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Controllability of a hovercraft model
(and two general results)
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Abstract

Modelling and controllability studies of a hovercraft system are undertaken. The
system studied is a little more complicated than some in the literature in that the
inertial dynamics of the thrust fan are taken into account. The system is shown to
be representative of a large class of systems that are controllable only a set described
by the zeros of a nontrivial analytic function. Recent results for controllability using
vector-valued quadratic forms are useful in arriving at the stated conclusions. As part
of the development, two new controllability results of independent interest are proved.
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1. Introduction

In various papers [e.g., Bullo, Leonard, and Lewis 2000, Bullo and Lynch 2001, Lewis
and Murray 1997, Manikonda and Krishnaprasad 1996] the control theory for a simplified
hovercraft model is undertaken. The model consists in these papers of a planar rigid body
moving on a flat frictionless surface propelled by a variable-direction thruster that applies
a force to the body at a point distinct from its centre of mass. Motion planning algorithms
suggested by the work of Bullo and Lynch [2001] have been implemented on a physical
hovercraft at Queen’s University. One of the effects not accounted for in the simplified
model, but which have a noticeable effect on the physical system, is the inertial dynamics
of the fan. Manoeuvres that require rapid changes of direction of the thrust fan are seen to
cause significant deviations in the trajectory of the hovercraft. In this paper we model these
dynamics, and illustrate how they affect the controllability analysis for the system. As we
shall see, the adding of the seemingly innocuous dynamic effect of fan inertia destroys the
nice controllability properties of the system as illustrated by Bullo and Lynch [2001].

∗Professor, Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L
3N6, Canada
Email: andrew.lewis@queensu.ca, URL: http://www.mast.queensu.ca/~andrew/
Research supported in part by a grant from the Natural Sciences and Engineering Research Council of
Canada.

†Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada, K1S
5B6
Email: drtyner@gmail.com
Work performed while a graduate student at Queen’s University.
Research supported in part by a grant from the Natural Sciences and Engineering Research
Council of Canada.

1

http://dx.doi.org/10.1109/CDC.2004.1430205


2 A. D. Lewis and D. R. Tyner

The layout of the paper is as follows. In Section 2 we cast the system as a G-invariant
simple mechanical system on a principal G-bundle. General controllability results of Lewis
and Murray [1997], Bullo and Lynch [2001], and Bullo and Lewis [2005] are presented in
Section 3. The quadratic form results of Bullo and Lewis [2005] are particularly useful.
However, it interestingly turns out that the controllability of our hovercraft model cannot
be decided by using the results of Bullo and Lewis [2005] alone. Therefore, in Section 4,
when we analyse the controllability of the hovercraft system, we prove two general results
that characterise the controllability of a class of systems, of which the hovercraft is one.
With our general results we show that the hovercraft model is only controllable from a subset
of configuration space described by the intersection of the zero set of a finite collection of
nontrivial analytic functions. That is to say, the system is almost never controllable.

2. Modelling

In this section we present the model for the system we study, and contrast it with the
simpler model initially studied by Lewis and Murray [1997]. We adopt a modification of
the approach of the approach of Bullo, Leonard, and Lewis [2000] who consider invariant
systems on Lie groups. While the simpler model of Lewis and Murray [1997] is an invariant
system on a Lie group, the more sophisticated model we present here is not. It is, however,
an invariant system on a trivial principal fibre bundle, as considered by Cortés, Mart́ınez,
Ostrowski, and Zhang [2002]. A Hamiltonian setting for this sort of problem is considered
by Manikonda and Krishnaprasad [1997].

2.1. The physics. The system we study is shown in Figure 1. We have a planar rigid body
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Figure 1. The mathematical model for the hovercraft

moving in a plane orthogonal to the direction of gravity. Sitting atop the rigid body is a fan
which may be rotated via the torque τ , and which provides a thrust F . The frame {e1, e2}
is inertial, and we affix to the centre of mass of the body a frame {f1,f2}, choosing the
f1-axis so that along it lies the point of application of the thrust force. The frame {g1, g2}
is affixed to the centre of mass of the thrust fan, which we assume to coincide with its point
of rotation. We assume that the direction of the thrust force is along g1. Let us describe
the configuration space by locating the frames {f1,f2} and {g1, g2} relative to the inertial
frame. The frame {f1,f2} is specified relative to {e1, e2} by an element of SE(2). The
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frame {g1, g2} is uniquely determined by its relative orientation to {f1,f2}, i.e., by an
element of SO(2). Thus Q = SE(2)×SO(2). As coordinates we take (x, y, θ, ϕ) where (x, y)
is the location of the origin of {f1,f2} relative to {e1, e2}, θ is prescribed by demanding that[
cos θ − sin θ
sin θ cos θ

]
have columns representing the components of {f1,f2} in the basis {e1, e2},

and where ϕ is prescribed by demanding that
[
cosϕ − sinϕ
sinϕ cosϕ

]
have columns representing the

components of {g1, g2} in the basis {f1,f2}.
Now let us define the kinetic energy Lagrangian for the system. We denote the mass of

the body and of the fan by mbody and mfan, respectively, and we denote by Jbody and Jfan
the moment of inertia of the body about its centre of mass and the moment of inertia of
the fan about its axis of rotation, respectively. With this notation the kinetic energy in the
given coordinates is

KE =
[
vx vy vθ vϕ

] 
mbody 0 mfanh sin θ 0

0 mbody +mfan −mfanh cos θ 0
mfanh sin θ −mfanh cos θ Jbody + Jfan +mfanh

2 Jfan
0 0 Jfan Jfan



vx
vy
vθ
vϕ

 .
(2.1)

Now we define in the given set of coordinates the two forces acting on the system.
We denote by F 1 the thrust force and by F 2 the torque rotating the fan. Elementary
considerations give F 1 = (cos(θ + ϕ), sin(θ + ϕ),−h sinϕ) and F 2 = (0, 0, 0, 1).

2.2. The mathematics. Now let us put the above physical model into a mathematical
framework. First we note that Q = SE(2)×SO(2) is the total space of a principal fibre bun-
dle with structure group G = SE(2) with the left group action Φ: (a1, (a2, ϕ)) 7→ (a1a2, ϕ).
If we denote points in G as a = (x, y, θ) in correspondence to our coordinates above, mul-
tiplication takes the form

a1 · a2 = (x1, y1, θ1) · (x2, y2, θ2)
= (x1 + x2 cos θ1 − y2 sin θ1, y1 + y2 cos θ1 + x2 sin θ1, θ1 + θ2).

Below we will interchange a and (x, y, θ) as is convenient. We denote by π : Q → SO(2)
the projection onto the second factor, which corresponds in a natural way to the projection
onto the set of orbits for the group action.

Let us now indicate the manner in which the our system is a G-invariant system on
this principal bundle. Corresponding to the kinetic energy determined above there is a
Riemannian metric g with the property that KE(vq) =

1
2g(vq, vq).

2.1 Lemma: The Riemannian metric g is G-invariant.

Proof: To check this in coordinates, one fixes ā = (x̄, ȳ, θ̄) ∈ SE(2), then computes the
Jacobian of the map Φā : (a, ϕ) 7→ (āa, ϕ). Let us denote this Jacobian evaluated at (a, ϕ)
by DΦā(a, ϕ). Let us also denote the components of g in our coordinates (a, ϕ) by [g(a, ϕ)].
Thus [g(a, ϕ)] is the matrix appearing in (2.1). With this notation, G-invariance is given
by the condition

DΦT
ā (a, ϕ)[g(āa, ϕ)]DΦā(a, ϕ) = [g(a, ϕ)].

This can now be directly checked. ■
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Recall that a G-invariant Riemannian metric gives the principal bundle π : Q → SO(2)
a connection. Indeed, if we let V Q = ker(Tπ) be the subbundle of tangent spaces of the
G-orbits, then HQ = V Q⊥ (orthogonal complement taken relative to g) is a G-invariant
subbundle complementary to V Q, i.e., a principal connection. This is the mechanical
connection [Marsden and Ratiu 1999].

The forces are represented as one-forms on Q, and are thus given by

F 1 = cos(θ + ϕ)dx+ sin(θ + ϕ)dy − h sinϕdθ, F 2 = dϕ.

These one-forms are also G-invariant.

2.2 Lemma: The one-forms F 1 and F 2 are G-invariant.

Proof: We use the notation DΦā(a, ϕ) from the proof of Lemma 2.1. Here, if [F a(a, ϕ)],
a ∈ {1, 2}, denotes the vector of components of F a in our coordinate system, we should
check that

DΦā(a, ϕ)
T [F (āa, ϕ)] = [F (a, ϕ)].

This can be directly checked. ■

Therefore, from the preceding two lemmas we know that if we define vector fields Ya =
g♯(F a), a ∈ {1, 2}, on Q, these vector fields will be G-invariant. We also know that the

Levi-Civita connection
g

∇ for g will be G-invariant. The system is then an affine connection

control system Σhc = (Q,
g

∇,Y = {Y1, Y2}, U ⊂ R2), meaning, as we shall see in Section 3,
that the control equations are

g

∇γ′(t)γ
′(t) =

2∑
a=1

ua(t)Ya(γ(t)).

Summarising this is the following.

2.3 Proposition: The affine connection control system Σhc = (Q,
g

∇,Y , U) corresponding
to the system in Figure 1 is a G-invariant system on the principal fibre bundle π : Q =
SE(2)× SO(2) → SO(2).

This structure leads to an interesting consequence concerning the input vector field Y2.
Note that the one-form F 2 annihilates the vertical bundle V Q. Therefore, the vector field Y2
is g-orthogonal to V Q. This, along with G-invariance of Y2, implies that Y2 is the horizontal
lift of a vector field Ỹ2 on SO(2). Indeed, one verifies that Ỹ2 =

∂
∂ϕ . This observation turns

out to yield the following.

2.4 Lemma: The vector field ∇Y2Y2 is horizontal.

Proof: One can simply check this directly (as we shall do in Section 4). However, let us
indicate how this comes up in a more general setting for readers familiar with the symmetry
picture in mechanics. The bundleHQ can be realised as the zero level set for the momentum
map J : TQ→ g∗ defined by

⟨J(vq); ξ⟩ = g(vq, ξQ(q)),

where ξQ denotes the infinitesimal generator associated with ξ ∈ g. This means that the
subbundle HQ is invariant under the unforced dynamics as a consequence of (actually, the
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definition of) conservation of momentum. Thus HQ ⊂ TQ is invariant under the geodesic
flow. As shown by Lewis [1998], this means thatHQ has the property that∇XX is a section
of HQ for any vector field X that is a section of HQ. From this the result follows. ■

We shall see in Section 4 that the lemma has an immediate interpretation in terms of
the decoupling vector fields of Bullo and Lynch [2001].

2.5 Remark: The simpler hovercraft model considered in the papers [Bullo, Leonard, and
Lewis 2000, Bullo and Lynch 2001, Lewis and Murray 1997] does not have a degree of
freedom associated to the fan. The input force for the system is a force F applied directly
at the position of the fan. Thus it is a system with a three-dimensional configuration space
and two inputs. Bullo, Leonard, and Lewis [2000] show that the system is a left-invariant
system on SE(2). •

3. A review of general controllability results

In the next section we investigate the controllability properties of our hovercraft model.
As we shall see, the structure is sufficiently complicated that we need to use the approach
recently laid out by Bullo and Lewis [2005] (see also [Bullo and Lewis 2005, Hirschorn and
Lewis 2001]). We also consider our system in the context of the work of Bullo and Lynch
[2001], inasmuch as this is possible. In this section we provide a review of the necessary
machinery.

3.1. Controllability definitions. We recall that an affine connection control system is
a triple Σ = (Q,∇,Y = {Y1, . . . , Ym}, U) where Q is the configuration manifold, ∇ is an
affine connection on Q, Y are vector fields on Q, and U ⊂ Rm. The control set U is almost
proper if aff(U) = Rm and if 0 ∈ conv(U). U is proper if 0 ∈ int(conv(U)). Here aff(U)
is the affine hull of U and conv(U) is the convex hull of U . Bullo and Lewis [2005] consider
a slightly more general setup than this, but what we say here is all that is necessary. The
control equations are then

∇γ′(t)γ
′(t) =

m∑
a=1

ua(t)Ya(γ(t)). (3.1)

A controlled trajectory for Σ is a pair (γ, u) where u : [0, T ] → U is measurable and
γ : [0, T ] → Q satisfies (3.1).

For T > 0 denote

RΣ
TQ(q0, T ) = {γ′(T ) | (γ, u) is a controlled trajectory on [0, T ] with γ′(0) = 0q0},

where 0q0 denotes the zero vector in Tq0Q, and denote RΣ
TQ(q0,≤ T ) =

⋃
0≤t≤T RΣ

TQ(q0, t).
These are therefore reachable states in TQ starting from zero initial velocity at the config-
uration q0. We also consider the reachable configurations which we denote

RΣ
Q(q0, T ) = πTQ(R

Σ
TQ(q0, T )), RΣ

Q(q0,≤ T ) = πTQ(R
Σ
TQ(q0,≤ T )),

where πTQ : TQ → Q is the tangent bundle projection. We may now state the versions of
controllability that are of interest to us in this case. More refined notions are considered
by Bullo and Lewis [2005].
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3.1 Definition: Let Σ = (Q,∇,Y , U) be an affine connection control system.

(i) Σ is accessible from q0 ∈ TQ if there exists T > 0 such that int(RΣ
TQ(q0,≤ t)) ̸= ∅

for t ∈ ]0, T ].

(ii) Σ is configuration accessible from q0 ∈ TQ if there exists T > 0 such that
int(RΣ

Q(q0,≤ t)) ̸= ∅ for t ∈ ]0, T ].

(iii) Σ is small-time locally controllable (STLC ) from q0 if there exists T > 0 such
that 0q0 ∈ int(RΣ

TQ(q0,≤ t)) ̸= ∅ for t ∈ ]0, T ].

(iv) Σ is small-time locally configuration controllable (STLCC ) from q0 if there
exists T > 0 such that 0q0 ∈ int(RΣ

Q(q0,≤ t)) ̸= ∅ for t ∈ ]0, T ]. •

3.2. General accessibility results. We now provide conditions for accessibility of affine
connection control systems as given by Lewis and Murray [1997]. We let Σ = (Q,∇,Y , U)
be an affine connection control system and define the associated symmetric product by

⟨X : Y ⟩ = ∇XY +∇YX.

We then let Y be the distribution generated by the vector fields Y . We let Sym(0)(Y) = Y

and we inductively define

Sym(1)(Y)q = Yq + spanR(⟨Ya : Yb⟩| a, b ∈ {1, . . . ,m})
Sym(k)(Y)q = Sym(k−1)(Y)q

+ spanR(⟨Ya : Yb⟩| Ya ∈ Γ(Sym(k1)(Y)), Yb ∈ Γ(Sym(k2)(Y)), k1 + k2 = k + 1).

The smallest distribution containing these distributions we denote by Sym(∞)(Y). The
involutive closure of a distribution X is denoted Lie(∞)(Y). No rank assumptions are made
concerning Sym(k)(Y), k ∈ Z+ ∪ {∞}, or Lie(∞)(Sym(∞)(Y)).

We now have the following result of Lewis and Murray [1997].

3.2 Theorem: An analytic affine connection control system Σ = (Q,∇,Y , U) with U al-
most proper is

(i) accessible from q0 if and only if Sym(∞)(Y)q0 = Tq0Q and is

(ii) configuration accessible from q0 if and only if Lie(∞)(Sym(∞)(Y))q0 = Tq0Q

3.3. General controllability results. The controllability results of Bullo and Lewis [2005]
are stated in terms of vector-valued quadratic forms, and we refer to that paper for full
details. Here we will summarise the results as we need them.

For q0 ∈ Q we define a map BYq0
: Yq0 × Yq0 → Tq0Q/Yq0 by

BYq0
(v1, v2) = πYq0 (⟨V1 : V2⟩(q0)),

where V1 and V2 are vector fields extending v1, v2 ∈ Yq0 , and where πYq0 : Tq0Q→ Tq0Q/Yq0
is the canonical projection. One may verify that this definition does not depend on the
extensions V1 and V2. By QBYq0

we denote the quadratic Tq0Q/Yq0-valued function on Yq0
defined by QBYq0

(v) = BYq0
(v, v). We let ann(Yq0) ⊂ T ∗

q0Q be the annihilator of Yq0 and

note that ann(Yq0) ≃ (Tq0Q/Yq0)
∗. Thus for λ ∈ ann(Yq0) we define a R-valued symmetric

bilinear map λBYq0
by λBYq0

(v1, v2) = ⟨λ;BYq0
(v1, v2)⟩.

The following definition gives some useful properties for BYq0
. For a discussion of the

ideas represented here we refer to Bullo, Cortés, Lewis, and Mart́ınez [2004].
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3.3 Definition: BYq0
is

(i) definite if there exists λ ∈ ann(Yq0) so that λBYq0
is positive-definite;

(ii) semidefinite if there exists λ ∈ ann(Yq0) so that λBYq0
is strictly positive-semidefinite

(i.e., positive-semidefinite and nonzero);

(iii) indefinite if for each λ ∈ ann(Yq0), λBYq0
is neither positive nor negative-semidefinite.

•
A simplified version of the results of Bullo and Lewis [2005] are the following.

3.4 Theorem: Let Σ = (Q,∇,Y , U) be an analytic affine connection control system. The
following statements hold:

(i) if

(a) U is proper,

(b) Sym(∞)(Y)q0 = Sym(2)(Y)q0, and if

(c) BYq0
is indefinite

then Σ is STLC from q0 if it is accessible from q0 and is STLCC from q0 if it is
configuration accessible from q0;

(ii) if

(a) U is compact,

(b) q0 is a regular point for Y, and

(c) BYq0
is definite

then Σ is not STLCC from q0.

3.5 Remark: Theorem 3.4 is a “first-order” result, meaning that its hypotheses require
knowledge of the first derivatives of the vector fields Y . The case where BYq0

is semidefinite
will generally be the boundary situation where one will have to use higher-order conditions
to determine controllability. However, as we shall see in Theorem 4.3, for some systems
one can determine controllability in the semidefinite case without resorting to higher-order
conditions. Indeed, our new result stated as Theorem 4.2 is a generalisation of the second
part of Theorem 3.4, and allows BYq0

to be semidefinite. •

3.4. Kinematic reductions. Let Σ = (Q,∇,Y , U = Rm) be an affine connection control
system. Bullo and Lynch [2001] consider a class of vector fields with interesting properties.
For an interval [0, T ] a reparameterisation is a differentiable map τ : [0, T̃ ] → [0, T ] with
the properties

1. τ(0) = 0,

2. τ(T̃ ) = T , and

3. τ ′(t) > 0 for t ∈ ]0, T̃ [ .

The following definition combines a definition of Bullo and Lynch [2001] and its generali-
sation by Bullo and Lewis [2005].
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3.6 Definition: Let Σ = (Q,∇,Y , U = Rm) be an affine connection control system.

(i) A vector field X on Q is a decoupling vector field if for every integral curve
γ : [0, T ] → Q for X and for every reparameterisation τ : [0, T̃ ] → [0, T ], there ex-
ists a control u : [0, T̃ ] → Rm such that (γ ◦ τ, u) is a controlled trajectory for Σ.

(ii) A constant rank distribution X is a kinematic reduction of Σ if every X-valued
vector field is a decoupling vector field.

(iii) Σ is kinematically controllable if there exists kinematic reductions X1, . . . ,Xk for
Σ with

Lie(∞)(X1 + · · ·+ Xk) = TQ. •

To provide connections between controllability and kinematic controllability, we extend
the definition of the vector-valued quadratic form BYq0

to all of Q. Thus we define a map
BY : Y × Y → TQ/Y by

BY(X,Y )(q) = BYq(X(q), Y (q))

for Y-valued vector fields X and Y . The notation QBY
and λBY can then be defined in the

obvious manner. Kinematic reductions are then interestingly characterised by the following
result of Bullo and Lewis [2005].

3.7 Theorem: Let Σ = (Q,∇,Y = {Y1, . . . , Ym},Rm) be an affine connection control sys-
tem with Y of constant rank and let X be a distribution of constant rank. The following
statements are equivalent:

(i) X is a kinematic reduction of Σ;

(ii) Sym(1)(X) ⊂ Y;

(iii) X ⊂ Y and QBY
|X = 0.

4. Controllability for the hovercraft model

We now apply the results reviewed in Section 3 to the system of Section 2. We first
characterise the accessibility of the system, since this is straightforward. Next we turn to
controllability. To give a little context to the controllability of the hovercraft, we first prove
two general controllability results for affine connection control systems. One result extends
Theorem 3.4 to a situation where BYq0

is semidefinite. The other result is a structural result
for two-input systems with one decoupling vector field. This is an interesting application
of the vector-valued quadratic form technology. Then we look at the controllability of
the hovercraft. As we see, the system Σhc has quite a complicated structure as concerns
its controllability. To summarise, we shall show that the system is accessible from all
configurations and that the only configurations from which the system is STLC are those
shown in Figure 2, and any SE(2)-translation of the configurations shown.

4.1. Accessibility of the hovercraft model. Let us first provide some explicit expressions
for the vector fields Y1, Y2, and some of their symmetric products so that we can see how
the analysis might proceed. The SE(2)-invariance of the system is useful here since we
may without loss of generality evaluate all symmetric products at (x, y, θ, ϕ) = (0, 0, 0, ϕ),
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Figure 2. The configurations (up to SE(2)-translation) from which
the hovercraft system is controllable

essentially meaning we evaluate at the group identity. Thus in the expressions immediately
below this simplification is tacitly made. We introduce the constants

C1 = mbodymfanh
2 + Jbody(mbody +mfan), M = mbody +mfan,

and compute

Y1 =
cosϕ

M

∂

∂x
+
Jbody sinϕ

C1

∂

∂y
−
mbodyh sinϕ

C1

∂

∂θ
+
mbodyh sinϕ

C1

∂

∂ϕ

Y2 = −mfanh

C1

∂

∂y
− M

C1

∂

∂θ
+
C1 + JfanM

JfanC1

∂

∂ϕ

⟨Y1 : Y1⟩ = −
m2

bodymfanh
3 sin(2ϕ)

MC2
1

∂

∂y
−
m2

bodyh
2 sin(2ϕ)

C2
1

∂

∂θ
+
m2

bodyh
2 sin(2ϕ)

C2
1

∂

∂ϕ

⟨Y1 : Y2⟩ = − sinϕ

JfanM

∂

∂x
+

(JbodyC1 − Jfanmbodymfanh
2) cosϕ

JfanC
2
1

∂

∂y

−
mbodyh(C1 + JfanM) cosϕ

JfanC
2
1

∂

∂θ
+
mbodyh(C1 + JfanM) cosϕ

JfanC
2
1

∂

∂ϕ

⟨Y2 : Y2⟩ = 0

⟨Y1 : ⟨Y1 : Y2⟩⟩ = −
m2

bodymfanh
3(C1 + JfanM) cos(2ϕ)

JfanMC3
1

∂

∂y
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−
m2

bodyh
2(C1 + JfanM) cos(2ϕ)

JfanC
3
1

∂

∂θ
+
m2

bodyh
2(C1 + JfanM) cos(2ϕ)

JfanC
3
1

∂

∂ϕ

⟨Y2 : ⟨Y1 : Y2⟩⟩ = − cosϕ

J2
fanM

∂

∂x

−
((JbodyC1 − Jfanmbodymfanh

2)2 − C1J
2
fanmbodymfanh

2) sinϕ

JbodyJ
2
fanC

3
1

∂

∂y

+
mbodyh(C1 + JfanM)2 sinϕ

J2
fanC

3
1

∂

∂θ
−
mbodyh(C1 + JfanM)2 sinϕ

J2
fanC

3
1

∂

∂ϕ

With these computations we have the following result.

4.1 Proposition: The affine connection control system Σhc defined in Section 2 is accessible
from every q0 ∈ Q.

Proof: Provided that cos(2ϕ) ̸= 0 one can check that the vector fields {Y1, Y2, ⟨Y1 : Y2⟩, ⟨Y1 :
⟨Y1 : Y2⟩⟩} are linearly independent at q0, and provided that sinϕ ̸= 0 one can show that
the vector fields {Y1, Y2, ⟨Y1 : Y2⟩, ⟨Y2 : ⟨Y1 : Y2⟩⟩} are linearly independent at q0. Since the
set of points where both cos(2ϕ) and sinϕ vanish is empty, the result follows. ■

4.2. Two new controllability results. To investigate the controllability of our hovercraft
model it is interesting to state a slightly more general result that characterises systems
like Σhc. Part of this is the following general result which gives a version of the necessary
condition of Theorem 3.4 when the quadratic form is only semidefinite.

4.2 Theorem: Let Σ = (Q,∇,Y = {Y1, . . . , Ym}, U) be an affine connection control system
and let q0 ∈ Q have the following properties:

(i) q0 is a regular point for Y;

(ii) the distribution Y1 generated by the vector fields {Y1, . . . , Yk} has q0 as a regular point;

(iii) the distribution Y2 generated by the vector fields {Yk+1, . . . , Ym} is a kinematic reduc-
tion for Σ;

(iv) with Y1 and Y2 as above, Y = Y1 ⊕ Y2;

(v) U is compact;

(vi) BYq0
|Y1,q0 is definite.

Then Σ is not STLCC from q0.

Proof: We work locally. Therefore we may assume that the sets of vector fields {Y1, . . . , Yk}
and {Yk+1, . . . , Ym} are linearly independent in a neighbourhood of q0. First we show that
the system is not weakly STLC from q0 using calculations of Bullo and Lewis [2005]. We
will not provide here a self-contained justification for all of our computations since they take
considerable space, but we refer to the paper [Bullo and Lewis 2005]. The calculation uses
the Chen-Fliess-Sussmann series [Chen 1957, Fliess 1981, Sussmann 1983]. For an analytic
control-affine system

ξ′(t) = f0(ξ(t)) +

m∑
a=1

ua(t)fa(ξ(t)), ξ(t) ∈M,

on a manifold M with a compact control set, and for an analytic function ϕ,1 the Chen-

1Our use of ϕ for something other than the fan angle will be restricted to this proof.
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Fliess-Sussmann series gives the following formula for the value of ϕ along a controlled
trajectory (ξ, u):

ϕ(ξ(t)) =
∑
I

(∫ t

0
uI

)
fIϕ(ξ(0)).

The sum is over multi-indices I = (a1, . . . , ak) in {0, 1, . . . ,m},∫ t

0
uI =

∫ t

0

∫ τk

0

∫ τk−1

0
· · ·

∫ τ2

0
uak(τk)uak−1

(τk−1) · · ·ua2(τ2)ua1(τ1) dτ1 dτ2 · · · dτk,

and
fIϕ = fa1fa2 · · · fakϕ.

We adopt the convention that u0 = 1. If we regard (3.1) as a control-affine system, this
means taking M = TQ, f0 = Z (the geodesic spray for ∇), and fa = vlft(Ya) (the vertical
lift). We refer to [Lewis and Murray 1997] for details on how affine connection control
systems are control-affine systems.

The function we evaluate is defined as follows. We let λ be an analytic one-form defined
in a neighbourhood of q0 with the following properties:

1. λ annihilates the distribution Y;

2. λ(q0)BYq0
|Y1,q0 is negative-definite.

By a linear input transformation one can ensure that the input vector fields diagonalise
λ(q0)BYq0

, with the nonzero diagonal entries (i.e., those corresponding to {Y1, . . . , Yk})
being −1. We assume this input transformation to have been made. We then define a
function ϕλ on TQ by ϕλ(vq) = λ(q) · vq, and we also define

Φ+
λ = {vq ∈ TQ | ϕλ(vq) > 0}, Φ−

λ = {vq ∈ TQ | ϕλ(vq) < 0}.

Note that in any neighbourhood V of 0q0 in Q the sets V ∩Φ−
λ and V ∩Φ+

λ will be nonempty
since ϕλ is linear on the fibres of TQ. Therefore, we can show that Σ is not STLC from
q0 by showing that ϕλ has constant sign along any controlled trajectory of Σ. One may
directly verify that ϕλ has the following properties:

1. faϕλ, a ∈ {1, . . . ,m}, is zero in a neighbourhood of 0q0 ;

2. adkf0 faϕλ(0q0) = 0, a ∈ {1, . . . ,m}, k ∈N;

3. [fa, [f0, fa]]ϕλ(0q0) = −1, a ∈ {1, . . . , k} (this and the next two facts use the formula
[fa, [f0, fb]] = vlft(⟨Ya : Yb⟩), a, b ∈ {1, , . . . ,m});

4. [fa, [f0, fa]]ϕλ(0q0) = 0, b ∈ {k + 1, . . . ,m};

5. [fa, [f0, fb]]ϕλ(0q0) = 0, a, b ∈ {1, . . . ,m}, a ̸= b.

For an input u : [0, T ] → U let us define

∥u∥12,t = max
a∈{1,...,k}

(∫ t

0
|ua(t)|2

)1/2
.
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The calculations of Bullo and Lewis [2005] now immediately give the following inequality
for ϕλ(γ

′(t)) along a controlled trajectory (γ, u) for an affine connection control system like
that under consideration here:

ϕλ(γ
′(t)) ≥ 1

2(∥u∥
1
2,t)

2 − |E(t)|.

Here E(t) is a function of t that Bullo and Lewis [2005] show to satisfy a bound

|E(t)| ≤ tE0(∥u∥12,t)2

for some E0 > 0. For t sufficiently small this shows that ϕλ(γ
′(t)) has constant sign,

provided that u1, . . . , uk are not zero a.e. If u1, . . . , uk are zero a.e., then since Yk+1, . . . , Ym
are decoupling, it follows that ϕλ(γ

′(t)) = 0 along the corresponding controlled trajectory.
This shows that Σ is not STLC from q0.

Now let us show that our above construction also precludes Σ from being STLCC.
Choose a coordinate chart (A,χ) forQ around q0 with the following properties: (1) χ(q0) = 0
and (2) dqn = λ(q0). Let us define a function ψλ on the coordinate domain U by ψλ(q) = qn.
We define ψλ : Q→ R by ψλ(q) = qn so that the sets

Ψ+
λ = {q ∈ Q | ψλ(q) > 0}, Ψ−

λ = {q ∈ Q | ψλ(q) < 0}

each intersect any neighbourhood of q0 ∈ Q. Along any nonstationary trajectory t 7→ γ(t)
we have

dψλ(γ(t))

dt

∣∣∣∣
t=0

= dψλ(γ
′(0)) = ϕλ(γ

′(0)) < 0,

Since ϕλ(q0) = 0, this means that for sufficiently small t, ϕλ(γ(t)) < 0, and this shows that
the points in Ψ+

λ are not reachable in small time, and so Σ is not STLCC. ■

Now we use the preceding result to characterise a class of systems, of which our hov-
ercraft model is one. It is helpful to have some terminology. Let us say that Σ is weakly
STLC from q0 if q0 is in the interior of RΣ

TQ(q0,≤ T ), relative to the orbit topology on
the integral manifold through 0q0 of the accessibility distribution. Thus weakly controllable
means, roughly, that the system is “as controllable as it can be.” In like manner we have
the notion of Σ being weakly STLCC . An analytic subset of Q is a subset S ⊂ Q with
the property that for each q ∈ Q there exists a neighbourhood N of q for which N ∩ S is
the common zero set of a finite number of analytic functions on N .

With this language, we have the following result.

4.3 Theorem: Let Σ = (Q,∇,Y , U) be an affine connection control system for which

(i) Y has constant rank 2,

(ii) there exists a rank 1 kinematic reduction X for Σ, and

(iii) U is compact.

Then for any q0 ∈ Q, BYq0
is not definite. Furthermore, we have the following di-

chotomy: either

(iv) there exists two rank 1 kinematic reductions X1 = X and X2; or

(v) there exists a proper analytic subset S of Q with the property that if q0 ∈ Q then Σ
is weakly STLC from q0, and if q0 ∈ Q \ S then Q is not STLCC from q0.
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Proof: We work locally. Thus we let Y = {Y1, Y2} with Y1 and Y2 linearly independent and
with Y2 a decoupling vector field. We let X1, . . . , Xn−2 be vector fields having the property
that {Y1, Y2, X1, . . . , Xn−2} are linearly independent (here n = dim(Q)). We then write

⟨Ya : Yb⟩ = β1abY1 + β2abY2 +B1
abX1 + · · ·+Bn−2

ab Xn−2, a, b ∈ {1, 2},

for analytic functions βcab, B
d
ab, a, b, c ∈ {1, 2}, d ∈ {1, . . . , n − 2}. Since Y2 is a decoupling

vector field, the functions Bd
22, d ∈ {1, . . . , n−2}, are identically zero. We then define n−2

symmetric matrix functions on Q by

Bd =

[
Bd

11 Bd
12

Bd
12 0

]
, a ∈ {1, . . . , n− 2}.

To check the definiteness or indefiniteness of BYq we use the following observations, valid
since we are considering dim(Y) = 2 and since Y2 is decoupling:

1. BYq is indefinite if and only if for every (λ1, . . . , λn−2) ∈ Rn−2 the symmetric ma-
trix λ1B

1(q) + · · · + λn−2B
n−2(q) is either identically zero or has strictly negative

determinant;

2. BYq is definite if and only if there exists (λ1, . . . , λn−2) ∈ Rn−2 so that the symmetric
matrix λ1B

1(q) + · · ·+ λn−2B
n−2(q) has strictly positive determinant.

Note that

λ1B
1 + · · ·+ λn−2B

n−2 =

[
λ1B

1
11 + · · ·+ λn−2B

n−2
11 λ1B

1
12 + · · ·+ λn−2B

n−2
12

λ1B
1
12 + · · ·+ λn−2B

n−2
12 0

]
,

so that
det(λ1B

1 + · · ·+ λn−2B
n−2) = −(λ1B

1
12 + · · ·+ λn−2B

n−2
12 )2.

This shows that BYq is never definite. One can then check for indefiniteness. To do so it is
convenient to introduce two linear maps L11(q) and L12(q) from Rn−2 to R defined by

L11(q)(λ1, . . . , λn−2) = λ1B
1
11(q) + · · ·+ λn−2B

n−2
11 (q)

L12(q)(λ1, . . . , λn−2) = λ1B
1
12(q) + · · ·+ λn−2B

n−2
12 (q).

This leads to the following cases and subcases.

1. dim(ker(L12(q))) = n− 2:

(a) dim(ker(L11(q))) = n− 2: BYq is indefinite;

(b) dim(ker(L11(q))) = n− 3: BYq is semidefinite.

2. dim(ker(L12(q))) = n− 3:

(a) ker(L12(q)) ∩ ker(L11(q)) ̸= {(0, 0)}: BYq is indefinite;

(b) ker(L12(q)) ∩ ker(L11(q)) = {(0, 0)}: BYq is semidefinite.

There are therefore two cases when BY is indefinite.
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1. L12(q) = L11(q) = 0: Since L11 and L12 are analytic functions of q this will happen
on the set of coincident zeros of the analytic functions Bd

11, B
d
12, d ∈ {1, . . . , n− 2}.

2. dim(ker(L12(q))∩ker(L11(q))) = 1: This will happen on the set of zeros of the analytic
functions

f1(q) = L11(q)(λ1(q), . . . , λn−2(q)), f2(q) = L12(q)(λ1(q), . . . , λn−2(q)),

where (λ1(q), . . . , λn−2(q)) is a basis for ker(L12(q)) ∩ ker(L11(q)).

This proves that we have indefiniteness of BYq either for all q ∈ Q or for q lying in a
proper analytic subset S of Q. Furthermore, when BYq is indefinite for all q ∈ Q we have
Bd

11(q) = 0 for all q ∈ Q and d ∈ {1, . . . , n− 2}. This means that Y1 is decoupling, and so
gives the existence of another rank 1 kinematic reduction. It remains to show that when
BYq is indefinite only on a proper analytic subset S, then from q0 ∈ Q \S the system is not
STLCC. This, however, follows from Theorem 4.2. ■

4.4 Remarks: The basic idea of the theorem is that for systems of the type under consider-
ation, either the system is “nice” (it essentially possesses two decoupling vector fields), or it
is “not nice” (it is uncontrollable except on a proper analytic subset). Note that the “nice”
case is not the same as the system being kinematically controllable, since one would also
have to check that the two decoupling vector fields have a maximal involutive closure. •

4.3. Controllability of the hovercraft model. To use the controllability conditions of
Theorem 3.4 we need to compute BYq0

. To do so we need a model for the quotient Tq0Q/Yq0 .
It turns out to be convenient to use the g-orthogonal complement for Yq0 , and one can check
that the vector fields

X1 = sinϕ
∂

∂x
− cosϕ

∂

∂y
, X2 = h cosϕ sinϕ

∂

∂x
+ h sin2 ϕ

∂

∂y
+

∂

∂θ

give a basis for this orthogonal complement at q0 = (0, 0, 0, ϕ) for every ϕ. Pushing these
forward by left-translation will then give a global basis for the orthogonal complement to
Y, although its value at (0, 0, 0, ϕ) is all we need. To compute BYq0

using the basis of vector
fields {Y1, Y2, X1, X2}, we write

⟨Ya : Yb⟩ = β1abY1 + β2abY2 +B1
abX1 +B2

abX2, a, b ∈ {1, 2},

and then the matrices

B1 =

[
B1

11 B1
12

B1
12 B1

22

]
, B2 =

[
B2

11 B2
12

B2
12 B1

22

]
may then be used to characterise BYq0

. It turns out that when one does this computation,
in all terms appears the positive denominator

C2 = JfanC1M(JfanM + C1 +m2
bodyh

2 sin2 ϕ).
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Pulling this out of all matrices will not change their relationship to the definiteness or
indefiniteness of BYq0

, so we do this to simplify the analysis. Doing the computations gives

B1 =

[
Jfanm

2
bodymfanh

3 cosϕ sin(2ϕ) C3

C3 0

]
B2 =

[
−Jfanm2

bodyMh2 sin(2ϕ) −mbodyM(C1 + JfanM) cosϕ

−mbodyM(C1 + JfanM) cosϕ 0

]
,

where

C3 = −1

2
M(2(h2mbody(Jfan + h2mbody)mfan + J2

bodyM) sin2 ϕ

+ 2JbodyJfanM + J2
bodyM + Jbody(h

2mbody(mbody + 3mfan)))

We wish now to apply Theorem 4.3. First we make the following observation.

4.5 Lemma: Y2 is a decoupling vector field for Σhc.

4.6 Remark: One can ascertain that Y2 is decoupling since we have computed ∇Y2Y2 = 0.
However, this observation is also consistent, and may indeed be derived from, Lemma 2.4.
What’s more, Lemma 2.4 gives the nice interpretation of the integral curves of Y2 as being
zero SE(2)-momentum moves for the system. •

Thus we are indeed in the case described by Theorem 4.3. It turns out that we are in
case (v) of the theorem, and that it is possible to explicitly describe the analytic subset S.
The following result summarises this.

4.7 Proposition: Let q0 = (0, 0, 0, ϕ). The following statements hold:

(i) Σhc is STLC from q0 if sin(2ϕ) = 0;

(ii) Σhc is not STLCC from q0 if sin(2ϕ) ̸= 0.

Thus the system is STLC only from the configurations shown in Figure 2.

Proof: We refer to the notation used in the proof of Theorem 4.3. Also, throughout the proof
we take points inQ of the form q = (0, 0, 0, ϕ), this being without loss of generality by SE(2)-
invariance. With {Y1, Y2, X1, X2} as described above we note that dim(ker(L12(q))) = 1 for
all q ∈ Q since B1

12 = C3 ̸= 0. Now let (λ1(q), λ2(q)) = (−B2
12(q), B

1
12(q)), and note that

(λ1(q), λ2(q)) ∈ ker(L12(q)) for all q ∈ Q. Therefore

λ1(q)B
1(q) + λ2(q)B

2(q) =

[
α(q) 0
0 0

]
where we compute

α(ϕ) = −h2Jfanm2
body(mbody +mfan)(h

2mbodymfan + Jbody(mbody +mfan))

× (Jbodymbody + Jfanmbody + Jbodymfan + Jfanmfan

+ h2mbodymfan + 2h2m2
body sin

2 ϕ) sin(2ϕ)

This function is zero only when sin(2ϕ) = 0, directly giving the result via the analysis of
Theorem 4.3. ■
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4.8 Remarks: 1. The system has the interesting property of possibly being STLC at a
point (points where sin(2ϕ) = 0), but of not being STLCC at points in a neighbour-
hood at the point. A similar, but simpler, example was examined by Shen, Sanyal,
and McClamroch [2002].

2. It is interesting to contrast our hovercraft model with the simpler ones considered
in, for example, [Bullo, Leonard, and Lewis 2000, Bullo and Lynch 2001, Lewis and
Murray 1997], and described briefly in Remark 2.5. In this case, the system is STLC
from every point in Q [Lewis and Murray 1997], and is furthermore kinematically
controllable [Bullo and Lynch 2001]. The addition of inertial properties to the fan
destroys these controllability properties. •
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