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1. Problem statement and historical remarks

For finite dimensional R-vector spaces U and V we consider a symmetric bilinear map
B : U × U → V . This then defines a quadratic map QB : U → V by QB(u) = B(u, u).
Corresponding to each λ ∈ V ∗ is a R-valued quadratic form λQB on U defined by λQB(u) =
λ·QB(u). B is definite if there exists λ ∈ V ∗ so that λQB is positive-definite. B is indefinite
if for each λ ∈ V ∗\ann(image(QB)), λQB is neither positive nor negative-semidefinite, where
ann denotes the annihilator.

Given a symmetric bilinear map B : U × U → V , the problems we consider are as follows.

1. Find necessary and sufficient conditions characterizing when QB is surjective.

2. If QB is surjective and v ∈ V , design an algorithm to find a point u ∈ Q−1
B (v).

3. Find necessary and sufficient conditions to determine when B is indefinite.

From the computational point of view, the first two questions are the more interesting
ones. Both can be shown to be NP-complete, whereas the third one can be recast as a
semidefinite programming problem.1 Actually, our main interest is in a geometric charac-
terization of these problems. Section 4 below constitutes an initial attempt to unveil the
essential geometry behind these questions. By understanding the geometry of the problem
properly, one may be lead to simple characterizations like the one presented in Proposi-
tion 3, which turn out to be checkable in polynomial time for certain clases of quadratic
mappings.
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Before we comment on how our problem impinges on control theory, let us provide
some historical context for it as a purely mathematical one. The classification of R-valued
quadratic forms is well understood. However, for quadratic maps taking values in vector
spaces of dimension two or higher, the classification problem becomes more difficult. The
theory can be thought of as beginning with the work of Kronecker, who obtained a finite
classification for pairs of symmetric matrices. For three or more symmetric matrices, that
the classification problem has an uncountable number of equivalence classes for a given
dimension of the domain follows from the work of Kac [1983]. For quadratic forms, in a
series of papers Dines (see [Dines 1943] and references cited therein) investigated conditions
when a finite collection of R-valued quadratic maps were simultaneously positive-definite.
The study of vector-valued quadratic maps is ongoing. A recent paper is [Leep and Schueller
1999], to which we refer for other references.

2. Control theoretic motivation

Interestingly and perhaps not obviously, vector-valued quadratic forms come up in a
variety of places in control theory. We list a few of these here.

Optimal control:

Agrachev [1990a] explicitly realises second-order conditions for optimality in terms of vector-
valued quadratic maps. The geometric approach leads naturally to the consideration of
vector-valued quadratic maps, and here the necessary conditions involve definiteness of
these maps. Agrachev [1990b] and Agrachev and Gamkrelidze [1991] look at the map
λ 7→ λQB from V ∗ into the set of vector-valued quadratic maps. Since λQB is a R-valued
quadratic form, one can talk about its index and rank (the number of −1’s and nonzero
terms, respectively, along the diagonal when the form is diagonalised). In [Agrachev 1990b,
Agrachev and Gamkrelidze 1991] the topology of the surfaces of constant index of the map
λ 7→ λQB is investigated.

Local controllability:

The use of vector-valued quadratic forms arises from the attempt to arrive at feedback-
invariant conditions for controllability. Basto-Gonçalves [1998] gives a second-order suffi-
cient condition for local controllability, one of whose hypotheses is that a certain vector-
valued quadratic map be indefinite (although the condition is not stated in this way). This
condition is somewhat refined in [Bullo and Lewis 2005], and a necessary condition for local
controllability is also given. Included in the hypotheses of the latter is the condition that a
certain vector-valued quadratic map be definite.

Control design via power series methods and singular inversion:

Numerous control design problems can be tackled using power series and inversion methods.
The early references [Al′brekht 1961, Halme 1975] show how to solve the optimal regulator
problem and the recent work in [Cerven and Bullo 2003] proposes local steering algorithms.
These strong results apply to linearly controllable systems, and no general methods are yet
available under only second-order sufficient controllability conditions. While for linearly
controllable systems the classic inverse function theorem suffices, the key requirement for
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second-order controllable systems is the ability to check surjectivity and compute an inverse
function for certain vector-valued quadratic forms.

Dynamic feedback linearisation:

Sluis [1993] gives a necessary condition for the dynamic feedback linearisation of a system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm.

The condition is that for each x ∈ Rn, the set Dx = {f(x, u) ∈ TxRn| u ∈ Rm} admits a
ruling , that is, a foliation of Dx by lines. Some manipulations with differential forms turns
this necessary condition into one involving a symmetric bilinear map B. The condition, it
turns out, is that Q−1

B (0) ̸= {0}. This is shown by Agrachev [1990b] to generically imply
that QB is surjective.

3. Known results

Let us state a few results along the lines of our problem statement that are known to
the authors. The first is readily shown to be true (see [Bullo and Lewis 2005] for the proof).
If X is a topological space with subsets A ⊂ S ⊂ X, we denote by intS(A) the interior of A
relative to the induced topology on S. If S ⊂ V , aff(S) and conv(S) denote, respectively,
the affine hull and the convex hull of S.

Proposition 1 Let B : U × U → V be a symmetric bilinear map with U and V finite-
dimensional. The following statements hold:

(i) B is indefinite if and only if 0 ∈ intaff(image(QB))(conv(image(QB)));

(ii) B is definite if and only if there exists a hyperplane P ⊂ V so that image(QB)∩P =
{0} and so that image(QB) lies on one side of P ;

(iii) if QB is surjective then B is indefinite.

The converse of (iii) is false. The quadratic map from R3 to R3 defined by QB(x, y, z) =
(xy, xz, yz) may be shown to be indefinite but not surjective.

Agrachev and Sarychev [1996] prove the following result. We denote by ind(Q) the
index of a quadratic map Q : U → R on a vector space U .

Proposition 2 Let B : U×U → V be a symmetric bilinear map with V finite-dimensional.
If ind(λQB) ≥ dim(V ) for any λ ∈ V ∗ \ {0} then QB is surjective.

This sufficient condition for surjectivity is not necessary. The quadratic map from R2 to
R2 given by QB(x, y) = (x2 − y2, xy) is surjective, but does not satisfy the hypotheses of
Proposition 2.

4. Problem simplification

One of the difficulties with studying vector-valued quadratic maps is that they are
somewhat difficult to get ones hands on. However, it turns out to be possible to simplify
their study by a reduction to a rather concrete problem. Here we describe this process, only
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sketching the details of how to go from a given symmetric bilinear map B : U × U → V to
the reformulated end problem. We first simplify the problem by imposing an inner product
on U and choosing an orthonormal basis so that we may take U = Rn.

We let Symn(R) denote the set of symmetric n × n matrices with entries in R. On
Symn(R) we use the canonical inner product

⟨A,B⟩ = tr(AB).

We consider the map π : Rn → Symn(R) defined by π(x) = xxt, where t denotes transpose.
Thus the image of π is the set of symmetric matrices of rank at most one. If we identify
Symn(R) ≃ Rn ⊗ Rn, then π(x) = x ⊗ x. Let Kn be the image of π and note that it
is a cone of dimension n in Symn(R) having a singularity only at its vertex at the origin.
Furthermore, Kn may be shown to be a subset of the hypercone in Symn(R) defined by
those matrices A in Symn(R) forming angle arccos( 1n) with the identity matrix. Thus the
ray from the origin in Symn(R) through the identity matrix is an axis for the cone Kn. In
algebraic geometry, the image of Kn under the projectivisation of Symn(R) is known as
the Veronese surface [Harris 1992], and as such is well-studied, although perhaps not along
lines that bear directly on the problems of interest in this article.

We now let B : Rn ×Rn → V be a symmetric bilinear map with V finite-dimensional.
Using the universal mapping property of the tensor product, B induces a linear map
B̃ : Symn(R) ≃ Rn ⊗ Rn → V with the property that B̃ ◦ π = B. The dual of this
map gives an injective linear map B̃∗ : V ∗ → Symn(R) (here we assume that the image of
B spans V ). By an appropriate choice of inner product on V one can render the embedding
B̃∗ an isometric embedding of V in Symn(R). Let us denote by LB the image of V under
this isometric embedding. One may then show that with these identifications, the image
of QB in V is the orthogonal projection of Kn onto the subspace LB. Thus we reduce
the problem to one of orthogonal projection of a canonical object, Kn, onto a subspace
in Symn(R)! To simplify things further, we decompose LB into a component along the
identity matrix in Symn(R) and a component orthogonal to the identity matrix. However,
the matrices orthogonal to the identity are readily seen to simply be the traceless n × n
symmetric matrices. Using our picture of Kn as a subset of a hypercone having as an axis
the ray through the identity matrix, we see that questions of surjectivity, indefiniteness,
and definiteness of B impact only on the projection of Kn onto that component of LB

orthogonal to the identity matrix.
The following summarises the above discussion.

The problem of studying the image of a vector-valued quadratic form can be reduced to
studying the orthogonal projection of Kn ⊂ Symn(R), the unprojectivised Veronese surface,
onto a subspace of the space of traceless symmetric matrices.

This is, we think, a beautiful interpretation of the study of vector-valued quadratic map-
pings, and will surely be a useful formulation of the problem. For example, with it one
easily proves the following result.

Proposition 3 If dim(U) = dim(V ) = 2 with B : U × U → V a symmetric bilinear map,
then QB is surjective if and only if B is indefinite.
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Basto-Gonçalves, J. [1998] Second-order conditions for local controllability, Systems & Con-
trol Letters, 35(5), pages 287–290, issn: 0167-6911, doi: 10.1016/S0167-6911(98)
00067-X.

Bullo, F. and Lewis, A. D. [2005] Low-order controllability and kinematic reductions for
affine connection control systems, SIAM Journal on Control and Optimization, 44(3),
pages 885–908, issn: 0363-0129, doi: 10.1137/S0363012903421182.

Cerven, W. T. and Bullo, F. [2003] Constructive controllability algorithms for motion plan-
ning and optimization, Institute of Electrical and Electronics Engineers. Transactions
on Automatic Control, 48(4), pages 575–589, issn: 0018-9286, doi: 10.1109/TAC.2003.
809798.

Dines, L. L. [1943] On linear combinations of quadratic forms, American Mathematical
Society. Bulletin. New Series, 49, pages 388–393, issn: 0273-0979, doi: 10.1090/S0002-
9904-1943-07925-6.

Halme, A. [1975] On the nonlinear regulator problem, Journal of Optimization Theory and
Applications, 16(3-4), pages 255–275, issn: 0022-3239, doi: 10.1007/BF01262936.

Harris, J. [1992] Algebraic Geometry, A First Course, number 133 in Graduate Texts in
Mathematics, Springer-Verlag: New York/Heidelberg/Berlin, isbn: 978-0-387-97716-4.

Kac, V. G. [1983] Root Systems, Representations of Quivers and Invariant Theory, num-
ber 996 in Lecture Notes in Mathematics, Springer-Verlag: New York/Heidelberg/Berlin,
isbn: 978-3-540-12319-4.

Leep, D. B. and Schueller, L. M. [1999] Classification of pairs of symmetric and alternating
bilinear forms, Expositiones Mathematicae, 17(5), pages 385–414, issn: 0723-0869.

Sluis, W. M. [1993] A necessary condition for dynamic feedback linearization, Systems &
Control Letters, 21(4), pages 277–283, issn: 0167-6911, doi: 10.1016/0167-6911(93)
90069-I.

https://doi.org/10.1007/BF01095430
https://doi.org/10.1007/BF02133177
https://doi.org/10.1007/BF02133177
https://doi.org/10.1007/BF01095139
http://eudml.org/doc/78396
https://doi.org/10.1016/0021-8928(61)90005-3
https://doi.org/10.1016/0021-8928(61)90005-3
https://doi.org/10.1016/S0167-6911(98)00067-X
https://doi.org/10.1016/S0167-6911(98)00067-X
https://doi.org/10.1137/S0363012903421182
https://doi.org/10.1109/TAC.2003.809798
https://doi.org/10.1109/TAC.2003.809798
https://doi.org/10.1090/S0002-9904-1943-07925-6
https://doi.org/10.1090/S0002-9904-1943-07925-6
https://doi.org/10.1007/BF01262936
https://doi.org/10.1016/0167-6911(93)90069-I
https://doi.org/10.1016/0167-6911(93)90069-I

	Problem statement and historical remarks
	Control theoretic motivation
	Known results
	Problem simplification
	References

