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Abstract

We investigate various aspects of the interplay of an affine connection with a dis-
tribution. When the affine connection restricts to the distribution, we discuss torsion,
curvature, and holonomy of the affine connection. We also investigate transformations
which respect both the affine connection and the distribution. A stronger notion than
that of restricting to a distribution is that of geodesic invariance. This is a natural gen-
eralisation to a distribution of the idea of a totally geodesic submanifold. We provide
a product for vector fields which allows one to test for geodesic invariance in the same
way one uses the Lie bracket to test for integrability. If the affine connection does not
restrict to the distribution, we are able to define its restriction and in the process gen-
eralise the notion of the second fundamental form for submanifolds. We characterise
some transformations of these restricted connections and derive conservation laws in
the case when the original connection is the Levi-Civita connection associated with a
Riemannian metric.
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1. Introduction

In this paper we study relationships between distributions and affine connections. In
large part, what we study here generalises what one normally does for submanifolds. If
an affine connection restricts to a distribution, then it is interesting to study the affine
connection thought of as a connection only in the distribution. We demonstrate that this
is feasible by showing that if the affine connection restricts to the distribution, then so
does itscurvature and holonomy. We also investigate transformations of affine connections
which restrict to a distribution. One is then interested in transformations which respect
both the affine connection and the distribution. A notion which is weaker than restriction
to a distribution is what we call geodesic invariance. A distribution D is geodesically
invariant if D C T'M is invariant under the geodesic flow. We provide an infinitesimal
test for geodesic invariance using the symmetric product. This product was first seen in
the Levi-Civita context in the work of Crouch [1981] on gradient control systems. It also
arises in the work of Lewis and Murray [1997] on a class of mechanical control systems.
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Here we provide a geometric interpretation of the symmetric product. Another notion from
submanifold geometry which we generalise to distributions is the second fundamental form.
By restricting an affine connection to a distribution in a natural way, we obtain an explicit
formula for the second fundamental form for distributions and we show that it does indeed
generalise the existing notion for submanifolds. Using our discussion of transformations
for affine connections which restrict to a distribution, we provide some transformations
for the restricted affine connections constructed. In the Levi-Civita case, certain of these
transformations lead to conservation laws which may be thought of as generalisations of
Noether’s theorem.

We review some concepts from the theory of affine and linear connections in Section 2
in order to fix our notation. In Section 3 we study properties of affine connections which
restrict to distributions. The torsion, curvature, and holonomy of such affine connections
are discussed in Section 3.1 and their transformations are discussed in Section 3.2. We
discuss geodesic invariance and the symmetric product in Section 4. Conditions are provided
under which an affine connection which possesses D as a geodesically invariant distribution
actually restricts to D. In Section 5 we look at the situation when we have an arbitrary
affine connection V and a distribution D. We discuss the second fundamental form in
Section 5.2 and transformations in Section 5.3. The conservation laws in the Levi-Civita
case are presented in Section 5.4. A simple example illustrates some of our constructions
in Section 5.6.

Notation and conventions

In the rest of the paper we use the following notation.

C>®(M) : the set of smooth functions on M

D¢ : the derivative of ¢: Ue £ — F

g : the set of smooth sections of a distribution D

E F : Banach spaces

GL(E) : the Lie group of continuous automorphisms of E

gl(E) : the Lie algebra of continuous endomorphisms of £

L(E,F) : the set of continuous linear maps from E to F

L¥(E,F) : the set of continuous k-multilinear maps from E x --- x E to F'
Fx : the Lie derivative with respect to X € 7 (M)

I (M) : the set of smooth vector fields on M

M : the tangent bundle of a manifold M

To: TM — TN : the tangent of a mapping ¢: M — N of manifolds M and N
LOJ zeX : disjoint union over z € X

Ue X : U is an open subset of X

2. Affine and linear connections

In this paper we shall work in the category of C*° reflexive Banach manifolds. Here we
present some notation for the basic concepts of affine and linear connections. Our geometric
notation will follow that of [Abraham, Marsden, and Ratiu 1988]. For affine connections
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on Banach manifolds we refer the reader to [Lang 1995]. We caution that only torsion free
connections are dealt with in Lang and here we shall need to allow connections with non-
zero torsion. For linear connections we refer to [Kobayashi and Nomizu 1963] although this
work is presented in the finite-dimensional context. As we shall see, it is straightforward
to extend this to infinite-dimensions. As we will be interested in transformations of affine
connections in Sections 3 and 5, we thoroughly review their basic properties here.

Affine connections. Let V be an affine connection on a manifold M. If (U, ¢) is a chart
for M taking values in a Banach space E, we shall denote by I': ¢(U) — L?(E, E) the
Christoffel symbols for the affine connection in the chart. Thus in the chart we have'

VxY(u) = (u, DY (u) - X (u) + T'(u)(X (u), Y (u))).

We shall denote by Z, the geodesic spray of V which is therefore a second-order vector field
on T'M and its integral curves project to geodesics of V. In a natural chart (TU,T¢) for
TM we have Zg(u,e) = ((u,e), (e, —I'(u)(e,e))). We denote the torsion and curvature
tensors of V by T" and R and we recall that

T(X,Y)=VxY — VyX — [X,Y]
R(X,Y)Z =VxVyZ —VyVxZ —VixyZ.

Thus we regard R(X,Y) as a (1,1) tensor field for each pair of vector fields X and Y. Recall
that if M has a Riemannian metric? then there is associated to it a unique affine connection
V with the properties that V is torsion free and that Vxg = 0 for every X €  (M). This
affine connection is called the Lewvi-Civita connection.

Linear connections. Closely related to affine connections are linear connections which are
principal connections on the bundle of linear frames. We suppose that M is modelled on a
Banach space E and for 2 € M we denote by L, (M) the set of isomorphisms p: E — T, M.
We write

L(M) = OxeMLz(M)

which we call the bundle of linear frames of M even though this name is a bit misleading
in the infinite-dimensional context. The group GL(E) acts on the right on L(M) by (p,a) —
peoa where p € Ly(M) for some x € M and a € GL(E). Let (U, ¢) be a chart for M and
let z € U. The natural tangent bundle chart (TU,T¢) for T M provides an isomorphism
of E with T, M via (Ty¢)~!. Given p € L,(M) there exists a unique a € GL(E) such that
p = (T,¢)"! oa and so this establishes a trivialisation L(U) ~ ¢(U) x GL(E). Since it
is clear that L(M)/GL(E) ~ M, we are justified in saying that (7, L(M), M, GL(E)) is a
principal fibre bundle with total space L(M), base space M, structure group GL(FE), and
projection mw: L(M) — M. A linear connection is a specification of a GL(E)-invariant

!One cannot actually write the covariant derivative in this form without making additional assumptions
on the model Banach space. These assumptions are true in finite dimensions or, more generally, for Hilbert
manifolds. We refer the reader to [Lang 1995, Chapter VIII, §2] for a discussion of these issues. Here we
shall simply assume that the covariant derivative locally has the given form.

2We will assume strongly nondegenerate metrics unless we say otherwise. This guarantees the existence
of the associated affine connection.
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complement, H(L(M)), to the subbundle V(L(M)) £ ker(T'w). If X € T,(L(M)) then we
will write X = hor(X) + ver(X) where hor(X) € H,(L(M)) and ver(X) € V,(L(M)). The
connection one-form w is defined by

wp(X) ={A € gl(E) | A*(p) = ver(X)}
where A* is the infinitesimal generator defined by

)= 1 (poexp(ta)).

~dt|,_,
Note that w is a gl(E)-valued one-form on L(M). Since GL(E) acts freely on L(M), w is
well-defined. On L(M) there is also a canonically defined, E-valued one-form 6 given by

Hp(X) = pil(Tp (X))

If c: [a,b] — M is a curve and if p € 7~!(c(a)), we may define a curve o: [a,b] — L(M) by
horizontally lifting ¢ through p. Thus ¢ = woo and Tw(5(t)) = ¢(¢t) for t € [a,b]. We define
the parallel translation of p along c to be the section t — o(t) of L(M) over c.

Note that GL(E) acts on E on the left in the natural manner and so we have a left action
of GL(E) on L(M)x E given by (a, (p,e)) — (peat,a(e)). The quotient (L(M)xE)/GL(E)
is a vector bundle associated with L(M) and it is naturally isomorphic to T'M. Parallel
transport in L(M) provides parallel transport in TM as follows. Let c¢: [a,b] — M be a
curve with v € T, M. Let e € E and define p € 71 (c(a)) by asking that pe = v. If
o is the horizontal lift of ¢ through p then ¢ — o(¢) is the parallel translation of p along
c. We define the parallel translation of v along ¢ to be the vector field along ¢ defined by
X(t) = o(t)e. One may show that this construction does not depend on e € E. Associated
with this parallel translation operation is an affine connection V on M given by

(VxY)(x) = p(hlft, (X) (0 (hlft,(Y)))) (2.1)

where p € 77!(z) (see the Lemma on page 133 of [Kobayashi and Nomizu 1963]). Here
hift,: T, M — H,(L(M)) is the natural horizontal lift given by the connection.

If e € E, we denote by X(e) the horizontal vector field on L(M) defined by
Tym(X(e)(p)) = pe € TrpyM. That is to say, ¥(e)(p) is the horizontal lift of pe. One
may show that o: [a,b] — L(M) is an integral curve for 3(e) if and only if T oo is a
geodesic for the associated affine connection V. Conversely, c: [a,b] — M is a geodesic for
V with initial condition é¢(a) = vy € T, M if and only if its horizontal lift through p € L (M)

is an integral curve for X(p~1v,).

Transformations for affine connections. We refer the reader to [Kobayashi and Nomizu
1963, Chapter VI] for details on the presentation in this section. A diffeomorphism ¢: M —
M is called an affine transformation of V if any one of the following equivalent conditions
is true:

AT1. T'¢$ commutes with parallel translation;

AT2. ¢oexp, = expy(y) oLy for z € M;
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AT3. ¢*(VxY) = Vg x¢*Y for vector fields X and Y on M.

If V is the Levi-Civita connection associated with a Riemannian metric g on M, then the
above conditions are implied by

AT4. ¢*g = g.

In this case we will sometimes say that ¢ is an tsometry of the Riemannian metric g. We
note that the set of affine transformations of V forms a subgroup of the diffeomorphism
group of M which we shall denote by Aff(V).

A vector field X is called an infinitesimal affine transformation if it satisfies any
one of the following equivalent conditions:

IAT1. the flow of X consists of a one-parameter family of affine transformations;
IAT2. Zx o Vy — Vy o Zx = V|x y] for every vector field Y.

If V is the Levi-Civita connection associated with a Riemannian metric g then the above
conditions are implied by:

IAT3. Zxg = 0;
IAT4. g(VyX,Z)+ g(Y,VzX) = 0 for vector fields Y and Z on M.

In this case we will sometimes say that X is an infinitesimal isometry of g or a Killing
vector field. One may show that the set of infinitesimal affine transformations of V is a
Lie subalgebra of 7 (M) which we shall denote by aff(V).

Since a proof of IAT4 is difficult to obtain in the literature, we present one here. We
also add an additional helpful characterisation of Killing vector fields.

2.1 Lemma: Let g be a Riemannian metric on M, let V be the associated Levi-Civita
connection, and let X be a vector field on M. The following are equivalent:

(i) X is an infinitesimal isometry for g;

(i) g(VyX,Z)+ g(Y,VzX) =0 for every two vector fields Y and Z;

(11i) g(VyX,Y) =0 for every vector field Y.

Proof: By continuity we may prove the lemma at those points x € M for which X (z) # 0.
Let = be such a point and let (U, ¢) be a chart around = which straightens out X. Thus for
' eU, p(x') = (t,u) € VxU' with V@R and U’'e E. In this chart the local representative
for X is X(t,u) = ((t,u),(1,0)). Let us denote by I': V x U’ — L?*(R x E,R x E) the
Christoffel symbols in this chart. Let X7, Xo € R x E and regard these as constant vector
fields on V' x U’. Noting that X, X, and X, are constant we compute

9(Vx, X, X2) + g(X1, Vx, X)
— g(DX - X1 + (X1, X), X2) + ¢(X1, DX - X + (X2, X))
= g(DX; - X + (X, X1), X2) + g(X1, DXs - X + T(X, X3))
=9(Vx X1, Xo) + 9(X1, Vx Xo). (2.2)

Here we have used the fact that the Levi-Civita connection has zero torsion and so I' is
symmetric.
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(i) <= (ii) Now we compute

Zx(9(X1, X2)) = (Zxg)(X1, X2) + g(Lx X1, X2) + 9(X1, Lx X2)
= (Zx9)(X1, X2)

since X commutes with X7 and Xs5. We also have

Zx(9(X1, X2)) = (Vxg)(X1, X2) + 9(Vx X1, X2) + 9(X1, Vx Xo)
=9(VxX1,X2) 4+ 9(X1,VxXo)

since the Levi-Civita connection has the property that Vzg = 0 for every vector field Z.
Therefore, by (2.2)

9(Vx, X, Xo) + 9(X1,Vx, X) = g(Vx X1, X2) + 9(X1, Vx X2) = (Zx9) (X1, Xa).

Thus we see that X is an infinitesimal affine transformation for V if and only if
9(Vx, X, Xo) + g(X1,Vx,X) = 0 for every X;,Xs € R x E. Since this expression is
linear with respect to multiplication by functions in X; and X5 and since X; and Xy are
arbitrary, we see that (i) and (ii) are equivalent.

(i) <= (iii) We claim that for any vector field X, £xg is a symmetric (0,2) tensor
field. Indeed we have

(Zxg)Y, Z) = Zx(9(Y, 2)) — 9(ZxY, Z) — g(Y, Zx Z)
which is clearly symmetric in Y and Z. Therefore, $xg = 0 if and only if Zxg(Y,Y) =0
for every vector field Y. Letting Y € R x E we have
Fxg(Y,Y)=29(VxY,Y)=29(VyX,Y)

by (2.2). Thus we see that X is a Killing vector field if and only if g(Vy X,Y") = 0 for every
Y € R x E. Again, this expression is linear with respect to multiplication by a function in
the argument Y, so we see that X is a Killing vector field if and only if (iii) holds. |

Motivated by property IAT2 of infinitesimal affine transformations, let us define
Bx(Y,Z) = [X,VyZ] - Vy[X,Z] = Vx| Z. (2.3)
We claim that By is a tensor field of type (1,2) for every X € 9 (M). To see this, let f
and g be functions on M and compute
Bx(1Y,9Z) = [X,VyvgZ] — Vyy[X,9Z] = Vx rv](9Z)
=X, fgVyZ + [(Zv9)Z] = [Vy(glX, Z] + (Zx9)Z)—
IV sy v @y 2 — (Zrxyviv@ny9)Z
= f9lX,VyZ] + (Zx f9)Vy Z + [(Zv 9)|X, Z] + Zx (f(Zv9))Z—
foVy X, Z] = [(Zg)lX, 2] — f(Zx9)VyZ — S (Zxg)Z-
faVixvZ — 9(Ex)VyZ — f(Hxv9)Z — (Lx ) (Zg)Z
= f9lX.VyZ] = fgVy[X,Z] = fgVixy1Z = fgBx (Y, Z).

This verifies that Bx is a tensor field. The following lemma follows from the definition of
Byx.
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2.2 Lemma: A vector field X is an infinitesimal affine transformation for ¥V if and only if
Bx =0.

3. Affine connections which restrict to a distribution

An affine connection V on M is said to restrict to a distribution D if VxY € & for
every Y € &. Let v € T, M and let ¢: [0,T7] — M be a curve such that ¢(0) = z. Recall
that the parallel translation of v along c is the vector field X along ¢ which satisfies the
differential equation V)X (t) = 0 with initial condition X (0) = v. Thus we see that if V
restricts to D, then parallel translation leaves D invariant. In this section we study some
general properties of affine connections which restrict to a distribution.

Unless stated otherwise, throughout the remainder of this section, let V be an
affine connection which restricts to D.

3.1. Torsion, curvature, and holonomy. The property of an affine connection restricting to
a distribution makes it possible to simplify the torsion and curvature of the connection. We
note in particular how it is important that one allow non-zero torsion for affine connections
which restrict to certain distributions. Let 7' and R denote the torsion and curvature
tensors, respectively.

3.1 Proposition: D is integrable if and only if T(X,Y) € & for every X, Y € &. In
particular, if T =0 then D is integrable.

Proof: This follows from the definition of 7" and our assumption that V restricts to D. R

Another way of stating the above result is to say that D is integrable if and only if the
torsion of V restricts to D. The above result has the following interesting corollary.

3.2 Corollary: Let (M,g) be a Riemannian manifold with V the associated Levi-Civita
affine connection. Then V restricts to a distribution D only if D is integrable.

The “if” direction of the corollary is obviously not true in general.

3.3 Proposition: Let x € M and let u,v € T, M. Then the endomorphism R(u,v) of T,M
leaves invariant the subspace D,.

Proof: This follows from the definition of the curvature tensor and from the fact that we
are supposing V restricts to D. |

In a related manner, we may make an essential observation about the holonomy groups
of V. The reader will wish to recall the discussion of holonomy groups for linear connections
in Section IT1.9 of [Kobayashi and Nomizu 1963].> In particular, recall that the holonomy
group at x € M may be thought of as a subgroup of the automorphism group of T, M. The
Lie algebra of this group is then a subalgebra of the Lie algebra of endomorphisms of T, M
equipped with the commutator bracket.

30ne may easily convince oneself that the results presented by Kobayashi and Nomizu extend to the
infinite-dimensional setting.
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3.4 Proposition: Suppose that V restricts to D and let x € M. The following statements
hold.

(i) Dy is an invariant subspace of the holonomy group of V at x.

(i) The Lie algebra of the infinitesimal holonomy group of V at x has D, as an invariant
subspace.

Proof: (i) The holonomy group of V at z is generated by the automorphisms
ToM 5w 7, o R(1e(u), 7(v)) o 7e(w)

where c: [0,1] — M is a curve with ¢(0) = x, 7. is parallel translation along ¢, and u,v €
T, M. Since V restricts to D, D is invariant under parallel translation. By Proposition 3.3
R(1e(u), 7e(v)) © Te(w) € De(1y. This proves (i).

(ii) The Lie algebra of the infinitesimal holonomy group at x is generated by endomor-
phisms of T, M of the form

v (VER) (u,v;wi;. .. ;wy)(v)

where u,v,wi,...,wr € T, M and k € IN. We shall prove by induction on k that each
endomorphism in this generating set leaves D, invariant. This is true for £ = 0 by Propo-
sition 3.3. Now suppose it is true for £k = [ > 0. Therefore, for vector fields X, Y, V1,...,V]
on M and for any section Z of D,

(V'R)(X,Y, Z; Vi;...s ) 2 (VIR)(X, Y Vis...s Vi)(2) € 2.
If Vi44 is a vector field on M we compute

(VM R)(X,Y, Z: ;.. s Vis Vi) = (le(VlR)) (X,Y,Z; Va5, 5 W)
=V, (VZR(X,Y, Z: vl;...;vl)) — (VIR)(Vvi, X, Y, Z; Va5 Vi)~

(V'R)(X, Vv, Y, Z: Vis.. s Vi) — (V'R)(X, Y, Vi, Z: Vs .. 3 Vi) —
l

S (V'R)(X,Y, Z;Vis .. sV, Vis .. s VA).

=1

By the induction hypothesis and since we are supposing that V restricts to D, each of the
terms on the right hand side of the final expression is a section of D. This completes the
proof of (ii). [ |

3.2. Transformations. In this section we discuss transformations of affine connections
which restrict to a distribution. We look for transformations which respect the affine con-
nection and the distribution. We shall say that a map ¢: M — M is compatible with D
if Tp¢(Dy) = Dgy(y) for each z € M. A vector field X is compatible with D if [X,Y] € &
for every Y € &. It is common to use the expression “D is invariant under X” if X is
compatible with D.

Setting aside issues of completeness of vector fields, we have the following lemma.
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3.6 Lemma: A vector field X is compatible with D if and only if its flow is compatible with
D.

Proof: Denote by F; the flow of X and suppose that F} is compatible with D. If Y € & we
have
LY () = T (T P (Y (Fi2)) — ¥ (2)

Since F; is compatible with D, T, ) F-(Y (Fi(x))) € D, and therefore ZxY (z) € D, and
so X is compatible with D.

To prove the converse we make the following observation. Let X7 denote the lift of
X to TM. Thus X7 is the vector field on TM whose flow is the one-parameter family of
diffeomorphisms ¢ — TF;. We claim that F} is compatible with D if and only if D C T'M is
invariant under the flow of X7. Indeed, F; is compatible with D if and only if T, F;(D,) =
D, (y) for each z € M from which our claim easily follows. Thus we shall prove that X Tis
tangent to D if and only if X is compatible with D and this will complete the proof of the
lemma. We shall use coordinates for T'M which are adapted to the distribution. Thus we
choose a chart (U, ¢) for M with (TU,T¢) the induced natural chart for TM. Since D is a
subbundle of T'M, there exists a chart (T'U, ) such that

1. % is a bijection onto U’ x F} x Fy where U’ = ¢(U)@ E, and F; and F» are Banach
spaces,

2. P(Dg-1(u)) = {u} x F1 x {0},
3. the overlap map from T'¢(TU) to ¢(TU) has the form
h: (u,e) — (u, A1 (u) - e, Aa(u) - €)
for smooth maps A;: U' — L(E, F;),i=1,2.
We denote the inverse of h by
W=t (u, fu, f2) = (u, Bi(u) - fi + Ba(u) - f2)

which defines smooth maps B;: U’ — L(F;,E),i=1,2.
Let (u,e) € U' x E and let (u, f1, f2) = h(u,e) € U’ x Fy x F5. We compute
Dh(u,e) - XT(u,e) = D(u,e) - (X (u), DX (u) - e)
= (X(u), DAy (u)(X (u), €) + A1 (u) - (DX (u) - ),
DAy(u)(X(u),e) + Aa(u) - (DX (u) - €))
= (X(u), DAy (u)(X (u), Bi(u) - fi + Ba(u) - f2)+
Ay(u) - (DX (u) - (Bi(u) - f1 + Ba(u) - f2)),
D Az (u)(X (u), Bi(u) - f1 + Ba(u) - f2)+
As(u) - (DX (u) - (Bi(u) - f1 + Ba(u) - f2))).

If we restrict this representation of XT to D C TM by setting fo = 0 we get

TH(XT|D) = (X (), DA (u)(X (u), Bi(w) - f1) + Av(u) - (DX (u) - (B1(w) - f1)),
D Az (u)(X (u), Bi(u) - f1) + A2(u) - (DX (u) - (Bi(u) - f1))). (3.1)
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Now let f; € Fy and consider the vector field Y: u — (u, Bi(u) - f1) on U’ which is a
representative of a section of D. We compute

WX, Y](w)) = h(u, DBi(u)(X (u), f1) = DX (u) - (Bi(u) - f1))
= (u, A1(u) - (DB (u)(X (u), f1) = DX (u) - (Bi(u) - f1)),
As(u) - (DB1(u)(X (u), f1) = DX (u) - (Bi(u) - f1)))- (3.2)

By definition of Ay and B; we have Ag(u)-(Bi(u)- f1) = 0 for every f; € F;. Differentiating
this in the direction X (u) we get

DAz (u)(X (u), Bi(u) - f1) + Az(u) - (DB1(X (u), f1)) = 0. (3-3)
Combining (3.1), (3.2), and (3.3) we obtain the lemma. [ |

We now wish to consider an affine connection V which restricts to D. Recall the
definition of Bx from (2.3).

3.6 Lemma: Let X be a vector field compatible with D and suppose that V restricts to D.
Then Bx(Y,Z) € & for every Y, Z € Y.

Proof: Let Y, Z € &. We have
Bx(Y,Z) = [X,VyZ] - Vy[X, Z] = Vix y| Z.

Since V restricts to D, VyZ € & and since X is compatible with D, [X,VyZ] € . In
similar fashion we see that Vy[X, Z] € & and V[xy)Z € & thus proving the lemma. B

This indicates that, under the hypotheses of the lemma, one may restrict considerations
of infinitesimal affine invariance to the vector bundle connection in D. This leads to the
following definitions.

3.7 Definition: Let ¢: M — M be a diffeomorphism which is compatible with D, let X
be a vector field which is compatible with D, and suppose that V restricts to D. We say
that ¢ is a D-affine transformation if T'¢ commutes with parallel translation in D,
and we say that X is a D-infinitesimal affine transformation if its flow comprises a
one-parameter family of D-affine transformations. °

Since V restricts to D, the above definitions make sense. The following result is simply
proved by restricting the statements for general affine connections to the distribution D.
Everything goes through since we are supposing V leaves D invariant.

3.8 Propaosition: Suppose that V restricts to D and let ¢ be a diffeomorphism compatible
with D. The following are equivalent:

(i) ¢ is a D-affine transformation;

(ii) ¢o (expx ‘Da:) = €XDPy(z) O(Tw¢|Daz);

(iii) ¢*(VxY)=Vex¢*Y if Y € D.
If V is the Levi-Civita connection associated with a Riemannian metric g, then the above
conditions are implied by:

(iv) (¢*9)(X,Y)=g(X,Y) for X,Y € .
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Let X be a vector field compatible with D. The following are equivalent:

(v) X is a D-infinitesimal affine transformation;

(vi) Bx(Y,Z) =0 for Y, Z € 9.
If V is the Levi-Civita connection associated with a Riemannian metric g, then the above
conditions are implied by:

(vii) (Zxg)(Y,Z) =0 for Y,Z € D;
(viii) g(VyX,Z)+g(Y,VzX)=0 for Y, Z € I;

(ix) g(VyX,Y)=0 for Y € D.

Next we consider the properties of D-affine transformations under composition and D-

infinitesimal affine transformations under Lie bracket. Let us denote by Diff (M) the group

of diffeomorphisms of M, by Aff(V|D) the set of D-affine transformations, and by aff(V|D)
the set of D-infinitesimal affine transformations.

3.9 Proposition: Suppose that V restricts to D. Then
(i) Aff(V|D) is a subgroup of Diff (M),
(ii) aff(V|D) is a Lie subalgebra of I (M).
Proof: (i) First note that if diffeomorphisms ¢; and ¢; are compatible with D, then ¢; o ¢
is compatible with D. For Y € & and ¢1, ¢2 € Aff(V|D) we compute
(¢1002)"(VxY) = ¢3(61VxY)
= 5V x 1Y
= Vigro00)x (P10 02)"Y
by Proposition 3.8(iii). By that same result we then see that ¢;0¢2 € Aff(V|D). Also note
that idys € Aff(V|D) which shows that Aff(V|D) is a subgroup of Diff (M).
(ii) First we claim that if X, Y € 9 (M) are compatible with D, then [X, Y] is compat-
ible with D. Indeed, for Z € & we have
([X.Y], 2] = —[[Z, X], Y] - [[Y, Z], X]
by Jacobi’s identity. From this our claim follows. Now let X,Y € aff(V|D). Then we have
(ZxoVz=VzoZx)W = (Vixz2)W, (& oVz—VzoH)W = (Vyz)W
for every Z, W € & by Proposition 3.8(vi). We now compute
(Zixy1°oVz—VzoLixy)W =
(Fx oLy oVy—LH o Vg —VgoLxoLH + VoL o L)W
=(Fxo(KH oVy—Vzo0H )+ (LxVz —VzoLx)oe LH—
FHo(ExVyz—VzoLx)— (K oVz—Vzo L)oo L)W
=(Fx oV — Vg o Zx — L oVix g+ Vixz o L)W
= (Vix, vz — Viyxz)W
= (Vixy,2)W.

The penultimate equality comes from Proposition 3.8(vi) (noting that [X, Z],[Y, Z] € &)
and the final equality follows from Jacobi’s identity. We thus see that Bix y(Z, W) = 0 for
every Z,W € & and so [X,Y] € aff(V|D). [ |
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It is not altogether clear what relationship exists between Aff(V) and Aff(V|D) (or their
respective Lie algebras). In Section 5 (cf. Proposition 5.7) we see that in at least one case
they have some transformations in common. Also, in the finite-dimensional case at least,
one should be able to demonstrate that Aff(V|D) is a finite-dimensional Lie group with Lie
algebra aff(V|D).

Finally we consider the case when D has a complement D’. We shall say a diffeo-
morphism ¢: M — M (resp. a vector field X on M) is compatible with (D, D’) if ¢ is
compatible with D and D’ (resp. X is compatible with D and D’). This arises in one
important case as the next lemma illustrates. In this lemma we do not assume that V
restricts to D.

3.10 Lemma: Suppose that M comes equipped with a Riemannian metric g and that D is
a distribution with D its orthogonal complement. Then

(i) an isometry, ¢, for the Levi-Civita connection is compatible with D if and only if it
is compatible with (D, D),

(ii) an infinitesimal isometry, X, for the Levi-Civita connection is compatible with D if
and only if it is compatible with (D, D).

Proof: (i) It is clear that if ¢ is compatible with (D, D) then it is compatible with D. Now
suppose that ¢ is compatible with D, and let Y € & and Z € @+, Since ¢ is compatible
with D, ¢.Y € &. Therefore

9(¢:Y,Z) =0
¢"(9(¢:Y, Z)) =0
(9"9)(Y,9"Z) =0
g(Y,¢"Z) = 0.

Ll

Here we have used the fact that ¢ is an isometry. Since Y is arbitrary, ¢*Z € @+, proving
that ¢ is compatible with D+

(ii) It is clear that if X is compatible with (D, D) then it is compatible with D. Thus
we only show the converse. Suppose that Y € &, Z € @1, and that X is compatible with
D. Then

9(Y,2)=0
= xgY,Z))=0
= (Zx9)(Y,2)+9(ExY, 2)+9(Y,ZxZ) =0
= g(V,%Z)=0.

Here we have used the fact that X is compatible with D and the fact that X is an infinites-
imal affine transformation for the Levi-Civita connection. We then see that #xZ € @+
since Y is arbitrary. |

4. Geodesic invariance

In this section we generalise the notion of a totally geodesic submanifold.



AFFINE CONNECTIONS AND DISTRIBUTIONS 13

4.1 Definition: A distribution D on a manifold M with an affine connection V is geodesi-
cally invariant if for every geodesic c: [a,b] — M of V, é(a) € D) implies that
¢(t) € Dy for every t €]a, b]. .

It is clear that D is geodesically invariant if and only if Z, is tangent to D C T'M. Note
that if D is a regular integrable distribution which is geodesically invariant, then each of
its maximal integral manifolds is totally geodesic.

4.1. Characterising geodesically invariant distributions. To characterise geodesically in-
variant distributions, we shall use the symmetric product which is a product on I (M).
For X,Y € 9 (M) we define their symmetric product to be the vector field

(X:Y)=VxY +VyX.
Given a vector field X on M it is possible to lift this to a vector field vIft(X) on T'M
which is tangent to the fibres. The vector field vift(X) is defined by

vIft(X) (v,) = % » (vgp +tX(x))

for v, € T,M. If (U,¢) is a chart for M with (TU,T¢) the associated natural chart for
TM, then vlft(X)(u,e) = ((u,e), (0, X(u))). By definition of the vertical lift we have the

following result.

4.2 Lemma: Let D be a distribution on M. A wvector field X on M is a section of D if
and only if vlft(X) is tangent to the distribution D thought of as a submanifold of T M.

The following formula for the vertical lift of the symmetric product will be useful.

4.3 Lemma: Let X and Y be vector fields on M. Then
vIft((X 1Y) = [VIft(X), [Zg, vIft(Y)]].

Proof: We use a chart (U, ¢) for M with (TU,T¢) the associated natural chart for TM. It
is an easy matter to compute

[Zg, VIt (Y)](u, €) = ((u, €), (=Y (u), DY (u) - e + D(u) (Y (u), €))).
We then compute

[VIft(X), [Zg, VIft(Y)]](u,e) =
((u,€), (0, DX (u) - Y (u) + DY (u) - X (u) + [(u) (X (u), Y (u)) + T(u)(Y (), X (u))))
which we recognise as the representative of the vertical lift of (X :Y'). [ |

The following result provides infinitesimal tests for geodesic invariance and gives the
geometric meaning of the symmetric product.
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4.4 Theorem: Let D be a distribution on a manifold M with an affine connection V. The
following are equivalent:

(i) D is geodesically invariant;
(i) (X :Y)eD for every XY € I;
(iti)) VxX € D for every X € I.

Note that for geodesically invariant distributions the symmetric product plays the role that
the Lie bracket plays for integrable distributions.

Proof of Theorem 4.4: (i) = (ii) First suppose that D is geodesically invariant. Thus Z,
is tangent to D C TM. Now let X, Y € &. By Lemma 4.2 vift(X) and vIft(Y") are tangent
to D. Therefore [vIft(X), [Z,, vIft(Y')]] is also tangent to D. By Lemmas 4.2 and 4.3 we see
that (X :Y) e 9.

That (ii) implies (iii) follows from the definition of the symmetric product.

(iii) = (i) We work locally. Let (U, ¢) be a chart for M taking values in £ and denote
by (TU,T¢) the associated natural chart for TM. Since D is a subbundle of "M we may
choose a chart (T'U,1) which has the properties discussed in the proof of Lemma 3.5. We
borrow the notation used in that proof. Let f; € F; and define a vector field on U’ by
X(u) = (u, B1(u) - f1). Note that X is a representative of a vector field taking values in D.
We have

h(VxX(u)) = h(u, DBy (u)(Bi(u) - f1, f1) + T(u)(Bi(u) - f1, Bi(u) - f1))
= (u, Ar(u) - (DBy(u)(By(u) - f1, f1) + T'(u)(Bi(w) - f1, Bi(u) - f1)),
Az(u) - (DB (u)(Bi(u) - f1, f1) + T(w)(Bi(u) - f1, Bi(u) - f1))).

Since we are assuming (iii) we have

Az(u) - (DBy1(u)(Bi(u) - f1, f1) + T(w)(Bi(u) - f1, Bi(u) - f1))) =0 (4.1)

for every f; € Fi. We now compute the geodesic spray in the chart (T'U, ). Let (u,e) €
U' x E and let (u, f1, f2) = h(u,e). We have

Dh(u,e) - (e,—T'(u)(e,e)) = (e, DAy (u)(e,e) — A1(u) - T'(u)(e, e),
D As(u)(e,e) — Az(u) - T'(u)(e, €))
= (Bi(u) - f1 + Ba(u) - f2,
DAY (Br(0) - fi + Balu) - fo Bu(w) - fi + Balu) - f)—
Ai(u
DA,
As(u

If we restrict this to D by setting fo = 0 we get

(
) T(u)(Bi(u) - f1 + Ba2(u) - fo, Bi(u) - fi + Ba(u) - fa),
(u)(Bi(u) - f1 + Ba(u) - fo, Bi(u) - f1 + Ba(u) - f2)—

) - T(u)(Bi(u) - f1 + Ba(u) - f2, Bi(u) - f1 + Ba2(u) - f2)).
TY(Z4|D) = (Bi(u) - f1,

DA;(u)(Bi(u) - f1, Bi(u) - f1) — A1(u) - T(u)(Bi(u) - f1, Bi(u) - f1),
D Ay (u)(Bi(u) - f1, Bi(u) - f1) — Az(u) - T(u)(Bi(u) - f1, Bi(u) - f1)). (4.2)
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Note that by definition of Ay and By we have As(u) - (Bi(u) - fi) = 0 for every fi € Fy. If
we differentiate this in the direction of Bj(u) - fi we obtain

D As(u)(Bi(u) - f1, Bi(u) - f1) + Az(u) - (DBi(u)(Bi(u) - f1, f1)) = 0.

Combining this relation with (4.1) we see that the last component of (4.2) vanishes and so
this shows that Z,|D is tangent to D. Thus D is geodesically invariant. |

Note that if V restricts to D, then D is geodesically invariant by (iii) of the theorem. The
converse is not in general true.

To conclude our discussion in this section we add the following result which gives another
interpretation of the symmetric product, at least in a chart.

4.5 Lemma: Let V be an affine connection on M with (- : -) the associated symmetric
product. Let X and Y be vector fields on M with flows FX and FY, respectively. Fix
x € M and consider the following construction:

(i) flow along the integral curve for X through x for time €, arriving at x;

(ii) flow along the integral curve for Y through x. for time €, arriving at xo;
(11i) parallel transport X (za¢) along the integral curve for Y to x. to get Ze € Ty M ;
(iv) parallel transport Z. along the integral curve for X to get Zye € T, M.

Then q
(X :Y)(2) = —

Z9e.
de 2e

e=0

Proof: If ¢: I — M is an integral curve for X and if ¢;,%9 €I then let Tt)fh: ToiyM —
T,(1,)M denotes the parallel transport map. Along the integral curve of X from z to .
define a vector field Z1(t) = 7.%(Z), t € [0,€]. Similarly, along the integral curve of Y from
Te t0 @2 define a vector field Za(t) = 72(Zac), t € [0,¢]. By the definition of covariant

derivative we have

d
VyX(ze) = —

de TY(X(‘T}QE))v

€
e=0

so that
Ze =7 (X (22)) = X(20) + eVy X (z) + O(%).

4.2. Geodesic invariance and restricted affine connections. We have seen that the no-
tion of geodesic invariance of a distribution is stronger than that of restriction of an affine
connection to a distribution. In this section we give conditions under which a geodesi-
cally invariant distribution also has the property that the affine connection restricts to the
distribution.

Let D be a distribution on M and suppose that M is modelled on a Banach space E.
We say that p € L,(M) is D-adapted if there is a splitting £ = Fy @ Fs such that p|E;
is an isomorphism onto D,. If we fiz the splitting F = E; © Ey we denote by L(M, D)
the associated collection of D-adapted linear frames. We observe that L(M, D) is invariant
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under the action of the subgroup GL(FE; E1) of GL(FE) consisting of those automorphisms
which leave invariant E;. A typical element of GL(E; E) is of the form

(6 1)

where a € GL(E1), b € GL(E»), and ¢ € L(FE2, E1). If D' is a distribution complementary
to D we say that p € L, (M) is (D, D")-adapted if there exists a splitting £ = F1 @ Fy and
p|F1 is an isomorphism onto D, and p|Fs is an isomorphism onto D/.. As above, we fix the
splitting F = E; @ F and denote by L(M, D, D') the set of (D, D')-adapted linear frames.
Note that L(M, D, D') is invariant under the action of GL(E1) x GL(E3) which we regard
as a “diagonal” subgroup of GL(E). In general terminology, L(M, D) and L(M, D, D’) are
subbundles of L(M). We refer the reader to Section II1.6 of [Kobayashi and Nomizu 1963]
for a discussion of subbundles of principal bundles. We say that a linear connection on L(M)
restricts to L(M, D) if its horizontal subspaces are tangent to L(M, D). The following
result is a basic one relating the notion of restriction of linear and affine connections.

4.6 Proposition: Let D be a distribution on a manifold M with an affine connection V
and denote by H(L(M)) the associated linear connection. H(L(M)) restricts to L(M, D)
if and only if V restricts to D.

Proof: Let E = E; @ Es be the splitting associated with the construction of L(M, D). Note
that the function
dy: L(M) — E
p > O(hlft,(Y)) = p~ (Y (n(p)))

when restricted to L(M, D) takes its values in Ey if Y € &. If H(L(M)) restricts to
L(M, D) it is then clear that (hlft X (¢y))(p) € E1 and so V restricts to D by (2.1). Now
suppose that V restricts to D. It suffices to show that every standard horizontal vector field
Y(e) is tangent to L(M, D). Solet e € E, p € L(M, D), and denote by o: [0,T] — L(M)
the integral curve of ¥(e) with ¢(0) = p. Let ¢t €]0,T] and let v € D,y). By parallel
translating v back along ¢ to z = ¢(0) we obtain u € T, M. Since V restricts to D, u € D,.
Now let e = p~lu. Since p € L(M,D) e € E;. Furthermore, since o(t)e = v and since
v € Dy, o(t) must lie in L(M, D). Thus ¥(e) is tangent to L(M, D) and this completes
the proof. |

We may now state our main result in this section.

4.7 Theorem: Let M be a manifold modelled on a Banach space E, let D be a distribution
on M with complement D', and let V be an affine connection on M. Denote by H(L(M))
the linear connection associated with V and let w be the connection form. The following
are equivalent:

(i) H(L(M)) restricts to L(M,D,D’);

(ii) both D and D' are geodesically invariant;

(iii) there exists a splitting E = Ey ® Ey such that w restricted to L(M, D, D’) takes its

values in gl(Ey) @ gl(Ea).

Proof: In the proof we let E = E; @ Ey be a splitting such that if p € L, (M) then p|E; is
an isomorphism onto D, and p|E> is an isomorphism onto D..
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(i) = (ii) If Hy(L(M)) C T,(L(M, D, D’)) then L(M, D, D’) must be invariant under
the flow of every horizontal vector field. Let v € D, and let p € L, (M, D, D’). We then see
that e = p~lv € Ey. Let 0: [0,T] — L(M) denote the integral curve of ¥(e) with initial
condition p and let ¢ = mo o be the associated geodesic. Since 3(e) is horizontal, o(t) €
L(M, D, D’) for t €]0,T]. By definition of ¥(e), é(t) = o(t)e. Therefore ¢(t) € D,y and so
D is geodesically invariant. A similar argument shows that D’ is geodesically invariant.

(ii) = (i) We shall show that every standard horizontal vector field leaves L(M, D, D’)
invariant and this will suffice to show that Hy,(L(M)) C T,(L(M,D,D")). Let e € E;
and let X(e) be the associated standard horizontal vector field. Let p € L, (M, D, D’) and
denote v = pe € D,. We let ¢: [0,T] — M be the geodesic with initial velocity v and let
o be the horizontal lift of ¢ through p which is then the integral curve of ¥(e) through p.
Since D is geodesically invariant, ¢(t) € D) for t €]0,T]. Thus o(t)e € D) since X(e)
is a standard horizontal vector field. Thus o(t) € Ley) (M, D, D’) and so L(M,D,D’) is
invariant under the flow of (e). A similar argument for e € Fy using geodesic invariance
of D' gives the desired result.

(ii) = (iii) Proposition 6.2 in Chapter II of [Kobayashi and Nomizu 1963] states that
the connection form restricted to a subbundle takes its values in the Lie algebra of the
reduced structure group. This is precisely what we have stated here in the special case we
are considering.

(iii) = (ii) By Proposition 6.4 of Chapter II in [Kobayashi and Nomizu 1963] it suffices
to determine a subspace of gl(E) which is complementary to gl(E;) @ gl(E2) and which is
invariant under the adjoint action of GL(F;) x GL(E3). We claim that the subspace m
generated by endomorphisms of the form

o-(2 9

for A € L(Es, E1) and B € L(E1, Es) meets the criteria. Clearly gl(E) = gl(E1)®gl(E2)@m.
Also, if

02 (“1 0) € GL(E,) x GL(Es)
0 ag

then we compute

-1 1
(a1 O 0 A a; O _ 0 a1 Aa,
Ada(C) = (0 a2> (B 0) <0 a2> - <aQBA11 0 > € m "

4.8 Remarks: 1. In particular note that a sufficient condition for V to restrict to a
geodesically invariant distribution D is for there to exist a geodesically invariant
complement to D. This condition is not necessary.

2. Note that if V has zero torsion, then all the distributions in the theorem are integrable
by Proposition 3.1.

3. Of course, the notion of being able to characterise restriction completely in terms of
geodesic invariance is hopeless since geodesic invariance only depends upon the zero
torsion part of the affine connection. However, stronger results than Theorem 4.7
should be possible.
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4. In the case when V is a Levi-Civita connection, the associated linear connection
reduces to the “bundle of orthonormal frames” (see [Lang 1995, Section VII.3] for
the infinite-dimensional version of this) and the structure group is O(F) where we
are supposing E to be equipped with a fixed inner product. Due to the orthogonal
structure group, one can slightly sharpen Theorem 4.7 since O(M, D, D*) = O(M, D).

5. Restricting affine connections to distributions

In this section we investigate various consequences of a natural restriction of a given
affine connection to a distribution.

5.1. Motivation from mechanics. The basic construction we perform in this section comes
from the dynamics of a class of mechanical systems with nonholonomic constraints. One has
a Riemannian manifold (M, g) with V the Levi-Civita affine connection. Additionally, one
has a distribution D on M. The objective is to determine geodesics of V which are subject
to the constraint that their tangent vectors lie in D. The Lagrange-d’Alembert principle
(see [Lanczos 1970])* states that the constrained solutions are those curves ¢ which satisfy

Vé(t)é(t) S Diﬁt)? é(t) € Dc(t)

where D is the g-orthogonal complement to D. Equivalently, there exists a section \ of
D along ¢ such that

Ve é(t) = A(t) (5.1a)
P'(¢(t) =0 (5.1b)

where P': TM — TM is the orthogonal projection onto D+. One may differentiate the
constraint equation (5.1b) to obtain

Vewy(P'(é(t))) = (VeyP')(é(t)) + P (Vepi(t)) = 0.
Applying P’ to the equations of motion (5.1a) we obtain
P'(Vimye(t)) = At)

as A(t) € Dcl(t). Combining the two equations to eliminate A one sees that ¢ must be a

geodesic of the affine connection V which is defined by
ﬁxy =VxY + (VXP/)(Y)

Conversely, if ¢: [a,b] — M is a geodesic for V with ¢(a) € D,(q) then c satisfies (5.1). This
is a version of the approach taken by Synge [1928]. Other authors have subsequently taken

4There are actually several ways to write equations for the systems we are considering. The method we
choose has the property of agreeing with Newton’s equations in instances where both methods apply. We
refer the reader to [Lewis and Murray 1995] for a discussion and critique of another method of deriving the
constrained equations.
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up various incarnations of this method. We mention in particular [Cattaneo-Gasparini
1963], [Cattaneo 1963], [Vershik 1984], and [Bloch and Crouch 1995].5

The remainder of this section will be devoted to generalising this construction and
understanding the properties of the new affine connection V.

5.2. Generalising the second fundamental form. The second fundamental form for sub-
manifolds arises when one restricts a given affine connection. We shall specify a way of
restricting an affine connection to a distribution and in doing so, compute an associated
second fundamental form.

We fix a distribution D on M. Recall that when one computes the second fundamental
form in Riemannian submanifold geometry, one uses the Riemannian metric to specify
directions normal to the submanifold. We refer the reader to [Nomizu and Sasaki 1994]
for a discussion of the second fundamental form for submanifolds in the situation when the
affine connection is not a Levi-Civita connection. In such cases, the construction depends
on the choice of a normal space. Thus we fiz a complement D’ to D. Let us denote by
P: TM — TM the projection onto D and by P’': TM — T M the projection onto D’. We
will also think of P and P’ as (1,1) tensor fields on M. We shall assume that M comes
equipped with an affine connection V which need not be Levi-Civita. We then define a new
affine connection V on M by

VxY =VxY + (VxP)(Y).

That this is indeed an affine connection follows since (X,Y) — (VxP')(Y) is C®(M)-
bilinear. We have some important properties of V.
5.1 Proposition: (i) VxY € D for every X € 7 (M) and Y € D,
(ii)) (VxP)Y)eD for Xe T (M) andY € I, and
(iii) (VxP)WY)eD for X e T (M) and Y € D'

Proof: (i) Let X and Y be vector fields on M. Then

P'(VxY) =P (VxY)+ P (VxP)(Y). (5.2)
IfY € & then
P(Y)=0
= (VxP)(Y)+P(VxY)=0 (5.3)
= P/(VxP)Y)+P(VxY)=0 (5.4)

since P’ o P' = P’. Substituting (5.4) into (5.2) we see that P'(VxY) =0 for X € 7 (M)
and Y € . Therefore, VxY € 9.
(ii) Let Y € &. From (5.3) we have

(VXp,)(Y) + P/(VXY) =0
—  P(VxP)(Y)=0

5The author is indebted to M. Favretti for pointing out an unpublished paper by S. Benenti which
contains the first two references.
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since Po P’ =0. Thus (VxP')(Y) e D' for Y € Z.
(iii) Let Y € @’. Then
P(Y)=Y
—  (VxP)(Y)+ P (VxY) = VyY
= P/(VxP)(Y)+P(VxY)=P(VxY)
= P/(VxP)(Y)=0.
Here we have used the fact that P’o P’ = P’. This shows that (VxP')(Y) e ZifY € Z'. R

Note that (i) implies that V restricts to D. In particular we see that D is geodesically
invariant with respect to V by Theorem 4.4(iii). We shall see below that it is properties (i)
and (ii) which are the most interesting.

The above result has an important consequence. For Y € & note that the expression
VxY = VxY — (VxP)(Y) is simply the decomposition of VxY into its D and D’ com-
ponents. The D component may be thought of as the restriction of V to D. Following
what one does in the submanifold case, the remainder (i.e., the D’ component), must be
the second fundamental form. We make the following definition.

5.2 Definition: Let D be a distribution on a manifold M with affine connection V and let
D’ be a distribution complementary to D. The section S of L?(D, D') defined by

S(u,v) = =(VuP)(v)

is the second fundamental form for (V,D,D"). o

The definition does depend upon the choice of a complement D’ to D so this should be
included in the definition of the affine second fundamental form. In the sequel we will find it
convenient to have some notation for the term (VxP’)(Y) when X and Y are not sections
of D. Thus we define the (1,2) tensor

Q: (X,Y) = (VxP')(Y). (5.5)
The following result generalises a classical result from submanifold geometry.

5.3 Proposition: D is geodesically invariant under ¥V if and only if S is skew-symmetric.

Proof: First suppose that D is geodesically invariant and let X,Y € &. We may write
VxY +VyX =VxY +S(X,Y)+ VyX + SV, X).
By Theorem 4.4(ii)) VxY + Vy X € &. By Proposition 5.1(i) and (ii), respectively,
VxY,VyX € 9, S(X,Y),S(Y,X)e D

Therefore S(X,Y) 4+ S(Y,X) = 0 for every X, Y € &. Now suppose that S is skew-
symmetric. For X € & we then have

VxX :ﬁXX -I-S(X,X) :ﬁxX.

By Proposition 5.1(i) we have Vx X € &. This implies that D is geodesically invariant by
Theorem 4.4(iii). [ |
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5.4 Remarks: 1. In particular note that if S = 0 then D is geodesically invariant. The
converse of this is not true in general. One needs to add the hypotheses that D be
integrable and that V be torsion free. We shall see below how this works in the
Levi-Civita case (cf. Corollary 5.6).

2. The notion of D being geodesically invariant has nothing to do with the choice of
complement D’. However, the second fundamental form which we have defined does
depend on D’. The above result may then be interpreted as saying that D is geodesi-
cally invariant if and only if S is skew-symmetric for any choice of complement D’. e

Next we show that V does in fact generalise what one normally does in the Levi-

Civita case when restricting the connection to a submanifold. Because our definitions only
make sense for distributions, we extend the classical construction by working with regular
integrable distributions rather than submanifolds. In this case we choose D’ to be D, the
orthogonal complement of D. Thus S takes its values in D=.

5.5 Proposition: Suppose that D is integrable and let A be a mazimal integral manifold
which we suppose to be an embedded submanifold of M. Denote by ga the Riemannian

A
metric on A induced by g and denote by V the associated Levi-Civita connection on A.
_ A
Then VxY =VxY for X, Y € 7 (A).

Proof: In the proof, when we write vector fields on A, we shall consider them to be extended
to M when necessary. One may verify that the results do not depend on the choice of
extension.

We must show that V restricted to 7 (A) is torsion free and preserves the metric gy .
We first show that V is torsion free. Let X,Y € 7 (A). We have

VxY —VyX =VyxY - VyX - S(X,Y) + S(Y, X).

By Proposition 5.1(ii) we see that S(X,Y) and S(Y, X) are normal to A, and by Propo-
sition 5.1(i) we see that VxY,Vy X € 7 (A). Also, since V is torsion free and since D is
integrable,
VxY - VyX =[X,Y] € T(A).
Thus we obtain
VY —VyX = [X,Y], S(X,Y)=S(Y,X)

which shows in particular that V is torsion free.
Now we show that V preserves gr. Let X,Y,Z € J (A). Since V is a Levi-Civita
connection,
Ix(9(Y.2)) = g(VxY, Z) + g(Y,VxZ).
Now we have
9(VxY,Z) = g(VxY,Z) + g(S(X,Y), Z) = g(VxY, Z)
since S(X,Y) is normal to A. Similarly we may show that
9(Y,VxZ)=g(Y,VxZ).
Therefore
Zx(9(Y,2)) = 9(VxY, Z) + g(Y,VxZ)
which, when restricted to A, shows that V preserves g,. |

In the proof of the proposition we have also derived the following result.
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5.6 Corollary: With the hypotheses of the Proposition 5.5 we have S(X,Y) = S(Y,X) for
X, Y e 7 (7).

In Riemannian geometry this is the classical statement that the second fundamental form
is symmetric.

5.3. Affine transformations for V. We now investigate certain affine transformations of
V. We are interested in determining when an affine transformation for V is a D-affine
transformation for V.

5.7 Proposition: Let ¢ be an affine transformation for NV which is compatible with (D, D")
and let X be an infinitesimal affine transformation for V which is compatible with (D, D’).
Then

(i) ¢ is a D-affine transformation for ¥V, and

(ii) X is a D-infinitesimal affine transformation for V.
Proof: (i) Let Y € &. We have

¢"(VxY) =¢" (VxY + Q(X.Y))
=Vpx9Y +¢"(Q(X,Y)) (5.6)
since ¢ is an affine transformation for V. By Proposition 5.1(i) and since ¢ is compatible
with D we have ¢*(VxY) € &. By Proposition 5.1(ii) and since ¢ is compatible with D’
we have ¢*(Q(X,Y)) € &’. Therefore, (5.6) is simply the decomposition of V4 x¢*Y into
its D and D’ components. Therefore, by Proposition 5.1 we must have

¢"(VxY)=Vex¢'Y and ¢"(Q(X,Y)) =Q(¢"X,¢"Y).

In particular, ¢ is a D-affine transformation by Proposition 3.8(iii).
(ii) Let Bx denote the (1,2) tensor field associated with V (cf. equation (2.3)). We
compute

BX(Ya Z) - [Xu VYZ] + [X7 Q(Y7 Z)} - VY[Xv Z]_
Q(Yv [Xa Z]) - v[X,Y]Z - Q([Xv Y]v Z)
If X is an infinitesimal affine transformation for V then
[X,VyZ] - Vy[X,Z] - Vxy1Z = 0.

Therefore

We now suppose that Y, Z € &. By Proposition 5.1(ii), Q(Y,Z) € &’ and since X is
compatible with D'; [X,Q(Y,Z)] € &’. Similar arguments using Proposition 5.1(ii) and
the fact that X is compatible with D show that

QY,[X,2]),Q(X.Y], 2) e Z".

Therefore B_X(Y, Z) € @'. However, by Lemma 3.6 we know that Bx(Y,Z) € 9.
Therefore, Bx(Y,Z) = 0 and so X is a D-infinitesimal affine transformation by Propo-
sition 3.8(vi). [ ]
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We denote by Affo(V) the set of D-affine transformations of V obtained as in Propo-
sition 5.7(i) and by aff,(V) the set of D-infinitesimal affine transformations of V obtained

as in Proposition 5.7(ii). The following result puts Affo(V) in its place with respect to
Aff(V), Aff(V), and Aff(V|D) (and similarly for aff,(V)).

5.8 Proposition: (i) Affo(V) is a subgroup of Aff(V), Aff(V), and Aff(V|D), and
(ii) affy(V) is a Lie subalgebra of aff(V), aff(V), and aff(V|D).

Proof: That Affo(V) is a subgroup of Diff (M) (resp. affy(V) is a Lie subalgebra of 7 (M))
follows from the fact that diffeomorphisms compatible with D are a subgroup of Diff (M)
(resp. a Lie subalgebra of 9 (M)) as was shown in the proof of Proposition 3.9. The
proposition now follows since the inclusions as sets are obvious. |

5.4. Conservation laws for restricted Levi-Civita geodesics. In this section we examine
the results of Section 5.3 in the case when V is the Levi-Civita connection associated with
a Riemannian metric g on M. We first look at conservation laws for the restricted system.
We are able to give conditions under which a conserved quantity for the unrestricted system
will persist for the restricted system. Then we describe the momentum equation of Bloch,
Krishnaprasad, Marsden, and Murray [1996].

Unless otherwise stated, in this section V will be the Levi-Civita connection associated
with a Riemannian metric g.

Conserved quantities. By virtue of Lemma 3.10, the conclusions of Proposition 5.7 will al-
ways apply in this case. That is to say, every affine (resp. infinitesimal affine) transformation
of V which is compatible with D is a D-affine (resp. D-infinitesimal affine) transformation of
V. However, in the case when M has a Riemannian metric, infinitesimal affine transforma-
tions of the Levi-Civita connection lead to conserved quantities for the geodesic flow. The
following result is a special case of what is known as Noether’s Theorem in the mechanics
literature [Abraham and Marsden 1978, Corollary 4.2.14].

5.9 Proposition: Let V be the Levi-Civita connection associated with a Riemannian metric
g on M and let X be a vector field on M. Then X is an infinitesimal isometry associated
with g if and only if the function

Ix(ve) = g(X(2),v2)

on TM 1is constant along the integral curves of the geodesic spray. We shall call Jx the
momentum associated with X.

Proof: Let ¢ be a geodesic of V. We compute

%Jx(é(t)) = (Vemg)(X(c(t)), é(t)) + g(Viey X (c(t)), ¢t)) + (X (c(t)), Ve é(t))

= 9(Viy X(c(t)), ¢(1)).
Therefore, Jx is constant along every geodesic if and only if
9(Veny X (c(t)), é(t) =0

for every geodesic ¢ of V. The proposition now follows from Lemma 2.1(iii). |
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Note that we can define the momentum associated with any vector field Y by Jy (vy) =
9(Y(zx),v;). However, it is only the momenta associated with Killing vector fields which
lead to conserved quantities.

It is possible to state conditions under which an infinitesimal isometry for g gives rise
to a conserved quantity along the geodesics of V whose initial velocities lie in D. We first
state two computational lemmas.

5.10 Lemma: Let X,Y, Z be vector fields on M. Then
(ﬁXg)(Ya Z) = —Q(Q(X, Y)7Z) - g(}/a Q(Xa Z))

Proof: We compute

Zx(9(Y,2Z)) = (Vxg)(Y, Z2) + g(VxY,Z) + g(Y,Vx Z). (5.7)
Also
Zx(9(Y,2)) = (Vxg)(Y,Z) + g(VxY,Z) + g(Y,Vx Z)
= (Vx9)(Y,Z)+g(VxY,.Z) +g(Y.VxZ) + g(Q(X.Y),Z) + (Y, Q(X, Z)).

(5.8)

Subtracting (5.7) from (5.8) and using the fact that Vxg = 0 we obtain the desired result. B

5.11 Lemma: Let X be an infinitesimal affine transformation for V. Then

% Tx(é(t) = g(X (e(1)), S(é(t), é(t)))

for every geodesic ¢ of ¥V whose initial velocity lies in D.

Proof: Let ¢ be a geodesic of V whose initial velocity lies in D. We compute

X (X(e(t)), Ve é(t))

(e(t)), é(t)
( (Q(e(t), X(e(t))), é(t))

) +9(V )

)+ 9(Ven X (c(t)), é(t)
,¢(1)) + 9(Q(et), X (c(1))), &(t))

)); é()) = 9(Q(é(t), X (e(1))), ¢(t)) — 9(X (1)), Q(é(D), é(1)))

)+g
)+g

— — g(X(e(t

Here we have used the fact that X is an infinitesimal affine transformation of V, the fact
that c is a geodesic of V, Proposition 5.1(ii), and Lemma 5.10. The lemma follows since
Q|D = -5. [ |

As a consequence of these computations, we have the following result.
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5.12 Proposition: Let X be an infinitesimal affine transformation for V and suppose that
X €Y. Then Jx is constant along geodesics of V whose initial velocities lie in D.

Proof: Apply Proposition 5.1(ii) and Lemma 5.11. [ |

Notice that in order for an infinitesimal isometry X to lead to a conservation law for the
restricted system, it is not necessary that X be compatible with the distribution. We also
mention that it is still possible that Jx be conserved even if X ¢ . We shall see both of
these phenomenon exhibited in the example we consider in Section 5.6.

The momentum equation. Now we present an interpretation of the momentum equation
of Bloch, Krishnaprasad, Marsden, and Murray [1996] in the context of our constructions.
The momentum equation may be thought of as describing the evolution of the momenta of
the unrestricted system when restricted to the distribution D. The following result makes
this precise.

5.13 Proposition: Let X1,...,X,, be Killing vector fields for g. Suppose that there exist
functions ¥',...,4™ on M so that the vector field

Y =9'X14+ - +9"Xm

is a section of D. Then the momentum associated with Y satisfies the evolution equation

d

STy (D) = 93 Xalelt)), (1) (5.9)

along geodesics ¢ of V.

Proof: We compute

= "}/a(c(t))g(Xa(c(t))v C(t))

Here we have used the fact that X, a = 1,...,m are Killing vector fields, ¢ is a geodesic
of V, Y € &, and Proposition 5.1(ii) and Lemma 5.10. [ |

It is equation (5.9) which is the momentum equation described by Bloch, Krishnaprasad,
Marsden, and Murray. It is interesting to note that, although the properties of V were used
in the derivation of the momentum equation, V does not appear in its final form.

5.5. Extending connections from D to T'M. In this section we take the point of view
of treating V|D as the given object and characterise those affine connections on all of TM
which agree with V when restricted to D. This point of view is brought up by Vershik [1984]
and Bloch and Crouch [1995], although in each case the context is somewhat different than
ours.



26 A. D. LEwIS

5.14 Proposition: Let D be a distribution on a manifold M and suppose that D' is a
complement to D. Let V be an affine connection on M and suppose that another affine
connection V has the properties

(i) VxY € D for every Y € D, and

(ii) VxY —VxY € D' for every Y € @.
Then VxY = VxY + (VxP)(Y) + S(X,Y) for some (1,2) tensor field S such that
P(S(X,Y)) =0 forY € &. Conversely, if V is of this form, then it satisfies (i) and (ii).

Proof: We may write any affine connection on M as

VxY = VxY + B(X,Y)

for some (1,2) tensor field B. In particular, an affine connection satisfying (i) and (ii) must
be of this form. For Y € & and any vector field X we have

P(Y)=0
= (VxP)(Y)+P(VxY)=0
= P/(VxY)=—(VxP)(Y). (5.10)

‘We also have B
VxY =VxY + B(X,Y).

Using (i), (ii), and (5.10) we have
P(VxY)+B(X,Y)=0 = B(X,Y)=(VxP)(Y).

Thus VxY = VxY + (VxP')(Y) + S(X,Y) for some S such that P'(S(X,Y)) = 0 for
Y € &. The final assertion follows easily by Proposition 5.1. |

5.15 Remark: It is important to note that those things we have said about V in this
section which only depend on its restriction to D will be equally true for any of the affine
connections described by Proposition 5.14. This is true in particular for our discussion of
transformations in Section 5.3 and conservation laws in Section 5.4. °

To conclude this section, we provide an affine connection which restricts to D and whose
restriction to D is the same as V. The connection we construct, however, has the property
of being easier to compute in some examples, so it is worth recording. If A is an arbitrary
invertible (1,1) tensor field on M we define an affine connection on M by

ViV = ViV + AL (Vx (AP))(Y). (5.11)

A
We claim that V satisfies properties (i) and (ii) of Proposition 5.14. We compute
AN (Vx(AP))(Y) = A"H(Vx A)(P'(Y)) + (Vx P')(Y).

Observing that P'(A~Y(VxA)(P'(Y))) =0 for Y € & we see that % does indeed satisfy

properties (i) and (ii) of Proposition 5.14 by applying the final assertion of that proposition.

In examples one can use A to simplify the term AP’ before it gets differentiated and

this is often helpful. We shall see this in the example of Section 5.6. Note that if A = idpjs
A

then V = V.
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5.6. A simple example. Here we take M = R? and consider the Riemannian metric
g=dr®dr+dy®dy +dz®dz.

We let V be the associated Levi-Civita affine connection. The distribution D we consider
is the span of the two vector fields

0 0 n 0
oy’ Ox Yoz
on R3. This system is sometimes called the “Heisenberg system” since the brackets of the

vector fields lying in D obey commutator relations which are reminiscent of the Lie algebra
of the Heisenberg group.

The restricted connection. The orthogonal complement of D is easily seen to be generated

by the vector field
g9_98
Yor ~ 9z

We may easily compute P’ to be

1
1492

P/(J:,y, z) - (Ua:avyavz) = (y2vz —yvs, 0, —yvz + Uz) .

A
We shall use the extended connection V defined by (5.11) and choose A = (1 + y?)idry.

A
We compute the non-zero connection coefficients of V to be
v _ 2 L RN S
T g2 YT g2 T g2

Remember that the connection is not torsion free and so does not have the indicial symme-
tries of a Levi-Civita connection. The equations for the geodesics of this affine connection
are

1
F ot s (2yiy — §2) = 0

1+y
j=0
. .
z—1+y2xy:0.

These equations should be restricted to D since those are the only interesting initial condi-
tions. The restricted velocities satisfy the equation

z = ya.
We thus compute the equations of motion restricted to D to be

-+

R

j=0

. 1 ..
T
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D-affine transformations. Now we turn to investigating the affine transformations of %.
Following Proposition 5.7 we seek affine transformations of V which are compatible with
D. 1t is easiest to look at the infinitesimal case. The Lie algebra of infinitesimal isometries
of g is isomorphic to se(3). The vector fields

0 0 0
X1 =+ Xy = — Xa = —
1 or’ 2 aya 3 9z’
0 0 0 0
Xi=-22 442, xs=22 22 Xe=-yZ 422
4 28y+y8z’ 5= %5r o2 6 y@x—l_x@y

form a basis for the Lie algebra of infinitesimal isometries of g. Of these vector fields,
we may verify that only X; and X3 are compatible with D. Therefore, both X; and X3
A

are D-infinitesimal affine isometries of V by Proposition 5.7. The group generated by
these transformations is isomorphic to R? and the action on R® is by ((a,b), (x,v,2))
A

A
(x+a,y,z+0b). Thus, in this example, Affo(V) is a finite-dimensional Lie group and aff, (V)
is its Lie algebra.

Evolution of momenta. We compute the conserved quantities of the unrestricted dynamics
to be

JXI:vx, JXZZ’Uy, JX3:Uz7

Jx, = —z2vy + yu., Jx; = 20, — 202, Jxg = —yvz + 20y,

A
Using Lemma 5.11 we derive that along the geodesics of V we have

T L
Ty, = LETE g0, gy = Y
X1 1 T y2 5 Xo 5 X3 1 + y2 )
T — yxy Ty — y (22 — (v +2y2)) T — yy (2yd — 2)

We may simplify these evolution equations by noting that we are only interested in those so-
lutions lying in D. Substituting the restricted velocities into the equations for the evolution
of the momenta we obtain

S A
JXl__l+y2’ JX2_07 JX3_1+y2)
- yiy - 2y (x +y2) : y>iy
Ty, = I g = Ty .
X4 1“1‘@/2’ X5 1+y2 X6 1+y2

Looking at these relations, we see two conservation laws. First of all, since Xy € &, the fact
that Jx, is conserved comes to us from Proposition 5.12. We also have the other obvious
conservation law

Jx+x, = 0.

The vector field X7 + X4 is not a section of D, so this conservation law is not a consequence
of Proposition 5.12.
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The momentum equation. Our definition of the momentum equation is fairly versatile, so
we can write down many momentum equations. However, to illustrate the theory, we choose
the same momentum equation for this example as was chosen by Bloch, Krishnaprasad,
Marsden, and Murray [1996]. Thus we define a section of D by

Y =X +yXs.

This section of D is distinguished by being a linear combination of infinitesimal affine
isometries which are compatible with D. Using Proposition 5.13 we derive

Jy = g(§ X3, 2 X1 + §Xa + 2X3) = 2.
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