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Abstract

Controllability and kinematic modelling notions are investigated for a class of me-
chanical control systems. First, low-order controllability results are given for the class
of mechanical control systems. Second, a precise connection is made between those
mechanical systems which are dynamic (i.e., have forces as inputs) and those which
are kinematic (i.e., have velocities as inputs). Interestingly and surprisingly, these two
subjects are characterised and linked by a certain intrinsic vector-valued quadratic form
that can be associated to an affine connection control system.
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tems.

AMS Subject Classifications (2020). 70Q05, 93B03, 93B05, 93B27.

1. Introduction

The determination of useful necessary and sufficient conditions for local controllability
of nonlinear systems remains an open problem, although significant progress has been made
[for example Agrachev 1977, Agrachev and Gamkrelidze 1993, Hermes 1974, Hermes 1982,
Sussmann 1978, Sussmann 1987]. In this paper, we investigate local controllability for a
class of nonlinear systems with a rich geometric structure, namely, affine connection control
systems. For these systems, we provide first-order (in the sense that the conditions involve
first derivatives of the system data) local controllability conditions. The results use a
certain intrinsic vector-valued quadratic form. The use of vector-valued quadratic forms in
control theory has been noticed in the context of optimal control (which has, of course, a
relationship with controllability) by Agrachev [1990], and they have been utilised explicitly
for providing conditions for local controllability by Basto-Gonçalves [1998] and Bullo and
Lewis [2005]. Other uses of vector-valued quadratic forms in control are outlined in the
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paper [Bullo, Cortés, Lewis, and Mart́ınez 2004]. The controllability conditions we provide
in Section 4 bear a strong resemblance to the more general conditions of Bullo and Lewis
[2005], but we are able to provide more detail in this case because of the additional structure
of the class of systems under consideration.

Affine connection control systems are a slight generalisation of a class of mechanical
control systems, namely, those which are Lagrangian with kinetic energy Lagrangian, and
possibly with nonholonomic constraints. An initial systematic investigation of the local con-
trollability properties of this class of systems was undertaken by Lewis and Murray [1997a].
The conditions for local accessibility in this work are characterised geometrically by the
same authors [Lewis and Murray 1997b] by utilising the characterisation of the so-called
symmetric product provided by Lewis [1998]. However, the sufficient conditions for local
controllability provided by Lewis and Murray, following Sussmann [1987], are not entirely
satisfactory. One of the reasons for this is that these conditions are not feedback-invariant.
The consequences of the lack of feedback invariance can be seen even in very simple exam-
ples, where a system can fail the sufficient condition test, but still be controllable. This
points out the need to better understand local controllability, and one way to do this is to
obtain conditions which are not dependent on a choice of basis for the input distribution. It
is this that we do in this paper, at least for systems whose controllability can be determined
by brackets of low order.

A second objective of this paper is to characterise affine connection control systems in
terms of equivalent lower-dimensional kinematic (or driftless) systems. The interest in low-
complexity representations of affine connection control systems can be related to numerous
previous efforts, including work on hybrid models for motion control systems [Brockett
1993], motion description languages [Manikonda, Krishnaprasad, and Hendler 1999], con-
sistent control abstractions [Pappas, Lafferriere, and Sastry 2000], hierarchical steering al-
gorithms [McIsaac and Ostrowski 2000], and maneuver automata [Frazzoli 2001]. The key
advantage of a low-complexity or reduced-order representation is the subsequent simplifi-
cation of various control problems, including planning, stabilisation, and optimal control.

In Section 5, we introduce and characterise the notion of kinematic reductions as a
reduced-order modelling technique adapted to affine connection control systems. This novel
concept extends and unifies previous results by Lewis [1999] and Bullo and Lynch [2001];
see also the motivating work of Arai, Tanie, and Shiroma [1998], Lynch, Shiroma, Arai, and
Tanie [2000], and Choudhury and Lynch [2002]. A kinematic model for an affine connection
control system is one such that every controlled trajectory for the kinematic model can
be realized as a trajectory, with a possible reparameterization, of the full affine connection
control system with some appropriate control. We also introduce and characterise the
notion of maximally reducible affine connection control systems. For such systems, every
trajectory of the affine connection control system, starting from initial velocities in the
input distribution, can be implemented as a controlled trajectory of a maximal kinematic
reduction. Some open problems concerning inverse kinematics and sufficient conditions for
controllability are presented by Cortés, Mart́ınez, and Bullo [2002].

As a third contribution of this paper, the existence of, and the controllability properties
of, kinematic reductions are related to the low-order controllability properties of the corre-
sponding affine connection control system. Interestingly, all these concepts are characterised
in terms of the vector-valued quadratic form mentioned above. Insightful relationships are
established and presented in Figure 4. We illustrate our results with some example systems.
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For instance, it appears that numerous (but not all) interesting mechanical devices satis-
fying the low-order sufficient controllability condition are also kinematically controllable.
This is surprising because the concept of kinematic controllability is not a priori related to
the conditions for low-order controllability. We refer to [Bullo, Lewis, and Lynch 2002] for
a catalog of examples.

One of the byproducts of the intrinsic formulation of the controllability and kinematic
reduction results we give is that they provide a fairly complete characterization of what
can be done. The incompleteness of the characterizations we give results from a possible
degeneracy of the vector-valued quadratic forms. Here, one will generally have to go to
higher-order conditions for controllability. Sometimes it is possible to give results using
quadratic forms, even in degenerate cases, and this is being explored in a paper by Tyner
and Lewis [Lewis and Tyner 2004], currently in preparation.

Let us briefly describe the layout of the paper. We begin in Section 2 with a general
discussion of affine connection control systems, giving clear statements of the results of Lewis
and Murray [1997a]. Background on vector-valued quadratic forms is presented in Section 3,
along with the construction of a vector-valued quadratic form that can be associated with
an affine connection control system. Our controllability results are motivated, stated, and
proved in Section 4. Similarly, our kinematic reductions are discussed in Section 5. In this
section are also presented a couple of physical examples, and a discussion of the relationships
between low-order controllability and kinematic reductions.

2. Affine connection control systems

The basic differential geometric notation we use is that of Abraham, Marsden, and
Ratiu [1988]. When it is convenient to do so, we shall use the summation convention where
summation over repeated indices is implied. For a vector bundle π : E → Q, 0q will denote
the zero vector in the fibre Eq. Objects will be assumed real analytic (which we simply call
“analytic”) unless otherwise stated. We denote by Γ(E) the set of analytic sections of the
vector bundle π : E → Q. Thus, in particular, Γ(TQ) is the set of analytic vector fields on
a manifold Q. The set of analytic functions on a manifold Q we denote by C (Q). We will
assume the reader to be familiar with affine differential geometry to the extent that it is
used in [Lewis and Murray 1997a]. An excellent reference is [Kobayashi and Nomizu 1963].
Affine connection control systems represent a class of mechanical control systems. We shall
not devote any space to the physics involved in this representation, but refer to [Lewis and
Murray 1997a] for a few words along these lines. These issues are also addresses in the
books [Bloch 2003, Bullo and Lewis 2004].

We begin with the essential definitions for affine connection control systems, and provide
definitions for what Lewis and Murray call “configuration controllability.” Then we give
the results of those authors which provide a launching point for what we do in the present
paper. We provide fairly strong statements of the results of Lewis and Murray; stronger
in fact than the original statements. All that we say, however, is readily implicit in the
calculations of their original work.

2.1. Basic definitions. In this paper, an affine connection control system is a 5-tuple
Σ = (Q,∇,D,Y , U) where
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1. Q is a analytic, finite-dimensional, manifold,

2. ∇ is an analytic affine connection on Q,

3. D is a constant rank analytic distribution on Q having the property that ∇ restricts
to D (i.e., ∇XY ∈ Γ(D) for all Y ∈ Γ(D) and for all X ∈ Γ∞(TQ)),

4. Y = {Y1, . . . , Ym} is a collection of analytic vector fields on Q taking values in D,
and

5. U ⊂ Rm.

The distribution D will not concern us much here, and we allow it in order to correctly
model systems with nonholonomic constraints [Lewis 2000]. The essential geometry of our
results are captured by thinking of D = TQ. We will frequently be interested only in
4-tuples (Q,∇,D,Y ) satisfying the above conditions. Let us therefore agree to call this
an affine connection pre-control system . This notion will be useful in discussions of
properties of affine connection control systems that are independent of the control set U .

Associated with an affine connection control system Σ = (Q,∇,D,Y , U) is the set of
second-order control equations

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(γ(t)) (2.1)

on Q. Thus a controlled trajectory for Σ is taken to be a pair (γ, u) where

1. γ : I → Q and u : I → U are both defined on the same interval I ⊂ R,

2. u is locally integrable,

3. γ′(t) ∈ Dγ(t) for a.e. t ∈ I, and

4. (γ, u) together satisfy (2.1).

We denote by conv(U) and aff(U) the convex hull and affine hull, respectively, of U ⊂ Rm.
Thus conv(U) is the smallest convex set inRm containing U , and aff(U) is the smallest affine
subspace (i.e., shifted subspace) containing U . The control set U is proper (resp. almost
proper) if 0 ∈ int(conv(U)) (resp. if aff(U) = Rm and 0 ∈ conv(U)). (One may verify that,
for a control-affine system, the property of the control set being almost proper is exactly
that which ensures that the Lie algebra rank condition is equivalent to the reachable set
having nonempty interior.) We denote by Y the input distribution, so that

Yq = spanR(Y1(q), . . . , Ym(q)).

More generally if V ⊂ Γ(TQ) then we denote by V the distribution generated by the vector
fields V . We also denote by Γ(V) the set of analytic vector fields taking values in V. We
make no a priori assumptions on the constancy of the rank of any of the distributions we
encounter, including the input distribution Y.
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2.1 Remark: Our allowing a distribution to have variable rank has consequences for the
choice of generators. Let us make some comments on this. Consider a family Y of analytic
vector fields, letting Y be the distribution generated as above. Then Γ∞(Y) is a submodule
of Γ∞(TQ). If Y has constant rank, then it is true that the vector fields Y generate this
submodule. This is essentially due to a theorem of Swan [1962]. However, if the rank of Y is
not constant (more precisely, locally constant), then it can be the case that the vector fields
Y are not generators for Γ∞(Y). However, we shall require always ask that our families of
vector fields have the property that they are generators for the submodule of sections of
the induced distribution. Locally, and in the analytic setting, this can be done without loss
of generality, due to the Noetherian property of the ring of analytic functions. •

Let us clearly state our controllability definitions. First we provide notation for the
reachable sets. For T > 0 denote

RΣ
TQ(q0, T ) = {γ′(T ) | (γ, u) is a controlled trajectory on [0, T ] with γ′(0) = 0q0},

and denote RΣ
TQ(q0,≤ T ) =

⋃
0≤t≤T RΣ

TQ(q0, t). These are therefore reachable states in TQ
starting from zero initial velocity at the configuration q0. We also consider the reachable
configurations which we denote by

RΣ
Q(q0, T ) = πTQ(R

Σ
TQ(q0, T )), RΣ

Q(q0,≤ T ) = πTQ(R
Σ
TQ(q0,≤ T )),

where πTQ : TQ→ Q is the tangent bundle projection. Note that, since D is invariant under
∇ and since the input vector fields are D-valued, solutions of (2.1) with initial conditions
in D remain in D. In the following definition, intD(·) means the interior in the relative
topology on D ⊂ TQ.

2.2 Definition: Let Σ = (Q,∇,D,Y , U) be an affine connection control system.

(i) (Q,∇,D,Y ) is accessible from q0 ∈ TQ if, for every almost proper control set, there
exists T > 0 such that intD(R

Σ
TQ(q0,≤ t)) ̸= ∅ for t ∈ ]0, T ].

(ii) (Q,∇,D,Y ) is configuration accessible from q0 ∈ TQ if, for every almost proper
control set, there exists T > 0 such that int(RΣ

Q(q0,≤ t)) ̸= ∅ for t ∈ ]0, T ].

(iii) Σ is small-time locally controllable (STLC ) from q0 if there exists T > 0 such
that 0q0 ∈ intD(R

Σ
TQ(q0,≤ t)) ̸= ∅ for t ∈ ]0, T ].

(a) (Q,∇,D,Y ) is properly small-time locally controllable (properly STLC )
if Σ is STLC for every proper control set U .

(b) (Q,∇,D,Y ) is small-time locally uncontrollable (STLUC ) if Σ is not
STLC for any compact control set U .

(iv) Σ is small-time locally configuration controllable (STLCC ) from q0 if there
exists T > 0 such that 0q0 ∈ int(RΣ

Q(q0,≤ t)) ̸= ∅ for t ∈ ]0, T ].

(a) (Q,∇,D,Y ) is properly small-time locally configuration controllable
(properly STLCC ) if Σ is STLCC for every proper control set U .

(b) (Q,∇,D,Y ) is small-time locally configuration uncontrollable (STL-
CUC ) if Σ is not STLCC for any compact control set U . •
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2.3 Remarks: 1. Note that we are careful in these definitions to distinguish those notions
of controllability that depend only on the geometry of the affine connection pre-control
system (Q,∇,D,Y ), and those that also depend on the character of the control set
U . Bullo and Lewis [2005] illustrate various situations where the exact nature of the
control set must be accounted for in the controllability analysis. For this reason we
try to be careful about the exact manner in which the control set is considered.

2. A consequence of the classical theory of accessibility [Sussmann and Jurdjevic 1972]
is that for an affine connection pre-control system (Q,∇,D,Y ), the reachable sets for
(Q,∇,D,Y , U) have nonempty interior for all almost proper control sets if and only
if the reachable sets have nonempty interior for some almost proper control set.

3. It is clear that STLC implies STLCC and that STLCUC implies STLUC. The converse
implications are generally false. What’s more, even the relationships between STLCC
and STLC on the reachable set are not completely understood at this time. •

2.2. Review of existing results. Let us briefly review the results of [Lewis and Murray
1997a]. These results rely for their statement on the symmetric product defined by the
affine connection ∇ by ⟨X : Y ⟩ = ∇XY + ∇XY . First let us provide a description of
the set of points accessible from the zero vector 0q in the tangent space TqQ. We let
Σ = (Q,∇,D,Y , U) be an affine connection control system. As above, we denote by Y the
distribution generated by the vector fields Y , and we now define a sequence Sym(k)(Y) of
distributions by

Sym(1)(Y)q = Yq + spanR(⟨Ya : Yb⟩| a, b ∈ {1, . . . ,m})
Sym(k)(Y)q = Sym(k−1)(Y)q

+ spanR(⟨Ya : Yb⟩| Ya ∈ Γ(Sym(k1)(Y)), Yb ∈ Γ(Sym(k2)(Y)), k1 + k2 = k − 1).

The smallest distribution containing these distributions we denote by Sym(∞)(Y), and we
note that ⟨X : Y ⟩ ∈ Γ(Sym(∞)(Y)) for each X,Y ∈ Γ(Sym(∞)(Y)). The integrable distri-
bution generated by Sym(∞)(Y) we denote by Lie(∞)(Sym(∞)(Y)). Since this distribution
is integrable, through each point q0 ∈ Q there is an immersed maximal integral manifold
Λq0 with the property that TqΛq0 = Lie(∞)(Sym(∞)(Y))q for each q ∈ Λq0 . Note that since
we are only thinking of local controllability, we may shrink Q so that Λq0 is an embedded
submanifold, and thus TqΛq0 has its usual definition.

With this notation, we have the following theorem which describes the reachable set
from 0q0 ∈ TQ. Note that the description we provide here is a little more complete than
that originally given by Lewis and Murray, but what we state here is certainly implicit in
the original paper.

2.4 Theorem: Let Σ = (Q,∇,D,Y , U) be an affine connection control system with U
almost proper. Let Λq0 be the maximal integral manifold of Lie(∞)(Sym(∞)(Y)) through
q0 ∈ Q, which we assume without loss of generality to be an embedded submanifold of Q.
Let S(Y, q0) be the vector bundle over Λq0 whose fibre at q ∈ Λq0 is Sym(∞)(Y)q. We have
the following statements.

(i) There exists T > 0 such that for each t ∈ ]0, T ], RΣ
TQ(q0,≤ t) is contained in S(Y, q0),

and contains a nonempty open subset of S(Y, q0).
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(ii) In particular, there exists T > 0 such that for each t ∈ ]0, T ], RΣ
Q(q0,≤ t) is contained

in Λq0 and contains a nonempty open subset of Λq0.

Theorem 2.4 obviously leads to the following corollary.

2.5 Corollary: An affine connection pre-control system (Q,∇,D,Y ) is

(i) accessible from q0 if and only if Sym(∞)(Y)q0 = Dq0, and is

(ii) configuration accessible from q0 if and only if Lie(∞)(Sym(∞)(Y))q0 = Tq0Q.

Now we turn to local configuration controllability. Let P (Y ) denote the set of iterated
symmetric products of vector fields in Y . A product P0 ∈ P (Y ) is bad when it is comprised
of an even number of each of the vector fields from Y , and is otherwise good . The degree
of P0 ∈ P (Y ) is the total number of vector fields from Y which participate in P0, counting
multiplicities. Thus, for example, ⟨Ya : ⟨Yb : Yb⟩⟩ is good and of degree 3, and ⟨⟨Ya : Yb⟩ :
⟨Ya : Yb⟩⟩ is bad and of degree 4. Let Sm be the symmetric group on m symbols. For
P0 ∈ P (Y ) and σ ∈ Sm let σ(P0) ∈ P (Y ) be obtained by permuting the occurrences of
the vector fields from Y by σ. For example, if P0 = ⟨Ya : ⟨Yb : Yc⟩⟩ and if σ = ( 1 2 3

2 3 1 ) then
σ(P0) = ⟨Yb : ⟨Yc : Ya⟩⟩. With this notation, we have the following definition.

2.6 Definition: An affine connection pre-control system (Q,∇,D,Y ) satisfies the
good/bad hypothesis at q0 if for each bad symmetric product P0 ∈ P (Y ) there exist
good symmetric products P1, . . . , Pk ∈ P (Y ) of degree strictly less than P0 and such that

∑
σ∈Sm

σ(P0)(q0) =

k∑
j=1

cjPj(q0),

for some c1, . . . , ck ∈ R. •
The following result of Lewis and Murray [1997a] is derived from a result of Sussmann

[1987]. Again, we provide a somewhat more thorough statement of the result.

2.7 Theorem: Let Σ = (Q,∇,D,Y , U) be an affine connection control system with U
proper, and let q0 ∈ Q. If (Q,∇,D,Y ) satisfies the good/bad hypothesis at q0 ∈ Q then
there exists T > 0 such that for each t ∈ ]0, T ] the set RΣ

TQ(q0,≤ t) contains a neighbourhood
of 0q0 in the vector bundle S(Y , q0) over Λq0.

The result essentially says that when the good/bad hypothesis is satisfied, the system is
locally controllable when restricted to its reachable set. In particular, we have the following
corollary.

2.8 Corollary: Let Σ = (Q,∇,D,Y , U) be an affine connection control system with U
proper and such that the pre-control system (Q,∇,D,Y ) satisfies the good/bad hypotheses
at q0 ∈ Q. Then

(i) Σ is locally controllable at q0 if it is locally accessible at q0, and

(ii) Σ is locally configuration controllable at q0 if it is locally configuration accessible at
q0.

The above results all follow from a detailed analysis of the Lie algebra of vector fields
associated with the control system (2.1) when it is thought of as a control-affine system
with state manifold TQ. The results reflect the fact that, when evaluated at zero velocity
points, this Lie algebra structure simplifies enormously. We shall exploit this further when
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we prove our main results in Section 4. We remark that the structure of the Lie algebra at
points of nonzero velocity is not currently well understood.

3. Vector-valued quadratic forms

In our controllability analysis we are led to investigate symmetric bilinear maps B : V ×
V →W from a finite-dimensional R-vector space V into a finite-dimensional R-vector space
W . In this section we first look at such objects in general, and then we construct a specific
such object associated to an affine connection control system. Some other control theoretic
problems where vector-valued quadratic forms arise are given by Bullo, Cortés, Lewis, and
Mart́ınez [2004].

3.1. Basic definitions and properties. Let V andW be finite-dimensional R-vector spaces
and let TS2(V ;W ) denote the set of symmetric R-bilinear maps from V × V to W . For
B ∈ TS2(V ;W ) we define QB : V → W by QB(v) = B(v, v). For λ ∈ W ∗ we define
λB : V × V → R by λB(v1, v2) = ⟨λ;B(v1, v2)⟩.

3.1 Definition: Let B ∈ TS2(V ;W ).

(i) B is definite if there exists λ ∈W ∗ so that λB is positive-definite.

(ii) B is essentially indefinite if, for each λ ∈W ∗, λB is either

(a) zero or

(b) neither positive nor negative-semidefinite. •
The following properties of symmetric bilinear maps will be important for us.

3.2 Lemma: Let V and W be finite-dimensional R-vector spaces with B ∈ TS(V ;W ).
Suppose that V ̸= {0}. The following statements hold:

(i) if W = {0}, then B is essentially indefinite;

(ii) if W ̸= {0}, then B is essentially indefinite if and only if

0 ∈ intaff(image(QB))(conv(image(QB)));

(iii) if W ̸= {0}, then B is definite if and only if there exists a hyperplane P through
0 ∈W such that

(a) image(QB) lies on one side of P and

(b) image(QB) ∩ P = {0}.
The matter of deciding whether a vector-valued quadratic form is essentially indefinite

is known to be NP-complete, at least in the case when dim(W ) > 1.1

The following result gives some properties of R-valued quadratic forms that will be
useful in our discussion. We refer to Bullo and Lewis [2005] for a proof.

1This was pointed out to the authors by a reviewer for [Bullo, Cortés, Lewis, and Mart́ınez 2004].



Controllability and kinematic reductions 9

3.3 Lemma: Let V be a finite-dimensional R-vector space and let B ∈ TS2(V ;R). For
a basis V = {v1, . . . , vn} for V , let [B]V be the n × n matrix representation of B. The
following statements are equivalent:

(i) there exists a basis V for V for which the sum of the diagonal entries in the matrix
[B]V is zero;

(ii) there exists a basis V for V for which the diagonal entries in the matrix [B]V are
all zero;

(iii) B is essentially indefinite.

3.2. Vector-valued quadratic forms and affine connection control systems. Let Σ =
(Q,∇,D,Y , U) be an affine connection control system and let q ∈ Q. If Sq ⊂ TqQ is a
subspace, we define BYq(Sq) : Yq × Yq → TqQ/Sq as the TqQ/Sq-valued symmetric, bilinear
mapping on Yq given by

BYq(Sq)(v1, v2) = πSq(⟨V1 : V2⟩(q)), (3.1)

where V1 and V2 are vector fields extending v1, v2 ∈ Yq, and where πSq : TqQ → TqQ/Sq is
the canonical projection. Note that BYq(Sq) is not necessarily well-defined.

3.4 Lemma: If Yq ⊂ Sq then BYq(Sq) is well-defined.

Proof: We need to show that the definition in (3.1) does not depend on the extensions V1
and V2 of v1 and v2. This will follow if πSq(⟨V1 : V2⟩(q)) depends only on the values of V1
and V2 at q, and not on their derivatives. Let ϕ1, ϕ2 ∈ C (Q) and compute

⟨ϕ1V1 : ϕ2V2⟩ = ϕ1ϕ2⟨V1 : V2⟩+ ϕ1(LV1ϕ2)V2 + ϕ2(LV2ϕ1)V1.

Thus πSq(⟨ϕ1V1 : ϕ2V2⟩(q)) = ϕ1(q)ϕ2(q)πSq(⟨V1 : V2⟩(q)), showing that πSq(⟨V1 : V2⟩(q))
does not depend on the derivatives of V1 and V2 at q, and so the result follows. ■

3.5 Remark: Note that (TqQ/Sq)
∗ ≃ ann(Sq). Therefore, the definition of λBYq(Sq), λ ∈

(TqQ/Sq)
∗ is concrete, in that one need to worry about objects in the quotient. •

If Y has constant rank then one can define a TQ/Y-valued quadratic form BY globally
by

BY(V1, V2) = πY(⟨V1 : V2⟩)

for V1, V2 ∈ Γ(Y), where πY : TQ→ TQ/Y is the projection.

4. Controllability results

In this section we undertake the formulation and discussion of novel controllability
results. Our objective is to obtain controllability conditions that are independent of the
basis for the input distribution Y. We achieve this by means of controllability tests that do
not entail good/bad conditions, but rather are expressed in terms of properties of a vector-
valued quadratic form. Before we state the results we need some preliminary constructions.



10 F. Bullo and A. D. Lewis

4.1. Constructions concerning vanishing input vector fields. We let Σ = (Q,∇,D,Y , U)
be an analytic affine connection control system and we let q0 ∈ Q. One of the generalisations
we wish to allow is the case when q0 may not a regular point for the distribution Y generated
by Y . In this case the vector fields Y cannot be linearly independent at q0. It may also
happen that, even if q0 is a regular point for Y, the vector fields may still not be linearly
independent. For example, if one wishes to globally define a control system for which the
input distribution Y has constant rank, but is not trivial, then one will necessarily have
to choose more input vector fields than rank(Y), implying that the input vector fields will
never be linearly independent. It will be convenient to organise the vector fields in Y in a
manner consistent with these possibilities. The following result gives a useful way of doing
this.

4.1 Lemma: Let (Q,∇,D,Y = {Y1, . . . , Ym}) be an analytic affine connection pre-control
system with q0 ∈ Q. There exists T ∈ GL(m;R) with the property that, if Ỹa = T b

aYa,
a ∈ {1, . . . ,m}, then
(i) {Ỹ1(q0), . . . , Ỹk(q0)} form a basis for Yq0 and

(ii) the vector fields Ỹk+1, . . . , Ỹm vanish at q0.

Proof: We let k = dim(Yq0). Since Y generates Y, we may find R ∈ GL(m;R) with the
property that. ifXa = Rb

aYb, a ∈ {1, . . . ,m}, then {X1(q0), . . . , Xk(q0)} form a basis for Yq0 .
Now let Lq0 : R

m → Yq0 be defined by Lq0(u) =
∑m

a=1 u
aXa(q0). Let uk+1, . . . ,um ∈ Rm

be a basis for ker(Lq0) and define S ∈ GL(m;R) by

S =
[
e1 · · · ek uk+1 · · · um

]
.

It is then clear that if we take Ỹa = Sb
aXb, a ∈ {1, . . . ,m}, then {Ỹ1(q0), . . . , Ỹk(q0)} form a

basis for Yq0 , and that Ỹk+1, . . . , Ỹm vanish at q0. Now we take T = RS. ■

4.2 Remarks: 1. If the vector fields Y are linearly independent at q0 then one may take
T = Im in the lemma.

2. Suppose that we have a control set U for (Q,∇,D,Y ). If we take T ∈ GL(m;R)

and Ỹ = {Ỹ1, . . . , Ỹm} as in the lemma, and if we define Ũ = {T−1u | u ∈ U}, this
gives an affine connection control system Σ̃ = (Q,∇,D, Ỹ , Ũ). Clearly the controlled
trajectories for Σ = (Q,∇,D,Y , U) and Σ̃ agree, so we can without loss of generality
assume that the input vector fields for an affine connection control system satisfy
conditions (i) and (ii) of the lemma. Input vector fields satisfying these conditions at
q0 will be said to be adapted at q0. •

Let X,Y ∈ Γ(Q). If X(q0) = 0q0 then the expression ⟨X : Y ⟩(q0) may be verified (in
coordinates, for example) to depend only on the value of Y at q0. That is to say, we may
define a linear map symX : Tq0Q → Tq0Q by v 7→ ⟨X : V ⟩(q0) where V is any extension of
v ∈ Tq0Q. If Y is adapted at q0, then we denote by Zq0(Y ) the set of linear maps symYa

,
a ∈ {k + 1, . . . ,m}, where k = dim(Yq0). For a R-vector space W , an arbitrary subset L
of linear transformations of W , and a subspace S ⊂ W , we denote by ⟨L , S⟩ the smallest
subspace of W containing S and which is an invariant subspace for each of the linear maps
from L . One readily verifies that ⟨L , S⟩ is generated by vectors of the form

L1 ◦ · · · ◦ Lk−1(v), L1, . . . , Lk−1 ∈ L , v ∈ S, k ∈N. (4.1)
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We will be interested in subspaces of the form ⟨Zq0(Y ), Sq0⟩ where Sq0 is a subspace of
Tq0Q. In order for such constructions to make sense (in that they are independent of the
choice of adapted family of vector fields) the subspace Sq0 should have some properties.

4.3 Lemma: Let Σ = (Q,∇,D,Y , U) and Σ̃ = (Q,∇,D, Ỹ , Ũ) be affine connection control
systems satisfying

(i) Y = Ỹ and

(ii) Y and Ỹ are adapted at q0.

Then ⟨Zq0(Ỹ ), Sq0⟩ = ⟨Zq0(Y ), Sq0⟩ for any subspace Sq0 containing Yq0.

Proof: We write Y = {Y1, . . . , Ym} and Ỹ = {Ỹ1, . . . , Ỹm̃}. Since Y = Ỹ, we must have

Ỹα =
m∑
a=1

Λa
αYa, α ∈ {1, . . . , m̃},

for functions Λa
α, a ∈ {1, . . . ,m}, α ∈ {1, . . . , m̃}. (Here we make use of the assumption

stated in Remark 2.1.) Assume that dim(Yq0) = k so that both {Y1(q0), . . . , Yk(q0)} and
Ỹ1(q0), . . . , Ỹk(q0)} are bases for Yq0 and so that Yk+1, . . . , Ym and Ỹk+1, . . . , Ỹm̃ all vanish
at q0. Note that ⟨Zq0(Y ), Sq0⟩ is generated by those tangent vectors at q0 of the form

symYaℓ−1
◦ · · · ◦ symYa1

(v), a1, . . . , aℓ−1 ∈ {k + 1, . . . ,m}, ℓ ∈N, v ∈ Sq0 .

We will show by induction on ℓ that each of these generators lies in ⟨Zq0(Ỹ ), Sq0⟩. This is
clearly true for ℓ = 1, so suppose it true for ℓ = j and let aj ∈ {k + 1, . . . ,m}. Then, for
any V ∈ Γ(TQ), we have

⟨Yaj : V ⟩ = ⟨Λα
aj (Ỹα) : V ⟩ = Λα

a ⟨Ỹα : V ⟩+
m̃∑

α=1

(LV Λ
α
aj )Ỹα,

from which we ascertain that

symYaj
=

m̃∑
α=k+1

Λα
aj (q0)symỸα

+

k∑
α=1

Ỹα(q0)⊗ dΛα
aj (q0),

since Λα
a (q0) = 0 for α ∈ {1, . . . , k} and a ∈ {k + 1, . . . ,m}. Therefore, by the induction

hypothesis, we conclude that

symYaj
◦ symYaj−1

◦ · · · ◦ symYa1
(v) ∈ ⟨Zq0(Ỹ ), Sq0⟩.

This shows that ⟨Zq0(Y ), Sq0⟩ ⊂ ⟨Zq0(Ỹ ), Sq0⟩. The opposite inclusion follows as above,

but swapping Y and Ỹ . ■

The preceding result shows the invariance of the definition of a subspace on the choice
of adapted generators for Y. The next result gives the same conclusion for a vector-valued
quadratic form.
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4.4 Lemma: Let Σ = (Q,∇,D,Y , U) and Σ̃ = (Q,∇,D, Ỹ , Ũ) be affine connection control
systems satisfying

(i) Y = Ỹ and

(ii) Y and Ỹ are adapted at q0.

If Sq0 ⊂ Tq0Q is a subspace containing Yq0, then BỸq0
(Sq0) = BYq0

(Sq0).

Proof: As in the proof of Lemma 4.3 we have

Ỹα =
m∑
a=1

Λa
αYa, α ∈ {1, . . . , m̃},

for functions Λa
α, a ∈ {1, . . . ,m}, α ∈ {1, . . . , m̃}. We then compute

⟨Ya : Yb⟩ = Λα
aΛ

β
b ⟨Ỹα : Ỹβ⟩+

m̃∑
α,β=1

Λβ
b (LỸβ

Λα
a )Ỹα

+
m̃∑

α,β=1

Λα
a (LỸα

Λβ
b )Ỹβ + Λα

aΛ
β
b S

δ(Ỹα, Ỹβ)Ỹδ.

The lemma follows directly from this formula since the terms in Γ(Y) will go to zero when
projected by πSq0

, since Yq0 ⊂ Sq0 . ■

4.2. Main results. Our main results may now be stated. Let us first state a sufficient
condition for controllability.

4.5 Theorem: Let (Q,∇,D,Y ) be an analytic affine connection pre-control system, and
suppose that Y is adapted at q0 ∈ Q. Suppose that

(i) Sym(∞)(Y)q0 = ⟨Zq0(Y ),Sym(2)(Y)⟩ and that

(ii) BYq0
(⟨Zq0(Y ), Yq0⟩) is essentially indefinite.

Then (Q,∇,D,Y ) is properly STLC from q0 if it is accessible from q0, and is properly
STLCC from q0 if it is configuration accessible from q0.

Proof: The proof essentially follows from Theorem 2.7. However, the extension to allow
singular points for the input distribution Y does not follow directly from Theorem 2.7,
but requires some manipulations with the variational cone that we will not go through
here. The idea, in essence, is that if an input vector field vanishes at the reference point,
then directions generated by symmetric products using these vector fields come “for free.”
Since these symmetric products are simply applications of a linear map, this explains the
presence of the invariant subspace characterisations of the tangent space to the reachable
set. We refer to [Bullo and Lewis 2005, Lemma 7.2] for the details behind this, noting that
the discussion in that paper builds on concepts presented in [Bianchini and Stefani 1993,
Sussmann 1987]. The upshot of these discussions, once they are specialised to our setting,
is the following result.
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1 Lemma: Let (Q,∇,D,Y = {Y1, . . . , Ym}) be an analytic affine connection pre-control
system for which Y is adapted at q0 ∈ Q. Assume the following:

(i) Sym(∞)(Y) = ⟨Zq0(Y ),Sym(2)(Y)q0⟩;
(ii) there exists m̃ ≥ m and a full rank matrix T ∈ Rm×m̃ so that if Ỹα = T a

αYα then

m̃∑
a=1

⟨Ỹα : Ỹα⟩(q0) ∈ ⟨Zq0(Y ), Yq0⟩.

Then (Q,∇,D,Y ) is properly STLC from q0 if it is accessible from q0, and is properly
STLCC from q0 if it is configuration accessible from q0.

We shall show that if the hypotheses of Theorem 4.5 are satisfied at q0, then the hy-
potheses of Lemma 1 are satisfied for some possibly different collection of input vector fields.
From this the conclusion of Theorem 4.5 will follow.

For brevity let us denote Sq0 = ⟨Zq0(Y ), Yq0⟩ and B = BYq0
(Sq0). First we need to find

an appropriate collection of input vector fields. Choose v1, . . . , vℓ ∈ Yq0 so that 0q0 + Sq0 ∈
Sym(∞)(Y)q0/Sq0 lies in the interior of the convex hull of the vectors B(v1, v1), . . . , B(vℓ, vℓ).
That this is possible is guaranteed by the hypotheses of Theorem 4.5 and by Lemma 3.2. If
necessary, add vectors vℓ+1, . . . , vk̃ so that the vectors v1, . . . , vk̃ span Yq0 . It now follows that

the vectors B(v1, v1), . . . , B(vk̃, vk̃) contain 0q0 + Sq0 ∈ Sym(∞)(Y)q0/Sq0 in the interior of
their convex hull. Thus the vectors v1, . . . , vk̃ may be rescaled by strictly positive constants
(for simplicity, let us denote the rescaled vectors also by v1, . . . , vk̃) so that

k̃∑
α=1

B(vα, vα) = 0q0 + Sq0 ∈ Sym(∞)(Y)q0/Sq0 . (4.2)

It is now possible to define vector fields Ỹ = {Ỹ1, . . . , Ỹm̃} such that, if dim(Yq0) = k, then

1. Ỹk̃+a = Yk+a, a ∈ {1, . . . ,m− k} and

2. Ỹα =
∑k

a=1 T̃
a
αYa, α ∈ {1, . . . , k̃}, for a full-rank matrix T̃ ∈ Rk×k̃.

Clearly this then implies the existence of a full rank matrix T ∈ Rm×m̃ so that Ỹα = T a
αYa,

α ∈ {1, . . . , m̃}. From (4.2) it immediately follows that (Q,∇,D,Y ) satisfies the hypotheses
of Lemma 1, and so Theorem 4.5 follows. ■

4.6 Remark: Our use of the vector fields Z[(q)0]Y from Y that vanish at q0 is similar in
spirit to how the vanishing of the drift vector appears in the work of Sussmann [1987] and
Bianchini and Stefani [1993]. The idea is that brackets generated by such vanishing vector
fields can be achieved “for free,” without invoking bad brackets. •

A necessary condition for controllability is the following.
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4.7 Theorem: Let (Q,∇,D,Y ) be an analytic affine connection pre-control system for
which Y is adapted at q0 ∈ Q. Suppose that

(i) q0 is a regular point for Y and that

(ii) BYq0
(Yq0) is definite and nonzero.

Then (Q,∇,D,Y ) is STLCUC from q0.

Proof: We work locally. Therefore, we may assume that the vector fields {Y1, . . . , Ym}
are linearly independent in a neighbourhood of q0. First we show that the system is not
STLC from q0 using calculations of Bullo and Lewis [2005]. We will not provide here a self-
contained justification for all of our computations, since they take considerable space, but we
refer to the paper [Bullo and Lewis 2005]. The calculation uses the Chen–Fliess–Sussmann
series [Chen 1957, Fliess 1981, Sussmann 1983]. For an analytic control-affine system

ξ′(t) = f0(ξ(t)) +

m∑
a=1

ua(t)fa(ξ(t)), ξ(t) ∈M

on a manifold M with a compact control set, and for an analytic function ϕ, the
Chen–Fliess–Sussmann series gives the following formula for the value of ϕ along a con-
trolled trajectory (ξ, u):

ϕ(ξ(t)) =
∑
J

UJ(t)fJϕ(ξ(0)).

The sum is over multi-indices J = (a1, . . . , ak) in {0, 1, . . . ,m},

UJ(t) =

∫ t

0
uak(tk)

∫ tk

0
uak−1

(tk−1)· · ·
∫ t2

0
ua1(t1) dt1 . . . dtk−1 dtk.

and
fJϕ = fa1fa2 · · · fakϕ.

We adopt the convention that u0 = 1. We also regard an affine connection control system
as a control-affine system in the usual manner by taking f0 to be the geodesic spray for ∇
and f1, . . . , fm to be the vertical lifts of Y1, . . . , Ym [see Lewis and Murray 1997a].

The function we evaluate is defined as follows. We let λ be an analytic covector field
defined in a neighbourhood of q0 with the following properties:

1. λ annihilates the distribution Y;

2. λ(q0)BYq0
|Yq0 is negative-definite.

By a linear input transformation one can ensure that the input vector fields diagonalize
λ(q0)BYq0

with the diagonal entries being −1. We assume this input transformation to have
been made. We then define a function ϕλ on TQ by ϕλ(vq) = λ(q) · vq, and we also define

Φ+
λ = {vq ∈ TQ | ϕλ(vq) > 0}, Φ−

λ = {vq ∈ TQ | ϕλ(vq) < 0}.

Note that, in any neighbourhood V of 0q0 in TQ, the sets V ∩ Φ−
λ and V ∩ Φ+

λ will be
nonempty, since ϕλ is linear on the fibres of TQ. Therefore, we can show that (Q,∇,D,Y )
is STLUC from q0 by showing that ϕλ has constant sign along any controlled trajectory.
One may directly verify that ϕλ has the following properties:
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1. faϕλ, a ∈ {1, . . . ,m}, is zero in a neighbourhood of 0q0 ;

2. adkf0 faϕλ(0q0) = 0, a ∈ {1, . . . ,m}, k ∈N;

3. [fa, [f0, fa]]ϕλ(0q0) = −1, a ∈ {1, . . . ,m} (this and the next fact use the formula
[fa, [f0, fb]] = vlft(⟨Ya : Yb⟩), a, b ∈ {1, , . . . ,m});

4. [fa, [f0, fb]]ϕλ(0q0) = 0, a, b ∈ {1, . . . ,m}, a ̸= b.

For an input u : [0, T ] → U , let us define

∥u∥2,t = max
{(∫ t

0
|ua(t)|2

)1/2 ∣∣∣ a ∈ {1, . . . ,m}
}
.

The calculations of Bullo and Lewis [2005] now immediately give the following inequality
for ϕλ(γ

′(t)) along a controlled trajectory (γ, u) for an affine connection control system like
that under consideration here:

ϕλ(γ
′(t)) ≥ 1

2(∥u∥2,t)
2 − |E(t)|.

Here E(t) is a function of t that Bullo and Lewis [2005] show to satisfy a bound |E(t)| ≤
tE0(∥u∥2,t)2, for some E0 > 0. For t sufficiently small, this shows that ϕλ(γ

′(t)) has constant
sign. This shows that (Q,∇,D,Y ) is STLCUC from q0.

Now let us show that our above constructions also preclude the system from being
locally configuration controllable. Choose a coordinate chart (U, χ) for Q around q0 with
the following properties: (1) χ(q0) = 0 and (2) dqn(q0) = λ(q0). Let us define a function ψλ

on the coordinate domain U by ψλ(q) = qn so that the sets

Ψ+
λ = {q ∈ Q | ψλ(q) > 0}, Ψ−

λ = {q ∈ Q | ψλ(q) < 0}

each intersect any neighbourhood of q0 ∈ Q. Along any nonstationary trajectory t 7→ γ(t)
we have

dψλ(γ(t))

dt

∣∣∣∣
t=0

= dψλ(γ
′(0)) = ϕλ(γ

′(0)) < 0.

Since ψλ(q0) = 0, this means that, for sufficiently small t, ψλ(γ(t)) < 0, and this shows
that the points in Ψ+

λ are not reachable in small time, and so Σ is not locally configuration
controllable. ■

4.8 Remark: The spirit of the preceding proof is that of the single-input necessary condition
appearing as Proposition 6.3 in the paper of Sussmann [1983]. However, the modifications
to the multi-input case by Bullo and Lewis [2005] require some care. •

Let us provide an example that nicely illustrates Theorems 4.5 and 4.7. This example
is a slight modification of an example of Shen, Sanyal, and McClamroch [2002].
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4.9 Example: We take Q = R2 with (x, y) the usual Cartesian coordinates. The nonzero
Christoffel symbols we take as Γy

xx = x. We choose the single input vector field Y = ∂
∂x .

We also take D = TQ. One then readily computes

⟨Y : Y ⟩ = 2x
∂

∂y
, ⟨Y : ⟨Y : Y ⟩⟩ = 2

∂

∂y
.

We consider two cases.

1. q0 = (0, y), y ∈ R: We readily see that BYq0
(⟨Zq0(Y ), Yq0⟩) is identically zero, and

so essentially indefinite. We also have Sym(2)(Y)q0 = Tq0Q. Therefore, Theorem 4.5
shows that (Q,∇,D, {Y }) is properly STLC from q0.

2. q0 ̸= (0, y), y ∈ R: Here we use spanR(
∂
∂y ) as a model for Tq0Q/Yq0 . Thus both Yq0

and Tq0Q/Yq0 are one-dimensional, and so BYq0
(Yq0) is essentially a quadratic function

on R. This quadratic function is then exactly ξ 7→ 2xξ2. This function is definite, so
Theorem 4.7 implies that the system is STLUCC from q0.

Thus this example has the rather degenerate feature of being controllable on the y-axis
but being uncontrollable at every point in a neighbourhood of the y-axis. Note that this
example is also a counterexample to a single-input result of one of the authors [Lewis 1997].
There it was stated that a single-input affine connection control system is STLCC if and
only if the dimension of the configuration space is one. We see here that this is false.
However, what is true is that a single-input affine connection control system is STLCC at
all points in an open subset of configuration space if and only if the configuration space has
dimension one. •

5. Reductions of affine connection control systems

The controllability results of Section 4 turn out to apply to a great many examples.
That is to say, many interesting physical examples may be shown to be controllable or
uncontrollable using these results. What is not obvious is that many of these systems are
describable, in some sense, by a driftless system. This effectively simplifies the system,
making certain control design tasks, especially motion planning, considerably simpler. In
this section we introduce the framework for discussing these simplifications.

The objective in this section is then to relate second-order systems to first-order systems.
In order to do this, one must be aware that the allowable inputs for the two classes of systems
cannot be the same. For example, a trajectory for a first-order system using a discontinuous
input will be continuous in configuration, but not in velocity. These velocity discontinuities
are not allowed for second-order systems with bounded inputs. Therefore, we need to fix
a set of inputs to use in each case, and they need to differ, essentially, by one integration.
To be specific, we let Ukin be the collection of locally absolutely continuous controls and
we let Udyn be the collection of locally integrable controls. The former will be used for
first-order systems and the latter for second-order systems. In all cases, we allow controls
to be defined on an arbitrary interval I ⊂ R.
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5.1. Kinematic reductions. In this section, in order to emphasise the difference between
the two kinds of systems we are comparing, we shall denote an affine connection control
system by Σdyn = (Q,∇,D,Y ,Rm). A driftless system is a triple Σkin = (Q,X =
{X1, . . . , Xm̃}, U ⊂ Rm̃). The associated control system is then

γ′(t) =

m̃∑
α=1

ũα(t)Xα(γ(t)), (5.1)

so that a controlled trajectory is a pair (γ, ũ) where

1. γ : I → Q and ũ : I → U are both defined on the same interval I ⊂ R,

2. ũ ∈ Ukin, and

3. (γ, ũ) together satisfy (5.1).

A driftless system (Q,X , U) is STLC from q0 if the set of points reachable from q0
contains q0 in its interior, and a pair (Q,X ) is properly STLC from q0 if (Q,X , U) is
STLC from q0 for every proper U . With our underlying assumption of analyticity, it is
well-known that (Q,X ) is properly STLC from q0 if and only if Lie(∞)(X)q0 = Tq0Q.

First we define what we mean by a kinematic reduction.

5.1 Definition: Let Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym},Rm) be an affine connection
control system with Y having constant rank. A driftless system Σkin = (Q,X =
{X1, . . . , Xm̃},Rm̃) is a kinematic reduction of Σdyn if

(i) X is a constant-rank subbundle of D and

(ii) for every controlled trajectory (γ, ukin) for Σkin with ukin ∈ Ukin, there exists udyn ∈
Udyn so that (γ, udyn) is a controlled trajectory for Σdyn.

The rank of the kinematic reduction Σkin is the rank of X. •
Thus kinematic reductions are driftless systems whose controlled trajectories, at least

for controls in Ukin, can be followed by controlled trajectories of Σdyn. Let us characterise
kinematic reductions. To do so, recall that with our constant rank assumptions, given an
affine connection ∇ and a family of vector fields Y = {Y1, . . . , Ym} on Q, we may globally
define BY as at the end of Section 3.2. This also allows us to define a map QBY

: Γ(TQ) →
Γ(TQ/Y) by

QBY
(X)(q) = BY(q)(X(q), X(q)).

With this notation, we have the following result.

5.2 Theorem: Let Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym},Rm) be an affine connection control
system with Y of constant rank and let Σkin = (Q,X = {X1, . . . , Xm̃},Rm̃) be a driftless
system with X of constant rank. The following statements are equivalent:

(i) Σkin is a kinematic reduction of Σdyn;

(ii) Sym(1)(X) ⊂ Y;

(iii) X ⊂ Y and QBY
|X = 0.
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Proof: (i) =⇒ (ii) Let X ∈ Γ(X) so that X = ϕαXα for some ϕ1, . . . , ϕm̃ ∈ C (Q). For q ∈ Q
define controls ũ1, ũ2 ∈ Ukin by ũ1 = (ϕ1(q), . . . , ϕm̃(q)) and ũ2 = (1+ t)ũ1. Let (γ1, ũ1) and
(γ2, ũ2) be the corresponding controlled trajectories of Σkin satisfying γ1(0) = γ2(0) = q.
Thus γ′i(t) =

∑m̃
α=1 ũ

α
i (t)Xα(γi(t)), i ∈ {1, 2}. We compute

∇γ′
1(t)

γ′1(t) =

m̃∑
α,β=1

∇ũα
1 (t)Xα(γ1(t))ũ

β
1 (t)Xβ(γ1(t))

=
m∑

α,β=1

ũα1 (t)ũ
β
1 (t)∇Xα(γ1(t))Xβ(γ1(t)) + ˙̃uβ1 (t)Xβ(γ1(t)).

Evaluating this at t = 0 gives

∇γ′
1(t)

γ′1(t)
∣∣
t=0

=

m̃∑
α,β=1

ũα1 (0)ũ
β
1 (0)∇XαXβ(q) + ˙̃uβ1 (0)Xβ(q) = ∇XX(q).

Similarly, for γ2 we have

∇γ′
2(t)

γ′2(t)
∣∣
t=0

= ∇XX(q) +X(q).

Therefore, since Σkin is a kinematic reduction of Σdyn, we have ∇XX(q),∇XX(q)+X(q) ∈
Yq, or simply X,∇XX ∈ Γ(Y) since the above constructions can be performed for all
X ∈ Γ(X) and q ∈ Q. Therefore, for X,Y ∈ Γ(X) we have the polarisation identity,

⟨X : Y ⟩ = 1

2

(
⟨X + Y : X + Y ⟩ − ⟨X : X⟩ − ⟨Y : Y ⟩

)
∈ Γ(Y), (5.2)

which gives (ii).
(ii) =⇒ (iii) From the definition of BY we readily see that QBY

|X = 0 exactly means
that ⟨X : X⟩ = 2∇XX ∈ Γ(Y) for each X ∈ Γ(X). From this observation, the current
implication follows easily by employing the formula for ⟨X : Y ⟩ in (5.2).

(iii) =⇒ (i) As in the preceding step, we saw that the condition QBY
|X = 0 is equivalent

to asserting that ∇XX ∈ Γ(Y) for each X ∈ Γ(X). By (5.2) this implies that ⟨Xα : Xβ⟩ ∈
Γ(Y) for α, β ∈ {1, . . . , m̃}. Let ukin ∈ Ukin and let (γ, ukin) be the corresponding controlled
trajectory for Σkin. We then have

∇γ′(t)γ
′(t) = uαkin(t)u

β
kin(t)∇Xα(γ(t))Xβ(γ(t)) + u̇αkin(t)Xα(γ(t)).

We note that

uαkin(t)u
β
kin(t)∇Xα(γ(t))Xβ(γ(t)) =

1

2
uαkin(t)u

β
kin(t)

〈
Xα(γ(t)) : Xβ(γ(t))

〉
.

Since Xα, ⟨Xα : Xβ⟩ ∈ Γ(Y) it now follows that ∇γ′(t)γ
′(t) ∈ Yγ(t), implying that there

exists a control udyn ∈ Udyn so that (γ, udyn) is a controlled trajectory for Σdyn. ■

Of particular interest are kinematic reductions of rank one: (Q, {X1},R). In this case,
any vector field of the form X = ϕX1, where ϕ ∈ C (Q) is nowhere vanishing, is called
a decoupling vector field . From Theorem 5.2 we have the following description of a
decoupling vector field.
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5.3 Corollary: A vector field X is a decoupling vector field for Σdyn = (Q,∇,D,Y ,Rm) if
and only if X,∇XX ∈ Γ(Y).

It is the notion of a decoupling vector field that was initially presented by Bullo and Lynch
[2001], and which is generalised by our idea of a kinematic reduction.

5.4 Remark: While in general, even when a kinematic reduction exists, it will not be easy
to find, it turns out that in practice many examples exhibit kinematic reductions in a more
or less obvious way. We shall see this in the examples below. Note that condition (iii)
of Theorem 5.2 provides a set of algebraic equations that can, in principle, be solved to
identify decoupling vector fields. This is discussed by Bullo and Lynch [2001]. •

Next, let us consider affine connection control systems endowed with multiple kinematic
reductions. It is interesting to characterise when the concatenation of controlled trajectories
of the kinematic reductions gives rise to a controlled trajectory for the affine connection
control system. Given two curves γ1 and γ2 on Q, let γ1 ∗ γ2 be their concatenation. The
following lemma follows immediately from the definition of a kinematic reduction.

5.5 Lemma: Consider an affine connection control system Σdyn = (Q,∇,D,Y ,Rm) with
two kinematic reductions Σkin,1 = (Q,X1,Rm1) and Σkin,2 = (Q,X2,Rm2). For i ∈ {1, 2},
let (γi, ukin,i) be a controlled trajectory for Σkin,i defined on the interval [0, Ti] with ukin,i ∈
Ukin. There exists a control udyn ∈ Udyn such that (γ1 ∗ γ2, udyn) is a controlled trajectory
for Σdyn if and only if γ′1(T1) = γ′2(0).

Motivated by this result we make the following definition.

5.6 Definition: An affine connection control system Σdyn = (Q,∇,D,Y ,Rm) is kinemat-
ically controllable from q0 ∈ Q (KC from q0 ∈ Q) if there exists a finite collection

Σkin,1 = (Q,X1,R
m1), . . . ,Σkin,k = (Q,Xk,R

mk)

of kinematic reductions for Σdyn so that (Q,X1 ∪ · · · ∪Xk) is properly STLC from q0. •

5.7 Remarks: 1. For analytic systems, the condition that (Q,X1 ∪ · · · ∪Xk) be properly
STLC from q0 is equivalent to the condition that Lie(∞)(X1 + · · · + Xk)q0 = Tq0Q,
where X1 + · · ·+ Xk is the fibrewise sum of the distributions X1, . . . ,Xk.

2. If an affine connection control system Σdyn = (Q,∇,D,Y ,Rm) is kinematically con-
trollable from q0, then it is STLCC from q0. This fact is proved in Proposition 5.15
below, and we refer to Section 5.3 for a discussion of the relationships between the
various notions of controllability introduced in this paper.

3. Suppose the affine connection control system Σdyn = (Q,∇,D,Y ,Rm) is kinemati-
cally controllable from all q ∈ Q. A standard control problem is to find a controlled
trajectory connecting two given configurations q1, q2 ∈ Q, starting and ending with
zero velocity. Lemma 5.5 says that this can be done for Σdyn by concatenating integral
curves of decoupling vector fields where each segment is reparameterised to start and
end at zero velocity. This is the viewpoint of Bullo and Lynch [2001]. •
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O

f1

f2F

h

Figure 1. Planar rigid body with thruster

5.8 Example: We consider a planar rigid body with a variable-direction thruster as shown
in Figure 1. The system has configuration manifold SE(2). We use coordinates (x, y, θ)
defined as follows. Let {e1, e2} be an orthonormal frame in E2 fixed at O ∈ E2, and let
{f1, f2} be a body orthonormal frame attached to the centre of mass and with the property
that the vector f1 points in the direction of the line connecting the centre of mass with
the point of application of the force (see Figure 1). Then (x, y) denote the position of the
centre of mass with respect to O, and θ is defined so that f1 = R(θ)e1 with R(θ) the matrix
giving a positive rotation by θ in E2. With respect to these coordinates, the kinetic energy
of the system is determined by the Riemannian metric

g = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ,

where m is the mass of the body, and J is its inertia about the centre of mass. Since the
coefficients of this Riemannian metric are independent of the coordinates, the Christoffel
symbols for the corresponding Levi-Civita affine connection are zero. As shown by Lewis
and Murray [1997a], Newton’s law with the force F as shown in Figure 1 is equivalent to
equation (2.1) if the affine connection ∇ is the Levi-Civita connection associated with g
and if the vector fields {Y1, Y2} are chosen as follows:

Y1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
, Y2 = −sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
− h

J

∂

∂θ
.

The system is unconstrained so we take D = TQ.
We claim that the vector fields X1 = mY1 and X2 = mY2 are decoupling vector fields.

Clearly, they are sections of Y. We also compute

∇X1X1 = 0, ∇X2X2 =
mh cos θ

J

∂

∂x
+
mh sin θ

J

∂

∂y
.

Therefore ∇X1X1,∇X2X2 ∈ Γ(Y), showing that X1 and X2 are indeed decoupling vector
fields.

Let us explore the implications of the existence of these decoupling vector fields. Since
X1 and X2 are decoupling vector fields, we may follow their integral curves. In Figure 2 we
show motions of the body along sample integral curves of X1 and X2. In actuality, one can
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Figure 2. Decoupling motions for the planar rigid body: X1 on
the left and X2 on the right

follow not only the integral curves of the decoupling vector fields, but any reparameterisation
of these vector fields. With this in mind, one has the following possible methodology for
moving the body around in the plane.

1. Given q1, q2 ∈ Q find a concatenation of the integral curves ofX1 andX2 that connects
q1 with q2. (This is possible since Lie(∞)(X) = TQ.)

2. Reparameterise each segment of the preceding concatenated curve so that each seg-
ment has zero initial and final velocity.

3. Because of Lemma 5.5, the resulting reparameterised curve can be followed by con-
trolled trajectories of Σdyn.

This method for motion planning is described in detail in [Bullo and Lewis 2004, Chap-
ter 13]. •

5.2. Maximally reducible systems. If Σkin = (Q,X = {X1, . . . , Xm̃},Rm̃) is a kinematic
reduction of Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym,Rm), then, by definition, any controlled
trajectory of Σkin may be followed by a controlled trajectory of Σdyn. In this section we
wish to consider the possibility of the converse statement. The following definition, and the
attendant Theorem 5.11 below, are due to Lewis [1999].

5.9 Definition: An affine connection control system Σdyn = (Q,∇,D,Y =
{Y1, . . . , Ym},Rm) with Y constant-rank is maximally reducible to Σkin = (Q,X =
{X1, . . . , Xm̃},Rm̃) if Σkin is a kinematic reduction of Σdyn and if, for every controlled tra-
jectory (γ, udyn) for Σdyn satisfying γ′(0) ∈ Xγ(0), there exists a control ukin ∈ Ukin so that
(γ, ukin) is a controlled trajectory for Σkin. •

Before we proceed to characterise maximally reducible systems, let us illustrate that a
system may not be maximally reducible to a given kinematic reduction.
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5.10 Example: (Example 5.8 cont’d) We claim that the affine connection control system
corresponding to the planar rigid body with a thruster is not maximally reducible to either
of the kinematic reductions Σkin,1 = (Q,X1 = {X1},R) or Σkin,2 = (Q,X2 = {X2},R)
exhibited in Example 5.8. We shall exhibit this explicitly for Σkin,1, and leave the other
case to the reader.

Consider the control t 7→ u(t) = (0, 1) ∈ Udyn along with the initial condition γ′(0) =
((0, 0, 0), (1, 0, 0)) ∈ TQ. We have γ′(0) ∈ X1,γ(0), where X1 is the distribution generated
by the vector field X1. If Σdyn is to be maximally reducible to Σkin,1 then we should have
γ′(t) ∈ X1,γ(t) for each t > 0. To show that this is not the case, consider the governing
equations for the system with the given control:

ẍ = − sin θ

m

ÿ =
cos θ

m

θ̈ = − h

J
.

Clearly the solution to this ordinary differential equation is not a reparameterisation of the
integral curve for X1 through γ(0) since the latter is given by t 7→ (t, 0, 0). Thus it cannot
be that γ′(t) ∈ X1,γ(t) for each t > 0. •

Now let us establish when an affine connection control system is in fact maximally
reducible to some driftless system. Note that in the statement of the following theorem,
the driftless systems to which Σdyn is maximally reducible are characterised sharply.

5.11 Theorem: An affine connection control system Σdyn = (Q,∇,D,Y =
{Y1, . . . , Ym,Rm), with Y constant rank, is maximally reducible to Σkin = (Q,X =
{X1, . . . , Xm̃},Rm̃) if and only if the following two conditions hold:

(i) X = Y;

(ii) Sym(∞)(Y) = Y.

Proof: In the proof it is convenient to understand that the second-order system (2.1) on Q
is equivalent to the first-order system on TQ given

Υ′(t) = Z(Υ(t)) +

m∑
a=1

ua(t) vlft(Ya)(Υ(t)), (5.3)

for a curve Υ on TQ, where Z is the geodesic spray for ∇ and vlft(Ya) ∈ Γ(TTQ) denotes
the vertical lift of Ya. This is discussed in Lewis and Murray [1997a]. Further, one may
easily verify that a vector field X is a section of a distribution D if and only if vlft(X)
is tangent to D ⊂ TQ. Also, Lewis [1998] shows that condition (ii) is equivalent to the
assertion that Y be geodesically invariant, by which we mean that geodesics γ : I → Q
satisfying γ′(t0) ∈ Yγ(t0) for some t0 ∈ I satisfy γ′(t) ∈ Yγ(t) for all t ∈ I. Clearly, geodesic
invariance of Y is equivalent to Y being an invariant submanifold for Z.

First suppose that Σdyn is maximally reducible to a driftless system Σkin. Let γ : [0, T ] →
Q be a geodesic so that (γ′, 0) is a controlled trajectory for Σdyn. If we ask that γ′(0) ∈ X,
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then Definition 5.9 implies that there exists ukin ∈ Ukin so that (γ, ukin) is a controlled
trajectory of Σkin. Indeed, ukin is defined by

γ′(t) =

m̃∑
α=1

uαkin(t)Xα(γ(t)),

and so is smooth. Further, this implies that X is geodesically invariant. The remainder of
this part of the proof will be directed towards showing that X = Y.

Let ea be the ath standard basis vector for Rm and let ua : [0, T ] → Rm be the control
defined by ua(t) = ea. Let Υ: [0, T ] → TQ be an integral curve for the vector field
Z + vlft(Ya), so that (Υ, ua) satisfies (5.3). By Definition 5.9, Υ must be tangent to X.
Since X is geodesically invariant, Z is tangent to X, therefore vlft(Ya) must be tangent to
X. This implies that Y ⊂ X.

To show that X ⊂ Y we employ the following lemma.

1 Lemma: If a distribution D is geodesically invariant for an affine connection ∇, then for
each q ∈ Q and each X ∈ Dq there exists T > 0 and a smooth curve γ : [0, T ] → Q with
the following properties:

(i) γ′(t) ∈ Dγ(t) for t ∈ ]0, T ];

(ii) ∇γ′(0)γ
′(0) = X.

Proof: Let (A,χ) be a normal coordinate chart [Kobayashi and Nomizu 1963, Propo-
sition 8.4] with χ(q) = 0. In such a chart the Christoffel symbols for ∇ satisfy
Γi
jk(0)+Γi

kj(0) = 0, i, j, k ∈ {1, . . . , n}. Let T̃ > 0 be small if necessary and let γ̃ : [0, T̃ ] → Q
be the geodesic satisfying γ̃′(0) = X. Let us denote the local representative of γ̃ in our nor-
mal coordinate chart by t 7→ (q̃1(t), . . . , q̃n(t)). We must then have ¨̃qi(0) = 0, i ∈ {1, . . . , n},
since γ̃ is a geodesic and we are using normal coordinates. Since D is geodesically invariant,
γ̃′(t) ∈ Dγ̃(t) for t ∈ ]0, T̃ ]. Now define τ : [0, T̃ ] → [0, 12 T̃

2] by τ(t) = 1
2 t

2. Let T = 1
2 T̃

2, de-
fine γ : [0, T ] → Q by γ = γ̃ ◦ τ , and denote by t 7→ (q1(t), . . . , qn(t)) the local representative
of γ. Then we have

q̇i(t) =
2t ˙̃qi(t)

T
, i ∈ {1, . . . , n}

q̈i(0) = ˙̃qi(0), i ∈ {1, . . . , n}.

Since γ̃′(0) = X the result follows. ▼

Now let q ∈ Q and X ∈ Xq. Choose a curve γ : [0, T ] → Q as in the lemma. Define a
smooth map ukin : [0, T ] → Rm̃ by asking that it satisfy

γ′(t) =

m̃∑
α=1

uαkin(t)Xα(γ(t)).

Then (γ, ukin) is a controlled trajectory for Σkin. Therefore, by Definition 5.9, there exists
a map udyn : [0, T ] → Rm so that (γ′, udyn) is a controlled trajectory for (TQ,XΣdyn

,Rm).
Indeed, since γ′ is smooth, udyn will also be smooth. Furthermore, we have

X = ∇γ′(0)γ
′(0) =

m∑
a=1

uadyn(0)Ya(γ(0)).
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This shows that X ⊂ Y which completes the proof of the “only if” part of the theorem.
Now suppose that (i) and (ii) of the theorem hold. Let us work locally, so we may as well

assume that the vector fields {Y1, . . . , Ym} and {X1, . . . , Xm̃} are linearly independent (and
so m̃ = m). First, (ii) implies Y is an invariant submanifold for the system (TQ,XΣdyn

,Rm),
since vlft(Ya), a ∈ {1, . . . ,m}, is tangent to Y. If (Υ, udyn) is a controlled trajectory of
(TQ,XΣdyn

,Rm), then Υ: [0, T ] → TQ is absolutely continuous, and so γ ≜ πTQ ◦Υ is also
absolutely continuous. In fact, Υ = γ′ and so not only is γ absolutely continuous, but γ′

is absolutely continuous. If we further suppose that γ′(0) ∈ Yγ(0), then γ′(t) ∈ Yγ(t) for
t ∈ [0, T ]. We may then define ukin : [0, T ] → Rm̃ by

γ′(t) = uαkin(t)Xα(γ(t))

which uniquely defines ukin since (TQ,XΣdyn
,Rm) leaves Y, and hence X, invariant. It is

clear that ukin is absolutely continuous.
Finally, let (γ, ukin) be a controlled trajectory for Σkin. Thus γ

′ is absolutely continuous.
Since Y, and therefore X, is geodesically invariant, ∇γ′(t)γ

′(t) ∈ Yγ(t) for t ∈ [0, T ]. Thus we
may write

∇γ′(t)γ
′(t) =

m∑
a=1

uadyn(t)Ya(γ(t)),

which defines udyn : [0, T ] → Rm. It is clear that u is locally integrable, and this completes
the proof. ■

5.12 Remark: Note that all driftless systems to which a given affine connection con-
trol system Σdyn = (Q,∇,D,Y = {Y1, . . . , Ym},Rm) is maximally reducible are essen-
tially the same, by which we mean that for two such driftless systems, Σkin = (Q,X =
{X1, . . . , Xm},Rm) and Σ̃kin = (Q, X̃ = {X̃1, . . . , X̃m̃},Rm̃), we have X = X̃. Thus, with-
out loss of generality, we may take (Q, {Y1, . . . , Ym},Rm) as the system to which Σdyn is
maximally reducible. For this reason, it makes sense to simply say that Σdyn is maximally
reducible if it is maximally reducible to some driftless system. •

Let us give an example of a system that is maximally reducible.

5.13 Example: We consider the robotic leg system depicted in Figure 3. The configuration
space for the system is Q = R+ × S1 × S1, and the coordinates we use are (r, θ, ψ) as
indicated in Figure 3. The Riemannian metric for the system is

g = m(dr ⊗ dr + r2dθ ⊗ dθ) + Jdψ ⊗ dψ,

where m is the mass of the particle on the end of the extensible massless leg, and J is the
moment of inertia of the base rigid body about the pivot point. The nonzero Christoffel
symbols for the associated affine connection are

Γr
θθ = −r, Γθ

rθ = Γθ
θr =

1

r
.

Lewis and Murray [1997a] show that if we define Y1 and Y2 by

Y1 =
1

mr2
∂

∂θ
− 1

J

∂

∂ψ
, Y2 =

1

m

∂

∂r
,



Controllability and kinematic reductions 25

ψ

θ

r

F 1

F 2

Figure 3. The robotic leg

then the equations of motion for the system are of the form (2.1), where ∇ is the Levi-Civita
connection associated with g. There are no constraints on the system so we take D = TQ.

One readily computes

⟨Y1 : Y1⟩ = − 2

m2r3
∂

∂r
, ⟨Y1 : Y2⟩ = 0, ⟨Y2 : Y2⟩ = 0.

This shows that Y is geodesically invariant. Thus the corresponding affine connection control
system Σdyn is maximally reducible to (Q, {Y1, Y2},R2). •

Since Sym(∞)(Y) = Y for an affine connection control system that is maximally reducible
to a driftless system, by Remark 5.7–2 such an affine connection control system, if analytic,
is STLCC from q ∈ Q if and only if Lie(∞)(Y)q = TqQ. Thus we make the following
definition.

5.14 Definition: A maximally reducible affine connection control system Σdyn =
(Q,∇,D,Y ,Rm) is maximally reducibly kinematically controllable from q0 ∈ Q
(MR-KC from q0 ∈ Q) if (Q,Y ) is properly STLC from q0. •

5.3. Relationships to controllability. The appearance in Theorem 5.2 of the vector-valued
quadratic form BY raises questions about how the notion of kinematic reductions are related
to the low-order controllability results of Section 4. In this section we flesh out the proper
relationships. In [Bullo, Lewis, and Lynch 2002] counterexamples are provided to show that
one cannot generally improve on the relationships presented here.

Let Σdyn = (Q,∇,D,Y ,Rm) be an affine connection control system. First let us list
the various types of controllability we have at hand for Σdyn from a point q0 ∈ Q:

1. small-time local controllability (STLC);

2. small-time local configuration controllability (STLCC);

3. kinematic controllability (KC);

4. maximal reducible kinematic controllability (MR-KC).

The relationships between these concepts are demonstrated in Figure 4. Let us show that
these implications do indeed hold.
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STLC

STLCC

KC MR-KC

Figure 4. Relationships between various forms of controllability
for affine connection control systems

5.15 Proposition: For an analytic affine connection control system Σdyn =
(Q,∇,D,Y ,Rm) and for q0 ∈ Q, the implications of Figure 4 hold.

Proof: The implications STLC =⇒ STLCC and MR-KC =⇒ KC follow directly from the
definitions of the various notions of controllability involved. Thus we need only show that
KC =⇒ STLCC. We let

Σkin,1 = (Q,X1,R
m1), . . . ,Σkin,k = (Q,Xk,R

mk)

be a collection of kinematic reductions for which Lie(∞)(X1 + · · · + Xk)q0 = Tq0Q, where
X1+· · ·+Xk denotes the fiberwise sum of the distributions X1, . . . ,Xk. Let X = X1∪· · ·∪Xk.
Note that since Xi ⊂ Y, Σdyn is STLCC from q0 if (Q,∇,D,X ) is properly STLCC from
q0. Select vector fields Xa1 , . . . , Xaℓ from the family X so that {Xa1(q0), . . . , Xaℓ(q0)} is
a basis for Xq0 . For brevity, let us denote by B ∈ TS2(Yq0 ;Tq0Q/Yq0) the vector-valued
quadratic form BY(q0). By Theorem 5.2 we know that QB|Xi,q0 = 0, i ∈ {1, . . . , k}. It
therefore follows that, for each λ ∈ ann(Yq0), λB(Xaj (q0), Xaj (q0)) = 0, j ∈ {1, . . . , ℓ}.
From Lemma 3.3 this means that λB is essentially indefinite, and since this holds for every
λ ∈ ann(Yq0), B is itself essentially indefinite. Therefore, by Theorem 4.5, (Q,∇,D,X ) is

properly STLCC if Lie(∞)(X)q0 = Tq0Q. The result now follows directly. ■

5.16 Remark: Note that all implications in Figure 4 are local. There are implications for
global notions of controllability that follow from the local notions, but we do not consider
this in a systematic way, since the understanding of this is, as yet, poor. •
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