2). To establish the correspondence between
the configuration of the body and SE(2), fix a point O ∈ R2 and let {e1 = ∂

∂x , e2 = ∂
∂y}

be the standard orthonormal frame at that point. Let {f1,f2} be an orthonormal frame
attached to the body at its centre of mass. The configuration of the body is determined
by the element g ∈ SE(2) which maps the point O with its frame {e1, e2} to the position,
P , of the centre of mass of the body with its frame {f1,f2}. See Figure 2. The inputs for
this problem consist of a force applied at an arbitrary point and pointing to the centre of
mass, and a torque about the centre of mass. Without loss of generality (by redefining our
body reference frame {f1,f2}) we may suppose that the point of application of the force
is a distance h along the f1 body-axis from the centre of mass. The situation is illustrated
in Figure 3.

With this convention fixed, we shall use coordinates (x, y, θ) for the planar rigid body
where (x, y) describe the position of the centre of mass and θ describes the orientation of the
frame {f1,f2} with respect to the frame {e1, e2}. In these coordinates, the Riemannian
metric for the system is

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ.

Here m is the mass of the body and J is its moment of inertia about the centre of mass.
The inputs we consider are described by the vector fields

Y1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
, Y2 =

1

J

∂

∂θ
.

When both of these inputs are applied, the system may be shown to be locally configuration
accessible (in fact, controllable). With each of these inputs alone, the system is not locally
configuration accessible.

To describe the decomposition (3.3) when we apply the input Y1, we need to make a
change of coordinates. To this end we use coordinates

(ξ, η, ψ) = (x cos θ + y sin θ,−x sin θ + y cos θ, θ).
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In these coordinates the non-zero Christoffel symbols are

Γξηψ = Γξψη = −1, Γξψψ = −ξ, Γηξψ = Γηψξ = 1, Γηψψ = −η.

The distribution Chor is generated by ∂
∂ξ in these coordinates. We may now write the system

equations as

ξ̈ − 2η̇ψ̇ − ξψ̇2 =
1

m
u

η̈ + 2ξ̇ψ̇ − ηψ̇2 = 0

ψ̈ = 0.

Observe that when the initial velocities are zero, the values of η and ψ do not change. Thus
we essentially have the motion described by the system

ξ̈ =
1

m
u

which is a locally configuration accessible control system on each maximal integral manifold
of Chor. Physically, the motions of this control system are motions of the rigid body along
the direction which corresponds to the fixed value of θ. Since the input Y1 acts through the
centre of mass, the rotational component of the motion is unaffected.

When the system has the input Y2 then we may use the coordinates (x, y, θ) to describe
the decomposition (3.3). All Christoffel symbols are zero so the equations for the system
are

θ̈ =
1

J
u

ẍ = 0

ÿ = 0.

Again we see that the top equation decouples from the last two when the initial velocities
are zero. And, as the theory predicts, the top system is locally configuration accessible.
The corresponding motion of the system is a rotation about the centre of mass of the body.

5.3. A constrained particle in R3. The example we consider in this section is a mechanical
system with constraints. The system has a configuration space of M = R3 and we consider
the Riemannian metric

g = m (dx⊗ dx+ dy ⊗ dy + dz ⊗ dz) .

The system is subject to the velocity constraint

ż = yẋ. (5.1)

Lewis [1998] shows that the equations for the constrained motion of this system are equiv-
alent to those geodesics of a certain (non-Levi-Civita) affine connection whose initial veloc-
ities satisfy the constraint (5.1). The non-zero Christoffel symbols of this affine connection
in the coordinates (x, y, z) are

Γxxy =
2y

1 + y2
, Γxzy = − 1

1 + y2
, Γzxy = − 1

1 + y2
.
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As inputs for this system we consider the single vector field

Y =
1

m

(
∂

∂x
+ y

∂

∂z

)
.

Note that Y ∈ Γ∞(D) and so this input will not cause the system to violate the constraints.
One may verify that the corresponding control system of the form (3.1) is not locally
configuration accessible. In fact, the distribution Chor is generated by the vector field Y .
This is readily verified by computing ⟨Y : Y ⟩ = 0. To render the system in the form (3.3)
we must choose coordinates adapted to the foliation associated with Chor. If we choose

(ξ, η, ζ) = (x, y, z − xy)

then one may verify that Chor is generated by ∂
∂ξ . The non-zero Christoffel symbols in these

coordinates are

Γξηξ = − η

1 + η2
, Γξηη = − ξ

1 + η2
, Γξζη = − 1

1 + η2
,

Γζξη = −ξ, Γζηξ = 1− ξ, Γζηη =
ξη

1 + η2
, Γζζη =

η

1 + η2

from which we may derive the governing equations in these coordinates as

ξ̈ − η

1 + η2
ξ̇η̇ − ξ

1 + η2
η̇2 − 1

1 + η2
η̇ζ̇ =

1

m
u

η̈ = 0

ζ̈ + (1− 2ξ)ξ̇η̇ +
ξη

1 + η2
η̇2 +

η

1 + η2
η̇ζ̇ = 0.

As the general theory predicts, when we have zero initial velocity, the values of η and ζ are
not affected by the controls. Thus the system effectively reduces to

ξ̈ =
1

m
u.

6. Discussion

In this letter we have presented a decomposition of control systems whose drift vector
field is the geodesic spray of a general affine connection. Our results illuminate how the
geometry of the affine connection interacts with the inputs to specify the reachable sets
(Theorem 3.3). It is our belief that this enhanced geometric insight will lead to a better
understanding of how one might perform control design for these systems. Furthermore,
the possibility of writing the equations of motion for constrained systems in terms of affine
connections opens up new possibilities for applying the theory of this paper, and indeed
motivates our presentation in terms of general affine connections rather than just Levi-
Civita connections. We have presented a simple example with constraints to verify that
their presence does not affect our conclusions.
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