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Abstract

The affine connection formalism provides a useful framework for the investigation of
a large class of mechanical systems. Mechanical systems with kinetic energy Lagrangians
and possibly with nonholonomic constraints are fit naturally into the formalism, and
some results are stated in the areas of controllability and optimal control for affine
connection control systems.
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1. Introduction

Control theory for mechanical systems is a topic which has received a certain degree
of attention in the past decade. Apart from the fact that many control applications are
mechanical in nature, the differential geometric flavour of aspects of both mechanics and
nonlinear control theory provides compelling theoretical motivation for this interest.

When one begins to think about studying control theory for mechanical systems, one
must in some sense choose something from each of the two subjects—control theory and
mechanics—in order to initiate the investigation. In the author’s own work, the choice from
control theory was nonlinear controllability, and the choice from mechanics was so-called
“simple mechanical systems,” those whose Lagrangians are kinetic minus potential energy.
When this choice is made, the equipment made available by the choice often dictates the
nature of the results one obtains. For example, in the author’s initial work in the area,
the investigation of a certain type of controllability for simple mechanical systems led to
the “symmetric product.” A readable overview of this work with Richard Murray may be
found in a recent SIAM Review paper [Lewis and Murray 1999]. Interestingly, the symmetric
product also appears in the somewhat unrelated work of Crouch [1981]. The symmetric
product is an object which one might consider in terms of affine differential geometry, quite
apart from any mechanical or control theoretic context. This is done, along with other
related work, in the paper [Lewis 1998]. This differential geometric interpretation of the
symmetric product may then be brought back to control theory, and provides an interesting
interpretation of reachable sets for simple mechanical control systems [Lewis and Murray
1997b].
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Recent work of the author has centred on optimal control theory for mechanical systems,
again utilising the affine connection framework. Here one can produce a geometric version
of the Maximum Principle where the essential ingredient is the so-called “adjoint Jacobi
equation” which forms that part of the equation describing the evolution of the adjoint
vector which is independent of the cost function, i.e., that part which depends only on
the control system. This equation is, as the name suggests, related to the Jacobi equation
of geodesic variation. The full development is somewhat lengthy, and here we present an
abbreviated form of these results, noting that their full statement has not yet appeared in
the literature.

The impression might then be gotten that there is a connection, possibly a deep one,
between affine differential geometry and control theory for simple mechanical systems. This
impression has been reinforced by other work in this area, for example [Baillieul 1999, Bloch
and Crouch 1995b, Bullo 1999, Bullo 2002, Bullo, Leonard, and Lewis 2000, Crouch and
Silva Leite 1991, Lewis 1999, Lewis 2000a, Noakes, Heinzinger, and Paden 1989]. We will
touch on the content of some of these and other papers as they comes up in the sequel.

2. Mechanical systems as affine connection control systems

We begin by motivating a discussion of what we shall in Section 3 refer to as “affine
connection control systems.” We do this by showing how affine connections naturally arise
when discussing mechanical systems with kinetic energy Lagrangians. Thus we have a con-
figuration manifold Q which possesses a Riemannian metric g giving rise to the Lagrangian
L(vq) =

1
2g(vq, vq). Often, of course, one is interested in including potential forces in the

Lagrangian, and it is indeed possible to do this. For example, the issue of potential shap-
ing is touched upon in some recent work [Bloch, Leonard, and Marsden 1999, Bullo 2002,
Weibel and Baillieul 1998]. The initial work on controllability of Lewis and Murray [1997a]
also includes potential forces.

Our aim is to show, in as concise a manner as possible, how one makes the step from
mechanics to affine differential geometry. To do this we use local coordinates (q1, . . . , qn)
for Q and remark that a simple calculation shows that if we take L = 1

2gij q̇
iq̇j (here we use

the summation convention where repeated indices are summed) we obtain the equivalence

d

dt

( ∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n ⇐⇒ q̈i +

g

Γi
jkq̇

j q̇j = 0, i = 1, . . . , n, (2.1)

where
g

Γi
jk =

1

2
giℓ

(∂gℓj
∂qk

+
∂gℓk
∂qj

−
∂gjk
∂qℓ

)
.

The n3 functions
g

Γi
jk, i, j, k = 1, . . . , n are theChristoffel symbols for an affine connection

g

∇ called the Levi-Civita connection . The equation (2.1) asserts that the solutions of the
Euler-Lagrange equations are exactly geodesics for the affine connection ∇. A thorough
discussion of affine connections may be found in Kobayashi and Nomizu [1963a, 1963b], but
we shall say a few cursory words on the subject in the next section.

Interestingly, it is also true that one may use the affine connection formalism to describe
the motion of a system with a kinetic energy Lagrangian, and with constraints linear in
velocity. This idea seems to originate with Synge [1928], and the author was first made
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aware of it via the paper of Bloch and Crouch [1995a] at the CDC in 1995. Briefly the setup
is this. One has a distribution D on Q and the system’s velocities are constrained to lie in
D. To write the equations of motion for such systems, one uses the Lagrange-d’Alembert
principle, and doing so yields equations of the form

q̈i + Γi
jkq̇

j q̇k = 0, i = 1, . . . , n

where the Christoffel symbols Γi
jk are those for the affine connection ∇ defined by

∇XY =
g

∇XY + (
g

∇XP⊥)(Y ) (2.2)

where P⊥ is the orthogonal projection onto the orthogonal complement of D. Some sense
can perhaps be made of the expression (2.2) after reading the next section in which affine
connections are characterised. Nonetheless, details aside, the bottom line is that for mechan-
ical systems, constrained or unconstrained, with kinetic energy Lagrangians, the unforced
equations are geodesic equations, and as such are typically written ∇c′(t)c

′(t) = 0 for a
curve c : I → Q with I ⊂ R an interval.

The preceding discussion is of a purely mechanical nature, and has naught to do with
control theory. To make the mechanical systems into control systems, we add forces to the
picture. The idea is to select one input force associated with each direction in which one
may apply a force, and take as the control force a linear combination of these forces. We
make the assumption that the directions in which one may apply forces vary only with the
configuration of the system, and not with, for example, velocity or time. Doing so means
that control forces may be modelled as vector fields {Y1, . . . , Ym} on Q, and the control
system we consider is this one:

∇c′(t)c
′(t) = ua(t)Ya(c(t)). (2.3)

This control system forms the basis of discussion for the remainder of the paper.

3. Affine connection control systems

The motivation of Section 2 serves to provide a mechanical backdrop for this section,
where we look formally, but briefly, at affine connections and control systems formed by
them. We refer to the bibliography, principally Kobayashi and Nomizu [1963a, 1963b], for
details on the plethora of under-justified assertions in this section.

3.1. Affine differential geometry. An affine connection on Q assigns to each pair of
vector fields X and Y on Q a vector field ∇XY with the assignment satisfying

1. the map (X,Y ) 7→ ∇XY is R-bilinear,

2. ∇fXY = f∇XY , and

3. ∇X(fY ) = f∇XY + (LXf)Y

for all vector fields X and Y on Q, all functions f on Q, and where LX denotes the Lie
derivative with respect to X. The association of this abstract object with the Christoffel
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symbols of the previous section occurs when we choose local coordinates (q1, . . . , qn). Then
we may apply the affine connection to a pair of coordinate vector fields ∂

∂qi
:

∇ ∂

∂qj

∂

∂qk
= Γi

jk

∂

∂qi
,

which provides the definition of the Christoffel symbols for an arbitrary affine connection.
The vector field ∇XY is called the covariant derivative of Y with respect to X, and if we
define ∇X on smooth functions by ∇Xf = LXf , then we may extend ∇X to a derivation on
the tensor algebra over Q in the usual manner. That is, it is possible to define the covariant
derivative ∇XA of an (r, s) tensor field A with respect to X. The torsion tensor and the
curvature tensor for an affine connection are the (1, 2) tensor field T on Q and the (1, 3)
tensor field R on Q defined by

T (X,Y ) = ∇XY −∇Y X − [X,Y ]

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

respectively. The affine connection
g

∇ associated with the Riemannian metric g is then the

unique torsion-free affine connection with the property that
g

∇Xg = 0 for every vector field
X on Q. Thus far the objects we have discussed are classical to affine differential geometry.
However the control considerations of [Lewis and Murray 1997a] led to the symmetric
product of two vector fields which we define by ⟨X : Y ⟩ = ∇XY + ∇Y X. The geometric
meaning of the symmetric product has been provided by the author [Lewis 1998], and we
refer to [Crouch 1981] for an appearance of the symmetric product in another setting.

A geodesic for an affine connection ∇ is a curve c : I → Q from an interval I ⊂ R which
has the property that ∇c′(t)c

′(t) = 0 for ∈ I. If cs : I → Q is a smooth family of geodesics
defined for s ∈ ] − ϵ, ϵ[ , and which has the property that c0 = c, we define a Jacobi field
along c to be any vector field along c of the form

ξ(t) =
d

ds

∣∣∣∣
s=0

cs(t).

Jacobi fields may be shown to satisfy the Jacobi equation :

∇2
c′(t)ξ(t) +R(ξ(t), c′(t))c′(t) +∇c′(t)(T (ξ(t), c

′(t))) = 0.

Thus the Jacobi equation may be thought of as the equation of “geodesic variation.”
Yet another piece of equipment is the geodesic spray associated with an affine con-

nection ∇. This is the second-order vector field with the property that the projection of its
integral curves to Q are geodesics for ∇. In coordinates we have

Z = vi
∂

∂qi
− Γi

jkv
jvk

∂

∂vi
.

If one wishes to treat the system (2.3) as a first-order control affine nonlinear control system
on TQ, the vector field Z is the drift vector field. In a treatment such as this, the control
vector fields are the m vector fields on TQ denoted Y lift

a , a = 1, . . . ,m where

Y lift
a (vq) =

d

dt

∣∣∣∣
t=0

(
vq + tYa(q)

)
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With all this notation the control system (2.3) is given by

v̇(t) = Z(v(t)) + ua(t)Y lift
a (v(t))

in first-order form on TQ.

3.2. Control system definitions. An affine connection control system is comprised of
a triple (Q,∇,Y ) where Q is a finite-dimensional manifold, ∇ is an affine connection on Q,
and Y = {Y1, . . . , Ym) is a collection of vector fields on Q. To an affine connection control
system we obviously associate a control system of the form (2.3). The inputs u : I → Rm

we consider are measurable functions from an interval I ⊂ R, and we denote this set of
inputs by U . A controlled trajectory is then a pair (c, u) where u : I → Rm is a map
from the set of inputs U and where c : I → Q satisfies (2.3). A controlled arc is a
controlled trajectory defined on a compact interval. Let q0, q1 ∈ Q and let vq0 ∈ Tq0Q
and vq1 ∈ Tq1Q. We denote by Carc(Σ, q0, q1) (resp. Carc(Σ, vq0 , vq1)) the set of controlled
arcs (u, c) for which c(a) = q0 (resp. c′(a) = vq0) and c(b) = q1 (resp. c′(b) = vq1) where
(u, c) is defined on some interval [a, b]. If we wish only to consider controlled arcs from
Carc(Σ, q0, q1) (resp. Carc(Σ, vq0, vq1)) defined on a fixed [a, b] we write Carc(Σ, q0, q1, [a, b])
(resp. Carc(Σ, vq0, vq1 , [a, b])). For q ∈ Q, U a neighbourhood of q, and T > 0 define

RU
Q(q, T ) = {c(T )| ∃ u ∈ U so that (u, c) is a controlled trajectory

defined on [0, T ] with c′(0) = 0q and c(t) ∈ U}.

Thus RU
Q(q, T ) are those configurations reachable in exactly time T from q starting with

zero initial velocity (0q is the zero vector in TqQ). Note that we do not restrict the final
velocity. We also define

RU
Q(q,≤ T ) =

⋃
0≤t≤T

RU
Q(q, t).

4. Controllability for affine connection control systems

The initial impetus for the investigation of the class of systems we are describing was
controllability theory. Here one wishes to exploit the special structure of the system, in
conjunction with well-known techniques in nonlinear controllability, to derive useful con-
trollability tests. In this section we suppose that we have an analytic affine connection
control system (Q,∇,Y = {Y1, . . . , Ym}). The controllability tests from nonlinear control
theory which we adapt are those from standard accessibility theory [e.g., Sussmann and
Jurdjevic 1972] and the small-time local controllability results of Sussmann [1987]. Because
affine connection control systems, although they have a state space of TQ, are defined in
terms of objects on the configuration manifold Q, one would like to obtain results which
are expressed in terms of conditions on Q. Furthermore, it makes a great deal of sense to
formulate controllability definitions on the configuration manifold.

We make the following controllability definitions.
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4.1 Definition: Let Σ = (Q,∇,Y ) be an affine connection control system.

(i) Σ is locally configuration accessible at q if for each neighbourhood U of q there
exists T > 0 so that RU

Q(q, t) has nonempty interior for each 0 < t ≤ T .

(ii) Σ is locally configuration controllable at q if it is locally configuration accessible
at q and if for each neighbourhood U of q there exists T > 0 so that q ∈ int(RU

Q(q, t))
for each 0 < t ≤ T .

(iii) Σ is equilibrium controllable if for each q1, q2 ∈ Q there exists a controlled trajec-
tory (u, c) defined on [0, T ] so that q1 = c(0), q2 = c(T ), c′(0) = 0q1 and 0q2 . •

One wishes to study this so-called “configuration controllability” for a couple of reasons.
One of the most compelling is that it is possible for a system to be locally configuration
accessible (resp. controllable) and not be locally accessible (resp. controllable) in state space.
If one is interested only in what is happening to configurations anyway, it makes sense to
have controllability definitions and tests which reflect this. Also, as we shall see, it is
possible to provide simple tests for the configuration controllability definitions we provide.

Let us first look at the accessibility conditions which were first presented in complete
form in [Lewis and Murray 1997a]. We let Sym(Y ) be the smallest subspace of vector
fields on Q which contains Y and which is closed under symmetric product, and we let
Lie(Sym(Y )) be the smallest subspace of vector fields on Q which contains Sym(Y ) and
which is closed under Lie bracket. We then define

Lie(Sym(Y ))q = {X(q) | X ∈ Lie(Sym(Y ))}.

For analytic systems we have the following sharp result for configuration accessibility.

4.2 Theorem: An analytic affine connection control system Σ = (Q,∇,Y ) is locally con-
figuration accessible at q ∈ Q if and only if Lie(Sym(Y ))q = TqQ.

For C∞ systems, the condition Lie(Sym(Y ))q = TqQ is sufficient but not necessary for
local configuration accessibility. This is explored in detail in the original paper of Lewis
and Murray—the proof requires delving into detail the bracket computations for an affine
connection control system when thought of as a nonlinear control system. In that paper,
a good deal of effort is also devoted to deriving the conditions for local configuration ac-
cessibility for systems with potential energy; this significantly complicates the statement of
the result, so we shall not go into this here. We also mention that the geometric interpre-
tation of the symmetric product [see Lewis 1998] may be applied to give an interpretation
of Theorem 4.2 [Lewis and Murray 1997b].

The configuration controllability result requires that we look at the behaviour of certain
types of symmetric product. A symmetric product from the set Y = {Y1, . . . , Ym} is bad if
it contains an even number of each of the vector fields Ya, a = 1, . . . ,m, and is good if it is
not bad. The degree of a symmetric product is the total number of vector fields of which
it comprised.1 For example, the symmetric product ⟨Ya : ⟨Yb : Ya⟩⟩ is good and of degree 3
and the symmetric product ⟨⟨Ya : Yb⟩ : ⟨Ya : Yb⟩⟩ is bad and of degree 4.

1Of course, we are speaking imprecisely here—to do this rigorously requires that one work with free
algebraic quantities, and this is explained in detail by Lewis and Murray [1997a].
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4.3 Theorem: Let Σ = (Q,∇,Y ) be an affine connection control system.

(i) Σ is locally configuration controllable at q ∈ Q if every bad symmetric product P can
be written at q as

P (q) =
k∑

i=1

ξiPi(q)

for good symmetric products P1, . . . , Pk of degree lower than that of P .

(ii) Σ is equilibrium controllable if the conditions of (i) are satisfied at each q ∈ Q.

In practice one need only check the condition (i) on a set of symmetric products which form
a basis for

Sym(Y )q = {X(q) | X ∈ Sym(Y )}.

These conditions are a watered down version of the general controllability conditions proved
by Sussmann [1987]. It would be interesting indeed if one were able to provide sharp condi-
tions for analytic systems in terms only of symmetric products (and potentially Lie brackets)
of the input vector fields Y . That the control Lie algebra for affine connection control sys-
tems is simpler than that for generic nonlinear control systems may be observed by noting
that sharp conditions exist for single-input systems [Lewis 1997]. In this case one can show
that the system is locally configuration controllable if and only if dim(Q) = 1, i.e., we have
controllability only in the uninteresting case when the system is fully actuated.

Unfortunately, space does not permit the presentation of examples which illustrate the
range of behaviours relating to configuration accessibility and controllability, and we refer
the reader to the references for details concerning some simple physical examples.

5. Optimal control for affine connection control systems

The structure of mechanical systems in some sense makes the problem of optimal control
a natural one. In particular, if one possesses a kinetic energy Riemannian metric, this
encourages the definition of some natural cost functions. It turns out to be possible to
formulate for affine connection control systems a powerful version of the Maximum Principle.
The general buildup is rather substantial, and we refer to [Bullo and Lewis 2005, Chapter S4]
for details. The referenced work relies on a wonderful paper by Sussmann [1998] which
provides a general and geometric formulation for the Maximum Principle.

To eliminate a significant part of the generality of [Bullo and Lewis 2005, Chapter S4]
we choose a specific cost function, and the one with which it is the simplest to deal. We let
Σ = (Q,∇,Y = {Y1, . . . , Ym}) be a C∞ affine connection control system and we suppose
that we have a Riemannian metric g on Q. We define a cost function F : Rm ×Q → R by
F (u, q) = g(uaYa(q), u

bYb(q)). The objective of the optimal control problem is to minimise

J(u, c) =

∫
I
F (u(t), c(t)) dt

over a class of controlled trajectories (u, c) defined on an interval I.
Let us precisely state the type of control problems we shall look at.
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5.1 Definition: Let Σ = (Q,∇,Y ) be an affine connection control system, let q0, q1 ∈ Q,
and let vq0 ∈ Tq0Q and vq1 ∈ Tq1Q.

(i) A controlled arc (u∗, c∗) is a solution of F (Σ, vq0, vq1) if J(u∗, c∗) ≤ J(u, c) for
every (u, c) ∈ Carc(Σ, vq0 , vq1).

(ii) A controlled arc γ = (u∗, c∗) is a solution of F[a,b](Σ, vq0, vq1) if J(u∗, c∗) ≤ J(u, c)
for every (u, c) ∈ Carc(Σ, vq0 , vq1 , [a, b]).

(iii) A controlled arc γ = (u∗, c∗) is a solution of F (Σ, q0, q1) if J(u∗, c∗) ≤ J(u, c) for
every (u, c) ∈ Carc(Σ, q0, q1).

(iv) A controlled arc γ = (u∗, c∗) is a solution of F[a,b](Σ, q0, q1) if J(u∗, c∗) ≤ J(u, c)
for every (u, c) ∈ Carc(Σ, q0, q1, [a, b]). •

Bullo and Lewis [2005, Chapter S4] provides a general statement of the Maximum
Principle for affine connection control systems which we will here distill to the cost function
at hand. We let P : TQ → TQ be the orthogonal projection onto the distribution spanned
by the input vector fields Y , and define a (2, 0) tensor field h on Q by

h(α, β) = g−1(P ∗(α), P ∗(β))

for one-forms α and β, where g−1 is the (2, 0) tensor field associated with g (i.e., that
one whose components in coordinates are the inverse of the components of g) and where
P ∗ : T ∗Q → T ∗Q is the dual endomorphism of P . We also define some notation for the
curvature and torsion tensors. For vector fields X, Y , and Z and a one-form α define R∗

and T ∗ by

⟨T ∗(α,X);Y ⟩ = ⟨α;T (Y,X)⟩,
⟨R∗(α,X)Y ;Z⟩ = ⟨α;R(Z,X)Y ⟩

where ⟨·; ·⟩ denotes the natural pairing of a one-form and a vector field.
The usual statement of the Maximum Principle requires the Hamiltonian associated

with the optimal control problem. The Hamiltonian will be function HΣ,F on Rm × T ∗TQ
defined by

HΣ,F (u, αvq) = F (u, q) +
〈
αvq ;Z(vq) + uaY lift

a (vq)
〉
.

To represent this function in the most useful manner one needs to use a splitting which
is adapted to the affine connection. This part of the construction requires some effort to
reproduce, so let us just state where one ends up after the effort is expended. One obtains
a splitting of each fibre T ∗

vqTQ as T ∗
q Q⊕T ∗

q Q. With this splitting we denote a typical point
in T ∗TQ by αvq ⊕ βvq ∈ T ∗

vqTQ ≃ T ∗
q ⊕ T ∗

q Q. With this splitting chosen in the appropriate
manner it turns out that

HΣ,F (u, αvq ⊕ βvq) = F (u, q) + αvq · vq + uaβvq · Ya(q).

In this splitting, the Hamiltonian “decouples” and the geodesic spray Z has disappeared,
absorbed into the splitting. In the Maximum Principle one fixes αvq ⊕ βvq ∈ T ∗TQ and
seeks u ∈ Rm to minimise the Hamiltonian. This value of u is then substituted back into
the Hamiltonian to yield the minimum Hamiltonian which in this case is determined to
be

HΣ,F
min (αvq ⊕ βvq) = αvq · vq −

1

2
h(βvq , βvq).

The normal extremals are integral curves for this Hamiltonian. The following result de-
scribes these normal extremals.
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5.2 Theorem: Let Σ = (Q,∇,Y ) be a C∞ affine connection control system. Suppose that
(u, c) is a solution of one of the four problems of Definition 5.1 with u and c defined on
[a, b]. If (u, c) is a normal extremal then c is of class C∞ and there exists a C∞ one-form
field λ along c so that c and λ together satisfy the differential equations

∇c′(t)c
′(t) = −h♯(λ(t))

∇2
c′(t)λ(t) +R∗(λ(t), c′(t))c′(t)− T ∗(∇c′(t)λ(t), c

′(t)) = 1
2∇h(λ(t), λ(t))−

T ∗(λ(t), h♯(λ(t))).

(5.1 )

If γ = (u, c) is a solution of F[a,b](Σ, q0, q1) or of F (Σ, q0, q1) then we additionally have
λ(a) = 0 and λ(b) = 0.

If we suppose Y contains vector fields which span TqQ for each q ∈ Q, i.e., that the
system is fully actuated, and that ∇ is the Levi-Civita connection associated with the Rie-
mannian metric g used in the definition of the cost function, then, with some straightforward
manipulations, we recover the results of Noakes, Heinzinger, and Paden [1989] and Crouch
and Silva Leite [1991], namely that the necessary condition for minimisers is

g

∇3
c′(t)c

′(t) +R(
g

∇c′(t)c
′(t))c′(t) = 0.

Of course one can define other natural cost functions, and explore other questions as-
sociated with optimal control for affine connection control systems. There is much to be
done here, and doubtless some beautiful results await discovery.

6. Closing remarks

The idea of this paper is to give a flavour of the types of results which one may obtain
using the affine connection formalism. That this formalism has an intimate relation to
mechanics, as outlined in Section 2, makes the exploration of this affine connection setting
a bit more enticing. The emphasis here was on affine connection control systems as a class
of systems in and of itself, and dues to space constraints, not much attention has been paid
to mechanics per se. However, the reader is invited to look into the references for examples
of how the theory may be applied to physical examples. Even some simple examples exhibit
surprisingly subtle behaviour.

Also, we have only touched on certain aspects of the author’s own work. A potentially
promising area which has not been discussed is that of whether affine connection control
systems may simplify. In the paper [Lewis 1999] it is shown, for example, that an affine
connection control system is in some sense reducible to a driftless control system provided
the distribution spanned by the input vector fields Y is closed under symmetric product.
In particular, this puts the lie to any possibility of generally reducing the study of a me-
chanical system to one which is driftless, even though this might be possible in specific
cases. This line of thinking suggests the possibility of perhaps simplifying affine connection
control systems using feedback transformations, and the setting for this is described by the
author [Lewis 2000b].

Another possible avenue of exploration is that concerning the rôle of symmetry. In
mechanics, symmetry plays an important rôle, but how this impinges on control theory,
and in particular on the affine connection setting, has not been explored [but see Bloch
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and Crouch 1995b, Bloch and Crouch 1998]. A case which has seen some attention is
that when Q is a Lie group, and the problem data is left-invariant. In this case, Bullo,
Leonard, and Lewis [2000] provide some explicit trajectory generation algorithms, including
an exponential stabilisation algorithm. A different approach for systems with symmetry and
nonholonomic constraints is taken by Ostrowski and Burdick [1997].

We hope we have explicated the value of the affine connection formalism in studying
control theory for a class of mechanical systems.
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