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Abstract

Linearisation is a common technique in control applications, putting useful anal-
ysis and design methodologies at the disposal of the control engineer. In this paper,
linearisation is studied from a differential geometric perspective. First it is pointed
out that the “näıve” Jacobian techniques do not make geometric sense along nontriv-
ial reference trajectories, in that they are dependent on a choice of coordinates. A
coordinate-invariant setting for linearisation is presented to address this matter. The
setting here is somewhat more complicated than that seen in the näıve setting. The
controllability of the geometric linearisation is characterised by giving an alternate ver-
sion of the usual controllability test for time-varying linear systems. The problems of
stability, stabilisation, and quadratic optimal control are discussed as topics for future
work.

Keywords. Linearisation, differential geometry.
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1. Introduction

Jacobian linearisation1 is, of course, a standard concept in control theory, useful in
studies of controllability, optimal control, and it is still provides the setting for the majority
of the control algorithms implemented in practice on nonlinear systems. In this paper
we wish to develop a geometric theory of linearisation in a rather general setting. The
motivation for this is not so much to broaden the applicability of linearisation techniques,
but to better understand the structure of linearisation, and to make explicit some of the
choices that are made without mention in the standard practice of linearisation. As we
shall see in Section 1.1 below, the standard way of thinking about Jacobian linearisation
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has some difficulties as a geometric theory. Our motivation for looking at this matter comes
from examples in mechanics where one has a natural geometric understanding—provided
by the Jacobi equation of geodesic variation—of what it means to linearise about a reference
trajectory. This geometric understanding, as far as the authors have been able to determine,
is missing in the general setup for linearisation of control-affine systems. (However, we point
out that certain of the ideas are implicit in the paper of Sussmann [1998], although the setup
we provide is a little less abstract, and so has more structure.) In order to emphasise the
relevant geometry, the setting for control theory we employ is the rather abstract setting of
“affine systems” as utilised by Bullo and Lewis [2005]. Here “control” is removed from the
formulation and one talks merely of trajectories.

1.1. Motivation. In order to provide a point of reference for our general formulation of con-
trol systems and their linearisation, we consider the standard manner in which linearisation
is normally carried out. At various points in the paper we refer to this standard strategy
as the “näıve” approach to linearisation, since it sweeps under the rug various issues that
it is our objective to address.2 We let Ω ⊂ Rn be an open subset and we let f0, f1, . . . , fm
be smooth vector fields, possibly depending measurably on t, on Ω. The control system we
consider is then

γ′(t) = f0(t, γ(t)) +

m∑
a=1

ua(t)fa(t, γ(t)), (1.1)

where γ : I → Ω is locally absolutely continuous and u : I → Rm is bounded and measurable,
for some interval I ⊂ R. We fix a reference trajectory γref corresponding to a reference
control uref, both defined on I ⊂ R. To define the linearisation, for each t ∈ I we define
smooth vector fields fa,t, a ∈ {0, 1, . . . ,m}, by fa,t(x) = fa(t, x). The linearisation of this
system is then defined by

ξ′(t) = A(t)ξ(t) +B(t)v(t), (1.2)

where

A(t) = Df0,t(γref(t)) +

m∑
a=1

uaref(t)Dfa,t(γref(t))

B(t) =
[
f1,t(γ(t)) · · · fm,t(γ(t))

]
.

Here Dfa,t denotes the Jacobian of the vector field fa,t, a ∈ {0, 1, . . . ,m}. Once one
has the linearisation (1.2), one can engage in the standard controllability investigation
(see Section 4.2 for restatements of the standard Gramian results). If the linearisation is
ascertained to be controllable on I = [0,∞[ , then one can stabilise the reference trajectory
by stabilising the linearisation using linear feedback [Ikeda, Maeda, and Kodama 1972,
Kalman 1960]. Thus one chooses F : I → L(Rm;Rn) (L(V ;W ) denotes the linear maps
from a vector space V to a vector space W ) with the property that the closed-loop system

ξ′(t) =
(
A(t) +B(t)F (t)

)
ξ(t)

2But the reader should not mistake “näıve” with “incorrect.” The approach that we refer to as “näıve”
is certainly correct, but we are asking “Correct at what?”
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is asymptotically stable. If F a ∈ (Rn)∗ is the ath row of F a, then the nonlinear closed-loop
system

γ′(t) = f0(t, γ(t)) +
m∑
a=1

(
uaref(t) + (F a(t)(γ(t)− γref(t)

)
fa(t, γ(t))

has γref as a locally asymptotically stable trajectory. In practice one might design F by
using optimal control with quadratic cost, the so-called linear quadratic regulator.

The procedure by which one arrives at (1.2), and then performs control theory on the
resulting equation, poses some problems when one replaces Ω with a differentiable manifold,
at least if one wishes to not submit to working in a specific coordinate chart. For example,
the following questions arise.

1. What replaces the Jacobian of the vector fields fa,t, a ∈ {0, 1, . . . ,m}?

2. Since the problem above possesses an open subset of Rn as its state space, there are
certain identifications that one unthinkingly makes. Where does the geometric version
of (1.2) live? It cannot live in a vector space, as does (1.2).

3. By virtue of (1.2) living in a vector space, its controllability can be checked using the
Gramian. What does it mean for the geometric version of (1.2) to be controllable,
and how should one check whether such a system has this property?

4. What does it mean for a reference trajectory to be stable?

5. How does one perform linear state feedback for the geometric version of (1.2). And
after one understands this, how can the resulting linear state feedback controller be
implemented with the nonlinear system to stabilise a reference trajectory?

6. What does the geometric version of the linear quadratic regulator problem look like?

It is these questions that we begin to address in this paper.

1.2. Organisation. The layout of the paper is as follows. The paper requires certain
geometric constructions that are not necessarily part of the usual nonlinear control theo-
retician’s toolbox, and these constructions are reviewed in Section 2. In Section 3 we define
the class of control systems we use in the paper, and we define how to linearise these sys-
tems. In Section 4 we consider the controllability of linearisations. We begin in Section 4.2
by re-characterising the standard controllability results for (1.2). These re-characterisations
have the feature that they may be transfered directly to the setting of our geometric lineari-
sations, and we do this in Section 4.3. Our systematic investigation of linearisation is in its
initial stages. In Section 5 we indicate some of the problems that are as yet unresolved in
our setting. These problems have to do with the classical approach to stabilising a reference
trajectory. The issues involved here include stability, stabilisation, and quadratic optimal
control.

2. Background and geometric constructions

Throughout the paper we let M be a n-dimensional Hausdorff manifold with a C∞

differentiable structure. I will always denote an interval in R. The set of class Cr functions
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on M is denoted Cr(M). The tangent bundle of M is denoted πTM : TM → M and the
cotangent bundle by πT ∗Q : T ∗Q → Q. If ϕ : M → N is a differentiable map between
manifolds, its derivative is denoted Tϕ : TM → TN . For a vector bundle π : E → M ,
Γr(E) denotes the sections of E that are class Cr. If V and W are R-vector spaces,
L(V ;W ) denotes the set of linear maps from V to W .

2.1. Time-dependent objects on a manifold. We wish to discuss time-dependent vector
fields on manifolds in a general way. We do this following Sussmann [1998, §3].

It is convenient to first talk about functions. A Carathéodory function on M is
a map ϕ : I ×M → R with the property that ϕt ≜ ϕ(t, ·) is continuous for each t ∈ I,
and ϕx ≜ ϕ(·, x) is Lebesgue measurable for each x ∈ M . A Carathéodory function ϕ
is locally integrally bounded (LIB) if for each compact subset K ⊂ M there exists a
positive locally integrable function ψK : I → R so that |ϕ(t, x)| ≤ ψK(t) for each x ∈ K. A
Carathéodory function ϕ : I ×M → R is class Cr if ϕt is class Cr for each t ∈ I and is
locally integrally of class Cr (LICr) it is class Cr and if X1 · · ·Xrϕ

t is LIB for all t ∈ I
and X1, . . . , Xr ∈ Γ∞(TM).

A Carathéodory vector field on M is a map X : I ×M → TM with the property
that X(t, x) ∈ TxM and with the property that the function α ·X : (t, x) 7→ α(x) ·X(t, x)
is a Carathéodory function for each α ∈ Γ∞(T ∗M). For a Carathéodory vector field X on
M denote by Xt : M → TM the map Xt(x) = X(t, x). A Carathéodory vector field X on
M is locally integrally of class Cr (LICr) if α · X is LICr for every α ∈ Γ∞(T ∗M).
We denote the set of LICr vector fields by LICr(TM). Our interest will primarily be with
LIC∞ vector fields.

The classical theory of time-dependent vector fields with measurable time dependence
gives the existence of integral curves for LIC∞ vector fields [Sontag 1998, Appendix C].
Indeed, an integral curve γ : I → M is locally absolutely continuous (LAC) (meaning that
for any ϕ ∈ C∞(M) the map t 7→ ϕ ◦ γ(t) is locally absolutely continuous). We denote by
γ′(t) the tangent vector to γ at t ∈ I, noting that this is defined for almost every t ∈ I.
The flow of X ∈ LIC∞(TM) we denote by ΦX

t,t0 . Thus the curve γ : t 7→ ΦX
t,t0(x0) is the

integral curve for X with initial condition γ(t0) = x0.
Let γ : I → M be a LAC curve. A vector field along γ is a map ξ : I → E with the

property that ξ(t) ∈ Tγ(t)M . A vector field ξ along γ is locally absolutely continuous
(LAC) if it is LAC as a curve in TM . A weaker notion than that of a LAC vector field
along γ is that of a locally integrable (LI) vector field along γ, which is a vector field
ξ along γ having the property that the function t 7→ α(γ(t)) · ξ(t) is locally integrable for
every α ∈ Γ∞(T ∗M).

Let X ∈ LIC∞(TM) and let γ : I → M be an integral curve for X. As described by
Sussmann [1998], there is a naturally defined Lie derivative operator along γ that maps
LAC sections of TM along γ to LI sections of TM along γ. This operator we denote by
L X,γ , and define it by

L X,γ(Vγ)(t) = [Xt, V ](γ(t)), a.e. t ∈ I,

where V ∈ Γ1(TM) and Vγ is the LAC section of TM along γ defined by Vγ(t) = V (γ(t)).
One easily verifies in coordinates that for a LAC vector field ξ along γ, L X,γ(ξ) is then
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given in coordinates (x1, . . . , xn) by

L X,γ(ξ)(t) =
(dξi
dt

(t)− ∂Xt

∂xj
(γ(t))ξj(t)

) ∂

∂xi
, a.e. t, (2.1)

where we use the summation convention. We shall revisit this operation in Sections 2.2
and 4.3.

2.2. Tangent bundle geometry. In this section we describe two ways in which a vector
field on M can be lifted to a vector field on TM . It is convenient to make some general
definitions.

Let π : E →M be a vector bundle. The subbundle V E ≜ ker(Tπ) ⊂ TE is the vertical
bundle of E. We shall be interested in certain vector fields on E. A LIC∞ vector field X
on E is linear if

1. X is π-projectable (denote the resulting vector field on M by πX) and

2. X is a linear morphism of vector bundles relative to the following diagram:

E
X //

π
��

TE

Tπ
��

M
πX
// TM

That is to say, the induced mapping from π−1(x) to Tπ−1(πX(x)) is a linear mapping
of R-vector spaces.

The flow of a linear vector field has the property that ΦX
t,t0 |Ex : Ex → EΦπX

t,t0
is a linear

transformation.

2.1 Remark: A linear vector field on a vector bundle generalises the notion of a time-varying
differential equation in the following manner. Let V be a finite-dimensional R-vector space
and consider on V a linear differential equation

ξ′(t) = A(t)(ξ(t)),

where A : R → L(V ;V ) is locally integrable. We then define a LIC∞ linear vector field on
the trivial bundle pr1 : R × V → R (pr1 is projection onto the first factor) by XA(τ, v) =
((τ, v), (1, A(τ)(v))). Here the projected vector field on the base space is simply πXA = ∂

∂τ .
This special case of a linear vector field has the feature that the vector bundle admits
a natural global trivialisation. The lack of this feature in general accounts for some of
the additional complexity in our development. Relationships between linear time-varying
differential equations and linear flows on vector bundles are considered by, for example,
Millionshchikov [1986a, 1986b]. •

Now let us specialise to the tangent bundle. Let X̃ ∈ Γ∞(TM). The complete lift of
X̃ is the vector field X̃T ∈ Γ∞(TTM) defined by

X̃T (vx) =
d

ds

∣∣∣∣
s=0

TxΦ
X̃
s,0(vx).
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Now, for X ∈ LIC∞(TM) we define the complete lift of X to be the vector field XT ∈
LIC∞(TTM) given by XT (t, vx) = XT

t (vx). In natural coordinates (x1, . . . , xn, v1, . . . , vn)
for TM we have

XT (t, x, v) = Xi(t, x)
∂

∂xi
+
∂X

∂xj
(t, x)vj

∂

∂vi
. (2.2)

Now let us provide an interpretation of the complete lift. Let γ : I →M be an integral
curve of X ∈ LIC∞(TM). A variation of X along γ is a map σ : I × J →M satisfying

1. J ⊂ R is an interval for which 0 ∈ int(J),

2. σ is continuous,

3. the map I ∋ t 7→ σs(t) ≜ σ(t, s) ∈M is an integral curve for X for each s ∈ J ,

4. the map J ∋ s 7→ σt(s) ≜ σ(t, s) ∈M is LAC for each t ∈ I,

5. the map I ∋ t 7→ d
ds

∣∣
s=0

σt(s) ∈ TM is LAC, and

6. σ0 = γ.

Corresponding to a variation σ of X along γ we define a LAC vector field Vσ along γ by

Vσ(t) =
d

ds

∣∣∣∣
s=0

σt(s).

With this notation, the following result records some useful properties of the complete lift.

2.2 Proposition: Let X : I ×M → TM be a LIC∞ vector field, let vx0 ∈ TxM , let t0 ∈ I,
and let γ : I → M be the integral curve of X satisfying γ(t0) = x0. For a vector field Υ
along γ satisfying Υ(t0) = vx0 the following statements are equivalent:

(i) Υ is an integral curve for XT ;

(ii) there exists a variation σ of X along γ so that Vσ = Υ;

(iii) L X,γ(Υ) = 0.

Proof: The equivalence of (i) and (ii) will follow from the more general Proposition 3.1
below. Thus we need prove only the equivalence of (ii) and (iii). This, however, follows
directly from the coordinate expressions (2.1) and (2.2). ■

Following directly from the computations arising in the proof of the preceding result is
the following.

2.3 Corollary: For X ∈ LIC∞(TM), XT is a linear vector field on πTM : TM → M and
πXT = X.

Corresponding to X ∈ LIC∞(TM) there is also a natural vertical vector field vlft(X)
on πTM : TM →M defined by

vlft(X)(t, vx) =
d

ds

∣∣∣∣
s=0

(vx + sX(t, x)).

In natural coordinates (x1, . . . , xn, v1, . . . , vn) for TM we have

vlft(X)(t, x, v) = Xi(t, x)
∂

∂vi
.

If uv ∈ TxM and vx ∈ TxM then we denote vlftvx X = vlft(U)(vx) where U is any vector
field extending ux.
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3. Affine systems and their linearisation

In this section we present a quite general formulation for control-affine systems. As part
of the generalisation, we shall see that control is effectively eliminated from the picture. In
practice, of course, one will not do this. However, the presence of a choice of drift vector
field f0 and control vector fields f1, . . . , fm obfuscates some of the geometry inherent in
control-affine systems. It is for this reason that we consider the control-less analogue, affine
systems.

3.1. Definitions. We let M be as in Section 2.
A time-dependent distribution onM is a subsetD ⊂ R×TM with the property that

for each x0 ∈M there exists a neighbourhood N and LIC∞ vector fields X = {X1, . . . , Xk}
on N so that

D(t,x) ≜ D ∩
(
{t} × TxM

)
=
{ k∑

j=1

ujXj(t, x)
∣∣∣ u ∈ Rk

}
.

The vector fields X are called generators for D. A time-dependent affine subbundle
on M is a subset A ⊂ R × TM with the property that for each x0 ∈ M there exists a
neighbourhood N and LIC∞ vector fields X = {X0, X1, . . . , Xk} on N so that

A(t,x) ≜ A ∩
(
{t} × TxM

)
=
{
X0(t, x) +

k∑
j=1

ujXj(t, x)
∣∣∣ u ∈ Rk

}
.

The vector fields X are called generators for A. The linear part of a time-dependent
affine subbundle is the time-dependent distribution L(A) defined by L(D)(t,x) being the
subspace of TxM upon which the affine subspace A(t,x) is modelled. If X are generators for
A as above, then the vector fields {X1, . . . , Xk} are linear generators for L(A). In the
setting of Bullo and Lewis [2005], we would now define an “affine system” in A to be an
assignment to each (t, x) ∈ R×M of a subset A (t, x) of A(t,x). This is tantamount to spec-
ifying the control set for the system. However, in order to focus on the geometry associated
with an affine system and its linearisation, we take A(t,x) = A(t,x). This essentially means
we allow unbounded controls. Therefore, we shall call the time-dependent affine subbundle
A a time-dependent affine system , accepting a slight abuse of notation. A trajectory
for A is then a LAC curve γ : I →M with the property that γ′(t) ∈ A(t,γ(t)).

Note that the specification of an affine system does not provide one with the natural
notion of a drift vector field and control vector fields. Indeed, a choice of drift vector
field is a choice, and as can be seen in [Bullo and Lewis 2005], even basic properties like
controllability can depend on this choice. For the theory of linearisation, this issue is
put in the background, because it is natural to assume the presence of a reference vector
field, cf. the discussion of Section 1.1. To be formal about this, a reference vector field
for an affine system A is a LIC∞ vector field Xref ∈ LIC∞(TM) with the property that
Xref(t, x) ∈ A(t, x). Of course, integral curves of Xref are trajectories for A. One may
readily show that if γ : I → M is a trajectory for A, then there exists a reference vector
field Xref for A for which γ is an integral curve [Sussmann 1998, Proposition 4.1].
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3.2. Linearisation about a reference trajectory. We let A be a time-dependent affine
system. We select a reference vector field Xref and a reference LAC integral curve γref : I →
M for Xref. More generally, one might choose to linearise about a reference trajectory γref
without making reference to its being an integral curve of a reference vector field. However,
the embedding of γref as an integral curve of a reference vector field gives additional useful
structure, and corresponds more naturally to what one does in practice.

Now we wish to linearise about γref. An A-variation of γref is a map σ : I × J → M
with the following properties:

1. J ⊂ R is an interval for which 0 ∈ int(J);

2. σ is continuous;

3. the map I ∋ t 7→ σs(t) ≜ σ(t, s) ∈M is a trajectory of A for each s ∈ J ;

4. the map J ∋ s 7→ σt(s) ≜ σ(t, s) ∈M is LAC for each t ∈ I;

5. the map I ∋ t 7→ d
ds

∣∣
s=0

σt(s) ∈ TM is LAC;

6. σ0 = γref.

Given an A-variation σ of γref we define a vector field Vσ along γref by

Vσ(t) =
d

ds

∣∣∣∣
s=0

σt(s). (3.1)

The vector field Vσ should be thought of as being the result of linearising in the direction of
the A-variation σ. Now let us see that these vector fields along γref arise as trajectories for
a time-dependent affine system on TM . This requires using the geometric constructions of
Section 2.2.

We define a time-dependent affine subbundle AT
ref on TM as follows. Let (t, vx) ∈

R × TM and define

AT
ref,(t, vx)

= {XT
ref(t, vx) + vlftvx(X) | X ∈ L(A)(t,x)}.

This is obviously a time-dependent affine subbundle since it possesses generators
{XT

ref, vlft(X1), . . . , vlft(Xk)} where {Xref, X1, . . . , Xk} are generators for A.

3.1 Proposition: Let A be a time-dependent affine system, and let Xref be a reference vector
field with differentiable reference trajectory γref, as above. For a vector field Υ along γref
the following statements are equivalent:

(i) Υ is a trajectory for AT
ref;

(ii) there exists an A-variation σ of γref so that Vσ = Υ.

Proof: Let σ be an A-variation giving rise to the vector field Vσ along γref. In a set of
generators {Xref, X1, . . . , Xk} for A we write

σ′s(t) = Xref(σs(t)) +
k∑

j=1

uj(t)Xj(σs(t)),
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since σs is a trajectory for A. Differentiating with respect to s at s = 0 gives

V ′
σ(t) = XT

ref(γ
′
ref(t)) +

k∑
j=1

(
vj(t)Xj(γref(t)) + uj(0, t)

d

ds

∣∣∣∣
s=0

Xj(σs(t))
)
,

where vj(t) = ∂uj

∂s (0, t). Since σ0 = γref it follows that uj(0, t) = 0, and so it follows that
V ′
σ(t) ∈ AT

ref,(t, γref(t))
, as desired.

We take a collection of generators {Xref, X1, . . . , Xk} for A. We then let σj be the
A-variation of γref satisfying

dσs
dt

(t) = Xref(σs(t)) + sXj(σs(t)),

noting that the corresponding infinitesimal variation is

Vσj (t) = XT
ref(γ

′
ref(t)) + vlft(Xj)(γ

′
ref(t)).

The convexity of the set of variations of a given order (see [Bianchini and Stefani 1993])
now ensures the existence of a variation for any trajectory Υ that covers γref. ■

3.3. Linearisation about an equilibrium point. The above developments concerning lin-
earisation about a reference trajectory simplify significantly when dealing with an equi-
librium point. Here the development looks a lot more like what one encounters in the
non-geometric theory. In this section we explicitly make the necessary connections.

We let A be a time-dependent affine subbundle on M and we let Xref : I ×M → TM
be a reference vector field for A. A point x0 ∈ M is an equilibrium point for Xref if
Xref(t, x0) = 0x0 for each t ∈ I. Thus the curve I ∋ t 7→ x0 ∈ M is an integral curve for
Xref. We consider the developments above in this special case.

First let us see how the complete lift XT
ref reacts to the existence of an equilibrium point

for Xref.

3.2 Proposition: If x0 ∈M is an equilibrium point for a LIC∞ vector field Xref : I×M →
TM , then XT

ref(vx0) is vertical for each vx0 ∈ Tx0M . Furthermore, for each t ∈ I there
exists a unique A(t) ∈ L(Tx0M ;Tx0M) so that XT

ref(vx0) = vlft(A(t)(vx0)), and the map
I ∋ t 7→ A(t) ∈ L(Tx0M ;Tx0M) is Lebesgue-Lebesgue measurable.

Proof: This follows directly from the coordinate representation (2.2) for the complete lift.■

Thus the complete lift is vertical-valued on Tx0M . Since Vx0M ≃ Tx0M this means that
the linearisation is a time-dependent linear affine system on Tx0M . Weeding through the
definitions we see that

AT
ref(t, vx0) = {A(t)(vx) + b | b ∈ L(A)(t,x0)}.

Trajectories ξ : I → Tx0M of the linearisation then satisfy

ξ′(t) = A(t)(ξ(t)) + b(t) (3.2)

for some measurable curve b : I → Tx0M having the property that b(t) ∈ L(A)(t,x0). To
make this look more like the usual notion of a time-varying linear system, for each t ∈ I
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let U be a finite-dimensional R-vector space and let B(t) ∈ L(U ;Tx0M) have the property
that image(B(t)) = L(A)(t,x). Then we may write the equation governing trajectories as

ξ′(t) = A(t)(ξ(t)) +B(t)(u(t))

for a measurable curve u : I → U . This then recovers the usual notion of a time-dependent
linear system.

4. Linear controllability

In Section 3 we constructed a time-dependent affine subbundle AT
ref on TM by linearis-

ing a time-dependent affine subbundle A on M along a reference trajectory γref. In this
section we start by defining the notions of the reachable set of both A and AT

ref, and the
associated versions of controllability along γref. In Section 4.2 the standard results for a
time-varying linear system are cast in a geometric manner. Our geometric characterisation
of the standard Gramian condition allows us to state in Section 4.3 a completely geometric
result that describes the reachable sets for the linearisation.

4.1. Controllability definitions. In this section the reachable sets for both A and AT
ref are

defined and for the latter we give two equivalent statements of the reachable set. Then
controllability along a reference trajectory is provided for A and as well the controllability
of AT

ref.
Recall that a trajectory for a time-dependent affine subbundle A is a LAC curve γ : I →

M such that γ′(t) ∈ A(t,γ(t)). Then the set of trajectories defined on [t0, T ] is denoted by
Traj(A, T, t0) and Traj(A, t0) =

⋃
T≥t0

Traj(A, T, t0). For x0 ∈ M and t ≥ t0 we define the
reachable set of A from x0 as

RA(x0, t, t0) = {γ(t) | γ ∈ Traj(A, t0), γ(t0) = x0}.

Similarly a trajectory for the linearised time-dependent affine subbundle AT
ref is a LAC

curve Υ: I → TM such that Υ′(t) ∈ AT
ref(t,Υ(t)). Then the set of trajectories defined

on [t0, T ] is denoted by Traj(AT
ref, T, t0) and Traj(AT

ref, t0) =
⋃

T≥t0
Traj(AT

ref, T, t0). For
vx0 ∈ TM and t ≥ t0 we define the reachable set from vx0 as

RAT
ref
(vx0 , t, t0) = {Υ(t) | Υ ∈ Traj(AT

ref, t0), Υ(t0) = vx0}.

With these notions of reachable sets, we have the following controllability notions.

4.1 Definition: Let Xref be a reference vector field for A and let γref : I →M be a reference
trajectory. Let x0 ∈M and γref(t0) = x0. A is

(i) controllable at t0 along γref if γref(t) ∈ intRA(x0, t, t0) for each t > t0 and is

(ii) linearly controllable at t0 along γref if RAT
ref
(0x0 , t, t0) = Tγref(t)M for each t > t0. •

4.2. Recasting the standard results. Let U and V be R-vector space with dim(U) = m
and dim(V ) = n. Let A : R → L(V ;V ) and B : R → L(U ;V ) be continuous and define a
time-varying affine subbundle A(A,B) on V by

A(A,B),(t,v) = {A(t)v +B(t)u | u ∈ U}.
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A trajectory ξ of A(A,B) satisfies

ξ′(t) = A(t)ξ(t) +B(t)u(t). (4.1)

The solution to (4.1) satisfying ξ(t0) = ξ0 for t0 ∈ I is given by,

ξ(t) = Φ(t, t0)ξ0 +

∫ t

t0

Φ(t, σ)B(σ)u(σ)dσ, (4.2)

where Φ(t, t0) is the state transition matrix. That is, t 7→ Φ(t, t0) is the solution to the
inhomogeneous system Φ′(t) = A(t)Φ(t) with initial condition Φ(t0) = idV . We recall that
the transition matrix has the following properties:

1. Φ(t, τ)Φ(τ, t0) = Φ(t, t0);

2. Φ(t, τ)−1 = Φ(τ, t).

We say that A(A,B) is controllable at t0 if for each ξ0, ξ1 ∈ V there exists a control
u : [t0, t1] → U which steers from ξ0 at time t0 to ξ1 at time t1.

The controllability of a time-varying linear system is determined by the controllability
Gramian ,

W (t0, t) =

∫ t

t0

Φ(t0, σ)B(σ)BT (σ)ΦT (t0, σ)dσ.

One shows that A(A,B) is controllable at t0 if and only ifW (t0, t) is surjective for t > t0. Note
that the notion of a controllability Gramian does not make sense in the geometric setting
for linearisation of Section 3. By this we mean that there is no natural way to construct the
analogue of W (t0, t) for the linearisation of a reference vector field Xref along a reference
trajectory γref. Therefore, we need an alternate characterisation of controllability that can
be applied in the geometric setting. The following result gives one such characterisation.

4.2 Theorem: Let V , U , A, and B be as above. Then

image(W (t0, t)) = spanR

( ⋃
τ∈[t0,t]

bτ∈image(B(τ))

Φ(t0, τ)bτ

)
.

Proof: Let us denote

SA(A,B)
(t0, t) = spanR

( ⋃
τ∈[t0,t]

bτ∈image(B(τ))

Φ(t0, τ)bτ

)
.

Let v ∈ image(W (t0, t)). Then there exists a continuous control u : [t0, t] → U so that

v =

∫ t

t0

Φ(t0, σ)B(σ)u(σ)dσ

(see [Brockett 1970]). Since A, B, and u are continuous, there exists a sequence of partitions
Pi = {t0 = t1,i, . . . , tki,i = t} of [t0, t] so that if we define

vi =

ki∑
j=2

Φ(t0, tj,i)B(tj,i)u(tj,i)(tj,i − tj−1,i),
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then limi→∞ vi = v. It is clear that for each i ∈N, vi ∈ SA(A,B)
(t0, t). Since SA(A,B)

(t0, t) is
a subspace of V it follows that v ∈ SA(A,B)

(t0, t).
Now assume that v ∈ SA(A,B)

(t0, t). Choose t1, . . . , tk ∈ [t0, t] and btj ∈ image(B(tj)),
j ∈ {1, . . . , k}, so that

SA(A,B)
(t0, t) = spanR(Φ(t0, t1)bt1 , . . . ,Φ(t0, tk)btk).

Then we may write

v =
k∑

j=1

cjΦ(t0, tj)btj .

We now give a useful characterisation of points in image(W (t0, t)).

1 Lemma: image(W (t0, t)) = {Φ(t0, t)ṽ ∈ V | ∃ u : [t0, t] → U steering zero to ṽ}.

Proof: By (4.2), the set of points reachable from 0 ∈ V in time t from t0 is

{
∫ t

t0

Φ(t, σ)B(σ)u(σ)dσ | u : [t0, t] → U continuous}.

Thus, if we take a point in this set and apply to it Φ(t0, t) we get

Φ(t0, t)

∫ t

t0

Φ(t, σ)B(σ)u(σ)dσ =

∫ t

t0

Φ(t0, σ)B(σ)u(σ)dσ,

by the composition property of the transition matrix. The lemma now follows by comparison
with (4.2). ▼

We will now show that one can steer from 0 to Φ(t, t0)v, and from this, this part of
the theorem will follow from Lemma 1. Let µj ∈ U have the property that B(tj)µj = btj
j ∈ {1, . . . , k}. Now consider the distributional control u =

∑j
j=1 cjδtjµj , where δtj is the

delta-distribution with support {tj}. For this control, by (4.2), we have∫ t

t0

Φ(t, σ)B(σ)u(σ) dσ =

k∑
j=1

cjΦ(t, tj)btj = Φ(t, t0)v. (4.3)

Thus the distributional control u steers from 0 to Φ(t, t0)v, as desired. Now we show that we
may replace the distributional control u with a sequence of piecewise continuous controls.
The following lemma is helpful for this.

2 Lemma: There exists a sequence of controls {ui}i∈N so that

lim
i→∞

∫ t

t0

Φ(t, σ)B(σ)ui(σ)dσ =
k∑

j=1

cjΦ(t, tj)btj .

Proof: For j ∈ {1, . . . , k} and i ∈N define

uj,i(t) =

{
i cj µj , t ∈ [tj , tj +

1
i ]

0, otherwise.
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Now note that, using the Peano-Baker series,∫ t

t0

Φ(t, σ)B(σ)uj,i(σ)dσ = Φ(t, tj +
1
i )

∫ t

t0

Φ(tj +
1
i , σ)B(σ)uj,i(σ)dσ

= Φ(t, tj +
1
i )

∫ tj+
1
i

tj

Φ(tj +
1
i , σ)B(σ)uj,i(σ)dσ

= i cj Φ(t, tj +
1
i )

∫ tj+
1
i

tj

(
idV +

∫ tj+
1
i

σ
A(σ1)dσ1

+

∫ tj+
1
i

σ
A(σ1)

∫ σ1

σ
A(σ2)dσ2dσ1 + . . .

)
B(σ)µjdσ.

Because A is continuous all terms in the Peano-Baker series go to zero at least as fast as
(1i )

2. Thus only the first term remains in the limit, giving

lim
i→∞

∫ t

t0

Φ(t, σ)B(σ)uj,i(σ)dσ = cjΦ(t, tj)btj .

The result now follows by taking ui =
∑k

j=1 uj,i. ▼

Let {ui}i∈N be a sequence of controls defined by Lemma 2. For each i ∈N we have

Φ(t0, t)

∫ t

t0

Φ(t, σ)B(σ)ui(σ)dσ ∈ image(W (t0, t))

by Lemma 1. Therefore, the limit as i → ∞ is also in image(W (t0, t)). But by (4.3) we
have

lim
i→∞

Φ(t0, t)

∫ t

t0

Φ(t, σ)B(σ)ui(σ)dσ = v,

giving the result. ■

4.3. Controllability of linearisations. Now we use Theorem 4.2 to provide geometric char-
acterisations of the reachable sets for the linearisation of a reference vector field Xref along
a reference trajectory γref. To state the result, we need a definition. For a LAC curve
γ : I → M a distribution along γ is a subset D ⊂ TM | image(γ) with the property that
for each t0 ∈ I there exists a neighbourhood J ⊂ I of t0 and LAC vector fields ξ1, . . . , ξk
along γ|J so that Dγ(t) = spanR(ξ1(t), . . . , ξk(t)) for each t ∈ J . Let t0 ∈ int(I) and denote
T = sup I, allowing that T = ∞. Let It0 = [t0, T [ . Denote by γt0 the restriction of γref to
It0 . Recalling from Section 2.1 the definition of L Xref,γt0 we denote by ⟨L Xref,γt0 , L(A)t0⟩
the smallest L Xref,γt0 -invariant distribution along γt0 that agrees with L(A) at γref(t0).

4.3 Theorem: Let A be a time-dependent affine system on M with Xref a reference vector
field and γref : I → M a differentiable reference trajectory. For t0 ∈ I and t > t0 the
following sets are equal:

(i) RAT
ref
(0x0 , t, t0);

(ii) spanR

( ⋃
τ∈[t0,t]

vτ∈L(A)τ,γref(τ)

Φ
XT

ref
τ,t0

(vτ )

)
;
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(iii) ⟨L Xref,γt0 , L(A)t0⟩γref(t).

Proof: Since γref is differentiable we can construct the pull-back bundle γ∗refπTM : γ∗refTM →
I where we recall that

γ∗refTM = {(t, v) | γref(t) = πTM (v)}

and γ∗refπTM (t, v) = t. Thus γ∗refTM is a vector bundle over I with fibre over t ∈ I being
Tγref(t)M . This bundle may be trivialised since I is contractible, and we denote a particular
trivialisation by a vector bundle mapping ρ : γ∗refπTM → I × V , with the diagram

γ∗refπTM
ρ //

γ∗
refπTM ##

I × V

pr1
||

I

commuting, with pr1 the projection onto the first factor.
The following lemma records some useful properties of the representation of trajectories

of AT
ref.

1 Lemma: (i) There exists a vector bundle endomorphism A : I × V → I × V over idI
with the property that T(t,γref(t))ρ(1, X

T
ref(vγref(t))) = (1, A(t) · ρ(vγref(t))).

(ii) If X ∈ Γ∞(TM) then there exists a section ξX of pr1 : I × V → I so that
T(t,γref(t))ρ(0, vlft(X)(γref(t))) = ξX(t).

Proof: The first assertion follows since Xref is a vector bundle mapping over X. The second
part of the lemma is merely a definition of ξX . ▼

The lemma tells us that if v(t) = Tρ(Υ(t)) for a trajectory Υ for AT
ref then we have

v′(t) = A(t)v(t) + b(t)

where b(t) ∈ image
(
ρ(vlft(A(t,γref(t))))

)
. Therefore, the equality of the sets (i) and (ii)

follows from Theorem 4.2.
From the definition of the set of (ii), the equivalence of (ii) and (iii) will follow if we

can show that the notion of a distribution along γt0 being invariant under L Xref,γt0 is
equivalent to the notion be being invariant under the flow of XT

ref along γt0 . Thus we let D
be a distribution along γt0 , and we claim that D is invariant under the flow of XT

ref if and
only if it is invariant under L Xref,γt0 . This, however, follows from the characterisation of
the flow of Xref in Proposition 2.2 in terms of L Xref,γt0 . Indeed, that result states that the
flow of XT

ref through v ∈ Dγt0 (t0)
is obtained by transporting v along γt0 . ■

4.4 Remark: The set described in part (iii) of the theorem should be thought of as the
analogue of “the smallest A-invariant subspace containing image(B)” in the time-invariant
linear theory. •

The theorem immediately gives the following corollary, the second part of which follows
from the variational cone results of Bianchini and Stefani [1993].
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4.5 Corollary: Let A, Xref, and γref be as in Theorem 4.3. Then the following statements
hold for t0 ∈ I:

(i) A is linearly controllable at t0 along γref if the smallest L Xref,γref-invariant distribu-
tion along γref containing L(A)| image(γref) is equal to TM | image(γref);

(ii) if A is linearly controllable at t0 along γref then it is controllable at t0 along γref.

5. Some open problems presented by our approach

The geometric characterisation of linear controllability in the preceding section gives
an indication of the sort of results one can expect to get in our geometric setting. In this
section we outline future work along these lines that will further serve to clarify what gets
commonly done in practice.

5.1. Stability. For the study of stability one fixes the reference vector field Xref and a
differentiable reference trajectory γref. Now one can ask questions concerning the stability
of this reference trajectory. Such a discussion will involve a choice of metric, for example
arising from a Riemannian metric, on M . One can also talk about the stability of the
linearisation Xref. This discussion too will require some sort of metric, namely one on
the fibres of γ∗refTM . Again, such a metric will come about naturally if one chooses a
Riemannian metric g on M . This then raises the following question.

5.1 Question: Let Xref and γref be as above, and choose a Riemannian metric g on M .
Consider the stability of the trajectory γref relative to the metric dg defined by g, and
consider the stability of the linearisation XT

ref relative to the vector bundle metric γ∗refg on
γ∗refTM . Does uniform asymptotic stability of the linearisation imply exponential stability
of the trajectory? •

Note that the existence of Question 5.1 is hidden by the näıve Jacobian linearisation of
Section 1.1 because one uses, without thinking about it, the standard Euclidean metric on
Rn. However, this may not actually be the proper metric for talking about stability in a
particular problem. Perhaps the problem possesses its own natural metric with respect to
which stability characterisations ought to be made. Furthermore, if the state manifold is
not compact, this choice of metric for measuring stability matters, in that a system may be
stable relative to one metric, but not another. Thus Question 5.1 is not vacuous.

5.2. Stabilisation. If a trajectory is not stable with respect to some choice of metric,
then one can ask whether it is possible to stabilise it under feedback. This is of course
a fairly well understood problem in the setting of Section 1.1 when the linearisation is
controllable and one uses linear state feedback. However, in our geometric setting, some
problems arise. First let us make sure that we understand what could constitute linear
state feedback in our setting. We let Xref be a reference vector field for the affine system
A with γref : I → M a differentiable reference trajectory. To avoid complications, suppose
that L(A) has constant rank and so is a vector bundle over M . Let L(TM ;L(A)) be the
set of vector bundle mappings from TM to L(A) over idM . A linear state feedback
along γref is then a section F of the bundle γ∗refL(TM ;L(A)). Thus F assigns to each point
t ∈ I a linear map F (t) : Tγref(t)M → L(A)(t,γref(t)). For such a linear state feedback, the
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closed-loop system is then the linear LIC∞ vector field on TM defined by XF
ref(t, vx) =

XT
ref(t, vx) + vlft(F (t)(vx)). Note that the integral curves of XF

ref with initial conditions
projecting to γref will project fully to γref. Therefore, given a linear state feedback F one
can then talk about the stability of the linear vector field XF

ref relative to a fibre metric on
γ∗refTM , just as in Section 5.1. Therefore it makes sense to pose the following question.

5.2 Question: Let Xref and γref be as above and let dt be a metric on Tγref(t)M . When

is it possible to find a linear state feedback F so that the closed-loop linear system XF
ref

is stable (asymptotically stable, uniformly asymptotically stable, etc.) relative to the fibre
metric d? •

In practice, consistent with Question 5.1, one might choose d as being induced by a
Riemannian metric g on M . In this case one might expect that controllability of the
linearisation might imply stabilisability of the linearisation, as this is the case in the setting
of Section 1.1. However, this conclusion in our general setting does not seem to follow
obviously from the same conclusion in the näıve setting, so the work must be done here.

After one stabilises the linearisation, it still remains to see if one can stabilise the actual
reference trajectory. In the setting of Section 1.1, this is again done without thought, since
the state space is naturally identified with each tangent space, and an implementation of the
stabilising control law for the linearisation carries over to a control law in state space in an
obvious way. However, this operation is clearly senseless in a geometric setting. Therefore,
this raises the following question.

5.3 Question: From a control law that stabilises the linearisation along a reference tra-
jectory, how can one determine a control law for the actual system? And once one has a
way of doing this, can one be ensured that stabilisation (in an appropriate manner) of the
linearisation will guarantee the stabilisation of the reference trajectory? •

The presence of a Riemannian metric g suggests the following manner in which to
implement the stabilising control law for the linearisation on the actual system. Suppose
that γref is an immersion, and for t ∈ I consider a neighbourhood J ⊂ I of t for which
γref|J is an embedding. Now, let N → γref(J) be the normal bundle of γref(J) so that
the Riemannian exponential gives a diffeomorphism from a neighbourhood W of the zero
section of N to a neighbourhood U in M . The closed-loop system can now be defined in
U by XF,g

ref (t, x) = Xref(t, x) + exp(F (t)(exp−1(x))). One can now ask, as in Question 5.3,
whether this control stabilises the system if F stabilises the linearisation.

5.3. Quadratic optimal control. In practice, a common way of designing a stabilising
feedback for the linearisation is to use quadratic optimal control, as initially discussed by
Kalman [1960], and further by Ikeda, Maeda, and Kodama [1972]. Let us see what the
usual theory of optimal control for linear systems looks like when cast in our setting. When
a problem is written in the usual form of Section 1.1 the quadratic cost function associated
with a controlled trajectory (u, ξ) defined on [t0, t1] is typically chosen to be∫ t1

t0

(
Q(t)(ξ(t), ξ(t)) +R(t)(u(t), u(t))

)
dt,

where Q,R : [t0, t1] → TS2(V ) are measurable with Q positive-semidefinite and R positive-
definite. For our abstract setting, where controls have been eliminated, this changes. In-
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deed, after some thought one can see that u is embedded in V by B in any case, so the cost
function can be thought of as being simply defined on V .

With the preceding comments as motivation, we now consider a reference vector field
Xref for an affine system A along with a differentiable reference trajectory γref. We let
TS2(TM) be the bundle of symmetric (0, 2) tensors on M , and we let Q be a LI section of
γ∗refTS

2(TM) with the property that Q(t) is positive-semidefinite and Q(t)|L(A)(t,γπ
ref(t))

is
positive-definite for each t ∈ I. This then leads to the following problem.

5.4 Problem: Let Xref, γref, and Q be as above. Find the trajectory Υ for AT
ref that projects

to γref and that minimises the cost

JQ(Υ) =

∫
I
Q(t)(Υ(t),Υ(t)) dt. •

One expects there to be some analogue of the Riccati equation, but one cannot simply
use the usual Riccati equation, since there is no natural choice of A and B in our geometric
setting. Thus it is an actual problem to understand what form will be given to the solution
of the optimal control problem. This then raises a couple of questions.

5.5 Question: 1. Does the solution Υ to Problem 5.4 arise from a linear state feedback
as in the standard case?

2. If the answer to the preceding question is, “Yes,” does this linear state feedback
stabilise the linearisation?

3. If the answer to the preceding question is, “Yes,” can the stabilising linear feedback
be implemented to stabilise the actual reference trajectory? (cf. Question 5.3)
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