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Abstract

In this paper we present a definition of “configuration controllability” for mechanical
systems whose Lagrangian is kinetic energy with respect to a Riemannian metric minus
potential energy. A computable test for this new version of controllability is derived.
This condition involves an object which we call the symmetric product . Of particular
interest is a definition of “equilibrium controllability” for which we are able to derive
computable sufficient conditions. Examples illustrate the theory.
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1. Introduction

There has been an recent upswell of interest in control theory for mechanical systems.
Indeed, an upcoming special issue of the IEEE Transactions of Automatic Control will
be devoted to the subject. An early paper which suggested that such problems might be
interesting is that of Brockett [1977]. However, for the most part, his suggestions were
not followed up aggressively by other researchers. When dealing with mechanical control
systems, one wants to exploit the extra structure possessed by these systems. Just which
structure one wishes to consider is, in a sense, a matter of taste. The Hamiltonian frame-
work has received a great deal of attention, and produces a “dual pair” interpretation of
controllability decompositions. This theory is well enough advanced to constitute a major
part of Chapter 12 of the text [Nijmeijer and van der Schaft 1990]. With Hamiltonian
control systems, one obviously want to exploit the symplectic—or more generally, Pois-
son—structure. In a Lagrangian framework, it is less clear what available structure ought
to best be utilised. A recent survey of Lagrangian control theory is provided by Murray
[1995]. A certain class of mechanical systems are invariant under the action of a Lie group,
and this structure is employed by Bloch and Crouch [1992] to obtain some controllability
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results. Here the authors rely on a result of San Martin and Crouch [1984] concerning
systems on principal fibre bundles. Systems with nonholonomic constraints are considered
by Bloch, Reyhanoglu, and McClamroch [1992]. Here the authors suppose that the inputs
span a distribution complementary to the constraint distribution. With such an assumption
one can essentially, by utilising constraint and input forces, generate all motions compatible
with the constraints. Systems with nonholonomic constraints and symmetry are considered
by Ostrowski in joint work with Burdick [Ostrowski 1995, Ostrowski and Burdick 1997].

In this work we investigate, in the Lagrangian framework, “simple” mechanical systems
which, by way of definition, are characterised by having “kinetic minus potential energy”
Lagrangians. In the present communication of our results, we will simplify matters by sup-
posing that the systems have no potential energy, a situation initially considered by Lewis
and Murray [1995]. Analogous results with the presence of potential are given by the au-
thors in [Lewis and Murray 1997a], a paper which further, for the first time, thoroughly
presents the methodology which we describe here. As we suggested above, the approach
one takes to Lagrangian mechanical control systems reflects in large part the taste of the
researcher. Our bias leans towards a detailed consideration of the structure provided by
the kinetic energy of a simple mechanical system. Let us be a bit more specific. One
should think of kinetic energy as being provided by, and providing, a Riemannian metric
on the system’s configuration space. Associated with a Riemannian metric is a natural
affine connection called the Levi-Civita connection. This affine connection may be used
to succinctly write the equations of motion as we shall see in the opening of Section 4.
However, the value of the affine connection formalism goes far beyond this mundane and
well-known virtue. Indeed, as Lewis and Murray [1997a] demonstrate, the Levi-Civita affine
connection plays a fundamental rôle in the controllability analysis for simple mechanical
control systems, even when potential energy is present. Interestingly, and motivated by
work of Synge [1928], Lewis [2000] shows that the controllability analysis of [Lewis and
Murray 1997a] may be directly applied to simple mechanical systems with nonholonomic
constraints linear in velocity.1 We shall superficially consider an example of this type in
Section 5.3. In this case the Levi-Civita affine connection is replaced by a different affine
connection which includes data from the nonholonomic constraints in its definition. All
this, when combined with work of a somewhat different flavour like that of, for example,2

Rathinam and Murray [1998], justifies, we feel, the following statement:

Affine connections provide a valuable tool for studying simple mechanical control
systems.

It is to a justification of this statement that we devote this exposition.

2. Preliminary statement of results

To have a clear sight of where we are headed, it is perhaps useful to provide a preliminary
statement of our results. We shall be somewhat more precise in Sections 4.2 and 4.4. A
truly precise formulation and proof of the results requires substantial development, and for
this we refer to [Lewis and Murray 1997a] and the dissertation of Lewis [1995].

1ADL wishes to acknowledge the work of [Bloch and Crouch 1995] for motivating his interest in this
approach.

2We refer to Section 6 for a further discussion of related work.
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Figure 1. A planar rigid body with a variable direction thruster
(a) and a fixed direction thruster (b)

We begin with an example. Consider the planar rigid body system of Figure 1. On this
body we consider two possible sets of forces. In one case we are able to apply a force in any
direction to the body at a point away from the centre of mass (case (a) in the figure). In
the other case, we can only apply a force which is in a direction perpendicular to the line
joining the point of application of the force with the centre of mass (case (b) in the figure).
The reader may wish to consider the former case as corresponding to having a thruster
on the body whose direction may be varied, while in the second case the thruster can only
provide thrust along a fixed line. In each of these cases one may ask certain questions about
the controllability of this system. We list some of these questions below and in parentheses
give the name of the general notion corresponding to this question.

1. Starting from rest at a given configuration, is it possible to reach an open set of
configurations? (local configuration accessibility)

2. Starting from rest in a given configuration, is it possible to reach a neighbourhood of
the initial configuration? (local configuration controllability)

3. Is it possible to get to these configurations with zero velocity? (equilibrium control-
lability)

It is exactly these questions that we address in this paper. Observe that the above control-
lability questions have the feature that the initial velocity is assumed to be zero. This turns
out to greatly simplify the controllability computations. We observe that for this example
the linearisation is not controllable so, if the system is controllable, nonlinear tools must be
employed.

Although we delay answering the above questions for the planar rigid body until Sec-
tion 5.2, we may state general results for a class of systems of which the planar rigid body
is an example. Consistent with the outline of our approach in Section 1, consider mechan-
ical systems whose Lagrangian is kinetic energy with respect to a Riemannian metric g
on the configuration manifold Q. Suppose that the inputs are modelled by vector fields
Y = {Y1, . . . , Ym} on Q. We may define the symmetric product between two vector
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fields on Q by

⟨X : Y ⟩ =
g

∇XY +
g

∇YX

where
g

∇XY is the covariant derivative of Y with respect to X, taken with the Levi-

Civita connection
g

∇. If T (Q) denotes the set of vector fields on Q, and if V ⊂ T (Q), we
denote by Sym(V ) the distribution on Q obtained by taking iterated symmetric products
of vector fields from V . The usual involutive closure of V will be denoted Lie(V ). We
shall say that a symmetric product from Sym(Y ) is bad if it contains an even number of
each of the vector fields in Y . Otherwise we shall call a symmetric product from Sym(Y )
good . The degree of an iterated symmetric product of factors from Y will denote the total
number of factors.

Notice that with the Lagrangian given by just kinetic energy, all states with zero velocity
are equilibrium points for the unforced mechanical system. We shall say the system is
locally configuration accessible at q ∈ Q if the set of configurations reachable starting
from q at zero velocity is open in Q. We shall say the system is equilibrium controllable
if, starting from a given configuration at zero velocity, we can reach an open set of final
configurations at zero velocity. Now we may state two results.

Theorem: Consider the mechanical control system on the configuration manifold Q whose
Lagrangian is the kinetic energy with respect to a Riemannian metric g and whose input
vector fields are Y = {Y1, . . . , Ym}. Then

(i) the system is locally configuration accessible at q if the distribution Lie(Sym(Y )) has
maximal rank at q, and

(ii) the system is equilibrium controllable if it is locally configuration accessible and if
every bad symmetric product is a linear combination of good symmetric products of
lower degree.

To prove this result, one basically proceeds as follows. Compute the accessibility distri-
bution on TQ for the mechanical control system and evaluate at zero velocity. This will
describe the set of states accessible from points of zero velocity. However, since we are
interested in controllability of the configurations, we can project the accessibility distribu-
tion to Q with TπTQ, the derivative of the tangent bundle projection. It turns out that
this is exactly the distribution Lie(Sym(Y )). In this way we see that the conditions in (i)
give local configuration accessibility. To prove (ii), we appeal to the controllability results
of Sussmann [1987] on local controllability. An application of Sussmann’s results to the
systems we are considering yields (ii).

The sections which follow formalise somewhat the above definitions and results. For a
generalisation to the case where the system has potential energy, see [Lewis and Murray
1997a].

3. Machinery from nonlinear control theory and geometric mechanics

Our results provide a coalescing of two fields: nonlinear control and geometric mechanics.
Since the language of each field may be unfamiliar to researchers in the other, and since this
paper is intended for a general audience, we present a brief review of applicable material from
each subject. For a more thorough introduction to nonlinear control, we refer to [Nijmeijer
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and van der Schaft 1990], and for a thorough treatment of geometric mechanics, we refer
to [Abraham and Marsden 1978], especially Section 3.7.

In this paper, “smooth” will mean analytic. Some of our results hold in the C∞ cate-
gory, but for everything we say to be true, we need analyticity, so we make this a blanket
assumption.

3.1. Nonlinear control theory. In this section, letM be a finite-dimensional manifold, and
let f0, f1, . . . , fm be vector fields on M . We consider control systems of the form

ẋ(t) = f0(x(t)) + ua(t)fa(x(t)). (3.1)

We employ here the summation convention where summation over repeated raised and
lowered indices is implied. The vector field f0 is called the drift vector field, and the vector
fields f1, . . . , fm are called the control or input vector fields. The m functions, u1, . . . , um,
are the controls or inputs. The idea is to design the inputs, as functions of x and/or t,
to accomplish certain objectives. For example, one may wish to design the ua’s so as to
make a point x0 ∈ M asymptotically stable. One typically specifies a class of allowable
inputs when considering a control problem. In this paper we shall denote by U the set of
piecewise constant inputs, and always suppose our inputs to be in this set. One may also
consider inputs which are measurable and essentially bounded (for example).

As a first step in the analysis of a system of the form (3.1) one might wish to describe
the set of reachable states. Let x0 ∈ M , let V be a neighbourhood of x0, and let T > 0.
We denote by RV (x0, T ) the set of points which can be reached from x0 in time T while
remaining in V using inputs from U . We also denote RV (x0,≤ T ) = ∪T

t=0R
V (x0, t). We say

that the system (3.1) is locally accessible at x0 if RV (x0,≤ T ) contains a nonempty open
subset of M for each V and for each T sufficiently small. Furthermore, we say that (3.1)
is small-time locally controllable (STLC) if it is locally accessible and if x0 is in the
interior of RV (x0,≤ T ) for each V and for each T sufficiently small.

Consulting Chapter 3 of [Nijmeijer and van der Schaft 1990], one sees that if the invo-
lutive closure of the vector fields {f0, f1, . . . , fm} has maximal rank at x ∈ M , then (3.1)
is locally accessible at x. This condition is quite sharp. For analytic systems it is neces-
sary [Sussmann and Jurdjevic 1972]. This condition is known as the Local Accessibility
Rank Condition (LARC) at x.

Conditions for STLC of systems of the form (3.1) are difficult to obtain, and at the
moment a useful statement of necessary and sufficient conditions is unavailable. However,
a fairly strong sufficient condition is offered by Sussmann [1987]. A precise statement of his
results are beyond the scope of this paper. However, we can make use of a simpler result
which we can state in a comprehensible, if not entirely precise, form.3 A Lie bracket formed
from combinations of vector fields from {f0, f1, . . . , fm} is bad if it contains an even number
of each of the vector fields fa, a = 1, . . . ,m, and an odd number of f0’s. A like Lie bracket
which is not bad is good . The degree of a bracket is the total number of vector fields of
which it is comprised. This becomes clear with a few examples: the bracket [[f0, fa], [f0, fb]]
is good and of degree 4 for any a, b ∈ {1, . . . ,m}, and the bracket [fa, [f0, fa]] is bad and of
degree 3 for any a ∈ {1, . . . ,m}. Let Sm denote the permutation group on m symbols. For

3To make these statements precise, one needs the notion of a free Lie algebra (see [Sussmann 1987] for
details).
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π ∈ Sm and B a Lie bracket of vector fields from {f0, f1, . . . , fm}, define π̄(B) to be the
bracket obtained by fixing f0 and sending fa to fπ(a) for a = 1, . . . ,m. Now define

β(B) =
∑
π∈Sm

π̄(B).

We may state sufficient conditions for STLC.

3.1 Theorem: (Sussmann [1987]) Suppose that an analytic control system of the
form (3.1) is such that every bad bracket B has the property that β(B)(x) is a R-linear com-
bination of good brackets, evaluated at x, of lower degree than B. Also suppose that (3.1)
satisfies the LARC at x. Then (3.1) is STLC at x.

In practice, one comes up with a basis of vector fields comprised of good brackets, then
checks to see that all bad brackets of degree not greater than the highest degree good
bracket satisfy the hypothesis of the theorem.

3.2. Riemannian geometry and mechanics. A Riemannian metric on a manifold M is
a smooth specification of an inner product on each tangent space of M . One may demon-
strate that every manifold (with fairly weak topological hypotheses) possesses a Riemannian
metric. More to the point, however, is the fact that Riemannian metrics are practically syn-
onymous with simple mechanical systems. Indeed, if we let (x, v) denote natural coordinates
for TM , then a kinetic energy function is nothing more than a function of (x, v) which is
quadratic and positive-definite in v. Since positive-definite quadratic forms are in one-
to-one correspondence with inner products, this gives us the relationship between kinetic
energy and a Riemannian metric. We shall denote a typical Riemannian metric by g.

Associated with a Riemannian metric is a natural affine connection. Let us first define
what is meant by an affine connection in a general context. There are many excellent
books to which one can refer for information on affine differential geometry. For example,
the classic [Kobayashi and Nomizu 1963] presents an attractive approach. However, an
excellent quick introduction may be found in Section 2.7 of [Abraham and Marsden 1978],
and we shall distill this approach here. An affine connection assigns to each pair of vector
fields X and Y on M a vector field ∇XY , and this assignment satisfies the properties:

AC1. the map (X,Y ) 7→ ∇XY is R-bilinear;

AC2. ∇fXY = f∇XY for X,Y ∈ T (M) and f ∈ C∞(M);

AC3. ∇X(fY ) = f∇XY + (LXf)Y for X,Y ∈ T (M) and f ∈ C∞(M).

Here T (M) denotes the set of vector fields on M , C∞(M) denotes the set of smooth
functions on M , and LXf is the Lie derivative of f with respect to X. If we define
∇Xf = LXf , for X ∈ T (M) and f ∈ C∞(M), then we may extend ∇X to a derivation
on the entire tensor algebra on M . This means that we may define the covariant derivative
∇XT where T is a tensor field of arbitrary type.

Locally an affine connection may be easily expressed. Let (x1, . . . , xn) be local coordi-
nates for M , and for i, j ∈ {1, . . . , n} write

∇ ∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk
,
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in this way defining n3 local functions Γi
jk, i, j, k = 1, . . . , n, called the Christoffel sym-

bols. These functions are uniquely defined by the affine connection ∇ and the coordinates
(x1, . . . , xn). The converse of this statement can be made true with the proviso that the
functions should transform in a certain way when one changes from one chart to another.
This transformation rule can be found in [Abraham and Marsden 1978], but let us just here
remark that the Christoffel symbols are not the components of a (1, 2) tensor field on M .
An affine connection ∇ is torsion-free if ∇XY −∇YX = [X,Y ] for each X,Y ∈ T (M).

If ∇ is an affine connection on M , a curve c : [a, b] → M is a geodesic for ∇ if
∇c′(t)c

′(t) = 0. One must be careful how to interpret this equation since c′ is not a
vector field. However, when the appropriate care is taken, the condition for a curve
t 7→ (x1(t), . . . , xn(t)) to be a geodesic takes the form

ẍi + Γi
jkẋ

j ẋk = 0, i = 1, . . . , n.

This is a second-order differential equation on M , and so it defines a first-order differential
equation on TM . The vector field corresponding to this first-order differential equation is
given in coordinates by

S = vi
∂

∂xi
− Γi

jkv
jvk

∂

∂vi
.

The vector field S is called the geodesic spray associated with the affine connection ∇.

Now we can assign to a Riemannian metric g an affine connection. We define
g

∇ to be

the unique torsion-free affine connection with the property that
g

∇Xg = 0 for each vector
field X. One may verify that this definition makes sense, and implies that the Christoffel
symbols are given in local coordinates by

g

Γi
jk =

1

2
gil

(
∂glj
∂xk

+
∂glk
∂xj

−
∂gjk
∂xl

)
.

This affine connection is known as the Levi-Civita connection, and [Lewis and Murray
1997a] concerns itself solely with systems which utilise this affine connection. However, all
the results stated hold for general affine connections. The relationship between the affine

connection
g

∇ and mechanics with the kinetic energy Lagrangian corresponding to g may
be stated as follows:

The geodesics of the affine connection
g

∇ are precisely the solutions of the Euler-
Lagrange equations corresponding to the regular Lagrangian vx 7→ 1

2g(vx, vx).

We shall use this correspondence to write the equations of motion for simple mechanical
control systems in the next section.

The final object we need to discuss in Riemannian geometry seems innocuous enough,
but it turns out to play a major rôle in the development of control theory for simple
mechanical systems. Given two vector fields X and Y on M , and an affine connection ∇,
we define their symmetric product to be the vector field ⟨X : Y ⟩ = ∇XY +∇YX.

4. Controllability of simple mechanical control systems

As its title suggests, this section contains the important ideas in the paper. We begin
by formulating the equations of motion for the systems we consider. We put the equations
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in the form of (3.1), so it becomes apparent how to treat the system as a nonlinear control
system. However, we wish to ask questions which are germane to the special structure of
mechanical control systems. In particular, we are interested only in initial states which have
zero velocity, and in the set of reachable configurations, rather than reachable states. This
greatly simplifies the controllability analysis, as we shall see. We then turn to generating
conditions for the special forms of controllability we consider. The approach we take in this
paper is to make the results believable. Precise proofs are provided by the authors in [Lewis
and Murray 1997a].

4.1. The nonlinear control form of equations of motion for simple mechanical control
systems. Let us first be precise about what systems we study. A simple mechanical
control system is a quadruple (Q, g, V,F ) where (1) Q is a finite-dimensional (say n-
dimensional) manifold, (2) g is a Riemannian metric on Q, (3) V is a smooth function
on Q, and (4) F = {F 1, . . . , Fm} is a collection of linearly independent one-forms on
Q. The one-forms F form a basis for the available control forces. Consistent with our
intentions expressed in the introduction, we shall take the potential function V to be zero,
unless otherwise stated. As we asserted in Section 3.2, the equations of motion for the

uncontrolled system are simply
g

∇c′(t)c
′(t) = 0 whose solutions are geodesics of the Levi-

Civita connection. If one wishes to think in terms of Newtonian mechanics where the
governing equations are “ma = F (a is acceleration), then the term ∇c′(t)c

′(t) corresponds

to “a.” Thus, for the forced equations, one should equate “a” with “ 1
mF .” This means

that rather than dealing directly with the forces F 1, . . . , Fm, we deal with the vector fields
Y1, . . . , Ym where, in coordinates, Y i

a = gijF a
j , with gij the components of the inverse

of the matrix with components gij . We shall always deal directly with the vector fields
Y = {Y1, . . . , Ym} rather than the one-forms F . However, we wish to emphasise that
forces are one-forms, and not vector fields. In any event, the control equations may be
written conveniently as

∇c′(t)c
′(t) = ua(t)Ya(c(t)). (4.1)

We gain nothing by using the Levi-Civita connection, so we use a general affine connection
∇ in this equation. However, the reader may wish to always think of ∇ as being the Levi-
Civita connection if they wish. In Section 5 we shall consider one example where ∇ is not
Levi-Civita.

Convenient though (4.1) may be, it is not in the form of (3.1). To convert it to this
general control form, we need another bit of notation. Let X be a vector field on Q. The
vertical lift of X is the vector field X lift on TQ defined by

X lift(vq) =
d

dt

∣∣∣∣
t=0

(vq + tX(q)).

In coordinates, if X = Xi ∂
∂qi

, then X lift = Xi ∂
∂vi

. One may readily see, with a coordinate

computation if necessary, that (4.1) is equivalent to the system

v̇(t) = S(v(t)) + ua(t)Y lift
a (v(t)) (4.2)

on TQ, where we recall that S is the geodesic spray associated ∇. This equation is in
the form of (3.1) with f0 = S and fa = Y lift

a , a = 1, . . . ,m. We are now in a position to
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perform controllability analysis for the system (4.2); but first let us clearly state the notions
of controllability we consider.

4.2. Controllability definitions for simple mechanical control systems. It is possible to
simply adopt the controllability definitions from nonlinear control theory since our system
may be written as a standard control system on TQ (this, after all, was the point of the
previous section). However, since we are dealing with simple mechanical control systems, it
is of more interest to us to know what is happening to the configurations. A good example
of a question of interest in control theory for mechanical systems is “What is the set of
configurations which are reachable from a given configuration if we start at rest?” This is
in fact exactly the question we pose.

4.1 Definition: A solution of (4.2) is a pair, (c, u), where c : [0, T ] → Q is a piecewise
smooth curve and u ∈ U such that (c′, u) satisfies the first order control system (4.2).

Note that since S is a second-order vector field on TQ, every solution of the control sys-
tem (4.2) will be of the form (c′, u) for some curve c on Q. We refer the reader to [Abraham
and Marsden 1978] for a discussion of second-order, and particularly Lagrangian, vector
fields.

Let q0 ∈ Q and let U be a neighbourhood of q0. We define

RU
Q(q0, T ) = {q ∈ Q | there exists a solution (c, u) of (4.2)

such that c′(0) = 0q0 , c(t) ∈ U for t ∈ [0, T ], and c′(T ) ∈ TqQ}

and denote RU
Q(q0,≤ T ) =

⋃
0≤t≤T RU

Q(q0, t). Here 0q0 is the zero vector in the tangent
space Tq0Q. Notice that our definitions for reachable configurations do not require us to get
to a point in the reachable set at zero velocity. They merely ask that we be able to reach
that point at some velocity. It is, however, required that the initial velocity be zero.

We now introduce our notions of controllability.

4.2 Definition: We shall say that (4.2) is locally configuration accessible at q0 ∈ Q
if there exists T > 0 such that RU

Q(q0,≤ t) contains a non-empty open set of Q for all
neighbourhoods U of q0 and all 0 < t ≤ T . If this holds for any q0 ∈ Q then the system is
called locally configuration accessible .

We say that (4.2) is small-time locally configuration controllable (STLCC) at q0
if it is locally configuration accessible at q0 and if there exists T > 0 such that q0 is in the
interior of RU

Q(q0,≤ t) for every neighbourhood U of q0 and 0 < t ≤ T . If this holds for any
q0 ∈ Q then the system is called small-time locally configuration controllable .

We shall say that (4.2) is equilibrium controllable if, for q1, q2 ∈ Q, there exists a
solution (c, u) of (4.2) where c : [0, T ] → Q is such that c(0) = q1, c(T ) = q2 and both c′(0)
and c′(T ) are zero.

4.3 Remarks: 1. Note that these definitions may be made to apply to any second-order
control system which evolves on TQ.

2. Lewis and Murray [1997a], when considering systems with potential function V , define
equilibrium controllability as being able to steer between any two equilibrium points of
the Lagrangian vector field corresponding to the Lagrangian L(vq) =

1
2g(vq, vq)−V (q).
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Such equilibrium points occur exactly where dV = 0. Thus for systems without
potential, all points in Q are equilibria, and so our notion here is consistent with that
in [Lewis and Murray 1997a].

4.3. The structure of the control Lie algebra for simple mechanical control systems.
Given our discussion of Section 3.1, it seems reasonable that to derive conditions to test for
the notions of controllability we defined in the previous section, we would begin by looking
at Lie brackets of vector fields from the set {S, Y lift

1 , . . . , Y lift
m }. This is indeed the correct

thing to do because these calculations yield a great deal of structure. In this section we shall
describe this structure, again making the assumption that the systems have no potential.
The inclusion of potential makes [Lewis and Murray 1997a] rather more involved than what
we do here.

Since we are only interested in initial states with zero velocity, we will be evaluating
all brackets at such points. The 2n-dimensional tangent space T0qTQ admits a natural
decomposition into the direct sum of two copies of TqQ. This is accomplished as follows.
The set Z(TQ) of all zero vectors in TQ is an embedded submanifold of TQ which is
naturally diffeomorphic to Q with the diffeomorphism given by 0q 7→ q. Thus the tangent
space to Z(TQ) at 0q is a vector space which is naturally isomorphic to TqQ. This gives us
one part, which we call the horizontal part, in our proposed direct sum decomposition of
T0qTQ. The other component in the direct sum decomposition comes from the fact that the
tangent space to the fibre TqQ, thought of as a submanifold of TQ, is naturally isomorphic
to TqQ by virtue of TqQ being a vector space. Since the fibre TqQ is transverse to Z(TQ)
at 0q, this gives our natural decomposition T0qTQ ≃ TqQ⊕ TqQ for each q ∈ Q. The first
component we shall take to be the horizontal part, and we call the second component the
vertical part. From now on, we are liable to use this decomposition of T0qTQ without
warning.4 Note that Y lift

a (0q) = (0q, Ya(q)) with respect to this decomposition.
Let us begin with a few example calculations which suggest how one might pro-

ceed. First, we immediately note that all brackets involving only the input vector fields
Y lift
1 , . . . , Y lift

m are identically zero. Also, S(0q) is zero (this, after all, is what it means for
0q to be an equilibrium point of S). A few simple coordinate computations produce the
following formulas:

[S, Y lift
a ](0q) = (−Ya(q), 0q), [Y lift

a , [S, Y lift
b ]](0q) = (0q, ⟨Ya : Yb⟩(q))

[[S, Y lift
a ], [S, Y lift

b ]](0q) = ([Ya, Yb](q), 0q).
(4.3)

The second of these equalities, in fact, holds more generally; we have

[Y lift
a , [S, Y lift

b ]] = (⟨Ya : Yb⟩)lift.

This suggests the importance of the symmetric product in our calculations. Indeed, the
equalities (4.3) suggest that perhaps the accessibility algebra for (4.2), when evaluated
at those states with zero velocity, is computable in terms of Lie brackets and symmetric
products of vector fields from Y = {Y1, . . . , Ym}.

4Given a second-order vector field X on TQ, it is possible to define, for each vq ∈ TQ, a splitting
TvqTQ = TqQ⊕ TqQ which depends on X. If X is the geodesic spray associated with an affine connection,
then this splitting agrees with the one we define when vq ∈ Z(TQ).
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4.4 Remark: A preliminary remark concerning generators for Lie algebras is helpful in
simplifying the task of selecting which brackets to compute. If we have a set of vector fields
{f0, f1, . . . , fm}, then any Lie bracket in these vector fields may be written as a R-linear
combination of brackets of the form

[X1, [X2, . . . , [Xk−1, Xk]]] (4.4)

where Xα ∈ {f0, f1, . . . , fm}, α = 1, . . . , k. One proves this by induction, and using the
Jacobi identity.

A few moments consideration of the equalities (4.3) suggests how one might proceed to
compute higher order brackets. To organise the calculations, it is convenient to introduce
some notation. If B is a bracket formed from vector fields in X = {S, Y lift

1 , . . . , Y lift
m }, then

we denote by δ0(B) the number of occurrences of S in B, and by δa(B) the number of
occurrences of Y lift

a in B for a ∈ {1, . . . ,m}. Let us denote by Brk(X ) the set of brackets
B in X for which

δ0(B)−
m∑
a=1

δa(B) = k.

Thus Brk(X ) is comprised of brackets in which S appears k times more often than all
the input vector fields combined.5 Now we introduce the idea of the components of a
bracket B formed from the vector fields X . Any such bracket will be itself a bracket of
two other brackets: B = [B1, B2]. One can then write Bα = [Bα1, Bα2] for α = 1, 2,
and may carry on this way until we end up with elements from X . The collection of
brackets B1, B2, B11, B12, B21, B22, . . . are called the components of B. A bracket B is
called primitive if all of its components are brackets in Br−1(X ) ∪ Br0(X ) ∪ {S}.

It is perhaps illustrative to write a few primitive brackets so we know what they look
like. Here is a list of the primitive brackets up to degree four:

Degree 1: {Y lift
a | a = 1, . . . ,m}

Degree 2: {[S, Y lift
a ] | a = 1, . . . ,m}

Degree 3: {[Y lift
a , [S, Y lift

b ]] | a, b = 1, . . . ,m}
Degree 4: {[S, [Y lift

a , [S, Y lift
b ]]] | a, b = 1, . . . ,m}∪

{[[S, Y lift
a ], [S, Y lift

b ]] | a, b = 1, . . . ,m}.

It turns out that primitive brackets are the only brackets one need consider. The
reasoning behind this goes as follows. One can show with an inductive calculation that
all brackets B in Brk(B), k ≤ 2, are identically zero. Examples of such brackets include
brackets which involve only the input vector fields. One may prove the following lemma by
induction using the Jacobi identity.

4.5 Lemma: If X has the property that any bracket in Brk(X ), k ≤ 2, is identically zero,
then any bracket in Br0(X ) ∪ Br−1(X ) is a finite sum of primitive brackets.

5The reader with even a mild tendency to pedantry is perhaps becoming uncomfortable with our unclear
use of word “bracket” here. This is because to make it clear one needs to use free Lie algebras as is done
in [Lewis and Murray 1997a].
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As we have already asserted the hypotheses of the lemma, its conclusion must follow, and
so all brackets in Br0(X ) ∪ Br−1(X ), no matter where they be evaluated, are finite linear
combinations of primitive brackets. For example, one may use the Jacobi identity to verify
that

[Y lift
a , [S, [S, Y lift

b ]]] = [[S, Y lift
b ], [S, Y lift

a ]] + [S, [Y lift
a , [S, Y lift

b ]]].

The bracket on the left is not primitive, but is it the sum of two brackets which are.
This takes care of the brackets in Brk(X ), k ≤ 0: they are either identically zero, or a

sum of primitive brackets. But what about the other brackets? They are not , it turns out,
identically zero. However, they are zero when evaluated on Z(TQ). This is because the
local coordinate expressions for such vector fields produce components which are at least
linear in the velocity variables. Bullo [1999] explains this in terms of homogeneity.

So now we are at the point where the only brackets we need to consider for evaluation
on Z(TQ) are primitive brackets. By Remark 4.4 we only need consider those primitive
brackets of the form (4.4). Given this, it becomes important to know just what such
primitive brackets actually look like. We take our lead from the computations (4.3). Let
us make a few preliminary observations based on these calculations. Primitive brackets in
Br−1(X ) are vertical, and those in Br0(X ) are horizontal when evaluated on Z(TQ). Note
that primitive brackets in Br−1(X ) (and so all brackets in Br−1(X ), by Lemma 4.5) are
vertical (in the sense that they vanish under the application of TπTQ) even at points away
from Z(TQ). In fact, primitive brackets in Br−1(X ) are exactly vertical lifts of symmetric
products of vector fields in Y . The precise meaning of this statement is made clear with a
few examples to augment the second equality of (4.3):

[Y lift
a , [[S, Y lift

b ], [S, Y lift
c ]]] = (⟨Yc : ⟨Ya : Yb⟩⟩ − ⟨Yb : ⟨Ya : Yc⟩⟩)lift

[[Y lift
a , [S, Y lift

b ]], [S, [Y lift
c , [S, Y lift

d ]]]] = (⟨⟨Ya : Yb⟩ : ⟨Yc : Yd⟩⟩)lift.
(4.5)

From a close examination of these examples, we hope it is clear how, at least in symbols,
one may write the correspondence between primitive brackets in Br−1(X ) and symmetric
products in Y . We denote by Sym(Y ) the distribution obtained by closing the input
distribution under symmetric product.

Let us follow a similar methodology to describe the appearance of primitive brackets
in Br0(X ). That is, we shall provide a few examples, and refer the reader to [Lewis and
Murray 1997a] and the dissertation [Lewis 1995] for details. One may verify the following
equalities:

[S, [Y lift
a , [[S, Y lift

b ], [S, Y lift
c ]]]](0q) = (−⟨Ya : ⟨Yb : Yc⟩⟩(q), 0q)

[[S, [Y lift
a , [S, Y lift

b ]]], [S, [Y lift
c , [S, Y lift

d ]]]](0q) = ([⟨Ya : Yb⟩, ⟨Yc : Yd⟩](q), 0q).
(4.6)

Thus one gleans that all primitive brackets in Br0(X ) give all symmetric products in Y ,
as well as all Lie brackets between these symmetric products. We denote the distribution
generated in this way by Lie(Sym(Y )).

Interestingly, the drift vector field vanishes from the formulas (4.5) and (4.6), its rôle
being taken up by the symmetric product.

To summarise the point of this section we have the following result which is central to
our methodology.
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4.6 Proposition: Lie(X )0q = Lie(Sym(Y ))q ⊕ Sym(Y )q.

Roughly speaking, one can regard Sym(Y )q as the velocity directions which are accessible
from 0q, and Lie(Sym(Y ))q as the configuration directions accessible from 0q.

4.4. Controllability results for simple mechanical control systems. Since, by our dis-
cussion of Section 3.1, local accessibility of (4.2) at 0q is determined by computing the
involutive closure of X at 0q, from Proposition 4.6 we immediately ascertain that (4.2) is
locally accessible at 0q if Sym(Y )q has the dimension of Q. But this is not necessary for
local configuration accessibility. Indeed, given that the horizontal component of Lie(X )0q
is Lie(Sym(Y ))q, the following result is the obvious one to guess, and is in fact correct.

4.7 Theorem: The control system (4.2) is locally configuration accessible at q if
Lie(Sym(Y ))q = TqQ.

The hypotheses of the theorem are necessary for analytic systems by virtue of the results
of Sussmann and Jurdjevic [1972]. For smooth systems, the conditions are necessary in that
if (4.2) is locally configuration accessible at every q ∈ Q, then the hypotheses of Theorem 4.7
hold on an open, dense subset of Q.

4.8 Remark: There are examples which are locally configuration accessible, but are not
locally accessible (see Section 5.1). Thus our controllability definitions are genuinely weaker
than the standard ones.

It is a similarly simple matter to use our hard work of Section 4.3 to adapt Theorem 3.1
to give a result for STLCC. If P is a symmetric product in the vector fields Y ,6 we let
γa(P ) denote the number of occurrences of Ya in P , and we define the degree of P by
γ1(P )+ · · ·+ γm(P ). We shall say that P is bad if γa(P ) is even for each a = 1, . . . ,m. We
say that P is good if it is not bad. Let Sm denote the permutation group on m symbols.
For π ∈ Sm and P a symmetric product in the vector fields Y , define π̄(P ) to be the bracket
obtained by sending Ya to Yπ(a) for a = 1, . . . ,m. Now define

ρ(P ) =
∑
π∈Sm

π̄(P ).

We may now state the sufficient conditions for STLCC.

4.9 Theorem: Suppose that Y is such that every bad symmetric product P in Y has the
property that

ρ(P )(q) =

m∑
a=1

ξaCa(q)

where Ca are good symmetric products in Y of lower degree than P and ξa ∈ R for
a = 1, . . . ,m. Also, suppose that Lie(Sym(Y ))q has the dimension of Q. Then (4.2) is
STLCC at q.

6Just as to be precise when talking about “brackets” we need to really use free Lie algebras, to be precise
about “symmetric products” we need to use free symmetric algebras, as is done by the authors in [Lewis
and Murray 1997a].
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θ

ψ

r

Figure 2. The robotic leg

4.10 Remarks: 1. The proof of this result follows from Theorem 3.1 and an examination
of the bracket computations of Section 4.3—one observes a one-to-one correspondence
between bad brackets in X (when evaluated on Z(TQ)) and bad symmetric products
in Y .

2. A closer examination of the proof of Theorem 4.9 reveals the remarkable fact that if
the hypotheses of the theorem hold at all points in Q, then (4.2) is in fact equilibrium
controllable. This, it turns out, is a consequence of the system being STLC on the
set of reachable states if the hypotheses are satisfied on all of Q.

5. Examples of mechanical control systems

In this section we present some examples. The examples are rather simple and are
intended to illustrate the concepts put forward by the theory. One of the advantages of
the condition for local configuration accessibility given in Theorem 4.7 is that it lends itself
to symbolic computation. Indeed, a Mathematica package was written to facilitate the
computations in this section. All examples we consider here are without potential. For a
simple example with potential, see [Lewis and Murray 1997a].

It is worth emphasising that for each of these examples, and indeed for all examples of
the form (4.2), the linearisation at points of zero velocity is not controllable.

5.1. The robotic leg. This example, although simple, exhibits much of the subtle be-
haviour that makes the study of mechanical systems interesting. The example is a rigid
body with inertia J which is pinned to ground at its centre of mass. The body has attached
to it an extensible massless leg and the leg has a point mass with mass m at its tip. The
coordinate θ will describe the angle of the body, and ψ will describe the angle of the leg from
an inertial reference frame. The coordinate r will describe the extension of the leg. Thus
the configuration space for this problem is Q = T2 ×R+. See Figure 2. In the coordinates
(θ, ψ, r) the Riemannian metric for the robotic leg is

g = Jdθ ⊗ dθ +mr2dψ ⊗ dψ +mdr ⊗ dr,
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Inputs
Locally configuration

accessible?
Satisfies sufficient

conditions for STLCC? STLCC?

Y1 (torque) yes no no

Y2 (extension) no no no

Y1 and Y2 yes yes yes

Table 1. Controllability results for the robotic leg. The first col-
umn displays which inputs are present, the second column in-
dicates whether the system is locally configuration accessible
with these inputs, the third column indicates whether the sys-
tem with these inputs satisfies the sufficient conditions of Theo-
rem 4.9 for STLCC, and the last column indicates whether the
system with these inputs is actually STLCC.

and the input one-forms are F 1 = dθ−dψ and F 2 = dr. We may compute the input vector
fields to be

Y1 =
1

J

∂

∂θ
− 1

mr2
∂

∂ψ
, Y2 =

1

m

∂

∂r
.

We will find the following computations to be sufficient:

⟨Y1 : Y1⟩ = − 2

m2r3
∂

∂r
, ⟨Y1 : Y2⟩ = 0, ⟨Y2 : Y2⟩ = 0,

[Y1, Y2] = − 2

m2r3
∂

∂ψ
, [Y1, ⟨Y1 : Y1⟩] =

4

m3r6
∂

∂ψ
.

The controllability results for the robotic leg are displayed in Table 1.

5.1 Remark: Although the system only violates the sufficient conditions for STLCC with
the input Y1, one may easily determine that the system is, in fact, not STLCC. The reason
for this is that, because of “centrifugal force,” or whatever may be your favourite name
for the related phenomenon, r will increase no matter what happens to the other vari-
ables. Thus our initial configuration will never be in the interior of the set of reachable
configurations.

5.2. The forced planar rigid body. In this section we study the planar rigid body discussed
in the introduction with various combinations of forces and torques. The configuration
space for the system is the Lie group SE(2). To establish the correspondence between the
configuration of the body and SE(2), fix a point O ∈ R2 and let {e1 = ∂

∂x , e2 =
∂
∂y} be the

standard orthonormal frame at that point. Let {f1,f2} be an orthonormal frame attached
to the body at its centre of mass. The configuration of the body is determined by the
element g ∈ SE(2) which maps the point O with its frame {e1, e2} to the position, P , of
the centre of mass of the body with its frame {f1,f2}. See Figure 3. The inputs for this
problem consist of forces applied at an arbitrary point and a torque about the centre of
mass. Without loss of generality (by redefining our body reference frame {f1,f2}) we may
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O
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F 2

F 1

F 3

Figure 3. The configuration of a
planar body as an element of
SE(2)

Figure 4. Positions for application
of forces on a planar rigid body
after simplifying assumptions

suppose that the point of application of the force is a distance h along the f1 body-axis
from the centre of mass. The situation is illustrated in Figure 4.

With this convention fixed, we shall use coordinates (x, y, θ) for the planar rigid body
where (x, y) describe the position of the centre of mass and θ describes the orientation of the
frame {f1,f2} with respect to the frame {e1, e2}. In these coordinates, the Riemannian
metric for the system is

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ.

Here m is the mass of the body and J is its moment of inertia about the centre of mass.
The inputs are described by the one-forms

F 1 = cos θdx+ sin θdy, F 2 = − sin θdx+ cos θdy − hdθ, F 3 = dθ

from which we compute the input vector fields as

Y1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
,

Y2 = −sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
− h

J

∂

∂θ
, Y3 =

1

J

∂

∂θ
.

The following computations are sufficient to obtain the results we desire:

⟨Y1 : Y1⟩ = 0, ⟨Y1 : Y2⟩ =
h sin θ

mJ

∂

∂x
− h cos θ

mJ

∂

∂y
,

⟨Y1 : Y3⟩ = −sin θ

mJ

∂

∂x
+

cos θ

mJ

∂

∂y
, ⟨Y2 : Y2⟩ =

2h cos θ

mJ

∂

∂x
+

2h sin θ

mJ

∂

∂y
,

⟨Y2 : Y3⟩ = −cos θ

mJ

∂

∂x
− sin θ

mJ

∂

∂y
, ⟨Y3 : Y3⟩ = 0,

[Y1, Y2] = −h sin θ
mJ

∂

∂x
+
h cos θ

mJ

∂

∂y
, [Y1, Y3] =

sin θ

mJ

∂

∂x
− cos θ

mJ

∂

∂y
,

[Y2, Y3] =
cos θ

mJ

∂

∂x
+

sin θ

mJ

∂

∂y
, [Y2, ⟨Y2 : Y2⟩] =

2h2 sin θ

mJ2

∂

∂x
− 2h2 cos θ

mJ2

∂

∂y
.
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Inputs
Locally configuration

accessible?
Satisfies sufficient

conditions for STLCC? STLCC?

Y1 (at CM) no no no

Y2 (⊥ CM) yes no no

Y3 (torque) no no no

Y1 and Y2 yes yes yes

Y1 and Y3 yes yes yes

Y2 and Y3 yes no yes

Table 2. Controllability results for the planar rigid body. The first
column displays which inputs are present, the second column
indicates whether the system is locally configuration accessible
with these inputs, the third column indicates whether the sys-
tem with these inputs satisfies the sufficient conditions of Theo-
rem 4.9 for STLCC, and the last column indicates whether the
system with these inputs is actually STLCC.

With the computations done, we may proceed to determine configuration controllability
for the planar rigid body with various combinations of inputs. The results are displayed in
Table 2.

5.2 Remarks: For this example, in the cases when the system fails to satisfy the sufficient
conditions for STLCC of Theorem 4.9, we are not able immediately able to say whether
the system is, in fact, not STLCC—further analysis is required.

1. When the inputs Y2 and Y3 are present, even though the system does not satisfy the
sufficient conditions of Theorem 4.9, one may readily show that it is STLCC. To do
this one makes a feedback transformation which makes the system into one which
satisfies the hypotheses of Theorem 4.9.

2. When one has only the input Y2 available, things are a bit less trivial. Nevertheless,
the analysis of Lewis [1997], following Sussmann [1983], shows that the system is not
STLCC.

5.3. The upright rolling disk. Now we sketch an example for which we have not presented
a means for writing the equations of motion in the form of (4.2). Nevertheless, the equations
are of this form [Lewis 2000]. We shall simply write an affine connection whose geodesics,
when restricted to the appropriate initial conditions, are the unforced solutions. We present
this example to reinforce the utility of using a general geodesic spray and general vertically
lifted vector fields in (4.2).

The example we consider is one with nonholonomic constraints. It is an upright rolling
disk as depicted in Figure 5 and has Q = SE(2) × S1 as its configuration manifold. The
system has its natural kinetic energy defined by the Riemannian metric

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ + Idϕ⊗ dϕ.
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Figure 5. The rolling disk

Here m > 0 is the mass of the disk, I > 0 is the moment of inertia of the disk about its
centre, and J > 0 is the moment of inertia of the disk about the “z-axis.” However, the
equations of motion are not the geodesics of the corresponding Levi-Civita connection. This
is a consequence of the fact that the system in constrained. Indeed, the condition that the
disk roll without slipping is modelled by declaring that the velocities satisfy the relations

ẋ = r cos θϕ̇, ẏ = r sin θϕ̇.

It turns out that the constrained equations of motion, in accordance with the Lagrange-
d’Alembert principle, are those geodesics, whose initial conditions satisfy the constraints,
of a certain affine connection.7 The affine connection has Christoffel symbols

Γx
xθ =

mr2 sin 2θ

I +mr2
, Γx

yθ = −mr
2 cos 2θ

I +mr2
, Γx

ϕθ =
Ir sin θ

I +mr2
,

Γy
xθ = −mr

2 cos 2θ

I +mr2
, Γy

yθ = −mr
2 sin 2θ

I +mr2
, Γy

ϕθ = − Ir cos θ

I +mr2
,

Γϕ
xθ =

mr sin θ

I +mr2
, Γϕ

yθ = −mr cos θ
I +mr2

.

This system has two natural inputs: a torque which makes the disk roll, and a torque
which makes the disk spin. These inputs are modelled by the one-forms F 1 = dϕ and
F 2 = dθ, and the inputs vector fields associated with these forces are

Y1 =
1

I +mr2

(
r cos θ

∂

∂x
+ r sin θ

∂

∂y
+

∂

∂ϕ

)
, Y2 =

1

J

∂

∂θ
.

Note that these vector fields are not just obtained by multiplying the force one-forms by
the “inverse” of g. The theory outlined by Lewis [2000] asks that we further g-orthogonally
project these vector fields to the distribution D. The details are of no real consequence
here; the point is that the upright rolling disk is a control system of the form (4.2).

7Actually, there are many affine connections which will serve here.
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Inputs
Locally configuration

accessible?
Satisfies sufficient

conditions for STLCC? STLCC?

Y1 (roll) no no no

Y2 (spin) no no no

Y1 and Y2 yes yes yes

Table 3. Controllability results for the upright rolling disk. The
first column displays which inputs are present, the second col-
umn indicates whether the system is locally configuration ac-
cessible with these inputs, the third column indicates whether
the system with these inputs satisfies the sufficient conditions of
Theorem 4.9 for STLCC, and the last column indicates whether
the system with these inputs is actually STLCC.

We now perform the symmetric product and Lie bracket computations necessary to
make conclusions about the controllability of the system. We compute

⟨Y1 : Y1⟩ = 0, ⟨Y1 : Y2⟩ = 0, ⟨Y2 : Y2⟩ = 0,

[Y1, Y2] =
r

J(I +mr2)

(
sin θ

∂

∂x
− cos θ

∂

∂y

)
[Y 2, [Y 1, Y 2]] =

r

J2(I +mr2)

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
.

We may now easily deduce some basic facts about the controllability of the upright
rolling disk, and the results are displayed in Table 3.

6. Subsequent and future work

In this paper we were primarily concerned with presenting the essential features of the
program initiated by the authors in [Lewis and Murray 1997a]. In doing so, we have made
passing reference to work which utilises the results and methodology in that paper. Let us
here summarise these contributions and present some which we might have omitted.

The results of Lewis and Murray [1997a] provide a practical approach to controllabil-
ity theory for simple mechanical control systems. However, it suggests a question whose
answer was unknown at the time of publication of the paper: What is the “meaning” of
the symmetric product? The answer is to be found in [Lewis 1998], and is quite simple
and revealing. Let D be a distribution on a manifold Q with an affine connection ∇. D is
geodesically invariant under ∇ if for each geodesic c : [a, b] → Q, c′(a) ∈ Dc(a) implies
that c′(t) ∈ Dc(t) for t ∈ (a, b]. Lewis [1998] shows that D is geodesically invariant if and
only if ⟨X : Y ⟩ is a section of D for all vector fields X and Y taking values in D. Thus
the symmetric product performs for geodesically invariant distributions the same task the
Lie bracket performs for integrable distributions. This interpretation is employed in [Lewis
and Murray 1997b] to describe a decomposition for the systems we consider in this present
paper.
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As mentioned in the introduction, and assumed by the example of Section 5.3, systems
with nonholonomic constraints have equations of motion whose solutions are geodesics of
a certain affine connection. This reinforces our view that the proper abstraction for the
class of mechanical systems we consider is a system of the form (4.2) with S the geodesic
spray of an arbitrary affine connection, and Y1, . . . , Ym arbitrary vector fields on Q (i.e., not
necessarily obtained from one-forms as we describe in Section 4.1). This is the approach
taken by the authors [Lewis and Murray 1997b] and by Lewis [2000]. It is interesting to
note that, at this point, there is actually nothing in the theory which distinguishes the
results for Levi-Civita affine connections with those for general affine connections.

Our main controllability result, Theorem 4.9, is a sufficient condition. This suggests
that further work might sharpen these conditions. An example of when this may be done is
in the single-input case [Lewis 1997]. In this case—and here it is essential that the systems
are without potential—one may show that a single-input simple mechanical control system
is STLCC if and only if dim(Q) = 1, i.e., only in the trivial case when the system is fully
actuated. This, for example, provides a negative answer to the question of STLCC of the
planar body with the input perpendicular to the line joining the point of application of
the force with the centre of mass. This result allows Lynch and Mason [1998] to prove
the necessity of three unilateral forces to “dynamically grasp” a planar object. Lynch and
Mason also use our multi-input sufficient condition, Theorem 4.9.

The single-input result referred to above, while seemingly innocuous, is perhaps sug-
gestive of something nontrivial about simple mechanical control systems. The essential
point of interest is that we have necessary and sufficient conditions for STLCC of simple
mechanical control systems, in the absence of potential, with a single input. Results of this
strength are not available for general single-input control systems (a fairly strong result is
proved by Sussmann [1983]), and this suggests that simple mechanical control systems have
a very structured control Lie algebra—certainly the computations of Section 4.3 bear this
out. Perhaps it is possible to provide computable necessary and sufficient conditions for
STLCC for multi-input simple mechanical control systems.

Our results provide a starting point for the analysis of a simple mechanical control sys-
tem: if a system is not controllable, certain control tasks become impossible. However, our
results go nowhere towards answering the essential problems of controller design. Inter-
estingly, in work with one of the authors, Bullo and Leonard [Bullo, Leonard, and Lewis
2000] provide a synthesis method which is applicable to invariant systems in Lie groups (the
planar rigid body of Section 5.2 is a system of this type). Here one uses averaging theory,
along with the controllability conditions of Theorem 4.9, to design control laws to perform
certain tasks. Systems without potential energy possess an interesting feature: while the
lack of potential makes for easier statements of controllability results, it greatly increases
the difficulty of control design. This is reflected, for example, by the fact that the absence of
potential guarantees that linear control design methods are inapplicable. Another example
of the difficulty which one encounters in control synthesis is the fact that asymptotic sta-
bilisation of an equilibrium point under continuous state feedback is impossible by a result
of Brockett [1983], and exponential stabilisation is impossible with smooth, time-dependent
feedback. Exponential stabilisers are provided in [Bullo, Leonard, and Lewis 2000] which
are continuous and time-dependent.

At this point we would like to emphasise that methods designed for trajectory genera-
tion for “nonholonomic” (i.e., driftless) control systems are not generally applicable to the
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systems we consider. That they are in some cases (for example, the leg of Section 5.1 with
both inputs) is a consequence of a special relationship between the inputs and the affine
connection as is explained by Lewis [1999].

Another approach to trajectory generation uses “differential flatness” as introduced by
Fleiss et al. [Fliess, Lévine, Martin, and Rouchon 1992]. The work of Rathinam and Murray
[1998] uses affine connections to describe conditions for “configuration flatness” for a class
of simple mechanical control systems. Other work which utilises includes that of Bullo and
Murray [1999].
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Fliess, M., Lévine, J., Martin, P., and Rouchon, P. [1992] Sur les systèmes non linéaires
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