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Abstract

In this paper, we provide controllability tests and motion control algorithms for
underactuated mechanical control systems on Lie groups with Lagrangian equal to
kinetic energy. Examples include satellite and underwater vehicle control systems with
the number of control inputs less than the dimension of the configuration space. Local
controllability properties of these systems are characterised, and two algebraic tests
are derived in terms of the symmetric product and the Lie bracket of the input vector
fields. Perturbation theory is applied to compute approximate solutions for the system
under small-amplitude forcing; in-phase signals play a crucial role in achieving motion
along symmetric product directions. Motion control algorithms are then designed to
solve problems of point-to-point reconfiguration, static interpolation and exponential
stabilisation. We illustrate the theoretical results and the algorithms with applications
to models of planar rigid bodies, satellites and underwater vehicles.

Keywords. nonlinear control, mechanical systems, nonlinear controllability, underac-
tuated systems.
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1. Introduction

Underactuated mechanical control systems provide a challenging research area of in-
creasing interest in both application and theory. In this paper, we examine an important
class of underactuated mechanical control systems and address problems in both nonlinear
controllability and nonlinear control design. It is precisely because we specialise to a rich
class of mechanical systems that we can solve relevant controllability and control design
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problems; we derive controllability tests and motion control algorithms by making use of
the mechanical system structure.

Underwater vehicles, satellites, surface vessels, airships and hovercraft are all examples
of simple mechanical control systems on Lie groups. For these systems, relevant Lagrangian
models are available and lift/drag type effects are sometimes negligible. Key features are the
following: (1) the configuration space is a Lie group, as, for example, the group of rotations
SO(3) in the case of a satellite, (2) the Lagrangian is equal to the kinetic energy, and (3)
external forces are fixed with respect to the body. From a theoretical perspective, these
systems when underactuated offer a control challenge as they have non-zero drift (e.g., their
dynamics include Coriolis effects), their linearisation at zero velocity is not controllable, they
are not stabilisable by continuous state feedback and exponential stabilisation cannot be
achieved by smooth time-varying feedback [M’Closkey and Murray 1997]. Further, they
are generically not nilpotent, not feedback linearisable, not “configuration flat,” as defined
by Rathinam and Murray [1998], and no test is available to establish whether they are
differentially flat. In other words, the motion planning and the stabilisation problem for
this class of systems cannot be solved with any established method.

We focus on this class of systems with fewer actuators than degrees of freedom, and we
study several motion control problems in the small-velocity range. From a practical point
of view, we are motivated by vehicles that are underactuated either because of an actuator
failure or because of a design choice. In the former case, our results will improve robustness
to actuator failure and thus will provide autonomous vehicles with greater reliability. In
the latter case, our results may allow for vehicle designs that include fewer actuators than
typical leading to lighter, less costly designs. Provided that certain controllability conditions
are satisfied, we show how underactuated vehicles can still perform important tasks such
as stabilisation (station keeping) and short range reconfigurations (parking, tracking).

Relevant past contributions include work on both the nonlinear controllability problem
and the constructive controllability problem (including both motion planning and stabil-
isation). For our work, the most important references for controllability are the works
of Sussmann [1987] on small-time local controllability and of Lewis and Murray [1997a]
(see also [Lewis and Murray 1997b]) on configuration controllability for simple mechanical
systems. Other contributions include local controllability results for other classes of me-
chanical systems, see [Kelly and Murray 1994] and [Ostrowski and Burdick 1997], and work
on global controllability issues, see [Bonnard 1984], [Crouch 1984] and [Manikonda and
Krishnaprasad 1997]. Regarding the constructive controllability problem, we employ the
same approach as Leonard and Krishnaprasad [1995] and Leonard [1995], where motion al-
gorithms for a class of kinematic systems on Lie groups were designed with small-amplitude
periodic inputs. In later work [Rui, Kolmanovsky, McNally, and McClamroch 1996] similar
techniques were applied to a different class of mechanical system. Other contributions on
oscillatory controls and Lagrangian systems include [Baillieul 1993, Gurvits 1992, Sussmann
and Liu 1991]. A somewhat different approach, based on homogeneous time-varying strate-
gies, was employed by Morin and Samson [1997] and Pettersen and Egeland [1997] to design
exponentially stabilising control laws for underactuated satellites and surface vessels.

To derive controllability tests for our class of systems, we apply the controllability anal-
ysis described by Sussmann [1987] and Lewis and Murray [1997a] to simple mechanical
control systems on Lie groups (see also [Bullo and Lewis 1996]). Key features of the anal-
ysis are a focus on the evolution of the system’s configuration when the initial velocity is
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zero and the result that computations are performed on the Lie algebra of the Lie group.
The local controllability properties are characterised by the algebraic operations of sym-
metric product and Lie bracket. The symmetric product, which is defined more formally
in Section 2, depends upon the metric that defines the kinetic energy and, as we shall see,
explicitly describes motions that involve both input vector fields and the drift dynamics.
Our tests describe which velocities and configurations are reachable, independent of the
initial configuration. The notions of good and bad symmetric products play a central role.

Guided by our interpretation of the controllability tests, we apply perturbation theory
to investigate the response of the mechanical system to small-amplitude forcing. The initial
velocity is also assumed to have small amplitude. The approximations we obtain give further
insight into the controllability tests and are instrumental in the subsequent control design.
Numerous examples illustrate the meaning of good and bad symmetric products and the
effects of in-phase and out-of-phase sinusoidal inputs.

On the basis of a controllability assumption, we design two motion primitives that per-
form the basic tasks of changing and maintaining velocity. These motion primitives use
in-phase inputs and compensate for contributions along bad symmetric product directions
(see also [Bullo and Leonard 1997]). The two motion primitives synthesise the controllabil-
ity analysis and are the building blocks for designing high-level motion procedures. Using
discrete-time feedback and multiple calls to the motion primitives, we design motion algo-
rithms to solve the point-to-point reconfiguration problem (i.e., how to steer the system to
a desired configuration) and the static interpolation problem (i.e., how to steer the system
through a set of desired configurations). We solve point-to-point reconfiguration using a
constant velocity algorithm. A second approach to point-to-point reconfiguration consists of
interpolating a sequence of segments connecting initial to final configuration. We show the
advantage of the latter solution in the case the segments are steady motions of the unforced
mechanical system. Next, iterating an approximate stabilisation step we design an algo-
rithm that locally exponentially stabilises the system to a desired configuration. Recall that
exponential stabilisation cannot be achieved by smooth time-varying feedback, and indeed
our motion primitives are continuous, but not smooth, functions of the state. Accordingly,
our approach relies on discrete-time continuous feedback, see [Sørdalen and Egeland 1995],
and on the iteration of a motion planning step, see [Lafferriere and Sussmann 1991]. Fi-
nally, the three algorithms are implemented numerically to verify the approximations and
illustrate the control design.

The paper is organised as follows. In Section 2 we present some mathematical prelim-
inaries and provide many examples of mechanical systems on Lie groups. In Section 3 a
complete controllability analysis is presented with definitions, tests and examples. In Sec-
tion 4 formulas for approximate solutions are obtained and used to gain insight into the
controllability tests. We design and simulate motion control algorithms in Section 5. Our
conclusions are given in Section 6 and Appendix A contains various proofs.

2. Preliminaries and models

In this section we review useful notions from geometric mechanics and Lie group theory
and introduce several examples of mechanical control systems on Lie groups. For a more
detailed treatment of the mathematical background, we refer the reader to [Murray, Li,
and Sastry 1994] and [Marsden and Ratiu 1999]. An overview in a related investigation is
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presented by Leonard and Krishnaprasad [1995].

2.1. Lie groups tools. A Lie group is a smooth manifold endowed with a smooth binary
operation called group multiplication (satisfying associativity and existence of identity and
inverse elements). A Lie algebra is a vector space endowed with a skew symmetric, bilinear
operation called the Lie bracket (satisfying the Jacobi identity). An example of a Lie group
is the rotation group SO(3) (the set of orthogonal matrices with positive determinant under
matrix multiplication). Its associated Lie algebra is the space of skew symmetric matrices
so(3) (under matrix commutation). Other examples of Lie groups are the sets SE(n) of
rigid motions on the n-dimensional Euclidean space Rn.

Let G denote a matrix Lie group and g its Lie algebra. The letters g and h denote
elements in G, and Id is the identity. The Greek letters ξ and η denote elements in g and
adξ η = [ξ, η] denotes the Lie bracket operation on g. Although most of the results in this
paper hold more generally, for ease of presentation we make the assumption that:

(A1) The set G is the Cartesian product of an arbitrary number of copies of SE(3) and its
proper subgroups.

G, with the assumption (A1), can be represented as a matrix Lie group with group multi-
plication defined by matrix multiplication and the Lie bracket on the associated Lie algebra
given by matrix commutation, i.e., [ξ, η] = ξη − ηξ. Let × denote the cross product on R3

and define the operator ·̂ : R3 → so(3) by x̂y ≜ x× y for all x, y ∈ R3. On SE(3) and se(3)
we represent a group element g = (R, p) ∈ SO(3)×R3 and a velocity ξ = (Ω̂, V ) ∈ so(3)×R3

using homogeneous coordinates

g =

[
R p
0 1

]
, and ξ =

[
Ω̂ V
0 0

]
.

Writing ξ as column vector (Ω, V ), simple algebra shows

adξ =

[
Ω̂ 0

V̂ Ω̂

]
. (2.1)

Under (A1), we can define a surjective map and local diffeomorphism called the expo-
nential map exp : g → G; we refer to [Marsden and Ratiu 1999] for the general definition.
For example, given x̂ ∈ so(3), Rodrigues’ formula gives

exp(x̂) = Id + sin ∥x∥ x̂

∥x∥ + (1− cos ∥x∥) x̂2

∥x∥2 ,

where ∥ · ∥ is the standard Euclidean norm. In an open neighbourhood of the origin Id ∈ G,
we define x = log(g) ∈ g to be the exponential coordinates of the group element g and we
regard the logarithmic map as a local chart on the manifold G. For example, if R ∈ SO(3)
is such that tr(R) ̸= −1, then

log(R) =
ϕ

2 sinϕ
(R−RT ) ∈ so(3),
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where ϕ satisfies 2 cosϕ = tr(R) − 1 and |ϕ| < π. In other words, log(R) is the product
of the axis and angle of rotation of R. Corresponding definitions for the group SE(3) are
presented by Murray, Li, and Sastry [1994].

On the Lie algebra g an inner product is defined by a self-adjoint positive definite tensor
I : g → g∗, so that, for example, the norm of ξ is computed as ∥ξ∥g = (Iξ · ξ)1/2. This
induces a metric on the group G using the logarithm map as d(g, h) = ∥ log(gh−1)∥g.

2.2. Mechanical control systems on Lie groups. A simple mechanical control system
on a Lie group is described by the following objects: an n-dimensional Lie group G
(defining the configuration space), an inertia tensor I : g → g∗ (defining the kinetic energy)
and a set of input co-vectors1 {f1, . . . , fm} ⊂ g∗ (defining the body-fixed forces). The
system is said to be underactuated if the number of available input forces m is less than
the number of degrees of freedom n.

Let g ∈ G denote the configuration of the system and ξ ∈ g the body-fixed velocity, so
that the kinetic energy is KE = 1

2ξ
T Iξ. The kinematic and dynamic equations of motion

for the system with Lagrangian equal to the kinetic energy are given by

ġ = g · ξ (2.2)

Iξ̇ = ad∗ξ Iξ +
m∑
i=1

fiui(t), (2.3)

where ad∗ξ is the dual operator of adξ, the scalar input functions {ui, i = 1, . . . ,m} belong to
the space of bounded measurable functions Um, and

∑
fiui(t) is the resultant force acting

on the mechanical system. In geometric mechanics, the dynamic equation (2.3) is called
the Euler-Poincaré equation; in robotics, the kinematic equation (2.2) is usually expressed
in some choice of coordinate system, as, for example, Euler angles for SO(3).

For any vector η with the property that ad∗η Iη = 0, the curve t ∈ R 7→ (exp(tη), η) is
a solution to the system (2.2)–(2.3) with no inputs. These curves are studied in mechan-
ics [Marsden and Ratiu 1999] under the name of relative equilibria and describe motion
that corresponds to constant body-fixed velocity for the uncontrolled system.

Next, we introduce the notion of the symmetric product on the Lie algebra g. This op-
eration is useful for characterising controllability and approximate solutions for mechanical
control systems. It has an elegant generalisation using Riemannian geometry as discussed
by Lewis and Murray [1997a], Lewis [1998] and Crouch [1981]. Define the symmetric
product ⟨ξ : η⟩ of two vectors ξ, η on g, as the vector

⟨ξ : η⟩ ≜ −I−1
(
ad∗ξ Iη + ad∗η Iξ

)
.

For example, on so(3) ≈ R3 with the inertia tensor J and with the equality ad∗ξ = −ξ̂, we
compute ⟨ξ : η⟩ = J−1

(
ξ × Jη + η × Jξ

)
. For later reference it is also useful to rewrite the

dynamic equation (2.3) as

ξ̇ = −1

2
⟨ξ : ξ⟩+

m∑
i=1

biui(t), (2.4)

1To simplify notation, we denote the co-vectors fi with subscripts instead of superscripts.
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where we define bi ≜ I−1fi for simplicity. Additional insight into the meaning of the
symmetric product is provided by Lewis and Murray [1997a] and summarised below, where
the operation is shown to be equivalent to a Lie bracket between certain vector fields on
the full space TG.

2.1 Remark: (Time scaling) For λ > 0 define τ = λt. Mechanical control systems verify
the following property: if (g(t), ξ(t)) is a solution for t ∈ [0, 1] to the forced system (2.2)–
(2.3) with external forcing ui(t), then (g(τ/λ), ξ(τ/λ)/λ) is a solution for τ ∈ [0, λ] with
external forcing ui(τ/λ)/λ

2. In other words, if we find an input u(t) that achieves a desired
motion in time 1, then u(t/λ)/λ2 achieves the same motion in time λ. This time/magnitude
scaling property should be taken into account when applying the control laws described later
in the paper.

2.3. Examples: planar bodies, satellites and underwater vehicles. The following ex-
amples of mechanical control systems on Lie groups illustrate the richness of the class of
systems of interest. They will be often referred to later, as we study controllability and
design control laws. To simplify notation, we let {e1, . . . , en} denote the standard basis on
Rn; for example, for n = 3 we set e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).

Planar rigid body. Let g = (θ, x, y) ∈ SE(2) denote the configuration of the planar body
and ξ = (ω, v1, v2) its body-fixed velocity. The kinetic energy is KE = 1

2Jω
2+ 1

2m(v21 + v
2
2)

where J is the moment of inertia and m the mass of the body. On se(2) the adjoint operator
is computed as

ad(ω,v1,v2) =

 0 0 0
v2 0 −ω
−v1 ω 0

 .
The two control inputs consist of forces applied at a distance h from the centre of mass, see
Figure 1. After inverting I = diag {J,m,m}, we have b1 = 1

me2 and b2 = −h
J e1 +

1
me3. In

coordinates the equations of motion (2.2)–(2.3) read

θ̇ = ω Jω̇ = −hu2(t)
ẋ = cos(θ)v1 − sin(θ)v2 , mv̇1 = mωv2 + u1(t)

ẏ = sin(θ)v1 + cos(θ)v2 mv̇2 = −mωv1 + u2(t).

These equations provide a model for planar vehicles, for example, a hovercraft that glides
on the surface of a body of water with negligible friction.

Satellite with thrusters. Let R ∈ SO(3) be the rotation matrix describing the attitude
of the satellite and let Ω = (Ω1,Ω2,Ω3) ∈ so(3) ≈ R3 be the body angular velocity. The
kinetic energy is then KE = 1

2Ω
T JΩ, where J = diag {J1, J2, J3} is the inertia matrix. The

adjoint operator is adΩ = Ω̂. Assuming we have two thrusters aligned with the first two
principal axes, the equations of motion are

Ṙ = RΩ̂

JΩ̇ = JΩ× Ω + e1u1(t) + e2u2(t). (2.5)

Accordingly, b1 =
1
J1
e1 and b2 =

1
J2
e2.
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Σs

g = (θ, x, y)

CM
f2

f1

h

Figure 1. Rigid body in SE(2) with two forces applied at a point
a distance h from the centre of mass CM. Σs denotes an inertial
reference system. g = (θ, x, y) denotes the position of the body.
The body reference frame (not depicted) is aligned with the
direction of application of f1 and f2.

Satellite with rotors. Satellites can alternatively be equipped with internal rotors (mo-
mentum wheels). Consider the case in which there are two rotors aligned with two prin-
cipal axes of the satellite. The configuration of the satellite plus rotor system is described
by R ∈ SO(3) and (θ1, θ2) ∈ R2 (describing the angular position of the wheels). Let
Ωrot = (θ̇1, θ̇2, 0) denote the angular velocities of the rotors and Ω the angular velocities of
the carrier. The kinetic energy is

KE =
1

2
ΩT (Jlock − Jrot)Ω +

1

2
(Ω + Ωrot)

T Jrot(Ω + Ωrot),

where Jlock = diag {J1, J2, J3} is the inertia of the satellite-rotors system with the rotors
locked, while Jrot = diag(Jrot1, Jrot2, 0) is the inertia of the rotors about their spin axes.
From the kinetic energy we compute the inertia matrix as

Jsat-rot =

[
Jlock Jrot
Jrot Jrot

]
.

Also, the adjoint operator satisfies ad(Ω,Ωrot)(v, w) = (Ω× v, 0). The dynamic equations are[
Jlock Jrot
Jrot Jrot

] [
Ω̇

Ω̇rot

]
=

[
(JlockΩ+ JrotΩrot)× Ω

0

]
+

[
0

e1u1(t) + e2u2(t)

]
,

and, by inverting the inertia matrix, the input vectors are

b1 =
1

Jrot1−J1
e1 +

J1
Jrot1(Jrot1−J1)

e4

b2 =
1

Jrot2−J2
e2 +

J2
Jrot2(Jrot2−J2)

e5.
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Figure 2. Rigid body in SE(3) with three forces applied at a point
a distance h from the centre of mass.

Underwater vehicle in ideal fluid. The motion of a rigid body in incompressible, irrota-
tional and inviscid fluid is Hamiltonian with an inertia tensor which includes added masses
and inertias, see [Lamb 1932] or the original work of Kirchhoff. Let (R, p) ∈ SE(3) and
(Ω, V ) ∈ se(3) denote the configuration and body velocity of the vehicle. The kinematic
equations are

Ṙ = RΩ̂

ṗ = RV.

For a neutrally buoyant ellipsoidal body with uniformly distributed mass, the kinetic energy
is KE = 1

2Ω
T JΩ+ 1

2V
TMV , where the mass and inertia matrices of the body-fluid system

are M = diag {m1,m2,m3} and J = diag {J1, J2, J3}. The adjoint operator is given by
equation (2.1). The unforced dynamic equations are therefore

JΩ̇ = JΩ× Ω+MV × V

MV̇ =MV × Ω.

Finally, we assume there are three body-fixed forces applied at a point a distance h from
the centre of mass, as depicted in Figure 2. The corresponding input vectors are

b1 =
1
m1

e4, b2 = − h
J3
e3 +

1
m2

e5, and b3 =
h
J2
e2 +

1
m3

e6.

3. Local controllability properties

This section deals with the nonlinear controllability properties of the systems described
above. Our treatment was originally presented by Bullo and Lewis [1996]; it is based on
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the conditions for small-time local controllability (STLC) by Sussmann [1987] and for con-
figuration controllability by Lewis and Murray [1997a]. While our accessibility analysis is
similar to that of Bonnard [1984], Crouch [1984] and Manikonda and Krishnaprasad [1997],
important differences in studying controllability include focusing on small-time, local con-
trollability properties (as opposed to global controllability) and investigating configuration
controllability (as opposed to full-state controllability). Configuration controllability con-
cerns the reachable set restricted to the configuration space G and is weaker than full-state
controllability. The controllability conditions presented in this section provide us with
enough information to allow control design for low-velocity maneuvers (described in Sec-
tion 5). The main limitation is the assumption that the system is initially at rest. The
examples at the end of this section and the perturbation analysis in the next section provide
insight into these controllability results.

3.1. Definitions and tests. For T > 0, a solution of the system (2.2)–(2.3), is a pair (g, u),
where g : [0, T ] → G is a piecewise smooth curve on G, u : [0, T ] → Rm is an admissible
input in Um and (g(t), u(t)) are a solution to the equations (2.2)–(2.3). Let g0 ∈ G, let
V ⊂ G be a neighbourhood of g0 and let W ⊂ G× g be a neighbourhood of (g0, 0g), where
we let 0g denote the zero vector in g. For T > 0, set

RV
G(g0, T ) = {g1 ∈ G | there exists a solution (g, u) of the system (2.2)–(2.3)

such that (g, ξ)(0) = (g0, 0g), g(t) ∈ V for t ∈ [0, T ] and g(T ) = g1},

and define the set of reachable configurations as

RV
G(g0,≤ T ) =

⋃
0≤t≤T

RV
G(g0, T ).

Similarly, set

RW
G×g(g0, T ) = {(g1, ξ1) ∈ G×g | there exists a solution (g, u)(t) of the system (2.2)–(2.3)

such that (g, ξ)(0) = (g0, 0g), (g, ξ)(t) ∈W for t ∈ [0, T ] and (g, ξ)(T ) = (g1, ξ1)},

and define the set of reachable states as

RW
G×g(g0,≤ T ) =

⋃
0≤t≤T

RW
G×g(g0, T ).

Accessibility and configuration accessibility. We present definitions, tools and tests that
characterise two notions of accessibility.

3.1 Definition: The system (2.2)–(2.3) is small-time locally accessible at g0 and zero
velocity if RW

G×g(g0,≤ T ) contains a non-empty open subset of G× g for all T > 0 and for
all neighbourhoods W of (g0, 0g). If this holds for any g0 ∈ G, then the system is called
small-time locally accessible at zero velocity (accessible at zero velocity).

The system (2.2)–(2.3) is small-time locally configuration accessible at g0 if
RV
G(g0,≤ T ) contains a non-empty open subset of G for all T > 0 and for all neigh-

bourhoods V of g0. If this holds for each g0 ∈ G, then the system is called small-time
locally configuration accessible (configuration accessible).
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The following concepts are helpful in providing computable tests for the notions of ac-
cessibility. Let us denote with B = {b1, . . . , bm} the family2 of input vectors. Recall that
the involutive closure of B, denoted by Lie(B), is the set of vectors obtained by taking
iterated Lie brackets of the vectors {b1, . . . , bm}. Additionally, we define the symmet-
ric closure of B, denoted by Sym(B), as the set of vectors obtained by taking iterated
symmetric products of the vectors {b1, . . . , bm}.
3.2 Proposition: Consider the system (2.2)–(2.3) and let B = {b1, . . . , bm} be the family of
input vectors.

1. The system is locally accessible at zero velocity if and only if the subspace defined by
Sym(B) has full rank.

2. The system is locally configuration accessible if and only if the subspace defined by
Lie(Sym(B)) has full rank.

These results are a direct consequence of the accessibility computations of Lewis and Murray
[1997a].

Controllability and configuration controllability. Next we present two corresponding no-
tions of controllability: the “classic” small-time local controllability and a weaker version
called small-time local configuration controllability.

3.3 Definition: The system (2.2)–(2.3) is small-time locally controllable at g0 and at
zero velocity if RW

G×g(g0,≤ T ) contains a non-empty open subset of G × g for all T > 0
and for all neighbourhoods W of (g0, 0g), and (g0, 0g) belongs to the interior of this subset.
If this holds for any g0 ∈ G, then the system is called small-time locally controllable at
zero velocity (STLC at zero velocity).

The system (2.2)–(2.3) is small-time locally configuration controllable at g0 if
RV
G(g0,≤ T ) contains a non-empty open subset of G for all T > 0 and for all neighbourhoods

V of g0, and g0 belongs to the interior of this subset. If this holds for each g0 ∈ G, then
the system is called small-time locally configuration controllable (STLCC).

To establish tests that distinguish controllability from accessibility, we need to introduce
the notions of good and bad symmetric products and order of a symmetric product. Here
we do this in a somewhat simplified way to avoid introducing too much mathematical
machinery (i.e., the notion of free Lie algebras of indeterminates).

The order of an iterated symmetric product of factors from Sym(B) is the total number
of factors. We say that a symmetric product from Sym(B) is bad if it contains an even
number of each of the vectors in B. Otherwise, we say that the symmetric product is good .
For example, the symmetric product ⟨⟨b1 : b2⟩ : b1⟩ has order three and it is good, the
symmetric product ⟨⟨⟨b1 : b2⟩ : b2⟩ : b1⟩ has order four and it is bad. More instances of good
and bad symmetric products can be found in the next section.

3.4 Proposition: Consider the system (2.2)–(2.3) and let B = {b1, . . . , bm} be the family of
input vectors.

2Equivalently, we can think of B as a linear subspace of g or a left-invariant distribution on G.
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1. The system is STLC at zero velocity if the subspace defined by Sym(B) has full rank
and every bad symmetric product is a linear combination of lower-order good symmet-
ric products.

2. The system is STLCC if the subspace defined by Lie(Sym(B)) has full rank and every
bad symmetric product is a linear combination of lower-order good symmetric products.

These results are a direct consequence of the results of Sussmann [1987] and Lewis
and Murray [1997a]. We note that symmetric and involutive closures are simple algebraic
operations that characterise controllability for the (strongly) nonlinear system (2.2)–(2.3),
independent of the base point g0 ∈ G. These tests have a simple interpretation; symmetric
products of input vectors identify which velocities are reachable, whereas Lie brackets of
reachable velocities identify which configurations are reachable. The only restriction we
impose is the requirement that the system be initially at rest.

Note that the distinction between good and bad symmetric products is analogous to
the notion of good and bad Lie brackets in [Sussmann 1987]. Similar characterisations are
usually introduced when dealing with controllability properties for systems with drift. In
the next section we present some approximate solutions that give some insight into the
requirement that “bad products are spanned by lower-order good products.”

Single-input systems (n > m = 1) always fail the sufficient condition for both controlla-
bility notions; if only one input vector is available, the only possible nontrivial second-order
symmetric product is bad. It can further be proven that single-input systems are neither
STLC at zero velocity nor STLCC, see [Lewis 1997].

3.2. Applications to the examples. We investigate the controllability properties of the
systems introduced in Section 2.3. Our examples are selected to be instructive.

Planar rigid body. Consider the planar rigid body described in Section 2.3 with input
vectors b1 =

1
me2 and b2 =

−h
J e1 +

1
me3. The relevant symmetric products are computed as

follows:

⟨b1 : b1⟩ = 0, ⟨b1 : b2⟩ = −h
Jme3, ⟨b2 : b2⟩ = 2h

Jme2, and ⟨b2 : ⟨b2 : b2⟩⟩ = −2h
J2m

e3.

We distinguish the following cases which depend on the availability of the two input vectors:

[PRB1] B = {b1}: the system is neither accessible at zero velocity nor configuration
accessible, as all symmetric products and Lie brackets vanish. An interpretation of
this result is that, for all possible inputs, the body is only allowed to translate parallel
to the body fixed x-axis.

[PRB2] B = {b2}: the system is (small-time locally) accessible at zero velocity since the
subspace generated by the vectors {b2, ⟨b2 : b2⟩, ⟨b2 : ⟨b2 : b2⟩⟩} has full rank. However,
the sufficient condition for controllability fails to hold, as ⟨b2 : b2⟩ is a bad symmetric
product and it is not a multiple of any lower-order symmetric product (b2 is the only
one). Additionally, as mentioned above, the results in [Lewis 1997] show that the
system is neither STLC at zero velocity nor STLCC.

[PRB3] B = {b1, b2}: the system is STLC at zero velocity, since the subspace generated
by the vectors {b1, b2, ⟨b1 : b2⟩} has full rank and the bad symmetric product ⟨b2 : b2⟩
is a linear combination of lower-order good symmetric products: b2 = −2b1.
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Satellite with thrusters. Consider the satellite with thrusters described in Section 2.3.
Input vectors are b1 = 1

J1
e1 and b2 = 1

J2
e2. The relevant symmetric products and Lie

brackets are computed as

⟨b1 : b1⟩ = ⟨b2 : b2⟩ = 0, ⟨b1 : b2⟩ = J2−J1
J1J2J3

e3, and [b1, b2] =
1

J1J2
e3.

The controllability properties are as follows:

[ST] B = {b1, b2} and J1 ̸= J2: if the satellite is not axisymmetric3, then the rank of
{b1, b2, ⟨b1 : b2⟩} is full and there are no bad symmetric products. Therefore, the
system is STLC at zero velocity.

Satellite with rotors. Consider the satellite with rotors introduced in Section 2.3. For b1
and b2 defined in Section 2.3, we compute symmetric products and Lie brackets as

⟨b1 : b1⟩ = ⟨b2 : b2⟩ = ⟨b1 : b2⟩ = 0,

and

[b1, b2] =
1

(Jrot1−J1)(Jrot2−J2)
e3,

[[b1, b2] , b1] =
1

(Jrot1−J1)2(J2−Jrot2)
e2,

[[b1, b2] , b2] =
1

(Jrot1−J1)(Jrot2−J2)2
e1.

[SR] B = {b1, b2}: the system is not accessible at zero velocity (every symmetric product
vanishes) and hence not STLC, but it is STLCC since the involutive closure has full
rank.

This result was partly expected but not trivial. Since the satellite-rotors system is not
subject to any external force, its total angular momentum is conserved. Therefore, it is
intuitively clear that the system cannot be accessible in both configurations and velocities.
However, the less trivial fact is that the system is STLCC. This means that, despite the
conservation law, any configuration can be reached, that is, any orientation R together with
any rotor angles (θ1, θ2).

Underwater vehicle in ideal fluid. Consider the underwater vehicle introduced in Sec-
tion 2.3, with the input forces depicted in Figure 2. We compute some good symmetric
products as

⟨b1 : b2⟩ = m2−m1
J3m1m2

e3 − h
J3m2

e5,

⟨b1 : b3⟩ = m1−m3
J2m1m3

e2 − h
J2m3

e6,

⟨b2 : b3⟩ = 1
J1

(
h2

J3
− h2

J2
− 1

m3
+ 1

m2

)
e1

and some bad ones as

⟨b1 : b1⟩ = 0, ⟨b2 : b2⟩ = 2h
I3m1

e4, ⟨b3 : b3⟩ = 2h
I2m1

e4.

3If the satellite is axisymmetric, i.e., J1 = J2, then a simple analysis shows that the system is STLCC.
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[UV] B = {b1, b2, b3}: Consider the 6×6 matrix defined by the good symmetric products of
order one and two, that is {b1, b2, b3, ⟨b1 : b2⟩, ⟨b1 : b3⟩, ⟨b2 : b3⟩}. This matrix is gener-
ically nonsingular.4 Hence, the system is small-time locally accessible at zero velocity.
Additionally, since the bad second-order symmetric products are proportional to b1,
they are spanned by good lower-order symmetric products (b1 is a good symmetric
product of order 1). Therefore, the system is generically STLC at zero velocity.

4. Approximate solutions under small-amplitude forcing

In this section we investigate the behaviour of system (2.2)–(2.3) under small-amplitude
forcing. The key analysis tool is the standard perturbation method as described by Khalil
[2001]. Assuming a small-amplitude input (say of order ϵ, for 0 < ϵ << 1), this method
provides us with a solution to system (2.2)–(2.3) in the form of a Taylor series in ϵ. Since
the computation of only a few terms in the series is tractable, we obtain an approximate
expansion. However, this estimate illustrates the role of symmetric products and Lie brack-
ets in determining the solution of the forced system (2.2)–(2.3). Therefore, this estimate
provides insight into the controllability tests introduced above and, as we shall see, it is
instrumental in designing the motion algorithms of the next section.

4.1. Notation and results. We introduce the following notation. Given a possibly vector-
valued function h(t) with t ∈ R+, define its first integral function h(t) with t ∈ R+, as the
finite integral from 0 to t

h(t) ≜
∫ t

0
h(τ)dτ.

Higher-order integrals, as for example h(t) are defined recursively. In the following, we
consider inputs of the form

ui(t, ϵ) = ϵu1i (t) + ϵ2u2i (t)

where 0 < ϵ << 1 and where u1i , u
2
i are O(1). Accordingly, we write the resultant forcing∑

i biui(t, ϵ) as the sum of two terms of different order in ϵ

m∑
i=1

biui(t, ϵ) =

m∑
i=1

bi
(
ϵu1i (t) + ϵ2u2i (t)

)
= ϵ b1(t) + ϵ2 b2(t), (4.1)

where we define b1(t) =
∑m

i=1 biu
1
i (t) and b

2(t) =
∑m

i=1 biu
2
i (t). In the following, given any

quantity y(ϵ), we let yk denote the kth term in the Taylor expansion of y(ϵ) about ϵ = 0; for
example, we will write ξ(t, ϵ) = ϵξ1(t)+ϵ2ξ2(t)+O(ϵ3). The following proposition describes
the system’s behaviour when forced by small (order ϵ and order ϵ2) amplitude inputs as
defined in equation (4.1).

4The matrix is singular when h2m1m2 + J3(m1 −m2) = 0 or when h2m1m3 + J2(m1 −m3) = 0
or when h2(1/J3 − 1/J2) = 1/m3 − 1/m2.
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4.1 Proposition: (Approximate evolution) For 0 < ϵ << 1 and for inputs of the form
in equation (4.1), let (g(t), ξ(t)) be the solutions of system (2.2)–(2.3). Let x(t) be the
exponential coordinates of g(t) about the initial condition g(0) = Id. Also, write the initial
velocity as ξ(0) = ϵξ10 + ϵ2ξ20 where ξ10 and ξ20 are O(1).
Then for t ∈ [0, 2π] it holds that ξ(t, ϵ) = ϵξ1(t) + ϵ2ξ2(t) + ϵ3ξ3(t) +O(ϵ4), with

ξ1(t) = ξ10 + b1(t),

ξ2(t) = ξ20 − ⟨ξ10 : ξ10⟩
t

2
− ⟨ξ10 : b1(t)⟩+

(
b2 − 1

2⟨b1 : b1⟩
)
(t),

ξ3(t) = −⟨ξ10 : ξ20⟩t+ ⟨ξ10 : ⟨ξ10 : ξ10⟩⟩
t2

4
+ ⟨ξ10 : ⟨ξ10 : b1(t)⟩⟩ − ⟨ξ10 :

(
b2 − 1

2⟨b1 : b1⟩
)
(t)⟩

− ⟨b1(t) : ξ20⟩+ 1
2⟨⟨ξ10 : ξ10⟩t : b1(t)⟩+ ⟨b1 : ⟨ξ10 : b1⟩⟩(t)− ⟨b1 :

(
b2 − 1

2⟨b1 : b1⟩
)
⟩(t),

and x(t, ϵ) = ϵx1(t) + ϵ2x2(t) +O(ϵ3), with

x1(t) = ξ10t+ b1(t),

x2(t) = ξ20t− ⟨ξ10 : ξ10⟩
t2

4
+

(
b2 − 1

2⟨b1 : b1⟩
)
(t)− ⟨ξ10 : b1(t)⟩+ 1

2

[
ξ10 + b1, ξ10t+ b1

]
(t).

The proof is based on the standard perturbation method as described by Khalil [2001] and
on the approximate solutions for the kinematic system obtained by Fomenko and Chakon
[1990]; see Appendix A.1 for a detailed account. Note that both symmetric products and
Lie brackets show up in the Taylor expansions and this agrees with the controllability tests
presented above. Also, note that the approximations in Proposition 4.1 hold only over a
finite period of time and particular care is needed in order to compute approximations valid
over a time interval of order 1/ϵ.

4.2. Application to examples. We now relate the approximations above to the controlla-
bility tests of the previous section. To simplify the expansions above and to investigate the
nonlinear second-order effects of the inputs, we let the initial velocity vanish, ξ(0) = 0g,

and the first order input b1(t) verify b1(2π) = b1(2π) = 0g. It holds that

ξ(2π) ≈ ϵ2
(
b2 − 1

2⟨b1 : b1⟩
)
(2π), and x(2π) ≈ ϵ2

(
b2 − 1

2⟨b1 : b1⟩+ 1
2

[
b1, b1

])
(2π),

(4.2)
where, for the remainder of this section, the symbol ≈ denotes an equality up to a third
order error in ϵ. Also, if we set b2(t) = 0g, it holds that

ξ(2π) ≈ −1
2ϵ

2⟨b1 : b1⟩(2π), and x(2π) ≈ −1
2ϵ

2

(
⟨b1 : b1⟩+

[
b1, b1

])
(2π). (4.3)

Up to a higher-order error in ϵ, the final velocity ξ(2π) is determined by certain symmet-
ric products and the final configuration variable x(2π) is determined by certain symmetric
products and Lie brackets. Next, we study in more detail these remaining terms to gain
some insight into what terms are “good,” what are “bad” and which ones we can exploit
to design motion algorithms.
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CM

e2
e3

fresultant = ±ǫ(sin(t)− 2 sin(2t))f2

Figure 3. Planar rigid body with single forcing [PRB2]. With
a resultant external force ±ϵ cos(t) and after a period 2π,
the approximate final reconfiguration is log(g(0)−1g(2π)) =
−2πϵ2 h

Jme2 and the approximate final velocity is ξ(2π) =

−2π2ϵ2 h
Jme2.

Single-input systems: relative equilibria and bad symmetric products. Both examples of
planar rigid bodies, [PRB1] and [PRB2], are single-input systems. Recall that [PRB1]
denotes the system with a single force b1 with the line of action through the centre of mass,
and [PRB2] denotes the system with the single force b2 applied at a point a distance h
from the centre of mass and perpendicular to b1, see Figure 1.

Let bsi denote the single input vector, e.g., bsi = b1 in [PRB1] and bsi = b2 in [PRB2].
If the symmetric product ⟨bsi : bsi⟩ vanishes, see the [PRB1] example, the system is neither
accessible nor configuration accessibility, and the final state (x, ξ)(2π) vanishes. Recall
from Section 2, that for any vector η such that ⟨η : η⟩ ≡ ad∗η Iη = 0, the curve t ∈
R 7→ (exp(tη), η) is a relative equilibria, i.e., a motion corresponding to constant body-
fixed velocity. Thus, an actuator bsi aligned with a relative equilibria has vanishing bad
symmetric product ⟨bsi : bsi⟩.

Also instructive is the case in which the bad symmetric product ⟨bsi : bsi⟩ does not vanish,
e.g., the [PRB2] system. Assuming b1(t) = bsiϕ(t) and ϕ(2π) = ϕ(2π) = 0, equations (4.3)
lead to

ξ(2π) ≈ −1
2ϵ

2

∫ 2π

0
ϕ
2
dt ⟨bsi : bsi⟩, and x(2π) ≈ −1

2ϵ
2

∫ 2π

0

∫ s

0
ϕ
2
dsdt ⟨bsi : bsi⟩. (4.4)

As already mentioned, configuration and velocity change an amount proportional to ϵ2

along the direction ⟨bsi : bsi⟩. Additionally, notice that it is impossible to change the sign
of the motion, which will always be along −⟨bsi : bsi⟩. For example the [PRB2] system
with forcing amplitude ±ϵ cos(t), always moves in the direction −e2, i.e., to the left (see
Figure 3). This phenomenon suggests that the system is not locally controllable, as certain
configurations appear to be not reachable. However, equation (4.4) does not prove this
claim as it only specifies the final value x(2π). The sharper analysis by Lewis [1997] is
needed to show that single-input systems are neither STLC at zero velocity nor STLCC.
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Multi-input systems with no bad symmetric products. Next we examine systems with
(at least) two input forces. We focus on an example with two input vectors b1 and b2 that
have vanishing bad symmetric products ⟨b1 : b1⟩ = ⟨b2 : b2⟩ = 0 and either non-zero good
symmetric product ⟨b1 : b2⟩ ̸= 0 or non-zero Lie bracket [b1, b2] ̸= 0. The satellite with
two thrusters [ST] and the satellite with two rotors [SR] are such examples. Plugging
b1(t) = b1u1(t) + b2u2(t) into equations (4.3), we have

ξ(2π) ≈ −1
2ϵ

2⟨u1b1 + u2b2 : u1b1 + u2b2⟩(2π)
= −ϵ2⟨b1 : b2⟩u1 u2(2π)

and

x(2π) ≈ −1
2ϵ

2

(
⟨b1 : b1⟩+

[
b1, b1

])
(2π)

= −ϵ2⟨b1 : b2⟩u1 u2(2π)− ϵ2 [b1, b2]u1 u2 − u1 u2(2π).

We interpret the operations performed on the input signals u1(t) and u2(t) as follows:
u1 u2(2π) is the inner product in the L2[0, 2π] function space between u1(t) and u2(t),

whereas u1 u2 − u1 u2(2π) is the area enclosed by the plot of signals u1(t) versus u2(t). We
distinguish two cases:

• Out-of-phase sinusoidal inputs generate motion along Lie brackets: First, consider
the satellite with rotors [SR] example that is STLCC but not STLC at zero velocity.
The symmetric product ⟨b1 : b2⟩ vanishes, so that we have from equation (4.3)

ξ(2π) ≈ 0 and x(2π) ≈ −ϵ2 [b1, b2]u1 u2 − u1 u2(2π).

If we want to steer the configuration x(2π) in the direction [b1, b2], sinusoidal signals
at the same frequency and out-of-phase are a simple standard choice. This is one of
the basic ideas behind the algorithms presented by Leonard and Krishnaprasad [1995]
and other literature on motion planning for driftless control systems.

• In-phase sinusoidal inputs generate motion along good symmetric products: Second,
consider the satellite with thrusters example [ST] that is STLC at zero velocity since
the symmetric product ⟨b1 : b2⟩ ̸= 0. If we pick sinusoidal inputs at the same frequency
and in-phase, e.g., u1(t) = u2(t) = cos(t), the contribution proportional to the Lie
bracket [b1, b2] vanishes, since the area included by two identical signal is zero. Further,
it holds that

ξ(2π) ≈ −ϵ2⟨b1 : b2⟩(u1)2(2π) and x(2π) ≈ −ϵ2⟨b1 : b2⟩(u1)2(2π),

and both velocity and configuration variables vary along −⟨b1 : b2⟩.5 Motion in the
symmetric product direction is generated with sinusoidal inputs at the same frequency
and in-phase. This is in contrast with the previous case and it is reminiscent of some
results on gait selection for locomotion systems with drift, see the 1:1 gait in [Ostrowski
and Burdick 1997].

5Also, the velocity change is maximal in the sense that on the L2[0, 2π] function space the Cauchy-
Schwartz inequality on the inner product of u1(t) and u2(t) holds with equality if u1(t) = u2(t).
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Multi-input systems with bad symmetric products. Finally, we examine systems with
non-vanishing bad symmetric products. We focus on the planar rigid body with two forces
applied at a point distant from the centre of mass [PRB3]. Recall that this system is STLC
at zero velocity since the subspace {b1, b2, ⟨b1 : b2⟩} has full rank and since the good/bad
products condition is verified by the equality ⟨b2 : b2⟩ = 2h

J b1. Setting b
1 = b1u1(t)+b2u2(t)

as above, the existence of a non-vanishing bad symmetric product causes

−1
2ϵ

2⟨b1 : b1⟩(2π) = −ϵ2⟨b1 : b2⟩u1 u2(2π)− 1
2ϵ

2⟨b2 : b2⟩u22(2π),

where the sign of the second term is independent of u2(t). However, motion in the ⟨b2 : b2⟩
direction can be affected by a second-order input along b1. In particular by setting

b2(t) = h
2πJ u2

2(2π)b1

we obtain from equation (4.2)

ξ(2π) ≈ −ϵ2⟨b1 : b2⟩u1 u2(2π),

recovering this way the result for the case without bad symmetric products. In other words,
the “bad” contribution due to ⟨b2 : b2⟩ is “annihilated” by means of the second-order input
b2(t), and this is possible only because the good/bad products condition is verified.

4.3. Inversion algorithm for systems controllable with second-order symmetric products.
Motivated by the heuristic analysis in the last two examples, we introduce an additional
definition. A system is STLC at zero velocity with second-order symmetric products
if it satisfies the following property:

(A2) The subspace span(bi, ⟨bj : bk⟩, 1 ≤ i ≤ m, 1 ≤ j < k ≤ m) has full rank and each bad
symmetric product ⟨bi : bi⟩ is a linear combination of the vectors {b1, . . . , bm}.

The planar rigid body with two forces [PRB3], the satellite with two thrusters [ST] and
the underwater vehicle [UV] satisfy this controllability condition. On the basis of this
assumption, we design inputs

(
b1(t), b2(t)

)
, that allow us to simplify the approximations in

Proposition 4.1 and steer the velocity of the system to an arbitrary value.

4.2 Lemma: (Inversion Algorithm) Let the assumption (A2) hold and let η be an arbi-
trary element in g. Define the input functions

(
b1(t), b2(t)

)
as follows:

1. Set N = m(m−1)/2 and let P denote the set of ordered pairs {(j, k) | 1 ≤ j < k ≤ m}.
Identify the elements in P with the set of integers 1, . . . , N , and let a(j, k) be the
integer associated with the pair (j, k). In other words, a : P 7→ {1, . . . , N} is a
enumeration of P . For α = 1, . . . , N , define the scalar functions

ψα(t) =
1√
2π

(
α sin(αt)− (α+N) sin

(
(α+N)t

))
.

2. Given the assumption (A2), the matrix with columns bi, 1 ≤ i ≤ m, and ⟨bj : bk⟩, 1 ≤
j < k ≤ m, has full rank. By means of its pseudo-inverse, compute (m + N) real
numbers zi and zjk such that

η =
∑

1≤i≤m

zibi +
∑

1≤j<k≤m

zjk⟨bj : bk⟩.
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3. Finally, set

b1(t) =
∑

1≤j<k≤m

√
|zjk|

(
bj − sign (zjk)bk

)
ψa(j,k)(t), (4.5)

b2(t) ≡ b2 =
1

2π

∑
1≤i≤m

zibi +
1

4π

∑
1≤j<k≤m

|zjk|
(
⟨bj : bj⟩+ ⟨bk : bk⟩

)
. (4.6)

The input functions (b1(t), b2(t)) designed in equation (4.5) and (4.6) verify(
b2 − 1

2⟨b1 : b1⟩
)
(2π) = η. (4.7)

Appendix A.2 contains the lemma’s proof. In what follows, we denote the procedure de-
scribed in the inversion algorithm with the notation:(

b1(t), b2(t)
)
= Inverse(η) .

A direct manipulation of equation (4.5) and of b1(t) =
∑m

i=1 biu
1
i (t) leads to the equiv-

alent statement

u1i (t) = −
i−1∑
j=1

√
|zji| sign(zji)ψa(j,i)(t) +

m∑
j=i+1

√
|zij |ψa(i,j)(t).

Note that motion along the good symmetric product direction ⟨bi : bj⟩ (for i < j) is
generated by the term

√
|zij |ψa(i,j)(t) in u1i (t) and the term −

√
|zij | sign(zij)ψa(i,j)(t) in

u1j (t). Hence the inputs u
1
i (t) and u

1
j (t) have the common factor ψa(i,j). The other terms in

the definition of u1k(t) for all k, are at different frequencies. Therefore, they are orthogonal
to ψa(i,j) in the inner product space L2[0, 2π], and so do not generate motion in any other
symmetric product direction. The second term in the second order input b2 compensates for
the motion excited along bad symmetric product directions. Its presence is a key difference
with respect to the algorithms in [Leonard and Krishnaprasad 1995] for driftless systems.

One of the drawbacks of the previous algorithm is that the input functions contain
relatively high frequencies, e.g., in an m = 3 input system, the input functions contain
sinusoids with frequency from 1 to m(m− 1) = 6. This can be mitigated by optimising the
design of the coefficients {zi, zjk} and the numbering of the set P . For example, the design
of the coefficients can be optimised by employing a weighted pseudo-inverse.

5. Control algorithms from motion primitives

In this section we design motion control algorithms based on the approximations in
Proposition 4.1 and the inversion algorithm in Lemma 4.2. Condition (A1) on the group
G, and condition (A2) on the controllability of the system are assumed. We start by
designing two primitive motion patterns, Maintain-Velocity and Change-Velocity, that
provide the system with some basic motion capabilities. We then focus on more complex
control algorithms to solve the point-to-point reconfiguration problem, the local exponential
stabilisation problem and the static interpolation problem.
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5.1. Primitives of motion. We describe two basic maneuvers that each last 2π units of
time. The parameter σ ≪ 1 is a small positive constant. To maintain a velocity of order
O(σ), an input of order O(σ) suffices, while to obtain a change in velocity of order O(σ),
we employ a control input of order O(

√
σ). Each primitive is described in terms of initial

configuration and velocity, input design, and final configuration and velocity.

Maintain-Velocity(σ, ξref): keeps the body velocity ξ(t) close to a reference value σξref.

Initial state:
g(0) = g0,
ξ(0) = σξref + σ2ξerror,

Input:
ϵ= σ,

(b1, b2) = Inverse(π⟨ξref : ξref⟩ − ξerror),

Final state:
log(g−1

0 g(2π)) = 2πσξref + πσ2ξerror +O(σ3),
ξ(2π) = σξref +O(σ3).

Change-Velocity(σ, ξfinal): steer the body velocity ξ(t) to a final value σξfinal.

Initial state:
g(0) = g0,
ξ(0) = σξ0,

Input
ϵ=

√
σ,

(b1, b2) = Inverse(ξfinal − ξ0),

Final state:
log(g−1

0 g(2π)) = πσ(ξ0 + ξfinal) +O(σ3/2),
ξ(2π) = σξfinal +O(σ2).

The statements on the final configuration and velocity of the primitives are proved in
Appendix A.3. Note that the magnitude of control input is

∥π⟨ξref : ξref⟩ − ξerror∥O(σ), during a Maintain-Velocity(σ, ξref) primitive,

∥ξfinal − ξ0∥O(
√
σ), during a Change-Velocity(σ, ξfinal) primitive.

We conclude this section by showing how to compute estimates of final configurations af-
ter multiple periods of control. The following result is a direct consequence of the Campbell-
Baker-Hausdorff formula, see for example [Sattinger and Weaver 1986].

5.1 Lemma: Let σ ≪ 1 be a positive constant and let g0, g1 be group elements. Define the
exponential coordinates y0 = log(g0) ∈ g and y1 = log(g1) ∈ g. If the vector [y0, y1] is higher
order in σ than (y0 + y1), then it holds

log(g0g1) = y0 + y1 +O([y0, y1]).

5.2. Control algorithms. We present three algorithms to solve various motion control
problems. These algorithms combine the two motion primitives with a discrete-time feed-
back. This makes the approximations hold over multiple time intervals; for example, over
a time interval of order 1/σ.

Point-to-point reconfiguration problem. This motion task reconfigures the system, i.e.,
changes its position and orientation, starting and ending at zero velocity. We assume that
the initial state is (g(0), ξ(0)) = (g0, 0g) and the final desired state is (g1, 0g). For simplicity,
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Goal: drive system from (g0, 0g) to (g1, 0g).
Arguments: (g0, g1, σ).

Require: log(g−1
0 g1) well defined.

1: N ⇐ Floor(∥ log(g−1
0 g1)∥/(2πσ)) {Floor(x) is the greatest integer less

than or equal to x.}
2: ξnom ⇐ log(g−1

0 g1)/(2πσN)
3: Change-Velocity(σ, ξnom) {start maneuver}
4: for k = 1 to (N − 1) do
5: Maintain-Velocity(σ, ξnom)
6: end for
7: Change-Velocity(σ, 0g) {stop maneuver}

Table 1. Constant Velocity Algorithm for point-to-point reconfig-
uration.

we require log(g−1
0 g1) to be well defined, even though this assumption can be removed. For

example, on SO(3) the logarithm is well defined whenever the change in attitude is less that
π.

The algorithm consists of three steps. Over the first time interval, we change the velocity
to an appropriate reference value. We then maintain the velocity close to this constant
reference value for an appropriate number of periods. Finally, we stop the system when
close to the desired configuration. The details are described in Table 1 and the proof of
the following lemma can be found in Appendix A.4. An alternative algorithm which uses a
constant acceleration followed by a constant deceleration to achieve the same point-to-point
reconfiguration is described in [Bullo and Leonard 1997].

5.2 Lemma: (Constant Velocity Algorithm) Let σ be a sufficiently small positive con-
stant and let (g(0), ξ(0)) = (g0, O(σ2)) and let g1 be a group element such that log(g−1

0 g1)
is well defined. Let N ∈ N and the inputs (b1, b2)(t) for t ∈ [0, 2(N + 1)π] be determined
according to the algorithm in Table 1. At final time it holds

log
(
g(2(N + 1)π)−1g1

)
= O(σ3/2),

ξ
(
2(N + 1)π

)
= O(σ2).

The final state is not exactly as desired, instead there are errors of order O(σ3/2) and O(σ2).
This undesirable feature can be compensated for by solving the next motion problem, the
point stabilisation problem.

Point stabilisation problem. This motion task asymptotically stabilises the configuration
g(t) to a desired value that we assume without loss of generality to be the identity. Con-
vergence is ensured as long as the initial condition satisfies

∥(log(g(0)), ξ(0))∥ ≤ σ, (5.1)

where σ is a sufficiently small positive constant. Should equation (5.1) not hold, then the
previous algorithm can be employed to steer the state to an admissible value.
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Goal: drive system to the state (Id, 0g) exponentially as t→ ∞.
Arguments: σ.
Require: ∥(log(g(0)), ξ(0))∥ ≤ σ.

1: for k = 1 to +∞ do
2: tk ⇐ 4kπ {tk is the current time}
3: σk ⇐ ∥(log(g(tk), ξ(tk)))∥
4: Change-Velocity

(
σk,−

(
log(g(tk)) + πξ(tk)

)
/(2πσk)

)
5: Change-Velocity(σk, 0g)
6: end for

Table 2. Local Exponential Stabilisation Algorithm.

The key idea of the algorithm is to iterate the following procedure: measure the state
at time tk and design control inputs that try to steer the state to the desired value (Id, 0g)
at time tk+1 = tk + 4π. Since we impose two requirements, one on the final configuration
and one on the final velocity, two calls to the Change-Velocity primitive are needed. The
idea of iterating an approximate stabilisation step for fast convergence can be found, for
example, in [Lafferriere and Sussmann 1991]. The details are described in Table 2 and the
proof of the following lemma is in Appendix A.5.

5.3 Lemma: (Local Exponential Stabilisation Algorithm) Let σ be a sufficiently
small positive constant and assume the initial condition satisfies equation (5.1). Let the
inputs (b1(t), b2(t)) be determined according to the algorithm in Table 2 and let tk = 4kπ.
Then there exists a λ > 0 such that∥∥( log(g(tk)), ξ(tk))∥∥ ≤

∥∥( log(g(0)), ξ(0))∥∥ e−λtk , ∀ k ∈N.

Additionally, for t ∈ [4kπ, 4(k + 1)π] it holds that
∥∥( log(g(t), ξ(t))∥∥ = O(e−λk/2).

Static interpolation problem. This motion task steers the system’s configuration along
a path connecting the set of the ordered points {g0, g1, . . . , gM}. As above, we require
log(g−1

k−1gk) to be well defined for 1 ≤ k ≤ M . The algorithm consists of M repeated
constant velocity (point-to-point) maneuvers (Table 1), with the only difference being that
when the configuration reaches the the kth desired value gk, the velocity gets changed
directly to the reference value for the next interval, i.e., without stopping. The details are
described in Table 3. It can be shown that the configuration g(t) follows a path passing
through the points {g0, g1, . . . , gM} with an error of order σ. We do not include a full proof
of convergence as it is very similar to the one for Lemma 5.2.

5.4 Remark: (Interpolating sequences of relative equilibria versus constant veloc-
ity motions) The Constant Velocity and the Static Interpolation Algorithms provide two
different solutions to the reconfiguration problem. These two algorithms can be compared
on the basis of an input cost of the form

∥u∥[0,T ] =

∫ T

0
L(u(t))dt,
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Goal: drive system through points {g0, g1, . . . , gM}.
Arguments: (g0, g1, . . . , gM , σ).

Require: (g(0), ξ(0)) = (g0, 0g) and log(g−1
i gi) well defined for all 0 ≤ i ≤M .

1: for j = 1 to M do
2: gtmp,j ⇐ g(t) exp(πξ(t)) {t is the current time}
3: Nj ⇐ Floor(∥ log(g−1

tmp,jgj)∥/(2πσ))
4: ξnom,j ⇐ log(g−1

tmp,jgj)/(2πσNj)
5: Change-Velocity(σ, ξnom,j)
6: for k = 1 to (Nj − 1) do
7: Maintain-Velocity(σ, ξnom,j)
8: end for
9: end for

10: Change-Velocity(σ, 0g)

Table 3. Static Interpolation Algorithm.

where T = T (σ) is the time required to complete the maneuver and L : Um 7→ R is a
cost on the space of input functions. In the following we let gi and gf denote initial and
final (desired) configurations and we let P = {g0 = gi, g1, . . . , gM = gf} be a sequence of
configurations such that log(g−1

j−1gj) is a relative equilibrium vector for all j = 1, . . . ,M .
Recall that η ∈ g is a relative equilibrium vector if ⟨η : η⟩ vanishes.

1. The Constant Velocity Algorithm to go from g0 to gf involves 2 calls to the
Change-Velocity primitive and (N − 1) calls to the Maintain-Velocity primitive.
Using notation from Table 1 and some of the details in Appendix A.4, the cost of the
complete maneuver can be computed as

∥u∥[0,T ] = 2O(
√
σ) + (N − 1)∥⟨ξnom : ξnom⟩∥O(σ) = O(1),

since ∥⟨ξnom : ξnom⟩∥ is of order 1 and N is of order 1/σ.

2. The Static Interpolation Algorithm applied to the set of configurations P in-
volves (M + 2) calls to the Change-Velocity primitive and (

∑M
j=1Nj) calls to the

Maintain-Velocity primitive. With the notation in Table 3, a little algebra shows
that

∥u∥[0,T ] = (M + 2)O(
√
σ) + (

∑
jNj)∥⟨ξnom,j : ξnom,j⟩∥O(σ).

Since the configuration g(t) follows the path determined by the set P with an error of
order σ, and since log(g−1

j−1gj) is a relative equilibrium vector, it can be shown that
⟨ξnom,j : ξnom,j⟩ = O(σ). Summarising, the total cost is

∥u∥[0,T ] = (M + 2)O(
√
σ) + (

∑
jNj)O(σ2) = O(

√
σ).

We conclude that for small σ (or equivalently, for long final times T = O(1/σ)), moving
along a set of relative equilibria is a more efficient strategy than the Constant Velocity
Algorithm. In other words, planning a path along relative equilibria takes into takes into
proper account the full system’s dynamics and leads to some notion of optimality.
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Figure 4. Constant Velocity Algorithm. The bullet-shaped ob-
jects drawn in the left picture represent the location of the
planar body. Darker objects correspond to the location of the
body at the beginning and end of a primitive. The plots on the
right display the time-evolution of variables (u1, u2, ω, v1, v2).

5.3. Numerical simulations. The three algorithms introduced above have been imple-
mented on a planar rigid body with two forces a distance h from the centre of mass and
with two different masses along the body-fixed axes (to account for added mass when the
body is in a fluid). This example is very similar to [PRB3] of Section 2.3. The parameter
values in normalised units were chosen to be J = 1,m1 = .6,m2 = 1, h = 2. For both
the Constant Velocity Algorithm and the Static Interpolation Algorithm, we let the initial
configuration be the identity and the final (desired) configuration consist of a rotation of
π and a translation of 2 units along the y-axis, i.e., ginitial = (0, 0, 0) and gfinal = (π, 0, 2).
We set σ = .1. For all three algorithms, the numerical results were in agreement with the
theoretical analysis presented above.

Constant Velocity, Table 1: Figure 4 illustrates how the velocity variables have a con-
stant average value plus an oscillatory component. Despite the oscillations (see the
light gray configurations in Figure 4), the configuration variables evolve along a screw
motion toward the desired configuration.

Static Interpolation, Table 3: For comparison, we next present the numerical results
of the Static Interpolation Algorithm. The initial and final (desired) configurations
are the same as in the previous run. The set of ordered configuration points is
{(0, 0, 0), (0, 0, 2), (π, 0, 2)}. In Figure 5 one can notice the path in the x, y plane (con-
sisting of a straight line and a rotation) and the various calls to the Change-Velocity
and Maintain-Velocity primitives (for example, the time history of u1, u2(t) shows
peaks whenever a Change-Velocity maneuver occurs).

Local Exponential Stabilisation, Table 2: Finally, we present the stabilisation algo-
rithm. Starting from the final condition of the Constant Velocity Algorithm, we
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Figure 5. Static Interpolation Algorithm. See the figure above for
an explanation of pictures. The planar body moves first along
the y-axis (from (0, 0, 0) to (0, 0, 2)) and then rotates to the
desired final configuration (π, 0, 2).
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Figure 6. Local Stabilisation algorithm. We show only the con-
figuration variables θ (with a solid line), x (with a dashed line)
and y (with a light gray line). The initial condition of the sim-
ulation is the final state from the simulation of the Constant
Velocity algorithm.

applied the local stabilisation algorithm to steer the system exactly to the identity.
Figure 6 illustrates how the convergence is exponential.
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6. Conclusions

In this paper, we study motion planning and control of underactuated mechanical sys-
tems with a focus on underactuated vehicles. We propose a geometric framework encom-
passing analysis and synthesis tools and show its application to numerous examples. First,
we characterise the controllability properties of these systems and investigate their be-
haviour under small-amplitude forcing. Next, we design two motion primitives which we
use in higher-level motion control algorithms to steer the vehicle from point to point, to
move the vehicle between points in configuration space without stopping, and to provide
exponential stabilisation of the vehicle to a desired configuration. Exponential stabilisa-
tion is achieved using time-varying, continuous feedback control. The results in this paper
complement the controllability analysis of Lewis and Murray [1997a] and the averaging
techniques of Leonard and Krishnaprasad [1995]. Future research will focus on how to
overcome the assumption of small-amplitude forcing and the absence of dissipation in our
models, see [Leonard 1995] for some results in this direction.
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A. Proofs

A.1. Proposition 4.1.

Proof: We start by proving the validity of the expansion in ξ(t, ϵ) by means of the standard
perturbation method, as presented, for example, by Khalil [2001]. Consider the ordinary
differential equation

ẋ = f(x) + g(t, ϵ)

and let x(t, ϵ) denote the solution from initial condition x0(ϵ). At ϵ = 0, suppose that
f(x0(0)) = g(t, 0) = 0, so that x(t, 0) = x0(0) is a constant solution. We now expand x(t, ϵ)
and g(t, ϵ) in a Taylor series about the value ϵ = 0 and write

x(t, ϵ) =
∞∑
i=0

ϵixi(t) and g(t, ϵ) =
∞∑
i=0

ϵigi(t).

As shown by Khalil [2001], the components in the expansion of x satisfy the following
differential equations

ẋn(t) =
1

n!

∂n

∂ϵn

∣∣∣
ϵ=0

f(x(t, ϵ)) + gn(t),

with initial condition xn(0) = 1
n!

∂n

∂ϵn

∣∣∣
ϵ=0

x0(ϵ).

The differential equation of interest in our case is equation (2.4):

ξ̇ = −1

2
⟨ξ : ξ⟩ + ϵb1(t) + ϵ2b2(t),

and the initial condition is ξ(0, ϵ) = ϵξ10 + ϵ2ξ20 . The constant solution we expand about is
ξ(t, 0) = ξ0(t) = 0.

Differentiating the function f(ξ(ϵ)) = −1
2⟨ξ : ξ⟩, we have

∂f

∂ϵ
= −⟨ξ : ∂ξ

∂ϵ
⟩

∂2f

∂ϵ2
= −⟨∂ξ

∂ϵ
:
∂ξ

∂ϵ
⟩ − ⟨ξ : ∂

2ξ

∂ϵ2
⟩

∂3f

∂ϵ3
= −3⟨∂ξ

∂ϵ
:
∂2ξ

∂ϵ2
⟩ − ⟨ξ : ∂

3ξ

∂ϵ3
⟩,

and noting that ∂n

∂ϵn

∣∣∣
ϵ=0

ξ = n!ξn, we have

∂f

∂ϵ

∣∣∣
ϵ=0

= −⟨ξ0 : ξ1⟩
∂2f

∂ϵ2

∣∣∣
ϵ=0

= −⟨ξ1 : ξ1⟩ − 2⟨ξ0 : ξ2⟩
∂3f

∂ϵ3

∣∣∣
ϵ=0

= −6⟨ξ1 : ξ2⟩ − 6⟨ξ0 : ξ3⟩.
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Next, we write the differential equations as described above. Recalling that ξ0(t) = 0 we
have

ξ̇1 = b1

ξ̇2 = −1

2
⟨ξ1 : ξ1⟩+ b2

ξ̇3 = −⟨ξ1 : ξ2⟩.
Initial conditions are ξ1(0) = ξ10 , ξ

2(0) = ξ20 , ξ
3(0) = 0. Finally, we employ the notation

introduced in Section 5 to integrate the three ODEs,

ξ1(t) = ξ10 + b1(t)

ξ2(t) = ξ20 −
1

2
⟨ξ10 + b1(t) : ξ10 + b1(t)⟩+ b2(t)

ξ3(t) = −⟨ξ10 + b1(t) : ξ20 −
1

2
⟨ξ10 + b1(t) : ξ10 + b1(t)⟩+ b2(t)⟩.

Expanding the terms on the right hand side, one recovers all of the terms in the expansions
of ξ(t, ϵ) in Proposition 4.1.

In the second part of the proof we prove the validity of the expansion of x(t, ϵ) by means
of the approximate solutions for kinematic systems obtained by Fomenko and Chakon [1990]
and used by Leonard and Krishnaprasad [1995]. From these references we know that, if
ξ(t, ϵ) = O(ϵ), then

x(t, ϵ) = ξ(t) +
1

2

[
ξ, ξ

]
(t) +O(ϵ3).

Substituting ξ(t, ϵ) = ϵξ1(t) + ϵ2ξ2(t) +O(ϵ3), we have:

x(t, ϵ) = ϵξ1(t) + ϵ2ξ2(t) +
1

2
ϵ2
[
ξ1, ξ1

]
(t) +O(ϵ3).

And substituting the values for ξ1(t) and ξ2(t), and writing x(t, ϵ) = ϵx1(t)+ϵ2x2(t)+O(ϵ3),
we have

x1(t) = ξ10 + b1(t)

x2(t) =

(
ξ20t− ⟨ξ10 : ξ10⟩

t2

4
− ⟨ξ10 : b1⟩(t) +

(
b2 − 1

2⟨b1 : b1⟩
)
(t)

)
+

1

2

[
ξ10 + b1, ξ10 + b1

]
(t).

Expanding the terms on the right hand side, one recovers all of the terms in the expansions
of x(t, ϵ) in Proposition 4.1. ■

A.2. Lemma 4.2. Here, we prove the claim (4.7) in Lemma 4.2.

Proof: We start by studying the properties of the functions ψa(t). A direct computation
shows that for all a, b, c

ψa(2π) = ψa(2π) = ψa(2π) = 0 (A.1)

ψa ψb(t) =
δab
2π
t+ rab(t), where rab(2π) = rab(2π) = 0, (A.2)

ψa t (2π) = ψa ψb(2π) = ψa rbc(2π) = 0, (A.3)
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where δab is the Kronecker delta function. The proof of these properties is straightforward
but tedious.

Next, we prove the claim (4.7) in Lemma 4.2. Given the definition in equation (4.5)

and the property(A.2) of the functions ψa(t), we compute the quantity ⟨b1 : b1⟩(2π) as

⟨b1 : b1⟩(2π) =
∑

1≤j<k≤m

∑
1≤p<q≤m

√
|zjkzpq|⟨

(
bj − sign(zjk)bk

)
:
(
bp − sign(zpq)bq

)
⟩ψa(j,k) ψa(p,q)(2π)

=
∑

1≤j<k≤m

|zjk|⟨
(
bj − sign(zjk)bk

)
:
(
bj − sign(zjk)bk

)
⟩

=
∑

1≤j<k≤m

|zjk|
(
⟨bj : bj⟩ − 2 sign(zjk)⟨bj : bk⟩+ ⟨bk : bk⟩

)
= −2

∑
1≤j<k≤m

zjk⟨bj : bk⟩+
∑

1≤j<k≤m

|zjk|
(
⟨bj : bj⟩+ ⟨bk : bk⟩

)
.

Summing up with b2(2π) = 2πb2, we have(
b2 − 1

2⟨b1 : b1⟩
)
(2π) =

∑
1≤i≤m

zibi +
∑

1≤j<k≤m

zjk⟨bj : bk⟩,

which proves equation (4.7). ■

A.3. Primitives of Motion. The statements in the description of both primitives are direct
consequences of the following result.

A.1 Proposition: Let the assumptions of Proposition 4.1 hold and let
(
b1(t), b2(t)

)
=

Inverse(η). If ξ(0) = ϵξ10 + ϵ2ξ20, we have

ξ(2π) = ϵξ10 + ϵ2
(
ξ20 − π⟨ξ10 : ξ10⟩+ η

)
+ ϵ3π

(
π⟨ξ10 : ⟨ξ10 : ξ10⟩⟩ − 2⟨ξ10 : ξ20⟩ − ⟨ξ10 : η⟩

)
+O(ϵ4)

(A.4)

x(2π) = ϵ2πξ10 + ϵ2π
(
2ξ20 − π⟨ξ10 : ξ10⟩+ η

)
+O(ϵ3). (A.5)

Proof: Note that property (A.1) implies directly that b1(2π) = b1(2π) = b1(2π) = 0, so that
the terms in the Taylor expansion in Proposition 4.1 simplify to

ξ1(2π) = ξ10

ξ2(2π) = ξ20 − π⟨ξ10 : ξ10⟩+
(
b2 − 1

2⟨b1 : b1⟩
)
(2π),

ξ3(2π) = −2π⟨ξ10 : ξ20⟩+ π2⟨ξ10 : ⟨ξ10 : ξ10⟩⟩ − ⟨ξ10 :

(
b2 − 1

2⟨b1 : b1⟩
)
(2π)⟩

+ ⟨⟨ξ10 : ξ10⟩ : b1⟩
t

2
(2π) + ⟨b1 : ⟨ξ10 : b1⟩⟩(2π)− ⟨b1 :

(
b2 − 1

2⟨b1 : b1⟩
)
⟩(2π),

x1(2π) = 2πξ10 ,

x2(2π) = 2πξ20 − π2⟨ξ10 : ξ10⟩+
(
b2 − 1

2⟨b1 : b1⟩
)
(2π) + 1

2

[
ξ10 + b1, ξ10t+ b1

]
(2π).
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Hence, ξ1(2π) and x1(2π) are as computed above. We employ Lemma 4.2 and property (A.2)
to simplify the remaining terms into

ξ2(2π) = ξ20 − π⟨ξ10 : ξ10⟩+ η,

ξ3(2π) = −2π⟨ξ10 : ξ20⟩+ π2⟨ξ10 : ⟨ξ10 : ξ10⟩⟩ − π⟨ξ10 : η⟩

+ ⟨⟨ξ10 : ξ10⟩ : b1⟩
t

2
(2π) + ⟨b1 : ⟨ξ10 : b1⟩⟩(2π)− ⟨b1 :

(
b2 − 1

2⟨b1 : b1⟩
)
⟩(2π),

x2(2π) = 2πξ20 − π2⟨ξ10 : ξ10⟩+ πη + 1
2

[
ξ10 + b1, ξ10t+ b1

]
(2π).

Regarding the term ξ3(t), the claim is proven if

⟨⟨ξ10 : ξ10⟩ : b1⟩
t

2
(2π) = ⟨b1 : ⟨ξ10 : b1⟩⟩(2π) = ⟨b1 :

(
b2 − 1

2⟨b1 : b1⟩
)
⟩(2π) = 0.

However, since b1(t) is linear combination of the functions ψa(t), the latter relations cor-
respond equality sign by equality sign to the properties in equation (A.3). Regarding the
term x2(t), it holds that[

ξ10 + b1, ξ10t+ b1
]
(2π) = 2π2

[
ξ10 , ξ

1
0

]
+

[
ξ10 , b

1(2π)

]
+

[
b1, ξ10t

]
(2π) +

[
b1, b1

]
(2π) = 0,

as all terms in the middle expression vanish. ■

A.4. Lemma 5.2.

Proof: Given the descriptions of the primitives Change-Velocity and Maintain-Velocity,
we compute the evolution of ξ(t) as follows. Starting from ξ(0) = O(σ2), we have:
after first Change-Velocity(σ, ξnom) : ξ(2π) = σξnom +O(σ2),
after first Maintain-Velocity(σ, ξnom) : ξ(4π) = σξnom +O(σ3),
after kth step in the for loop : ξ(2(k + 1)π) = σξnom +O(σ3),
after the final Change-Velocity(σ, 0) : ξ(2(N + 1)π) = O(σ2).

The final value of ξ is therefore as in the claim. Similarly, we can compute the change in
configuration during each interval:
after first Change-Velocity(σ, ξnom) : log

(
g(0)−1g(2π)

)
= πσξnom +O(σ3/2),

after first Maintain-Velocity(σ, ξnom) : log
(
g(2π)−1g(4π)

)
= 2πσξnom +O(σ2),

after kth step in the for loop : log
(
g(2kπ)−1g(2(k + 1)π)

)
= 2πσξnom +O(σ3),

after final Change-Velocity(σ, 0) : log
(
g(2Nπ)−1g(2(N + 1)π)

)
= πσξnom +O(σ3/2).

We now need to sum the changes in configuration due to each interval by means of the
approximation in Lemma 5.1. Combining the contributions during the first two intervals,
and recalling that [ξnom, ξnom] vanishes, we have

log
(
g−1
0 g(4π)

)
= 3πσξnom +O(σ3/2) =: 3πσξnom + σ3/2η1, (A.6)

where η1 = O(1) is an appropriate vector in g. Next, we claim that for all k = 1, . . . , N −1,
it holds

log
(
g−1
0 g(2(k + 1)π)

)
= akξnom + σ3/2ηk,

where the scalar ak and the vector ηk are of order at most 1. We prove the claim by
induction. At k = 1, we recover equation (A.6), with a1 = 3πσ. Next, we assume that the
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claim holds at k, and we prove it for k + 1. As dictated by Lemma 5.1, we compute the
bracket between the current value akξnom+σ3/2ηk and the contribution 2πσξnom+O(σ3) =:
2πσξnom + σ3ζk, where ζk = O(1) is an appropriate vector in g. We have:

[akξnom + σ3/2ηk , 2πσξnom + σ3ζk] = O(σ5/2),

so that

log
(
g−1
0 g(2(k + 2)π)

)
=

(
akξnom + σ3/2ηk

)
+
(
2πσξnom + σ3ζk

)
+O(σ5/2)

=
(
ak + 2πσ

)
ξnom + σ3/2

(
ηk + σ3/2ζk + σνk

)
,

where νk = O(1) is an appropriate vector in g. Hence, the claim holds at k + 1, with
ak+1 = ak + 2πσ and ηk+1 = ηk + σ3/2ζk + σνk. At the end of the for loop, as k = N − 1,
we have

log
(
g−1
0 g(2Nπ)

)
= aN−1ξnom + σ3/2ηN−1,

where we can compute the coefficients as

aN−1 = a1 +
N−1∑
k=2

2πσ = (2N − 1)πσ and ηN−1 = η1 +
N−1∑
k=2

(
σ3/2ζk + σνk

)
= O(1).

The contribution of the last interval is σπξnom plus some higher-order terms, so that

log
(
g−1
0 g(2(N + 1)π)

)
= 2Nπσξnom +O(σ3/2).

Finally, we apply the approximation in Lemma 5.1 for a last time to obtain

log(g(2(N + 1)π)−1g1) = log
((
g−1
0 g(2(N + 1)π)

)−1(
g−1
0 g1

))
= O(σ3/2),

where we recall that log(g−1
0 g1) = 2Nπσξnom and log(h−1) = − log(h). ■

A.5. Lemma 5.3.

Proof: We start by investigating the two Change-Velocity primitives described inside the
while statement in Algorithm 2. Assuming that at time tk it holds∥∥( log(g(tk)), ξ(tk))∥∥ = σk ≪ 1,

we claim that ∥∥( log(g(tk+1)), ξ(tk+1)
)∥∥ = O(σ

3/2
k ). (A.7)

This can be seen as follows. By assumption there exist two vectors xerr and ξerr of order
O(1) such that

log(g(tk)) = σkxerr

ξ(tk) = σkξerr.
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With this notation, it holds −
(
log(g(tk)) + πξ(tk)

)
/(2πσk) = −

(
xerr + πξerr

)
/(2π). After

the primitive Change-Velocity(σk,−
(
xerr + πξerr

)
/(2π)), we compute

log(g(tk + 2π)) = 1
2σk(xerr + πξerr) +O(σ

3/2
k )

ξ(tk + 2π) = −σk
(
xerr + πξerr

)
/(2π) +O(σ2k),

and after the final Change-Velocity(σk, 0), we have

log(g(tk + 4π)) = O(σ
3/2
k ),

ξ(tk + 4π) = O(σ2k).

As tk+1 = tk + 4π, this proves equation (A.7). The latter equations are equivalent to∥∥( log(g(tk+1)), ξ(tk+1)
)∥∥ ≤Mkσ

3/2
k , (A.8)

where the positive scalar Mk depends continuously on initial state and parameters of the
system of ordinary differential equations (2.2) and (2.3). The parameters are σk and the
coefficients in the design of (b1(t), b2(t)), for tk < t < tk+1. By looking at the details of the
inversion algorithm in Lemma 4.2, these parameters are seen to be continuous function of the
initial conditions

(
log(g(tk), ξ(tk))

)
. Hence, we know that Mk(g(tk), ξ(tk)) is a continuous

function of its arguments and it is therefore bounded in a neighbourhood of the point
(g(tk), ξ(tk)) = (Id, 0). In other words, there exist positive constants B1, B2 such that∥∥( log(g(tk)), ξ(tk))∥∥ < B1 =⇒ Mk(g(tk), ξ(tk)) < B2.

Finally, for some α < 1, we set σ = αmin
(
B1, 1/B

2
2

)
and we prove by induction that

σk < σ and Mkσ
1/2
k ≤ α. At k = 0, we have by assumption

σ0 = ∥(log(g(0)), ξ(0))∥ ≤ σ < B1,

so that M0 < B2 and
M0σ

1/2
0 < B2σ

1/2 < α < 1.

Therefore, the claim holds at k = 0. Next, we assume it at k, and prove it for k + 1. We
rewrite equation (A.8) as

σk+1 =
∥∥( log(g(tk+1), ξ(tk+1)

)∥∥ ≤
(
Mkσ

1/2
k

)
σk ≤ ασ < B1.

Hence, Mk+1 is also bounded by B2 and we have

σ
1/2
k+1Mk+1 ≤ σ1/2B2 < α.

This proves thatMkσ
1/2
k ≤ α for all k. In other words, we have that the sequence {σk, k ≥ 0}

satisfies σk+1 ≤ ασk with α < 1, or equivalently σk ≤ αkσ0. Therefore, for λ = − lnα > 0,∥∥( log(g(tk)), ξ(tk))∥∥ ≤
∥∥( log(g(0)), ξ(0))∥∥ e−λk.

Finally we prove the last statement in Lemma 5.3. From time tk to tk+1, the system
undergoes two Change-Velocity primitives and evolves starting from a state of order
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O(σk) = O(e−λk) to a final state of higher order. During the two Change-Velocity

primitives, the input is of order
√
σk = e−λk/2 (with the notation in Section 5.1 and in

Proposition 4.1, it holds ϵ =
√
σ). Therefore, the expansions in Proposition 4.1 show that

the state is of order
√
σk = e−λk/2 from time tk to tk+1.

■
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