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Abstract

This work presents a review of a number of control results for mechanical systems.
The key technical results derive mainly from the homogeneity properties of affine con-
nection models for a large class of mechanical systems. Recent results on nonlinear
controllability and on series expansions are presented in a unified fashion.

Keywords. mechanical control systems, affine connections, homogeneity.

AMS Subject Classifications (2020). 53B05, 70H03, 70Q05, 93B05, 93B27.

1. Introduction

In this paper we provide a review of some recent work concerning the employment of an
affine connection framework to study mechanical systems. The emphasis of the presentation
here is on the homogeneity properties possessed by these systems, and how this arises in
various results, especially those of the authors. It is this property of homogeneity which
accounts for a great deal of the structure seen in so-called affine connection control systems.
The structure of these systems makes them an ideal proving ground for many techniques in
nonlinear control—the systems are simple enough that one may fruitfully approach difficult
problems, but are nontrivial enough to require sophisticated machinery to have any degree
of success. For example, typical linearization techniques are not useful in this category of
control systems.

The classic structure of mechanical system exploited in stabilization problems is pas-
sivity. Indeed, numerous important control problems rely in their essence on the existence
of a total energy function and its use as a candidate Lyapunov function, see for example
the books [Arimoto 1996, Ortega, Loria, Nicklasson, and Sira-Ramirez 1998]. This paper
focuses on a different property of mechanical systems, that is, their homogeneity . This
property characterizes the Lie algebraic structure of mechanical systems, and accordingly,
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it plays a key rôle in nonlinear controllability, normal forms, series expansions, averaging,
optimal control and various other areas of control theory. It is a contention of this pa-
per that this property has for long time been neglected, and that instead its consequences
should be investigated with increased energy.

This paper relies on the notion of affine connection control systems to model a large
class of systems which are of current interest in the control community. Broadly speaking,
Lagrangian mechanical systems with kinetic energy Lagrangians are effectively modeled in
the affine connection framework, and this is the topic of the papers [Lewis and Murray
1997a] and [Bullo, Leonard, and Lewis 2000]. If one adds constraints linear in velocity to
this class of systems, the resulting systems may still be modeled using affine connections,
and the control setting for this is described, for example, by Lewis [Lewis 2000]. This class
of Lagrangian control systems may be subjected to the following categorization which is
not mathematically complete, but which identifies the special structure present in certain
application areas:

1. simple systems with integrable forces (robotic manipulators and other systems with
Lagrangian equal to kinetic energy, and forces applied in coordinate directions);

2. invariant systems on Lie groups (aerospace and underwater vehicles and other systems
with a matrix group as configuration space, with body fixed forces, and with invariant
kinetic energy);

3. systems subject to nonholonomic constraints (mobile robots and locomotion devices
with drift, e.g., snakeboard, roller racer, and G-snakes).

Among the research problems addressed by the authors and others in the area of affine
connection control systems are local nonlinear controllability [Lewis and Murray 1997a],
normal forms [Lewis 1999, Lewis and Murray 1997b], series expansions [Bullo 2001] and
algorithms for motion planning [Bullo, Leonard, and Lewis 2000], averaging via the average
potential [Baillieul 1993, Bullo 2002], and optimal control [Sontag and Sussmann 1986].
Below we touch on some of these areas, and address how the property of homogeneity plays
an important rôle. Specifically, we review some of the existing work on controllability and
series expansions. The importance of these results is established by their use in generating
motion planning algorithms [Bullo, Leonard, and Lewis 2000, Ostrowski 2000, Zhang and
Ostrowski 2000].

2. Affine connections and mechanics

In this section we begin with a brief overview of affine connections, and how they come
up in mechanics. We also mention how homogeneity enters the picture in terms of the basic
problem data for the control problem.

2.1. Affine connections. We refer to [Kobayashi and Nomizu 1963] for a comprehensive
treatment on affine connections and Riemannian geometry. An affine connection on a
manifold Q assigns to a pair of vector fields X,Y a vector field ∇XY such that for any
function f and for any third vector field Z:

1. ∇fX+Y Z = f∇XZ +∇Y Z,
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2. ∇X(fY + Z) = (LXf)Y + f∇XY +∇XZ.

We also say that ∇XY is the covariant derivative of Y with respect to X. Vector fields
can also be covariantly differentiated along curves, and this concept is employed in writing
the Euler-Lagrange equations. Consider a differentiable curve γ : [0, 1] → Q and a vector
field along γ, that is, a map v : [0, 1] → TQ such that π(v(t)) = γ(t) for all t ∈ [0, 1]. Let
the vector field V satisfy V (γ(t)) = v(t). The covariant derivative of the vector field
v along γ is defined by

Dv(t)

dt
≜ ∇γ̇(t)v(t) = ∇γ̇(t)V (q)

∣∣
q=γ(t)

.

In a system of local coordinates (q1, . . . , qn), an affine connection is uniquely determined
by its Christoffel symbols Γi

ij :

∇ ∂

∂qi

( ∂

∂qj

)
= Γk

ij

∂

∂qk
,

and accordingly, the covariant derivative of a vector field is written as

∇XY =
(∂Y i

∂qj
Xj + Γi

jkX
jY k

) ∂

∂qi
.

In settings where Q possesses a Riemannian metric g (such as is provided, for example,
by kinetic energy), one derives a canonical affine connection associated with g. This con-
nection is called the Levi-Civita affine connection, and is most directly characterized by
its Christoffel symbols, which are given in terms of the metric components as follows:

Γi
jk =

1

2
giℓ

(∂gjℓ
∂qk

+
∂gkℓ
∂qj

−
∂gjk
∂qℓ

)
.

Although this is the affine connection commonly seen in applications, our treatment here
is not restricted to the Levi-Civita connection. Indeed, one of the remarkable features of
affine connection control systems is that many of the results apply to systems with arbitrary
affine connections. It is this fact which makes easy the adaptation of the results to systems
with nonholonomic constraints.

2.2. Control systems described by affine connections. We introduce a class of control
systems that is a generalization of Lagrangian control systems. As an approach to modeling
of vehicles and robotic manipulators, for example, this is common to a number of recent
papers; see [Bloch and Crouch 1995, Bullo 2001, Lewis 2000, Lewis and Murray 1997a]. An
affine connection control system is defined by the following objects:

1. an n-dimensional configuration manifold Q, with q ∈ Q being the configuration of the
system and vq ∈ TqQ being the system’s velocity,

2. an affine connection ∇ on Q, whose Christoffel symbols are {Γi
jk : i, j, k = 1, . . . , n},

3. a family of input vector fields Y = {Y1, . . . , Ym} on Q.
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The corresponding equations of motion are written as

∇q̇(t)q̇(t) = ua(t)Ya(q(t)) (2.1)

or equivalently in coordinates as

q̈i + Γi
jk(q)q̇

j q̇k = ua(t)Y i
a (q), (2.2)

where the indices i, j, k ∈ {1, . . . , n}. These equations are a generalized form of the Euler-
Lagrange equations. That is to say, if one takes for ∇ the Levi-Civita affine connection
associated with a kinetic energy Riemannian metric g, then the equations (2.1) are the
forced Euler Lagrange equations for the associated kinetic energy Lagrangian and with
input forces modeled by the vector fields Y1, . . . , Ym. However, as we mentioned in the
previous section, we do not wish to restrict our attention to Levi-Civita affine connections,
and so the equations (2.1) in consequence give, for example, the forced equations of motion
for a nonholonomic system with a kinetic energy Lagrangian, and constraints linear in
velocity.

The second-order system in equation (2.2) can be written as a first-order differential
equation on the tangent bundle TQ. Using { ∂

∂qi
, ∂
∂vi

}1≤i≤n as a basis for vector fields on

the tangent bundle to TQ, we define vector fields Z and Y lift
a , a = 1, . . . ,m, on TQ by

Z(vq) = vi
∂

∂qi
− Γ(q)ijkv

jvk
∂

∂vi
,

Y lift
a (vq) = Y i

a (q)
∂

∂vi
,

so that the control system is rewritten as

v̇(t) = Z(v(t)) + ua(t)Y lift
a (v(t)), (2.3)

where t 7→ v(t) is now a curve in TQ describing the evolution of a first-order control affine
system. We refer to [Lang 1995, Lewis and Murray 1997a] for coordinate independent
definitions of the lifting operation Ya → Y lift

a and of the drift vector field Z. The latter
vector field is called the geodesic spray .

2.3. Homogeneity and Lie algebraic structure. A fundamental observation about the
structure of the control system (2.1) is the polynomial dependence of the vector fields Z and
Y lift on the velocity variables vi. This structure leads to some enormous simplifications when
performing iterated Lie brackets between the vector fields in the set {Z, Y lift

1 , . . . , Y lift
m }.

Apart from the papers of the authors concerning the consequences of the structure of these
Lie brackets, we refer to the work of Sontag and Sussmann [Sontag and Sussmann 1986] on
time-optimal control for robotic manipulators.

We focus here on the notion of geometric homogeneity1 as described in [Kawski
1995]. Generally, given two vector fields X and XE , we say that the vector field X is
homogeneous with degree m ∈ Z with respect to XE if

[XE , X] = mX.

1Geometric homogeneity corresponds to the existence of an infinitesimal symmetry in the equations of
motion. For control systems described by an affine connection the symmetry is invariance under affine
time-scaling transformations.



Homogeneity of affine connection control systems 5

For affine connection control systems, we introduce the Liouville vector field L on TQ
(see [Libermann and Marle 1987, page 64]), as

L = vi
∂

∂vi
.

Straightforward computations verify the following statements.

2.1 Lemma: Let ∇ be an affine connection on Q with geodesic spray Z, and let Y be a
vector field on Q. The following statements hold:

1. [L,Z] = (+1)Z;

2. [L, Y lift] = (−1)Y lift.

Hence, the vector field Z is homogeneous of degree +1, and the vector field Y lift is homo-
geneous of degree −1 with respect to the Liouville vector field. In the following, a vector
field X on TQ is simply homogeneous of degree m ∈ Z if it is homogeneous of degree
m with respect to L. Let Pj be the set of vector fields on TQ of homogeneous degree j, so
that

Z ∈ P1, and Y lift ∈ P−1.

Let us leave our general discussion of homogeneity at that for the moment, and in the next
section we will investigate these properties further, and illustrate how they may be used in
an investigation of nonlinear controllability for affine connection control systems.

3. Controllability of affine connection control systems

The matter of controllability for affine connection control systems was first undertaken
systematically by Lewis and Murray [Lewis and Murray 1997a]. Here the precise character
of the Lie bracket structure for affine connection control systems was undertaken, and in the
presence of a potential energy term in the Lagrangian. In this section, we distill the essence
of this structure without potential energy (with potential energy, the systems are not affine
connection control systems as we have defined them in Section 2.2). As we shall see, the
resulting structure allows us to quickly understand the character of the set of configurations
one can reach starting from a state with zero velocity.

First we observe that the sets Pj enjoy various interesting properties: Figure 1 illustrates
them, and their proof is via direct computation. Here are the properties illustrated in the
table, but expressed via formulas:

1. [Pi,Pj ] ⊂ Pi+j . that is, the Lie bracket between a vector field in Pi and a vector field
in Pj belongs to Pi+j ;

2. Pk = ∅ for all k ≤ −2;

3. for all X(vq) ∈ Pk with k ≥ 1, X(0q) = 0q.

Here 0q is the zero vector in the tangent space TqQ. The key observation here is that all
brackets are homogeneous of some degree, and if one is evaluating brackets at points of
zero velocity, the only contributions will come from those brackets which are homogeneous
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(1, 1)

#Y lift

2

1

3 4

#Zg

2

(2, 1)

(i, j)

1

P1 P0 P−1

{0} {0}

{0}

Figure 1. Table of Lie brackets between the drift vector field Z
and the input vector fields Y lift

a . The (i, j)th position contains
Lie brackets with i copies of Y lift and j copies of Z. The corre-
sponding homogeneous degree is j − i. All Lie brackets to the
right of P−1 exactly vanish. All Lie brackets to the left of P−1

vanish when evaluated at vq = 0q.

of degree −1 or 0. It turns out that one can easily characterize these brackets, and this is
exactly what is undertaken by Lewis and Murray [Lewis and Murray 1997a].

To understand what a vector field from Pi looks like, let us work in local coordinates.
We write a vector field X on TQ as

X = Xi
h

∂

∂qi
+Xi

v

∂

∂vi
. (3.1)

Here we think of the componentsXi
h, i = 1, . . . , n, as being “horizontal” and the components

Xi
v, i = 1, . . . , n, as being “vertical.” Let Hi be the set of scalar functions in the local

chart for TQ which are arbitrary functions of q and which are homogeneous polynomials in
{v1, . . . , vn} of degree i. One verifies that a vector field X on TQ of the form (3.1) is in Pi

exactly when the functions Xi
h, i = 1, . . . , n, are in Hi, and the functions Xi

v, i = 1, . . . , n,
are in Hi+1.

Let us focus for the moment on the Lie bracket [Y lift
a , [Z, Y lift

b ]] where a, b ∈ {1, . . . ,m}.
Since this Lie bracket belongs to P−1, there must exist a vector field on Q, which we denote
⟨Ya : Yb⟩, such that

⟨Ya : Yb⟩lift = [Y lift
b , [Z, Y lift

a ]].

This vector field we call the symmetric product between Ya and Yb and a direct compu-
tation shows that it satisfies

⟨Yb : Ya⟩ = ∇YaYb +∇Yb
Ya,

or equivalently in coordinates

⟨Yb : Ya⟩i =
∂Y i

a

∂qj
Y j
b +

∂Y i
b

∂qj
Y j
a + Γi

jk

(
Y j
a Y

k
b + Y k

a Y
j
b

)
. (3.2)
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The adjective “symmetric” comes from the obvious equality ⟨Ya : Yb⟩ = ⟨Yb : Ya⟩. Without
reference to the formula (3.2), symmetry can be shown to follow from the Jacobi identity
and the fact that [Y lift

a , Y lift
b ] = 0. It turns out, in fact, that all Lie brackets of vector

fields from the set {Z, Y lift
1 , . . . , Y lift

m } which are also vector fields in P−1 are vertical lifts of
iterated symmetric products of the vector fields {Y1, . . . , Ym}. We denote the distribution
spanned by all such iterated symmetric products by Sym(Y ).

Now let us focus on another type of bracket, those of the form [[Z, Y lift
a ], [Z, Y lift

b ]] for
a, b ∈ {1, . . . ,m}. This bracket, under our classification scheme, is in P0. Therefore, if
τQ : TQ → Q is the tangent bundle projection, there is a vector field Xab on Q which
satisfies

τQ([[Z, Y
lift
a ], [Z, Y lift

b ]](vq)) = Xab(q).

That is, the vector field [[Z, Y lift
a ], [Z, Y lift

b ]] is projectable with respect to the tangent bundle
projection. A routine computation shows that in fact Xab = −[Ya, Yb]. Thus when we
evaluate brackets in P0, we expect to get something involving Lie brackets of vector fields
whose vertical lifts are brackets from P−1. Indeed, all Lie brackets of vector fields from the
set {Z, Y lift

1 , . . . , Y lift
m } which are also vector fields in P0 project to a vector field on Q which

is a Lie bracket of two iterated symmetric products. Somewhat more precisely, if Lie(D)
denotes the smallest integrable distribution containing a distribution D, the distribution
on Q generated by the projection to Q of brackets from P0 is given by Lie(Sym(Y )).

To summarize, we have made believable the following result of Lewis and Murray [Lewis
and Murray 1997a].

3.1 Theorem: For an analytic affine connection control system, the set of configurations
reachable from q ∈ Q starting at zero initial velocity forms an open subset of the integral
manifold through q of the integrable distribution Lie(Sym(Y )).

In particular, if Lie(Sym(Y )) has full rank at q ∈ Q, the set of configurations reachable
from initial condition 0q contains a nonempty open subset of Q.

To make this precise requires some effort, but we hope to have made it clear the important
rôle that homogeneity plays in understanding the special structure of affine connection
control systems.

4. A series expansion for the forced evolution from rest

As in the previous section, the homogeneity and Lie algebraic structure of mechanical
systems leads to a novel and instructive characterization of their flow. Assuming zero initial
velocity, the evolution of the second-order initial value problem in equation (2.3) can be
described via a first-order differential equation. Precise statements and proof are available
in [Bullo 2001]; a preliminary version of these results appeared in [Bullo 1999]. In this
section since the results are local, we let Q be an open subset of Rn.

In the computation of series expansions as well as in the general study of perturbation
methods for differential equations, one key tool is the variation of constants formula. We
start by introducing some notation. A time-varying vector field on Q, (q, t) 7→ X(q, t), gives
rise to the initial value problem on Q

q̇(t) = X(q, t), q(0) = q0.
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We denote its solution at time T by q(T ) = ΦX
0,T (q0), thus defining the flow T 7→ ΦX

0,T .
Consider the initial value problem

q̇(t) = X(q, t) + Y (q, t), q(0) = q0, (4.1)

where X and Y are analytic time-varying vector fields. If we regard X as a perturbation to
the vector field Y , we can describe the flow of X + Y in terms of a nominal and perturbed
flow. For a diffeomorphism ϕ : Q → Q and a vector field X on Q, ϕ∗X denotes the pull-back
of X by ϕ. With this notation, the following relationship is referred to as the variation
of constants formula and describes the perturbed flow:

ΦX+Y
0,t = ΦY

0,t ◦ Φ
(ΦY

0,t)
∗X

0,t . (4.2)

The result is proven in [Agrachev and Gamkrelidze 1978, equation (3.15)], see also [Bullo
2001, Appendix A.1].

If X and Y are time-invariant, the classic infinitesimal Campbell-Backer-Hausdorff for-
mula provides a means of computing the pull-back:

(ΦY
0,t)

∗X =
∞∑
k=0

adkY X
tk

k!
.

If instead X and Y are time-varying, a generalized expression is given by Agrachev and
Gamkrelidze [1978]:

(ΦY
0,t)

∗X(q, t) = X(q, t) +

∞∑
k=1

∫ t

0
. . .

∫ sk−1

0 (
adY (q,sk) . . . adY (q,s1)X(q, t)

)
dsk . . . ds1. (4.3)

Although the convergence of this series expansion is a delicate manner, the following
straightforward statement suffices in our analysis: if all the Lie brackets adY (sk) . . . adY (s1)X
vanish for all k greater than some finite integer, then the series in equation (4.3) becomes
a finite sum.

Next, we apply this result to the differential equation (2.3) on TQ, which we rewrite
here for convenience:

v̇ = Z(v) + Y (v, t)lift (4.4)

where Y (v, t) = ua(t)Y lift
a (v). The homogeneous structure described in Figure 1 can be

used to simplify the application of the variation of constants formula. Let the geodesic
spray Z play the role of the perturbation to the vector field Y lift. Then the infinite series
in equation (4.3) collapses.

Let us briefly describe this simplification. The solution to the equation (4.4) from the
zero velocity state 0q0 is

v(T ) = ΦZ+Y lift

0,T (0q0).

Utilizing equation (4.2) we compute

v(T ) = ΦY lift

0,T (w(T )) = w(T ) +

∫ t

0
Y (q, s) ds
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where some straightforward manipulations lead to

ẇ(t) =
(
ΦY lift

0,T

)∗
Z(w(t))

= Z +

∫ t

0
[Y lift(q, s)Z] ds−

1

2

∫ t

0

∫ t

0
⟨Y (q, s1) : Y (q, s2)⟩lift ds1ds2,

with initial condition w(0) = 0q0 .
The key observation comes now: the transformed initial value problem in w enjoys the

same homogeneity properties as the original one in equation (2.3). In other words, the
resulting system satisfies a set of equations similar to the original one, except for some
different forcing terms. One can therefore infinitely iterate this procedure and under mild
assumptions obtain a locally convergent solution. Making this statements precise is the
purpose of [Bullo 2001]. We here summarize the result as follows.

4.1 Theorem: Define recursively the time-varying vector fields Vk:

V1(q, t) =

∫ t

0
ua(s)Ya(q) ds

Vk(q, t) = − 1

2

k−1∑
j=1

∫ t

0
⟨Vj(q, s) : Vk−j(q, s)⟩ds.

The solution t → q(t) to equation (2.1) satisfies the formal series expansion

q̇(t) =

∞∑
k=1

Vk(q(t), t).

We refer to [Bullo 2001] for a detailed convergence analysis of the series: local absolute and
uniform convergence can be proven under the assumption of analyticity and boundedness
of the various quantities involved.

5. Simplifications in example systems

While the treatment presented up to here is always applicable, there are two situations
in which further structure in the affine connection ∇ and in the input forces Ya simplifies the
computation of symmetric products. In this section we illustrate how these simplifications
spill over to our series solution results of Section 4. Similar simplifications hold, of course,
for the controllability results of Section 3.

5.1. Simple systems with integrable forces. In this section we let Q be an open subset of
Rn.

Here we consider systems with kinetic energy Lagrangians; if one allows potential forces,
such systems are referred to as “simple.” Regarding inputs, we make the assumption that
the forces for the system span an integrable codistribution. The affine connection of a
simple system is the Levi-Civita connection associated with the kinetic energy Riemannian
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metric ⟨·, ·⟩. If the control forces are integrable, then we may choose the input vector fields
Ya so that there locally exists a scalar function φa such that

Ya(q) = gradφa(q), (5.1)

where grad is taken with respect to the kinetic energy Riemannian metric.
One remarkable simplification takes place under these assumptions: the set of gradient

vector fields is closed under the operation of symmetric product. Let φ1, φ2 be scalar
functions on Rn and define a symmetric product between functions according to

⟨φ1 : φ2⟩ ≜ ⟨gradφ1, gradφ2⟩. (5.2)

Then the symmetric product of the corresponding gradient vector fields equals the gradient
of the symmetric product of the functions:

⟨gradφ1 : gradφ2⟩ = grad⟨φ1 : φ2⟩.

Accordingly, Theorem 4.1 can be restated as follows.

5.1 Lemma: For a simple system with integrable forces, define recursively the time-varying
functions:

ϕ1(q, t) =

∫ t

0
ua(s)φa(q) ds

...

ϕk(q, t) =
1

2

k−1∑
j=1

∫ t

0
⟨ϕj(q, s) : ϕk−j(q, s)⟩ds, k ≥ 2.

Then the solution q : [0, T ] → Q to (2.1) satisfies

q̇(t) = grad
∞∑
k=1

ϕk(q(t), t). (5.3)

In other words, the flow of a simple system forced from rest is written as a (time-varying)
gradient flow.

5.2. Invariant systems on Lie groups. In this section we briefly investigate systems with
kinetic energy and input forces which are completely invariant under a certain group action.
These system have a configuration space G with the structure of an n dimensional matrix
Lie group. Systems in this class include satellites, hovercraft, and underwater vehicles.

The equations of motion (2.1) decouple into a kinematic and dynamic equation in the
configuration variable g ∈ G and the body velocity v which lies in the Lie algebra g of the
group G.2 The kinematic equation can be written as a matrix differential equation using
matrix group notation ġ = gv̂; we refer to [Murray, Li, and Sastry 1994] for the details. The

2For matrix Lie groups, g is a subalgebra of the Lie algebra of n× n matrices with bracket given by the
matrix commutator.
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dynamic equation, sometimes referred to as the Euler-Poincarè equation, can be written,
after a choice of basis for g, as

v̇i + γijkv
jvk = ua(t)yia, (5.4)

where the coefficients γijk are uniquely determined from the knowledge of the inertia metric
and of the group G. The input vectors ya are constant.

Within this setting, the result in Theorem 4.1 is summarized as follows. The solution
to the equation (5.4) with initial condition v(0) = 0 is v(t) =

∑∞
k=1 vk(t), where

v1(t) =

∫ t

0
ua(a)ya ds

vk(t) = − 1

2

k−1∑
j=1

∫ t

0
⟨vj(s) : vk−j(s)⟩ ds, k ≥ 2,

and where the symmetric product between velocity vectors is ⟨x : y⟩i = −2γijkx
jyk. Local

convergence for the series expansion can be easily established in this setting. This result
agrees and indeed supersedes the ones presented in [Bullo, Leonard, and Lewis 2000].

6. Closing remarks

In this paper we have explored a few of the consequences of homogeneity in the affine
connection model for mechanical control systems. In particular, we have provided an in-
terpretation in terms of homogeneity of some of the controllability results of Lewis and
Murray [1997a], and of the time series results of Bullo [2001]. We see how these homo-
geneity properties nicely characterize much of the structured behaviour of affine connection
control systems. It is precisely this structured behaviour which has made possible the re-
cent progress in the investigation of these systems, and doubtless continued progress can
be made along these lines, yielding results of fundamental and practical interest.
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