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1. Introduction

To take advantage of the applications to mechanical systems that mathematics has to
offer, one would wish to have a satisfactory understanding of the theory involved. In this
paper we try to build exactly that, and tackle the problem of time-optimal control of two
simple mechanical systems: the robotic leg and the planar rigid body. Both systems have
uncontrolled motions that are described by a kinetic energy Lagrangian function which is
determined by the associated Riemannian metric. Each of these metrics offers us its Levi-
Civita affine connection to work with. We also mention that both systems are shown to be
controllable in [Lewis and Murray 1999], so the question of existence of solutions will not
be of concern.

Our goal will be to understand the advances that lead up to a maximum principle for
affine connection control systems given by Bullo and Lewis [2005, Chapter S4], and which
we specifically use for time-optimization. To start, we look briefly at some elementary
results from the calculus of variations and definitions from affine differential geometry, and
establish a link between the two. Next we take the path offered by Sussmann and Willems
[1997] that leads us from some well-known necessary conditions for minima in the calculus of
variations, to the celebrated maximum principle of optimal control theory. Then the flavor
becomes more geometrical in nature, as we examine affine connection control systems and
the splitting of fibres in higher-order tangent and cotangent bundles. This gives us enough
insight to state two versions of the maximum principle, one being a result for the more
general control affine systems that follows from the work of Sussmann [1998], and the other
a special case for affine connection control systems. From the latter, another result is found
specifically for systems in which the norm of the controls is bounded.

After studying all of the newly encountered concepts, we apply them to our two mechan-
ical systems. We find the equations of motion for each system and compute the Hamiltonian
equations supplied by the maximum principle. Then we apply the maximum principle for
affine connection control systems and find our controls in terms of a one-form field along
time-optimal solutions. To finish we examine a special “singular” case for the planar rigid
body, when the maximum principle does not allow us to determine the optimal controls.
For this system, the time-optimal singular extremals can be completely described.

2. The calculus of variations and affine connections

One of the earliest known optimal control problems, according to Sussmann and Willems
[1997], dates to about 1696 when Johann Bernoulli posed the brachystochrone problem
which reads:

If in a vertical plane two points A and B are given, then it is required to
specify the orbit AMB of the movable point M, along which it, starting from A,
and under the influence of its own weight, arrives at B in the shortest possible
time. So that those who are keen of such matters will be tempted to solve this
problem, it is good to know that it is not, as it may seem, purely speculative and
without practical use. Rather it even appears, and this may be hard to believe,
that it is very useful also for other branches of science than mechanics. In
order to avoid a hasty conclusion, it should be remarked that the straight line
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is certainly the line of shortest distance between A and B, but it is not the one
which is traveled in the shortest time. However, the curve AMB – which I shall
divulge if by the end of this year nobody else has found it – is very well known
among geometers.

Within a year solutions were submitted by Johann Bernoulli and others such as New-
ton, Leibniz, Tschirnhaus, l’Hôpital, and Johann’s brother, Jakob Bernoulli. The brachys-
tochrone problem starts us exploring a road that leads through the necessary conditions for
extremizing functionals, up to the widely applicable maximum principle. The solutions to
certain optimization problems turn out to be geodesics, so there must be a bridge that can
be taken to the area of affine differential geometry. This is exhibited in Section 2.2.

2.1. Necessary conditions for optimization in the calculus of variations. The calculus of
variations is a classical subject in the area of applied mathematics. The following is one of
the interesting problems with which it deals.

2.1 Problem: Find a function x0(t) that minimizes the functional

J(x) =

∫ b

a
L(t, x(t), ẋ(t)) dt,

over all curves x : [a, b] → Rn such that x(t) ∈ C∞[a, b] and L(t, x, v) ∈ C∞([a, b]×Rn×Rn),
where x(a) = x0 and x(b) = x1.

We ask that the Lagrangian or cost function L(t, x, v) and the class of available functions
from which our minimizer can be chosen be those which are of type C∞.Weaker hypotheses
are possible, however for what is to come, this assumption will suffice and offer simplicity.
This problem is at the heart of classical optimization theory, and thus turns out to be a
good place for our topic of interest to begin.

We now mention three necessary conditions that must be satisfied for an extremal to
be a minimum value of the functional J(x). Two of them will be referred to later when
developing a stronger statement that we will use to investigate our two mechanical systems.
More general statements can be found in [Ewing 1985], when the class of available curves
is extended to include those with discontinuous derivatives.

Euler’s necessary condition. One of the main results in the calculus of variations is a
necessary condition formulated by Euler around the year 1744. It comes from a simple
idea in elementary calculus, that if an extremal exists, the derivative of the function being
maximized or minimized must vanish. We will be adopting the summation convention
where summation is implied over two identical indices occurring in the same term, one a
subscript and one a superscript. The result can be summed up in the following theorem.

2.2 Theorem: (Euler’s Necessary Condition) If x0(t) solves Problem 2.1 then x0(t) must
satisfy the Euler-Lagrange equation

d

dt

∂L

∂v
(t, x0(t), ẋ0(t)) =

∂L

∂x
(t, x0(t), ẋ0(t)), (2.1)

for all t ∈ [a, b].
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Proof: We consider arbitrary variations of the minimizing function x0(t) + λh(t), where
h(t) ∈ C∞[a, b] and h(a) = h(b) = 0, and take g(λ) = J(x0(t) + λh(t)). Since L(t, x, v) is
differentiable and we take the interval [a, b] to be compact, then g(λ) is differentiable. If
x0(t) solves the minimization problem, then g(0) must be a minimum value of g(λ) and
therefore it is necessary that g′(0) = 0. Differentiating g with respect to λ and evaluating
at λ = 0,

g′(0) =

∫ b

a

∂

∂λ λ=0
L(t, x0(t) + λh(t), ẋ0(t) + λḣ(t)) dt

=

∫ b

a

(
∂L

∂xi
(t, x0(t), ẋ0(t))h

i(t) +
∂L

∂vi
(t, x0(t), ẋ0(t))ḣ

i(t)

)
dt

=

∫ b

a

(
∂L

∂xi
(t, x0(t), ẋ0(t))h

i(t)− d

dt

∂L

∂vi
(t, x0(t), ẋ0(t))h

i(t)

)
dt

+
∂L

∂vi
(t, x0(t), ẋ0(t))h

i(t)
t=b

t=a
,

where the last step includes integration by parts on the second term. Using the endpoint
conditions, hi(a) = hi(b) = 0 for i = 1, . . . , n, we have

g′(0) =

∫ b

a

(
∂L

∂xi
(t, x0(t), ẋ0(t))−

d

dt

∂L

∂vi
(t, x0(t), ẋ0(t))

)
hi(t) dt.

And since g′(0) = 0 and h(t) was chosen arbitrarily throughout [a, b], subject to the endpoint
constraints, we obtain equation (2.1), as required.□

The Euler-Lagrange equation gives us a necessary condition for an extremal to occur,
so once we obtain such candidates, we would want to check if they are a maximum or a
minimum. We will be mainly dealing with minima throughout our discussions.

The Wieirstrass excess function. The next necessary condition that we should state in-
volves the excess function defined by

E(t, x, r, q) = L(t, x, q)− L(t, x, r)− (q − r)
∂L

∂v
(t, x, r). (2.2)

This function measures the difference between L(t, x, q) and its first order Taylor polynomial
based at the point (t, x, r).

2.3 Theorem: (Wieirstrass) If x0(t) solves Problem 2.1 then

E(t, x0(t), ẋ0(t), q) ≥ 0,

for every t ∈ [a, b] and for every q ∈ R.
We omit a proof of this statement, but refer our readers to [Ewing 1985], or any suitable
text on variational calculus.

Legendre’s necessary condition. Another very important result comes from Legendre
around 1786. It concerns a necessary condition for a minimum to occur, and similar to
Euler’s necessary condition, can be thought of in terms of ideas from elementary calculus.
This time however, it is the fact that the second derivative evaluated at the point admitting
a minimum must be non-negative.
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2.4 Theorem: (Legendre’s necessary condition) If x0(t) solves Problem 2.1 then x0(t) must
satisfy

∂2L

∂v2
(t, x0(t), ẋ0(t)) ≥ 0, (2.3)

for all t ∈ [a, b].

Proof: We apply Taylor’s Formula with a second-order remainder to L(t, x, q) about the
point r,

L(t, x, q) = L(t, x, r) + (q − r)
∂L

∂v
(t, x, r) +

(q − r)2

2

∂2L

∂v2
(t, x, θ(q − r)),

for some θ ∈ (0, 1). Using the excess function, equation (2.2), we find that

E(t, x, r, q) =
(q − r)2

2

∂2L

∂v2
(t, x, θ(q − r)).

And from Theorem 2.3, when we take r = ẋ(t) and q = 1+θ
θ ẋ(t), the statement of the

current theorem follows.□

2.2. Affine connections in the theory of geodesics. Differential geometry provides the
applied mathematician with a lot of new concepts and techniques, some of which offer a
significant number of applications to variational problems. When looking for solutions to
optimization problems, it is nice to know that they can sometimes turn out to be simply
geodesics on a manifold supplied with an affine connection. Therefore we build a direct
relationship between certain variational problems and geodesic theory.

Definitions. We first present some affine differential geometry that will be used throughout
our discussion. The motivation here is simply for notational purposes. Most of the defini-
tions come from [Kobayashi and Nomizu 1963a] and [Kobayashi and Nomizu 1963b], except
for the adjoint forms of torsion and curvature, and the adjoint Jacobi equation, which may
be found in [Bullo and Lewis 2005, Chapter S4].

2.5 Definition: An affine connection on a manifold Q is an assignment to each pair of
vector fields X and Y on Q, a vector field ∇XY, and the assignment should satisfy the
properties:

1. the map (X,Y ) 7→ ∇XY is R-bilinear,

2. ∇fXY = f∇XY for f ∈ C∞(Q), and

3. ∇XfY = f∇XY + (LXf)Y for f ∈ C∞(Q),

where LXf is the Lie derivative of the function f with respect to the vector field X.

The vector field ∇XY is called the covariant derivative of Y with respect to X. If
(q1, . . . , qn) are coordinates for Q, then ∇XY in coordinates is given by

∇XY =

(
∂Y i

∂qj
Xj + ΓijkX

jY k

)
∂

∂qi
, (2.4)
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where the n3 functions Γijk are called the Christoffel symbols for the affine connection ∇
defined by

∇ ∂

∂qj

∂

∂qk
= Γijk

∂

∂qi
.

This tells us how to covariantly differentiate a vector field. We define the covariant derivative
of a function to be its Lie derivative

∇Xf = LXf.

To find the covariant derivative of a one-form Λ, we first apply the one-form to an arbitrary
vector field Y . We would like ∇XΛ to have the property

∇X(Λ(Y )) = (∇XΛ)(Y ) + Λ(∇XY ),

which is basically the product rule from elementary calculus. Indeed, this is how we define
the covariant derivative of a one-form applied to a vector field,

(∇XΛ)(Y ) = LX(Λ(Y ))− Λ(∇XY ).

To obtain the coordinate expression, we use equation (2.4) and the fact that the Lie deriva-
tive in coordinates is LXf = ∂f

∂qi
Xi. One may then verify that

∇XΛ =

(
∂Λi
∂qj

Xj − ΓjkiX
kΛj

)
dqi. (2.5)

It is also possible to covariantly differentiate an arbitrary (r, s)-tensor. To do this, we
take such a tensor t ∈ T rs (TM) and thus its covariant derivative with respect to a vector
field X will be of the same type: ∇Xt ∈ T rs (TM). A (r, s)-tensor takes as its arguments, r
one-forms and s vector fields. If {Λ1, . . . ,Λr} is a set of one-forms and {Y1, . . . , Ys} is a set
of vector fields, then we wish to have

∇X(t(Λ
1, . . . ,Λr, Y1, . . . , Ys)) = (∇Xt)(Λ

1, . . . ,Λr, Y1, . . . , Ys)

−
r∑
i=1

t(Λ1, . . . ,∇XΛ
i, . . . ,Λr, Y1, . . . , Ys)

−
s∑
j=1

t(Λ1, . . . ,Λr, Y1, . . . ,∇XYj , . . . , Ys).

It is then possible for one to solve for∇Xt and obtain the covariant derivative of an arbitrary
(r, s)-tensor.

A useful property of affine connections is that they allow us to differentiate vector fields
and one-forms along curves. Consider a curve c(t) on Q, a vector field v(t) and one-form
field λ(t) along c. Let X and Y be vector fields such that X has c as an integral curve, i.e.,
c′(t) = X(c(t)), and v(t) = Y (c(t)). Then we define the covariant derivative of v along
c to be the vector field along c given by

∇c′(t)v(t) = ∇XY (c(t)).
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In coordinates,

∇c′(t)v(t) =
(
v̇i(t) + Γijkq̇

jvk(t)
) ∂
∂qi

, (2.6)

which comes from equation (2.4).
Now let X be a vector field and Λ a one-form such that X has c as an integral curve,

i.e., c′(t) = X(c(t)), and λ(t) = Λ(c(t)). Then we define the covariant derivative of λ
along c by

∇c′(t)λ(t) = ∇XΛ(c(t)).

In coordinates
∇c′(t)λ(t) =

(
λ̇i(t)− Γjkiq̇

kλj(t)
)
dqi, (2.7)

which can be verified from equation (2.5).
On a manifold supplied with an affine connection, a certain class of curves is distin-

guished. These are called geodesics and we will see them again when trying to establish
links with variational problems and in the drift motion of state trajectories for mechanical
systems. A geodesic c(t) of the affine connection satisfies

∇c′(t)c
′(t) = 0.

One verifies that a geodesic in coordinates satisfies

q̈ i + Γijkq̇
j q̇k = 0. (2.8)

Since the geodesic equation is a second-order differential equation, it defines a second-
order vector field Z on TQ called the geodesic spray of the affine connection ∇, given in
coordinates by

Z = vi
∂

∂qi
− Γijkv

jvk
∂

∂vi
, (2.9)

so that the coefficients of ∂
∂qi

and ∂
∂vi

are q̇i and q̈i, respectively. This vector field will play
a significant role in what is to come.

We now look at four tensor fields that give us an idea of the “shape” of our manifold
equipped with its affine connection. The second definition may be somewhat familiar from
elementary vector calculus.

2.6 Definition: The torsion T for ∇ is a (1, 2)-tensor field given by

T (X,Y ) = ∇XY −∇YX − [X,Y ],

so, in coordinates
T ijk = Γijk − Γikj .

One may verify that the torsion tensor is bilinear in X and Y . For uq ∈ TqQ and αq ∈ T ∗
qQ,

we define the adjoint torsion T ∗(αq, uq) ∈ T ∗
qQ by

⟨T ∗(αq, uq);wq⟩ = ⟨αq;T (wq, uq)⟩, wq ∈ TqQ.
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2.7 Definition: The curvature R for ∇ is a (1, 3)-tensor field given by

R(X,Y )W = ∇X∇YW −∇Y∇XW −∇[X,Y ]W,

so that in coordinates

Rijkl =
∂Γilj
∂qk

−
∂Γikj
∂ql

+ ΓikmΓ
m
lj − ΓilmΓ

m
kj .

Of course, the curvature tensor is multilinear in X, Y , and W . For uq, vq ∈ TqQ and
αq ∈ T ∗

qQ, we define the adjoint curvature R∗(αq, uq)vq ∈ T ∗
qQ by

⟨R∗(αq, uq)vq;wq⟩ = ⟨αq;R(wq, uq)vq⟩, wq ∈ TqQ.

The affine connections that we will be working with when investigating the two me-
chanical systems are Levi-Civita connections, so we will need to know their properties. A
Riemannian metric is a symmetric positive-definite (0, 2)-tensor that gives us a notion
of the distance between points on our manifold, and the unique Levi-Civita connection

supplied with such a metric g is denoted by
g

∇.

2.8 Definition: Let g be a Riemannian metric on a manifold Q. The Levi-Civita con-
nection is the unique affine connection satisfying the following properties:

1.
g

∇X g = 0 for all vector fields X ∈ Q,

2. the torsion T (X,Y ) = 0 for all vector fields X,Y ∈ Q.

The Christoffel symbols for the Levi-Civita connection may be shown to be

Γijk =
1

2
gil
(
∂glj
∂qk

+
∂glk
∂qj

−
∂gjk
∂ql

)
.

The next two definitions characterize a way to measure variations of geodesics. These
will be necessary to come to a version of the maximum principle for affine connection control
systems in Section 3.3.

2.9 Definition: A vector field ξ(t) along a geodesic c(t) is a Jacobi field if it satisfies the
Jacobi equation

∇2
c′(t)ξ(t) +R(ξ(t), c′(t))c′(t) +∇c′(t)(T (ξ(t), c

′(t))) = 0. (2.10)

2.10 Definition: A one-form field α(t) along a geodesic c(t) is an adjoint Jacobi field if
it satisfies the adjoint Jacobi equation

∇2
c′(t)α(t) +R∗(α(t), c′(t))c′(t)− T ∗(∇c′(t)α(t), c

′(t)) = 0. (2.11)

Relations to variational problems. We now try to establish some relationships between
variational problems and affine connections. To start we will present an example about the
two-dimensional sphere S2. The geodesics turn out to be the great circles, and this will
be demonstrated in two ways.
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2.11 Example: To find the geodesics, we must minimize the distance between two points
on the sphere S2. It can be shown that equivalently, we may minimize the square of the
distance,

ds2 = dx2 + dy2 + dz2,

where (x, y, z) ∈ R3 are restricted to S2. Now the equation of a sphere can be written as

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,

=⇒ ds2 = dθ2 + sin2 θ dϕ2.

So we take our Lagrangian in coordinates θ and ϕ,

L((θ, ϕ), (θ̇, ϕ̇)) = θ̇2 + sin2 θ ϕ̇2.

Now the terms of equation (2.1), the Euler-Lagrange equation, are

∂L

∂x
=

[
2 sin θ cos θ ϕ̇2

0

]
,

d

dt

∂L

∂v
=

[
2θ̈

4 sin θ cos θ θ̇ ϕ̇+ 2 sin2 θ ϕ̈

]
.

On equating the components of each term, we find the equations of the geodesics on the
sphere,

θ̈ − sin θ cos θ ϕ̇2 = 0,

ϕ̈+ 2 cot θ θ̇ ϕ̇ = 0.
(2.12)

Let us find these geodesics from equation (2.8). Using the same equations for the sphere
from before, we compute the metric to be

gS2 = (dx⊗ dx+ dy ⊗ dy + dz ⊗ dz) | S2

= dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ.

Therefore gθθ = 1, gϕϕ = sin2 θ, and gθϕ = gϕθ = 0, and since we are dealing with a
Levi-Civita connection, we find the non-zero Christoffel symbols from Definition 2.8:

Γθϕϕ = − sin θ cos θ and Γϕϕθ = Γϕθϕ = cot θ.

Using the coordinate expression for a geodesic, equation (2.8), we find the same equations
of motion as those given before in equations (2.12).

The above example shows how geodesics can turn out to be the solutions for certain
variational problems. Now let us look at the generalization.

2.12 Proposition: The Euler-Lagrange equation for the Lagrangian

L(vq) =
1

2
g(vq, vq)

is equivalent to the geodesic equation

g

∇c′(t)c
′(t) = 0,

for a Levi-Civita connection g.
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Proof: We choose some arbitrary coordinates for c(t) to be qi(t) where i = 1, . . . , n.
Differentiating the Lagrangian L = 1

2gjkq̇
j q̇k first with respect to ql and then with respect

to q̇l and t, and remembering that g is symmetric in its indices,

∂L

∂ql
=

1

2

(
∂gjk
∂ql

q̇j q̇k
)
,

d

dt

∂L

∂q̇l
=

1

2

d

dt

(
glkq̇

k + gjlq̇
j

)
=

1

2

(
∂glj
∂qk

+
∂glk
∂qj

)
q̇j q̇k + gilq̈

i.

Now using the Euler-Lagrange equation and multiplying through by the inverse of the
metric gil, we arrive at the equation

q̈ i +
1

2
gil
(
∂glj
∂qk

+
∂glk
∂qj

−
∂gjk
∂ql

)
q̇j q̇k = 0,

which is simply the coordinate expression for
g

∇c′(t)c
′(t) = 0 with the Christoffel symbols

Γijk for the Levi-Civita connection. From this we see that the reverse implication is also
straightforward.□

Thus we see precisely how geodesics for Levi-Civita connections have a direct link to
variational theory.

3. The maximum principle

When we want to find a function that gives a minimum value to the functional J(x), we
can try to use the theorems we stated from the calculus of variations. However, there is a
statement that encompasses the three theorems given in Section 2.1, and holds even more
information. This is the maximum principle from [Pontryagin, Boltyanskĭı, Gamkrelidze,
and Mishchenko 1986] and we will see how the development of this theorem involves the
necessary conditions of the calculus of variations as shown by Sussmann and Willems [1997],
and then look at another version specifically for affine connection control systems. From
this, we find a statement that enables us to find the controls needed for time-optimization.

3.1. From Euler-Lagrange to the maximum principle. For the problems that we will be
dealing with, the Lagrangian will not be an explicit function of time. Thus the problem
that we will now be considering is the following:

3.1 Problem: Find a function x0(t) that minimizes the functional

J(x) =

∫ b

a
L(x(t), ẋ(t)) dt,

over all curves x : [a, b] → Rn such that x(t) ∈ C∞[a, b] and L(x, v) ∈ C∞(Rn×Rn), where
x(a) = x0 and x(b) = x1.



Time-optimal control of mechanical systems 11

Two necessary conditions for (x(t), ẋ(t)) to minimize J are

d

dt

∂L

∂v
(x(t), ẋ(t)) =

∂L

∂x
(x(t), ẋ(t)) and

∂2L

∂v2
(x(t), ẋ(t)) ≥ 0, (3.1)

which come from Theorems 2.2 and 2.4. Given the Lagrangian L(x, v), we define the
Hamiltonian

H(x, p, v) = p · v − L(x, v). (3.2)

If x(t) is a solution to equations (3.1), and if p(t) is defined by p(t) = ∂L
∂v (x(t), ẋ(t)), then

by direct calculation we have

∂H

∂x
(x(t), p(t), ẋ(t)) = −ṗ(t),

∂H

∂p
(x(t), p(t), ẋ(t)) = ẋ(t),

∂H

∂v
(x(t), p(t), ẋ(t)) = 0.

Since H is equal to −L plus a linear function of v, then the Legendre condition tells us
that ∂2H

∂v2
(x(t), p(t), ẋ(t)) ≤ 0, so H must be a maximum at (x(t), ẋ(t)). This leads us to the

following theorem:

3.2 Theorem: If (x(t), ẋ(t)) is a solution to Problem 3.1 then there exists p(t), a one-form
field along x(t) such that

1. ẋ(t) = ∂H
∂p (x(t), p(t), ẋ(t)),

2. ṗ(t) = −∂H
∂x (x(t), p(t), ẋ(t)),

3. H(x(t), p(t), ẋ(t)) = max
v∈TxM

H(x(t), p(t), v),

where H(x, p, v) = p · v − L(x, v), x ∈M and v ∈ TxM.

Thus we see how the maximum of the Hamiltonian is suggested by the Euler-Lagrange
equations. We are interested in how such a result can be modified to include systems whose
admissible curves are restricted by a parameterized differential equation. Thus we consider
how to apply the Hamiltonian equations to control systems.

Let U ⊂ Rm be a fixed subset. If u : [a, b] → U is a bounded and measurable function,
and x(t) is a curve on the state manifold M , then in a control system the state trajectory
x(t) changes according to the differential equation

ẋ(t) = f(x(t), u(t)). (3.3)

We can change u(t) to try to make the system behave the way we want. An example of a
nonlinear control system is

ẋ(t) = f0(x(t)) + ua(t)fa(x(t)),

where f0(x) is the drift term or uncontrolled part and fa(x) determines how the controls
ua act on the system. We shall study this system later.
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Equation (3.3) puts a restriction on our admissible class of curves. Essentially, u(t)
parameterizes the set of available velocities. A convenient, but naive, thing to do is to
replace v in our Hamiltonian with f(x, u). This also requires us to redefine our Lagrangian,
so that it is a function of x(t) and u(t). Thus our new control Hamiltonian becomes

H(x, p, u) = p · f(x, u)− p0L(x, u), (3.4)

where L(x, u) is the new Lagrangian (more than likely different from L(x, v)). The constant
p0 ∈ {0, 1} is known as the abnormal multiplier and basically switches the dependence
of the Hamiltonian on the Lagrangian, on or off. The necessity of the introduction of this
constant is not apparent, but it must be done to ensure accurate statements.

To apply the Hamiltonian equations in this setting, we must first state the optimal
control problem.

3.3 Problem: Find a pair (u(t), x(t)) that minimizes the functional

J(u, x) =

∫ b

a
L(x(t), u(t)) dt,

subject to ẋ(t) = f(x(t), u(t)), x(a) = x0 and x(b) = x1, where x(t) is a curve on the state
manifold M , u : [a, b] → U ⊂ Rm is a measurable function, and L(x, u) ∈ C∞(Rn ×Rm).

Our curves will arise from the control u(t), since we are choosing the control which
gives a family of curves from the equation ẋ(t) = f(x(t), u(t)). Now we may use the results
of the previous theorem to state a necessary condition found in [Pontryagin, Boltyanskĭı,
Gamkrelidze, and Mishchenko 1986] to minimize J with the restriction of equation (3.3),
the control equation.

3.4 Theorem: (Maximum Principle) A necessary condition for the pair (u(t), x(t)) to solve
Problem 3.3 is that there exist a one-form field p(t) along x(t) and a constant p0 ∈ {0, 1}
such that

1. (p(t), p0) ̸= (0, 0) for all t ∈ [a, b],

2. ẋ(t) = ∂H
∂p (x(t), p(t), u(t)) and ṗ(t) = −∂H

∂x (x(t), p(t), u(t)) for all t ∈ [a, b],

3. H(x(t), p(t), u(t)) = max
ũ∈U

H(x(t), p(t), ũ) for all t ∈ [a, b],

4. H(x, p, u) = p · f(x, u)− p0L(x, u) is constant almost everywhere along solutions and
if we allow the endpoints to vary, this constant can be chosen to be zero.

3.2. The geometry of the drift vector field. Let us examine the geometry that arises from
the Hamiltonian equations. We will be working toward an understanding of how integral
curves of the tangent and cotangent lifts of the geodesic spray are related to the Jacobi and
adjoint Jacobi fields.

Tangent and cotangent lifts of general vector fields. We now consider the nonlinear
control system characterized by the differential equation

ẋ(t) = f0(x(t)) + ua(t)fa(x(t)), (3.5)
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where x(t) is a curve in the state spaceM and u : I → U ⊂ Rm. To minimize the functional

J(u, x) =
∫ b
a L(x, u) dt with the restriction of equation (3.5), the control equation, we form

the control Hamiltonian

H(x, p, u) = p(f0(x) + uafa(x))− p0L(x, u).

Now, according to the maximum principle, a necessary condition for the pair (u(t), x(t))
to solve the minimization problem is that there exist a one-form p(t) along x(t) such that
(x(t), p(t)) satisfies

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)) and ṗ(t) = −∂H

∂x
(x(t), p(t), u(t)).

These equations imply that on the cotangent bundle T ∗M we have

ẋi = f i0 + uaf ia and ṗi = −∂f
j
0

∂xi
pj −

∂f ja
∂xi

pju
a + p0

∂L

∂xi
(x, u).

The first equation simply implies that x(t) satisfies the control equation. The second
equation for p(t) is not coordinate invariant, and therefore has no meaning by itself, but only
when it is considered with the first. It is the adjoint equation, but without enough structure,
we can’t really consider it alone. From these two equations, we are mainly interested in
terms involving the uncontrolled part since these contain the affine differential geometry.
This leads us to study the cotangent lift of the vector field f0 on T ∗M defined by

fT
∗

0 = f i0
∂

∂xi
− ∂f j0
∂xi

pj
∂

∂pi
.

It turns out to be easier for us to investigate a related object on the tangent bundle TM .
Therefore we first look at the tangent lift of the vector field f0 defined by

fT0 = f i0
∂

∂xi
+
∂f i0
∂xj

vj
∂

∂vi
,

so that we may generate some useful intuition to help us later.
We will see that when we take f0 to be the geodesic spray of our affine connection, there

exists a relation between fT0 and solutions of the Jacobi equation. This motivates us to
find a similar relation for fT

∗
0 . So our current purpose will be to understand the geometry

of these vector fields in the general situation.
We will show that fT0 measures variations of perturbations of the initial condition, thus

showing how nearby solutions vary. We now ask for an integral curve of fT0 , and the answer
lies in the following theorem.

3.5 Theorem: Let c(t) be an integral curve for f0, that is a solution to c′(t) = f0(c(t)),
and let cs(t) be a one-parameter family of integral curves for s ∈ (−ε, ε) with c0(t) = c(t).
Define v0 = d

ds s=0
cs(0) ∈ Tc(0)M. So v0 gives the change in how the initial condition c(0)

varies. Now define

v(t) =
d

ds s=0
cs(t).

Then v(t) is the integral curve for fT0 with initial condition v0.
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Proof: First define the flow along c(t) as F (x, t) so that F (x0, t) = c(t) where x0 = c(0)
and let xs0 = cs(0). Now F (xs0, t) = cs(t), and so

d

ds s=0
cs(t) =

∂F

∂xi
(x0, t)v

i
0,

where vi0 = d
ds s=0

(xs0)
i. Also, c′s(t) =

d
dtF (x

s
0, t) = f0(cs(t)). So v(t) is a curve in TM such

that

v : t 7→
(
F (x0, t),

∂F

∂xi
(x0, t)v

i
0

)
,

and since d
dtF (x0, t) = f0(c(t)) and

d
dt
∂F
∂xi

(x0, t) =
∂f0
∂xi

(c(t)), we have

dv

dt
: t 7→

(
f0(c(t)),

∂f0
∂xi

(c(t))vi0

)
.

This shows that v(t) = d
ds s=0

cs(t) is the integral curve of fT0 with initial condition v0.□

Tangent and cotangent lifts of the geodesic spray. Now let us consider the state manifold
as the tangent bundle of the configuration manifold M = TQ. This allows us to take the
drift vector field as the geodesic spray associated with the affine connection, f0 = Z. Recall
from equation (2.9) that

Z = vi
∂

∂qi
− Γijkv

jvk
∂

∂vi
.

Using coordinates ((q, v), (u,w)) on TTQ, we find the tangent lift of the geodesic spray

ZT = vi
∂

∂qi
− Γijkv

jvk
∂

∂vi
+ wi

∂

∂ui

−
(
∂Γijk
∂ql

vjvkul + Γijkw
jvk + Γikjw

jvk
)

∂

∂wi
.

Following Theorem 3.5, we wish to get a handle on ZT , related to classical notions from
affine differential geometry. Let c(t) be a geodesic on Q and let cs(t) be a family of geodesics
with c0(t) = c(t). Define a vector field along c(t) by

ξ(t) =
d

ds s=0
cs(t) ∈ Tc(t)Q.

Kobayashi and Nomizu [1963b] show that this vector field satisfies the Jacobi equation

∇2
c′(t)ξ(t) +R(ξ(t), c′(t))c′(t) +∇c′(t)(T (ξ(t), c

′(t))) = 0,

and so by definition ξ(t) is a Jacobi field.
We want to find a relationship between variations of geodesics and variations of integral

curves of Z. Now from Theorem 3.5, ZT measures variations of integral curves of Z, and
these solutions project to geodesics on Q. So we expect ZT to measure variations of initial
condition of geodesics. The Jacobi field measures variations of geodesics, so we also expect
some relationship between ZT and the Jacobi equation. Making precise such a relationship
may give us insight into ZT

∗
.
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Our strategy will involve changing ZT into a second-order vector field and using an
Ehresmann connection to find a suitable way to split it, so that each part will satisfy
certain conditions. This in turn will point us in the direction of what we want: a similar
statement involving the cotangent lift of the geodesic spray ZT

∗
.

The Jacobi equation is a second-order equation for a vector field along geodesics. But
ZT is not quite a second-order equation. However, if we define a diffeomorphism (canonical
involution) IQ : TTQ→ TTQ by

IQ((q, v), (u,w)) = ((q, u), (v, w)),

then I∗QZ
T is a second-order vector field on TTQ. In coordinates it is

I∗QZ
T = ui

∂

∂qi
+ wi

∂

∂vi
− Γijku

juk
∂

∂ui

−
(
∂Γijk
∂ql

ujukvl + Γijku
kwj + Γikju

kwj
)

∂

∂wi
,

which makes it clear that I∗QZ
T is second-order.

We now try to gain some intuition about the geometry of the spaces TvqTQ and T ∗
vqTQ

since we are investigating the maps

ZT : TTQ→ TTTQ,

ZT
∗
: T ∗TQ→ TT ∗TQ.

Let us first try to get a picture of what TvqTQ “looks” like. At 0q′ ∈ Tq′Q, we may
choose, what looks to be in Figure 1, a vertical component V0q′TQ, which is isomorphic to
Tq′Q. A complement to this component, what we will refer to as the horizontal component
H0q′TQ, can be taken as the space tangent to Q at the point q′, which is simply Tq′Q. Thus
we have split the space as

T0q′TQ ≃ Tq′Q⊕ Tq′Q.

If we take an arbitrary point vq ∈ TqQ, some extra care is required. The space TqQ
can still be taken as the vertical component, but now it is not clear what to choose for the
horizontal component. So we always have a natural way to isolate the vertical component
of a tangent space, that is

VvqTQ = span

{
∂

∂v1
, . . . ,

∂

∂vn

}
⊂ TvqTQ.

We want a complement to the vertical, and such a complement is called an Ehresmann
connection . To achieve this, we can use the affine connection ∇ to define the horizontal
component as

HvqTQ = span

{
∂

∂qi
− 1

2
(Γjik + Γjki)v

k ∂

∂vj

}
i∈{1,...,n}

.

This choice may be shown to be invariant under a change of coordinates, and so is well
defined. It is also isomorphic to TqQ because it can be projected to the tangent space at q.
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vq

TvqTQ

TqQ

Q

VvqTQ (canonical)

HvqTQ (defined by ∇)

0q′

Tq′Q

V0
q′
TQ (canonical)

H0
q′
TQ (canonical)

Figure 1: Splitting of the tangent space TvqTQ.

It is now evident that each of the components VvqTQ and HvqTQ are isomorphic to
TqQ, so we may write the splitting of our tangent space as

TvqTQ ≃ TqQ⊕ TqQ.

Since we used the canonical involution IQ to make ZT into a second-order vector field
on TTQ, we can repeat the above process and use I∗QZ

T to define a splitting of TXvqTTQ
where Xvq ∈ TvqTQ. Now, the vertical component is again naturally isomorphic to the
tangent space TvqTQ. We then use another Ehresmann connection, obtained from I∗QZ

T ,
to find a complement HvqTTQ that is also isomorphic to TvqTQ. This allows us to write

TXvqTTQ ≃ TvqTQ⊕ TvqTQ,

and from the splitting found for TvqTQ, we have

TXvqTTQ ≃ TqQ⊕ TqQ⊕ TqQ⊕ TqQ.

Therefore we can determine the form of ZT (Xvq) using this splitting, where Xvq ∈ TvqTQ.
Then we can use this representation of ZT to obtain a relationship between solutions of the
Jacobi equation and integral curves of ZT .

Now for Xvq ∈ TvqTQ ≃ TqQ⊕ TqQ, we can write

Xvq = uvq ⊕ wvq ,

where uvq , wvq ∈ TqQ. With this in mind, we state the following theorem whose proof along
the lines indicated above may be found in [Bullo and Lewis 2005, Chapter S4].

3.6 Theorem: Let ∇ be an affine connection on Q with Z the corresponding geodesic spray.
Let c : I → Q be a geodesic with t 7→ σ(t) ≜ c′(t) the corresponding integral curve of Z.
Let a ∈ I and u,w ∈ Tc(a)Q and define vector fields U,W : I → TQ along c by asking

that t 7→ U(t) ⊕W (t) ∈ Tc(t)Q ⊕ Tc(t)Q ≃ Tσ(t)TQ be the integral curve of ZT with initial
conditions u⊕ w ∈ Tc(a)Q⊕ Tc(a)Q ≃ Tσ(a)TQ. Then
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1. W (t) = ∇c′(t)U(t) + 1
2T (U(t), c′(t)),

2. U satisfies the Jacobi equation.

The Jacobi equation is given in Definition 2.9,

∇2
c′(t)ξ(t) +R(ξ(t), c′(t))c′(t) +∇c′(t)(T (ξ(t), c

′(t)) = 0,

where ξ(t) ∈ TQ is a vector field along c(t).
This gives us an understanding of the relationship between integral curves of ZT and

Jacobi fields. Now let us use the same approach to investigate the cotangent lift of the
geodesic spray ZT

∗
. For a vector Λvq ∈ T ∗

vqTQ, we can define a splitting

TΛvqT
∗TQ ≃ HΛvqT

∗TQ⊕ VΛvqT
∗TQ,

where VΛvqT
∗TQ is given naturally by T ∗

vqTQ and HΛvqT
∗TQ is given by the Ehresmann

connection defined by I∗QZ
T . Since the vector space TvqTQ splits as

TvqTQ ≃ TqQ⊕ TqQ,

then its dual must also split as

VΛvqT
∗TQ ≃ T ∗

vqTQ ≃ T ∗
qQ⊕ T ∗

qQ.

The horizontal component given by the Ehresmann connection turns out to be isomorphic
to the tangent space to TvqTQ itself. So we have

HΛvqT
∗TQ ≃ TvqTQ ≃ TqQ⊕ TqQ.

Thus we have defined the splitting

TΛvqT
∗TQ ≃ TqQ⊕ TqQ⊕ T ∗

qQ⊕ T ∗
qQ.

And as before, we can determine the form of ZT
∗
(Λvq) where Λvq ∈ T ∗

vqTQ using the above
splitting.

Noting this, we can now write

Λvq = αvq ⊕ βvq ,

where αvq , βvq ∈ T ∗
qQ. And this leads us to the following theorem, proven in [Bullo and

Lewis 2005, Chapter S4].

3.7 Theorem: Let ∇ be an affine connection on Q with Z the corresponding geodesic spray.
Let c : I → Q be a geodesic with t 7→ σ(t) ≜ c′(t) the corresponding integral curve of Z.
Let a ∈ I and α, β ∈ T ∗

c(a)Q and define one-form fields A,B : I → T ∗Q along c by asking

that t 7→ A(t) ⊕ B(t) ∈ T ∗
c(t)Q ⊕ T ∗

c(t)Q ≃ T ∗
σ(t)TQ be the integral curve of ZT

∗
with initial

conditions α⊕ β ∈ T ∗
c(a)Q⊕ T ∗

c(a)Q ≃ T ∗
σ(a)TQ. Then

1. A(t) = −∇c′(t)B(t) + 1
2T

∗(B(t), c′(t)),

2. B satisfies the adjoint Jacobi equation.

The adjoint Jacobi equation is given in Definition 2.10,

∇2
c′(t)α(t) +R∗(α(t), c′(t))c′(t)− T ∗(∇c′(t)α(t), c

′(t)) = 0,

where α(t) ∈ T ∗Q is a one-form field along c(t).
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3.3. The maximum principle for affine connection control systems. We now restate the
maximum principle from Section 3.1, only we want to try to use the new concepts we have
encountered. All definitions and theorems are from [Bullo and Lewis 2005, Chapter S4].

A control affine system is a triple Σ = (M,F , U) where M is an n-dimensional,
separable, connected Hausdorff manifold, F = {f0, f1, . . . , fm} is a collection of C∞ vector
fields on M, and U : M → 2R

m
assign a subset of Rm to each point x ∈ M , where 2A

denotes the set of subsets of the set A. We denote Ux ⊂ Rm to be the image of x ∈ M
under U. If there is a subset S ⊂ Rm such that Ux = S for each x ∈ M, then we say that
U is constant.

Remember that we are dealing with the control system

ẋ(t) = f0(x(t)) + ua(t)fa(x(t)).

We call a pair γ = (u, c) a controlled trajectory for a control affine system Σ = (M,F , U)
where u : I → Rm is measurable and c : I → M is a solution of the control system, and
denote the set of all control trajectories for Σ by Ctraj(Σ). If the interval I is compact, then
we call γ = (u, c) a controlled arc and denote the set of controlled arcs for Σ by Carc(Σ).

If the function t 7→ L(c(t), u(t)) is locally integrable, then we will say that γ = (u, c)
is L-acceptable and denote Ctraj(Σ, L) as the subset of Ctraj(Σ) that contains only L-
acceptable controlled trajectories. Similarly, Carc(Σ, L) is the subset of Carc(Σ) that con-
tains only L-acceptable controlled arcs.

The functional that we are trying to minimize will be defined by

JΣ,L(γ) =

∫ b

a
L(c(t), u(t)) dt,

where γ = (u, c) ∈ Carc(Σ, L) with u and c defined on I = [a, b].
If S0 and S1 are two disjoint submanifolds of M, we define

Carc(Σ, L, S0, S1) = {γ = (u, c) ∈ Carc(Σ, L)| c(a) ∈ S0 and c(b) ∈ S1

where u and c are defined on [a, b] for some a, b ∈ R}.

Now, if a, b ∈ R with a < b are fixed, then we take

Carc(Σ, L, S0, S1, [a, b]) = {γ = (u, c) ∈ Carc(Σ, L)| where u and c

are defined on [a, b] and c(a) ∈ S0 and c(b) ∈ S1}.

We can now formally state the problems of finding the optimal controlled trajectory
connecting the two submanifolds.

3.8 Definition: Let Σ = (M,F , U) be a control affine system, let L be a cost for Σ, and
let S0 and S1 be disjoint submanifolds of M.

1. A controlled arc γ∗ ∈ Carc(Σ, L, S0, S1) is a solution of P (Σ, L, S0, S1) if
JΣ,L(γ∗) ≤ JΣ,L(γ) for every γ ∈ Carc(Σ, L, S0, S1).

2. We say γ∗ is a solution of Ptime(Σ, S0, S1) if it is a solution of P (Σ, 1, S0, S1).

3. A controlled arc γ∗ ∈ Carc(Σ, L, S0, S1, [a, b]) is a solution of P[a,b](Σ, L, S0, S1) if

JΣ,L(γ∗) ≤ JΣ,L(γ) for every γ ∈ Carc(Σ, L, S0, S1, [a, b]).
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Given a real vector space V, its dual V ∗, and a subset S ⊂ V, we denote

ann(S) = {α ∈ V ∗|α(v) = 0 for all V ∈ S}.

We define the Hamiltonian HΣ,L on {(u, αx) ∈ Ux × T ∗M} by

HΣ,L(u, αx) = L(x, u) + αx · (f0(x) + uafa(x)).

Notice that here we add L, whereas in the definition from Section 3.1, we subtracted it.
This does not cause a problem since the one-form field will absorb the sign change.

We say that a one-form field χ : I → T ∗M along c is minimizing for (Σ, L) along
u if

HΣ,L(u(t), χ(t)) ≤ inf
ũ∈Ux

HΣ,L(ũ, χ(t)).

Using all this new terminology, we state another, more precise, version of the maximum
principle.

3.9 Theorem: (Maximum Principle) Let Σ = (M,F , U) be a control affine system with
L a cost function for Σ, and let S0 and S1 be disjoint submanifolds of M. Suppose that
γ = (u, c) ∈ Carc(Σ, L) is a solution of P[a,b](Σ, L, S0, S1) with u and c defined on [a, b].
Then there exists a one-form field χ : [a, b] → T ∗M along c and a constant χ0 ∈ {0, 1} with
the properties:

1. χ(a) ∈ ann(Tc(a)S0) and χ(b) ∈ ann(Tc(b)S1);

2. χ(t) satisfies the Hamiltonian equations for HΣ,L along u;

3. χ is minimizing for (Σ, χ0L) along u;

4. either χ0 = 1 or χ(a) ̸= 0.

If U is constant then there exists a constant C ∈ R so that HΣ,L(u(t), χ(t)) = C almost
everywhere. If U is constant and if γ = (u, c) is a solution of P (Σ, L, S0, S1), then we take
C = 0.

This version of the maximum principle is a special case of a general maximum principle
given by Sussmann [1998].

We now come to the main result of the paper, a maximum principle for affine connection
control systems. However, since we are mostly interested in time-optimization, the theorem
will only deal with the case when L = 1. For the general case, see [Bullo and Lewis 2005,
Chapter S4]. But first we need some more notation.

An affine connection control system is a quadruple Σaff = (Q,∇,Y , U) where the
configuration space Q is a smooth, finite-dimensional, separable, Hausdorff manifold, ∇ is
a smooth affine connection on Q, Y = {Y1, . . . , Ym} is a collection of smooth vector fields
on Q, and U : Q → 2R

m
is a map into the set of subsets of Rm. Similarly to our previous

description of the admissible controls, we denote Uq ⊂ Rm, and say that U is constant if
there is a subset S ⊂ Rm such that Uq = U(q) = S for each q ∈ Q. Now we are considering
the control systems characterized by the equation,

∇c′(t)c
′(t) = ua(t)Ya(c(t)). (3.6)
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In moving from the configuration space Q to the state space TQ, we find a control affine
system Σ = (TQ, {Z, verlift(Y1), . . . , verlift(Ym)}, UT ) associated with our affine connection
control system Σaff , where U

T (vq) = U(q) and verlift(Ya)(vq) =
d
ds s=0

(vq+ sYa(q)), so that

if Ya = Y i
a
∂
∂qi

then verlift(Ya) = Y i
a
∂
∂vi
.

As we mentioned previously, for the problem of attempting to find time-optimal solu-
tions, we will take the Lagrangian L = 1. So our problem is now to minimize

JΣaff (γ) = b− a.

We will not be dealing with the problems of fixed values for a and b, since this would imply
that JΣaff is constant for all trajectories and thus there would be nothing to minimize.

For q0, q1 ∈ Q, vq0 ∈ Tq0Q, and vq1 ∈ Tq1Q we define

Carc(Σaff , vq0 , vq1) = {γ = (u, c) ∈ Carc(Σaff)| c′(a) = vq0 and c′(b) = vq1

where u and c are defined on [a, b] for some a, b ∈ R}.

This definition takes all controlled arcs that have fixed initial and final states, which restricts
the configuration and the velocity. However, if we want to only restrict the configurations,
we define

Carc(Σaff , q0, q1) = {γ = (u, c) ∈ Carc(Σaff)| c(a) = q0 and c(b) = q1

where u and c are defined on [a, b] for some a, b ∈ R}.

We define the time-optimal problem as follows:

3.10 Definition: Let Σaff = (Q,∇,Y , U) be an affine connection control system, and let
L = 1 be the cost function for Σaff , let q0, q1 ∈ Q, and let vq0 ∈ Tq0Q and Tq1 ∈ Tq1Q.

1. A controlled arc γ∗ ∈ Carc(Σaff , vq0 , vq1) is a solution of Ptime(Σaff , vq0 , vq1) if
JΣaff (γ∗) ≤ JΣaff (γ) for every γ ∈ Carc(Σaff , vq0 , vq1).

2. A controlled arc γ∗ ∈ Carc(Σaff , q0, q1) is a solution of Ptime(Σaff , q0, q1) if
JΣaff (γ∗) ≤ JΣaff (γ) for every γ ∈ Carc(Σaff , q0, q1).

Before stating the next theorem, we refer back to Section 3.2, where we defined a splitting
that allowed us to write the one-form field Λvq ∈ T ∗

vqTQ as αvq ⊕ βvq for αvq , βvq ∈ T ∗
qQ.

Using this fact, we define the time-optimal Hamiltonian HΣaff
time on {(u,Λvq) ∈ Uq ×

T ∗TQ} for an affine connection control system Σaff to be

HΣaff
time(u, αvq ⊕ βvq) = 1 + αvq · vq + ua(βvq · Ya(q)). (3.7)

A one-form field λ : [a, b] → T ∗Q along c is minimizing for Σaff along u if

HΣaff
time(u(t), θ(t)⊕ λ(t)) ≤ inf

ũ∈Uq
HΣaff

time(ũ, θ(t)⊕ λ(t)).

Recall that in Theorem 3.7, it was found that the integral curve A(t) ⊕ B(t) of ZT
∗

satisfies the equations

∇2
c′(t)B(t) +R∗(B(t), c′(t))c′(t)− T ∗(∇c′(t)B(t), c′(t)) = 0,

A(t) = −∇c′(t)B(t) +
1

2
T ∗(B(t), c′(t)),
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the first being the adjoint Jacobi equation. We may now state the long awaited theorem for
time-optimization on an affine connection control system. This is proven using Theorem 3.9
by Bullo and Lewis [2005, Chapter S4].

3.11 Theorem: (Maximum Principle for Time-Optimization of Affine Connection Control
Systems) Let Σaff = (Q,∇,Y , U) be an affine connection control system with a cost function
L = 1 for Σaff . Suppose that γ = (u, c) ∈ Carc(Σaff) is a solution of Ptime(Σaff , vq0 , vq1)
with u and c defined on [a, b]. Then there exists a one-form field λ : [a, b] → T ∗Q along c
and a constant λ0 ∈ {0, 1} with the following properties:

1. for almost every t ∈ [a, b] we have

∇2
c′(t)λ(t) +R∗(λ(t), c′(t))c′(t)− T ∗(∇c′(t)λ(t), c

′(t))

= ua(t)(∇Ya)∗(λ(t)), (3.8)

where ∇Ya(X) = ∇XYa;

2. λ is minimizing for (Σaff , λ0) along u;

3. either λ0 = 1 or θ(a)⊕ λ(a) ̸= 0, where

θ(t) =
1

2
T ∗(λ(t), c′(t))−∇c′(t)λ(t), t ∈ [a, b]. (3.9)

If γ = (u, c) is a solution of Ptime(Σaff , q0, q1) then conditions 1–3 hold and, in addition,
λ(a) = 0 and λ(b) = 0. If U is constant then λ may be chosen so that HΣaff

time(u(t), θ(t) ⊕
λ(t)) = 0 almost everywhere.

3.4. Time-optimal control for affine connection control systems. As one could imagine,
we need some kind of constraint on our controls, or else we would find that for time-
optimization, “pushing harder” would achieve the end goal in zero time, which is unrealistic.
Therefore let us assume that the norm of the controls with respect to a Riemannian metric
g is bounded, ∥ua(t)Ya(c(t))∥g ≤ 1. We would like to have a statement that tells us what
the controls ua are in this case. The following lemma achieves this result. If V is a vector
space and V ∗ is its dual, we define ♯ by stating that if v ∈ V then v♯(u) = g(v, u) for every
u ∈ V .

3.12 Lemma: Given a vector space V with metric g and its dual space V ∗, the problem of
finding v ∈ V that minimizes λ(v) with the restriction that ∥v∥ ≤ 1 where λ ∈ V ∗, is solved
by

vmin = − λ♯

∥λ∥g−1

,

and the minimum value is given by λ(vmin) = −∥λ∥g−1 .

Proof: Choose an orthonormal basis {e1, . . . , en} for V with

e1 =
λ♯

∥λ♯∥g
.
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If v = viei, then

λ(v) = g(λ♯, v) = ∥λ♯∥gg(e1, v) = ∥λ♯∥gg(e1, v
iei) = ∥λ♯∥gv

1.

And since −1 ≤ vi ≤ 1, then the minimum value of λ(v) occurs when v1 = −1, and so

vmin = v1e1 = − λ♯

∥λ♯∥g
= − λ♯

∥λ∥g−1

.

Knowing vmin, we find that λ(vmin) = −∥λ∥g−1 .□
This lemma tells us that to minimize a one-form λ acting on a vector v whose norm is

bounded by unity, the magnitude of the vector must be identically one, and its direction
must be opposite to the image of the one form under ♯.

We would like to apply this lemma to Theorem 3.11, the maximum principle for affine
connection control systems. In this case, we will be trying to minimize the time-optimal
Hamiltonian, equation (3.7):

HΣaff
time(u, αvq ⊕ βvq) = 1 + αvq · vq + ua(βvq · Ya(q)).

Since the control does not appear in the first two terms 1 + αvq · vq, we are simply trying
to find ua such that

ua(βvq · Ya(q)) = min
∥ũaYa(q)∥g≤1

ũa(βvq · Ya(q)).

We are starting to see the how Lemma 3.12 can help us with such a problem.
Let PYq : TqQ → TqQ be the orthogonal projection onto the subspace spanned by our

input vector fields, Yq = span{Y1(q), . . . , Ym(q)}. Using the subspace Yq, we can split the
tangent and cotangent spaces of the configuration manifold, so that

TqQ ≃ Yq ⊕ Y⊥
q and T ∗

qQ ≃ Y∗
q ⊕ (Y⊥

q )
∗.

Now we can write the one-form field βvq ∈ T ∗
qQ as

βvq = β1vq + β2vq ,

where β1vq = P ∗
Yq
(βvq) ∈ Y∗

q , and β
2
vq ∈ (Y⊥

q )
∗. The first component is the only one preserved

when we apply the one-form βvq to the vector field uaYa(q). Thus it is quite obvious now
how to apply Lemma 3.12.

Before stating the theorem for time-optimal control when the controls are bounded, we
define the (2, 0)-tensor on Q

hYq(αq, βq) = gYq(g
♯(αq), g

♯(βq)), (3.10)

where gYq is a (0, 2)-tensor on Q given by

gYq(uq, vq) = g(PYq(uq), PYq(vq)). (3.11)

This definition completes the notation that we need for the final result.
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3.13 Theorem: With the assumptions of Theorem 3.11 and the constraint that
∥ua(t)Ya(c(t))∥g ≤ 1, the time-optimal controls ua(t) are given by

ua(t)Ya(c(t)) = −
h♯Yq(λ(t))

∥P ∗
Yq
(λ(t))∥

g−1

. (3.12)

provided that h♯Yq(λ(t)) ̸= 0.

An extremal for which h♯Yq(λ(t)) = 0 along the entire extremal is called singular . We
will examine these in Section 5 when the planar rigid body is investigated.

4. Robotic leg

The first mechanical system that we will be investigating is known as the robotic leg.
It consists of a retractable leg of variable length r with a mass m at one end. The other
end is attached to a block, and both are free to rotate about this axis, as in Figure 2. We
will measure the angular displacement of the block relative to the horizontal by θ and that
of the leg extension by ψ. We assume that we can change (control) the length of the leg
extension and the angle between the leg and block.

θ

ψ

r

Figure 2: The robotic leg

4.1. Equations of motion. Taking the coordinates given above, (r, θ, ψ), the configuration
manifold is (0,∞)× T2. The Riemannian metric for the robotic leg is

g = m dr ⊗ dr + J dθ ⊗ dθ +mr2 dψ ⊗ dψ,

where m is the mass attached to the leg and J is the inertia of the block. To find the
geodesics, we have to minimize the kinetic energy of the system, 1

2g(vq, vq), and this will
describe its natural or unforced evolution in the configuration space. Thus the Lagrangian
we will use to obtain these equations of motion is the kinetic energy,

L =
1

2
(mṙ2 + Jθ̇

2
+mr2ψ̇

2
).



24 A. T. Coombs

The Euler-Lagrange equation then gives the uncontrolled motion of the system

mr̈ −mrψ̇
2
= 0,

Jθ̈ = 0,

mr2ψ̈ + 2mrṙψ̇ = 0.

The input one-forms that determine how the controls are considered are F 1 = dr and
F 2 = dθ − dψ. Therefore, the equations of controlled motion for this system are

mr̈ −mrψ̇
2
= u1,

Jθ̈ = u2,

mr2ψ̈ + 2mrṙψ̇ = −u2,

where u1 is the leg-extension force and u2 is the leg-body torque.
We could also find the equations of motion from the geodesic equation, ∇c′(t)c

′(t) = 0.
By taking q1 = r, q2 = θ and q3 = ψ, the nonzero Christoffel symbols are

Γrψψ = −r and Γψrψ = Γψψr =
1

r
.

The geodesics of uncontrolled motion are then obtained from equation (2.8):

r̈ − rψ̇2 = 0,

θ̈ = 0,

ψ̈ + 2
ṙψ̇

r
= 0.

The input vector fields Ya are related to the input one-form fields F a by the expression
Ya = (F a)♯, thus

Y1 =
1

m

∂

∂r
and Y2 =

1

J

∂

∂θ
− 1

mr2
∂

∂ψ
.

Now equation (3.6), ∇c′(t)c
′(t) = ua(t)Ya(c(t)) gives us the controlled equations of motion

of the robotic leg to be

r̈ − rψ̇2 =
1

m
u1,

θ̈ =
1

J
u2,

ψ̈ + 2
ṙψ̇

r
= − 1

mr2
u2,

(4.1)

which are the same as those obtained from the Euler-Lagrange equation.

4.2. Application of the Hamiltonian equations. Since the geodesic equations are second-
order, they can be written in the form of equation (3.5), the control equation

ẋ(t) = f0(x(t)) + ua(t)fa(x(t)),
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where we take q(t) = (r(t), θ(t), ψ(t)) and v(t) = (ṙ(t), θ̇(t), ψ̇(t)), so that q ∈ Q, the
configuration manifold, and v ∈ TqQ. So the state of our control system x(t) = (q(t), v(t))
changes according to equation (3.5) where

x =



r
θ
ψ
vr
vθ
vψ

 , f0(x) =


vr
vθ
vψ
rv2ψ
0

−2
vrvψ
r

 , f1(x) =


0
0
0
1
m
0
0

 , f2(x) =


0
0
0
0
1
J

− 1
mr2

 .

Now, for p =
[
αr αθ αψ βr βθ βψ

]
, a covector in T ∗

(q,v)TQ, we may construct

the control Hamiltonian, equation (3.4), remembering that for time-optimal control, the
Lagrangian is L = 1.

H(x, p, u) = p(f0(x) + uafa(x))− p0L

= αrvr + αθvθ + αψvψ

+
βr
m

(mrv2ψ + u1) +
βθ
J
u2 −

βψ
mr2

(2mrvrvψ + u2)− p0.

The original maximum principle, Theorem 3.4, gives us the necessary condition that the
Hamiltonian equations

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)) and ṗ(t) = −∂H

∂x
(x(t), p(t), u(t))

must hold, giving us the system of differential equations

ṙ = vr,

θ̇ = vθ,

ψ̇ = vψ,

v̇r = rv2ψ +
1

m
u1,

v̇θ =
1

J
u2,

v̇ψ = −2
vrvψ
r

− 1

mr2
u2,

α̇r = −βrv2ψ − 2
βψvrvψ
r2

− 2
βψ
mr3

u2,

α̇θ = 0,

α̇ψ = 0,

β̇r = 2
βψvψ
r

− αr,

β̇θ = −αθ,

β̇ψ = 2
βψvr
r

− 2βrrvψ − αψ.

(4.2)

Of course, the obvious complexity of these equations suggest that we may not be able
to find a closed form solution. However, here is where some numerical programming and
simulations may offer insight.

4.3. Application of affine connection control systems. We now use the ideas we have
gathered for time-optimization of affine connection control systems and apply it to the
robotic leg example. First let us compute equation (3.8) from Theorem 3.11,

∇2
c′(t)λ(t) +R∗(λ(t), c′(t))c′(t)− T ∗(∇c′(t)λ(t), c

′(t))

= ua(t)(∇Ya)∗(λ(t)),
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where λ(t) = (λr(t), λθ(t), λψ(t)) is a one-form field along c(t) = (r(t), θ(t), ψ(t)), a trajec-
tory in the configuration space Q.

As we mentioned earlier, the nonzero Christoffel symbols for the Riemannian metric are

Γrψψ = −r and Γψrψ = Γψψr =
1

r
.

From the coordinate expressions in Definitions 2.6 and 2.7, we find that both the torsion
tensor T and curvature tensor R are zero. And therefore the adjoint forms of each, T ∗ and
R∗, are also zero. Using equation (2.7), we find the covariant derivative of λ(t) along the
trajectory to be

∇c′(t)λ(t) =

(
λ̇r −

ψ̇λ̇ψ
r

)
dr + λ̇θ dθ +

(
λ̇ψ + rψ̇λr −

ṙλψ
r

)
dψ.

Taking the second derivative gives us the right-hand side of equation (3.8),

∇2
c′(t)λ(t) =

(
λ̈r − ψ̇2λr −

ψ̈λψ + 2ψ̇λ̇ψ
r

+ 2
ṙψ̇λψ
r2

)
dr + λ̈θ dθ

+

(
λ̈ψ + rψ̈λr + 2rψ̇λ̇r − ψ̇2λψ −

r̈λψ + 2ṙλ̇ψ
r

+ 2
ṙ2λψ
r2

)
dψ

=

(
λ̈r − ψ̇2λr − 2ψ̇

rλ̇ψ − 2ṙλψ
r2

)
dr + λ̈θ dθ

+

(
λ̈ψ − 2ψ̇(ψ̇λψ + ṙλr − rλ̇r)

− 2ṙ
rλ̇ψ − ṙλψ

r2
−
u1λψ + u2λr

mr

)
dψ,

where the second line comes from substituting r̈ and ψ̈ from the equations of motion,
equations (4.1).

Now let us find the left-hand side of equation (3.8). In Theorem 3.11, we defined
∇Ya(X) = ∇XYa. From equation (2.4) we compute

∇Y1(X) =
1

mr
X3 ∂

∂ψ
=⇒ ∇Y1 =

1

mr

 0 0 0
0 0 0
0 0 1

 ,

∇Y2(X) =
1

mr
X3 ∂

∂r
+

1

mr3
X1 ∂

∂ψ
=⇒ ∇Y2 =

1

mr

 0 0 1
0 0 0
1
r2

0 0

 ,
where we are using matrix notation to denote ∇Ya, so that ∇Ya(X) is simply matrix
multiplication of ∇Ya and the vector X = (X1, X2, X3). And thus we find that

ua(t)(∇Ya)∗λ(t) =
u2λψ
mr3

dr +
u1λψ + u2λr

mr
dψ.
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So the maximum principle for affine connection control systems, Theorem 3.11 gives us the
equations

λ̈r = ψ̇2λr + 2ψ̇
rλ̇ψ − 2ṙλψ

r2
,

λ̈θ = 0,

λ̈ψ = 2ψ̇(ψ̇λψ + ṙλr − rλ̇r)

+ 2ṙ
rλ̇ψ − ṙλψ

r2
+ 2

u1λψ + u2λr
mr

,

which are equivalent to differentiating the Hamiltonian equations of equation (4.2) for β̇r,
β̇θ and β̇ψ, after making some appropriate substitutions.

To use Theorem 3.13 to find the controls necessary for time-optimization in the case
when we have the restriction ∥ua(t)Ya(c(t))∥g ≤ 1, we first need a full orthonormal basis
for the tangent bundle of the configuration manifold Q in terms of our input vector fields.
Since Y1 and Y2 are orthogonal, we may choose any vector field that is orthogonal to both
of these. Let us take Y3 = ∂

∂θ + ∂
∂ψ . Using the matrix notation we mentioned before, we

find the orthonormal vector fields

Ỹ 1 =

(
1√
m
, 0, 0

)
,

Ỹ 2 =

(
0,

√
mr2

J(J +mr2)
,−

√
J

mr2(J +mr2)

)
,

Ỹ 3 =

(
0,

1√
J +mr2

,
1√

J +mr2

)
.

This gives the orthogonal projection PYq : TqQ → TqQ, onto the span of the input vector
fields Y1 and Y2:

PYq =
1

J +mr2

 J +mr2 0 0
0 mr2 −mr2
0 −J J

 . (4.3)

And therefore the (0, 2)-tensor gYq defined by equation (3.11) in the chosen coordinate
system is

gYq =
1

J +mr2

 m(J +mr2) 0 0
0 Jmr2 −Jmr2
0 −Jmr2 Jmr2

 .
The numerator in equation (3.12) can be found by multiplying the matrix representing

hYq in equation (3.10) by the one-form field λ(t) = (λr(t), λθ(t), λψ(t)) to obtain

hYq =
1

J +mr2

 J+mr2

m 0 0

0 mr2

J −1

0 −1 J
mr2


=⇒ h♯Yq(λ(t)) =

λr
m

∂

∂r
+
λθmr

2 − λψJ

J(J +mr2)

∂

∂θ
−

λθmr
2 − λψJ

mr2(J +mr2)

∂

∂ψ
.
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Figure 3: Example of time-optimal motion of the robotic leg when m = 1 and J = 1,
and with initial conditions q(0) = (2, 0, π6 ), v(0) = (0, 0, 0), θ(0) = (−1, 0, 0) and λ(0) =
(−1.5, 0, 0). Plots of the leg extension length r(t) and the control u1(t) are shown on the
right.
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Now, Lemma 3.12 tells us that the vector must be normalized, so we find the magnitude
of the projection PYq on the one-form field λ(t),

∥P ∗
Yq(λ(t))∥

2

g−1
=
λ2rJr

2(J +mr2) + λ2θm
2r4 − 2λθλψJmr

2 + λ2ψJ
2

Jmr2(J +mr2)
,

where the norm is taken with respect to the inverse of the Riemannian metric g. And by
applying equation (3.12), we find that our controls for time-optimal solutions along the
one-form λ(t) are

u1 = − 1

∥P ∗
Yq
(λ(t))∥

g−1

λr and u2 = − 1

∥P ∗
Yq
(λ(t))∥

g−1

λθmr
2 − λψJ

J +mr2
.
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Figure 4: Example of time-optimal motion of the robotic leg when m = 1 and J = 1, and
with initial conditions q(0) = (2, 0, π2 ), v(0) = (0, 0, 0), θ(0) = (−1,−1,−1) and λ(0) =
(−1.65,−2,−2). The controls are shown on the right.

5. Planar rigid body

The second mechanical system that we will explore is the planar rigid body. The body
lies on a flat frictionless plane and we will assume that a force can be applied to the body
at a point which is a distance h from the center of mass, as in Figure 5. Thus we will have
an element Y1 of the total force parallel to the line joining the point of application and the
center of mass, and also an element Y2 perpendicular to it. This system can be thought of
as a simplified hovercraft.
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Figure 5: The planar rigid body

5.1. Equations of motion. We will take the Cartesian coordinate system (ξ, η) ∈ R2

to describe the position of the body, and let θ denote the angle that the line joining the
point of application of the force and the center of mass makes with the horizontal. So the
configuration manifold for these coordinates is R2 × S1. Using these coordinates (ξ, η, θ),
the Riemannian metric for the planar rigid body is

g = m dξ ⊗ dξ +mdη ⊗ dη + J dθ ⊗ dθ,

where m is the mass of the body and J is the inertia. By the same reasoning for the robotic
leg, we take the Lagrangian to be the kinetic energy 1

2g(vq, vq) of the system,

L =
1

2
(mξ̇

2
+mη̇2 + Jθ̇

2
).

Euler’s necessary condition, Theorem 2.2, tells us that the geodesic equations of the
system are mξ̈ = 0, mη̈ = 0, and Jθ̈ = 0. The input one-forms that give us the components
of force and the moment of inertia applied to the system from our controls are F 1 =
cos θ dξ+sin θ dη and F 2 = − sin θ dξ+cos θ dη−hdθ. Therefore we find that the equations
of controlled motion for this system are

mξ̈ = u1 cos θ − u2 sin θ,

mη̈ = u1 sin θ + u2 cos θ,

Jθ̈ = −hu2,

where u1 is the component of the force along the line joining its point of application and
the center of mass, and u2 is the component of the force perpendicular to this line.

To find the equations of motion from the geodesic equation (2.8), we note that all
of the Christoffel symbols are zero since the metric g is constant. This tells us that the
uncontrolled equations are simply the second derivatives of each coordinate q1 = ξ, q2 = η,
and q3 = θ equal to zero, as we found earlier. We compute the input vector fields, again
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from the relation Ya = (F a)♯, to be

Y1 =
1

m
cos θ

∂

∂ξ
+

1

m
sin θ

∂

∂η
,

Y2 = − 1

m
sin θ

∂

∂ξ
+

1

m
cos θ

∂

∂η
− h

J

∂

∂θ
.

And so equation (3.6), ∇c′(t)c
′(t) = ua(t)Ya(c(t)) gives the same equations of controlled

motion of the planar rigid body as the Euler-Lagrange equation gave us,

ξ̈ =
1

m
u1 cos θ − 1

m
u2 sin θ,

η̈ =
1

m
u1 sin θ +

1

m
u2 cos θ,

θ̈ = −h
J
u2.

(5.1)

5.2. Application of the Hamiltonian equations. To find the Hamiltonian equations,
we repeat the same procedure used on the robotic leg in Section 4.2. Letting q(t) =
(ξ(t), η(t), θ(t)) and v(t) = (ξ̇(t), η̇(t), θ̇(t)) so that we can again write the second-order
non-linear equations of motion as equation (3.5)

ẋ(t) = f0(x(t)) + ua(t)fa(x(t)),

where x(t) = (q(t), v(t)) is the state of the system. To achieve this, we take the assignments:

x =



ξ
η
θ
vξ
vη
vθ

 , f0(x) =


vξ
vη
vθ
0
0
0

 , f1(x) =


0
0
0

1
m cos θ
1
m sin θ

0

 , f2(x) =


0
0
0

− 1
m sin θ
1
m cos θ

−h
J

 .

From equation (3.4), the Hamiltonian for time-optimal control becomes

H(x, p, u) = αξvξ + αηvη + αθvθ+

βξ
m

(u1 cos θ − u2 sin θ) +
βη
m

(u1 sin θ + u2 cos θ)− βθ
J
hu2 − p0,

where p =
[
αξ αη αθ βξ βη βθ

]
∈ T ∗

(q,v)TQ is a one-form field along a solution c.
And therefore the Hamiltonian equations from the maximum principle,

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)) and ṗ(t) = −∂H

∂x
(x(t), p(t), u(t)),
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tell us that the time-optimal trajectories must satisfy

ξ̇ = vξ,

η̇ = vη,

θ̇ = vθ,

v̇ξ =
1

m
(u1 cos θ − u2 sin θ),

v̇η =
1

m
(u1 sin θ + u2 cos θ),

v̇θ = −h
J
u2,

α̇ξ = 0,

α̇η = 0,

α̇θ =
1

m
(βξu

1 + βηu
2) sin θ

+
1

m
(βξu

2 − βηu
1) cos θ,

β̇ξ = −αξ,
β̇η = −αη,
β̇θ = −αθ.

(5.2)

From this system, we see immediately that βξ and βη are linear functions of time:

βξ = k1 − c1t,

βη = k2 − c2t,
(5.3)

where c1 = αξ, c2 = αη, k1, and k2 are constants determined by the boundary conditions.
This will prove useful in Section 5.4.

5.3. Application of affine connection control systems. To apply the results of time-
optimal control of affine connection control systems, Theorems 3.11 and 3.13, we first recall
that all the Christoffel symbols are zero in the Levi-Civita connection chosen. From this
fact, it is apparent that the adjoint torsion tensor T ∗ and adjoint curvature tensor R∗ are
also zero. So to find equation (3.8),

∇2
c′(t)λ(t) = ua(t)(∇Ya)∗λ(t),

where λ(t) = (λξ(t), λη(t), λθ(t)), we first note that

∇2
c′(t)λ(t) = λ̈ξ dξ + λ̈η dη + λ̈θ dθ.

From the input vector fields

Y1 =
1

m
cos θ

∂

∂ξ
+

1

m
sin θ

∂

∂η
,

Y2 = − 1

m
sin θ

∂

∂ξ
+

1

m
cos θ

∂

∂η
− h

J

∂

∂θ
,

given in section 5.1, we find the terms ∇Ya(X) = ∇XYa from equation (2.4)

∇Y1(X) = − 1

m
sin θX3 ∂

∂ξ
+

1

m
cos θX3 ∂

∂η

=⇒ ∇Y1 =
1

m

 0 0 − sin θ
0 0 cos θ
0 0 0

 ,
∇Y2(X) = − 1

m
cos θX3 ∂

∂ξ
− 1

m
sin θX3 ∂

∂η

=⇒ ∇Y2 =
1

m

 0 0 − cos θ
0 0 − sin θ
0 0 0.

 .
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Therefore the left-hand side of equation (3.8) is

ua(t)(∇Ya)∗λ(t) = − 1

m

(
(u1λξ + u2λη) sin θ

+ (u2λξ − u1λη) cos θ
)
dθ,

and thus we find the same equations that are given after differentiating β̇ξ, β̇η, and β̇θ from
the Hamiltonian equations, equations (5.2):

λ̈ξ = 0,

λ̈η = 0,

λ̈θ = − 1

m
(λξu

1 + ληu
2) sin θ − 1

m
(λξu

2 − ληu
1) cos θ.

(5.4)

In applying Theorem 3.13 to find the time-optimal controls for the planar rigid body
example when ∥ua(t)Ya(c(t))∥g ≤ 1, we first try to simplify the calculations by introducing
the rotation matrix

R(θ) =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .
We then choose the vector field Y3 = sin θ ∂∂ξ − cos θ ∂

∂η − 1
h
∂
∂θ for a complement to the

orthogonal pair Y1 and Y2, and so we compute the orthonormal vector fields

Ỹ 1 =
1√
m
R(θ)

 1
0
0

 ,
Ỹ 2 =

√
J

m(J +mh2)
R(θ)

 0
1

−mh
J

 ,
Ỹ 3 =

h√
J +mh2

R(θ)

 0
−1
− 1
h

 .
This allows us to represent the orthogonal projection PYq : TqQ→ TqQ by the matrix

PYq =
1

J +mh2
R(θ)

 J +mh2 0 0
0 J −Jh
0 −mh mh2

R−1(θ). (5.5)

Now we use the fact that the metric g commutes with the rotation matrix R(θ) and also
that R−1(θ) = R∗(θ). This lets us write the identity R−1(θ)gR(θ) = g and so we find that

gYq =
1

J +mh2
R(θ)

 m(J +mh2) 0 0
0 Jm −Jmh
0 −Jmh Jmh2

R−1(θ).
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And then we compute h♯Yq(λ(t)) from equation (3.10), first noting that

hYq =
1

J +mh2
R(θ)

 J+mh2

m 0 0

0 J
m −h

0 −h mh2

J

R−1(θ).

So the numerator in equation (3.12) is

h♯Yq(λ(t)) =
1

J +mh2

(
λξ
(
J
m + h2 cos2 θ

)
+ ληh

2 sin θ cos θ + λθh sin θ

)
∂

∂ξ

+
1

J +mh2

(
λξh

2 sin θ cos θ + λη
(
J
m + h2 sin2 θ

)
− λθh cos θ

)
∂

∂y

+
1

J +mh2

(
λξh sin θ − ληh cos θ + λθ

mh2

J

)
∂

∂θ
.
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Figure 6: Example of time-optimal motion of the planar rigid body when m = 1, J = 1,
and h = 1, and with initial conditions q(0) = (0, 0, 0), v(0) = (0, 0, 0), θ(0) = (−1, 0, 0)
and λ(0) = (−1.5, 0, 0). Plots of the coordinate ξ(t) and the control u1(t) are shown on the
right.
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Now, from equation (5.5) we find the square of the norm of P ∗
Yq
(λ(t)):

∥P ∗
Yq(λ(t))∥

2

g−1
=

1

m(J +mh2)

(
λ2ξ(J +mh2 cos2 θ) + 2λξληmh

2 sin θ cos θ

+ λ2η(J +mh2 sin2 θ)− 2ληλθmh cos θ

+ λ2θ
m2h2

J
+ 2λξλθmh sin θ

)
.
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Figure 7: Example of time-optimal motion of the planar rigid body whenm = 1, J = 1, and
h = 1, and with initial conditions q(0) = (0, 0, π2 ), v(0) = (0, 0, 0), θ(0) = (−1.25,−1, 0.325)
and λ(0) = (−2.55,−2, 0). The controls are shown on the right.

Theorem 3.13 then tells us that when the norm of

u1Y1(q) + u2Y2(q) =
1

m
(u1 cos θ − u2 sin θ)

∂

∂ξ

+
1

m
(u1 sin θ + u2 cos θ)

∂

∂η
− u2

h

J

∂

∂θ

is bounded by one, we can write our controls for time-optimization in terms of the one-form
λ(t) along a solution,

u1 = − 1

∥P ∗
Yq
(λ(t))∥

g−1

(
λξ cos θ + λη sin θ

)
,

u2 =
1

∥P ∗
Yq
(λ(t))∥

g−1

λξJ sin θ − ληJ cos θ + λθmh

J +mh2
.
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5.4. Singular extremals. We now look at the special case when h♯Yq(λ(t)) = 0. Extremals
with this property are called singular , and occur when the maximum principle does not
allow us to determine the optimal controls. But for the planar rigid body, this condition
does give us the following equations:

λξ

(
J

m
+ h2 cos2 θ

)
+ ληh

2 sin θ cos θ + λθh sin θ = 0,

λξh
2 sin θ cos θ + λη

(
J

m
+ h2 sin2 θ

)
− λθh cos θ = 0,

λξh sin θ − ληh cos θ + λθ
mh2

J
= 0.

(5.6)

The first two of these give a relation between θ, λξ, and λη,

λξ cos θ + λη sin θ = 0. (5.7)

Using this relation and the third in equations (5.6), we find two more that will prove quite
useful,

λξ +
mh

J
λθ sin θ = 0 and λη −

mh

J
λθ cos θ = 0. (5.8)

Using the identity sin2 θ + cos2 θ = 1, we obtain the fact that

λ2θ =

(
J

mh

)2(
λ2ξ + λ2η

)
.

Now, in Section 5.2, we found βξ and βη were linear functions of time. From these, equa-
tions (5.3), we have an explicit form of λθ,

λ2θ =

(
J

mh

)2(
(k1 − c1t)

2 + (k2 − c2t)
2
)
.

Knowing the one-forms λξ, λη, and λθ in terms of the independent variable t allows us
to find θ in a closed form from equations (5.8) since

θ = arctan

(
−λξ
λη

)
.

Then we may use θ̈ = −h
J u

2, one of the equations of motion, equations (5.1), to find
an explicit formula for u2 in terms of t. Now we can take the third of equations (5.4),
λ̈θ = − 1

m(λξu
1 + ληu

2) sin θ − 1
m(λξu

2 − ληu
1) cos θ, and solve for u1. It is then possible to

find ξ and η by integrating twice the other equations of motion,

ξ̈ =
1

m
(u1 cos θ − u2 sin θ),

η̈ =
1

m
(u1 sin θ + u2 cos θ),

since we know all the variables on the left-hand sides. So for the planar rigid body example,
when h♯Yq(λ(t)) = 0 we can obtain closed form solutions for q(t) and λ(t), and also the
controls needed for time-optimization.
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Using the method described above, we find that the trajectories of singular extremals
are governed by the equations

ξ(t) = − J(k2 − c2t)

mh
√
(k1 − c1t)2 + (k2 − c2t)2

+ ξ0t+ ξ1,

η(t) =
J(k1 − c1t)

mh
√
(k1 − c1t)2 + (k2 − c2t)2

+ η0t+ η1,

θ(t) = arctan

(
−k1 + c1t

k2 − c2t

)
,

(5.9)

where ξ0, ξ1, η0, and η1 are the integration constants that occur from integrating ξ̈(t) and
η̈(t) twice. The controls may also be found explicitly, given by

u1(t) =
J(k1c2 − k2c1)

2

h((k1 − c1t)2 + (k2 − c2t)2)2
,

u2(t) = −2J(k1c2 − k2c1)((c
2
1 + c22)t− (c1k1 + c2k2))

h((k1 − c1t)2 + (k2 − c2t)2)2
.

The linear functions ξ0t + ξ1 and η0t + η1 simply translate the body along a straight
line as t increases. For the moment, let us ignore these translations and take the constants
ξ0, ξ1, η0, and η1 as zero, to allow us to examine the nature of the singular extremals more
easily.
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Figure 8: Example of the motion of singular extremals without linear translation when
m = 1, J = 2, and h = 1, and with constants c1 = −1, c2 = −1, k1 = 1, and k2 = 5. The
controls are shown on the right.
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When the singular extremals are not translated, their equations are:

ξ(t) = − J(k2 − c2t)

mh
√
(k1 − c1t)2 + (k2 − c2t)2

,

η(t) =
J(k1 − c1t)

mh
√
(k1 − c1t)2 + (k2 − c2t)2

,

θ(t) = arctan

(
−k1 + c1t

k2 − c2t

)
.

(5.10)

To characterize the path of such extremals, we find by a direct calculation that

ξ2(t) + η2(t) =

(
J

mh

)2

and θ(t) = arctan

(
η(t)

ξ(t)

)
+ π.

Thus when the constants of integration are zero, all motions of the planar rigid body are
along circles in the (ξ, η)-plane of radius J

mh while the line joining the point of application
of the force and the center of mass points directly toward the center of this circle, as in
Figure 8.

We now return to the more general class of singular extremals given by equations (5.9).
Let us consider the unforced extremals which occur when u1(t) = 0 and u2(t) = 0. One
may verify that this holds when

k1c2 = k2c1. (5.11)

By differentiating the first two in equations (5.10), we find that equation (5.11) tells us that
ξ(t) and η(t) are constants. Thus from equations (5.9), the unforced singular extremals are
simply linear translations, which are also geodesics of the system, an example of which is
shown in the first picture in Figure 9. Knowing the behaviour of both non-translated and
unforced singular extremals gives us an indication of how more general singular trajectories,
such as the one shown in the second picture in Figure 9, behave.

We may also note that time-optimal singular extremals are also abnormal singular
extremals for an arbitrary cost function (abnormal extremals are those which satisfy the
maximum principle, Theorem 3.4, when we take the abnormal multiplier p0 = 0). This ob-
servation may open up many other new questions regarding properties of singular extremals,
and thus give one a better understanding of these interesting trajectories.
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